1
|
Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets. Br J Nutr 2022; 128:2330-2340. [PMID: 35144703 PMCID: PMC9723486 DOI: 10.1017/s0007114522000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.
Collapse
|
2
|
Wang R, Bai Y, Yang Y. Effects of dietary supplementation of different levels of vitamin B 12 on the liver metabolism of laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5787-5794. [PMID: 35411555 DOI: 10.1002/jsfa.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vitamin B12 plays an important role in lipid, protein, carbohydrate and nucleic acid metabolism. We investigated the effect of supplementing layers' diets with different vitamin B12 levels on liver metabolism using a liquid chromatography-mass spectrometry-based metabolomic approach to observe and analyse wide-target metabolomics in the liver. RESULTS We assigned hens to three groups, namely blank control group without vitamin B12 diet (BCG), normal control group with 25 μg kg-1 vitamin B12 (NCG) and vitamin B12 supplement group I with 100 μg kg-1 vitamin (VBSG I). The VBSG I group layers had higher (P < 0.05) vitamin B12 concentration than those from other groups. The egg yolk vitamin B12 concentration increased (P < 0.01) with the increasing vitamin B12 dietary supplemental level. Between the NCG versus BCG, VBSG I versus BCG, and VBSG I versus NCG groups, 11, 20 and 11 metabolites were significantly changed, respectively. The KEGG pathway of vitamin B6 metabolism was significantly impacted in the NCG layers than those from BCG; seven and five pathways were significantly impacted in the VBSG I layers compared with those from BCG and NCG, including pyrimidine metabolism, vitamin B6 metabolism, glycerophospholipid metabolism, etc. CONCLUSION: We concluded that 25 μg kg-1 vitamin B12 supplementation in corn-soybean meal-based layer diet increased the egg yolk vitamin B12 concentration and impacted the vitamin B6 metabolic pathway, and 100 μg kg-1 of it increased the egg yolk and liver vitamin B12 concentrations and impacted vitamin B6 , lipid, nucleic acid and amino acid metabolic pathways. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
- Department of Life Sciences, Luliang University, Lvliang, China
| | - Yan Bai
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
3
|
Kaczmarczyk A, Baker M, Diddle J, Yuzyuk T, Valle D, Lindstrom K. A neonate with ornithine aminotransferase deficiency; insights on the hyperammonemia-associated biochemical phenotype of gyrate atrophy. Mol Genet Metab Rep 2022; 31:100857. [PMID: 35782604 PMCID: PMC9248225 DOI: 10.1016/j.ymgmr.2022.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Aneta Kaczmarczyk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
- Corresponding author at: ARUP Laboratories, 500 Chipeta Way, MS115, Salt Lake City, UT 84108, USA.
| | - Mark Baker
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Julianna Diddle
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
4
|
Wang J, Xiao Y, Li J, Qi M, Tan B. Serum biochemical parameters and amino acids metabolism are altered in piglets by early-weaning and proline and putrescine supplementations. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:334-345. [PMID: 34258421 PMCID: PMC8245818 DOI: 10.1016/j.aninu.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/14/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022]
Abstract
The study was to investigate the effect of early-weaning stress and proline (Pro) and putrescine (Put) supplementations on serum biochemical parameters and amino acids (AA) metabolism in suckling and post-weaning pigs. Blood and small intestinal mucosa were harvested from suckling piglets at 1, 7, 14, and 21 d of age and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age, as well as from piglets received oral administration of Pro and Put from 1 to 14 d old. In suckling piglets, the serum glucose, albumin and total cholesterol levels were increased (P < 0.05) with increasing age, whereas the serum globulin, urea nitrogen (BUN), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) levels were lowered (P < 0.05). The concentrations of most serum AA and the AA transporters related gene expressions were highest in 7-d-old piglets (P < 0.05), whereas the phosphorylation status of the mammalian target of the rapamycin (mTOR) signaling pathway in the small intestine increased in piglets from 1 to 21 d old (P < 0.05). Weaning at 14 d old increased (P < 0.05) the BUN and triglycerides levels in serum, as well as jejunal solute carrier family 7 member 6 (SLC7A6), ileal SLC36A1 and SLC1A1 mRNA abundances at d 1 or 3 post-weaning. Weaning also inhibited (P < 0.05) the phosphorylation levels of mTOR and its downstream ribosomal protein S6 kinase 1 (S6K1) and 4E-binding protein-1 (4EBP1) in the small intestine of weanling pigs. Oral administration of Put and Pro decreased (P < 0.05) serum ALP levels and increased (P < 0.05) intestinal SLC36A1 and SLC1A1 mRNA abundances and mTOR pathway phosphorylation levels in post-weaning pigs. Pro but not Put treatment enhanced (P < 0.05) serum Pro, arginine (Arg) and glutamine (Gln) concentrations of weaning-pigs. These findings indicated that early-weaning dramatically altered the biochemical blood metabolites, AA profile and intestinal mTOR pathway activity, and Pro and Put supplementations improved the AA metabolism and transportation as well as activated the intestinal mTOR pathway in weanling-pigs. Our study has an important implication for the broad application of Pro and Put in the weaning transition of piglets.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
5
|
Lansing M, Slim G, Wizzard P, Rafii M, Pencharz PB, Nation PN, Beggs MR, Alexander RT, Wales PW, Turner JM, Ball RO. Intestinal resection affects whole-body arginine synthesis in neonatal piglets. Pediatr Res 2021; 89:1420-1426. [PMID: 32920606 DOI: 10.1038/s41390-020-01139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous studies in piglets show a direct relationship between intestinal mass and arginine (Arg) synthesis. We aimed to study the effects of 75% intestinal resection on whole-body Arg synthesis. METHODS Piglets were allocated to sham or jejunocolic (JC) surgery and to enteral nutrition (EN) at 20% [sham (n = 8), JC (n = 10)], or 40% [sham (n = 4), JC (n = 5)]. A gastric tube was placed for EN and a venous catheter for parenteral nutrition and blood sampling. On day 6, a primed bolus and constant infusion of Arg m + 2 label and proline m + 1 label was delivered. In addition, 40% EN piglets received a citrulline (Cit) m + 3 tracer. Blood sampling was undertaken and whole-body Arg synthesis was calculated. On day 7, intestinal length was measured, and samples were collected for gene expression (PCR quantification) and histopathology. RESULTS On Day 7, sham piglets showed intestinal lengthening compared to JC (p = 0.02). Whole-body Arg synthesis was similar between groups (p = 0.50). Adjusting for absolute small intestinal length, JC piglets had greater Arg synthesis (p = 0.01). Expression of arginosuccinase was upregulated in the jejunum of JC compared to sham on 20% EN (p = 0.03). CONCLUSION This demonstrates for the first-time adaptive changes in intestinal Arg synthesis following intestinal resection. IMPACT The intestine makes a critical contribution to whole-body arginine synthesis, particularly in neonates, a human population at risk for short bowel syndrome. Therefore, we studied intestinal arginine synthesis in a neonatal piglet model of short bowel syndrome and demonstrated adaptive changes in the intestine that may preserve whole-body arginine synthesis, despite loss of intestinal mass. This research adds new information to our understanding of the effects a massive intestinal resection has on amino acid metabolism during neonatal development.
Collapse
Affiliation(s)
- Marihan Lansing
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - George Slim
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Pamela Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Mahroukh Rafii
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul B Pencharz
- Departments of Pediatrics and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Patrick N Nation
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Megan R Beggs
- Department of Physiology at the University of Alberta, Edmonton, AB, Canada
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Department of Physiology at the University of Alberta, Edmonton, AB, Canada
| | - Paul W Wales
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
| | - Ron O Ball
- Department of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Zhang Q, Hou Y, Bazer FW, He W, Posey EA, Wu G. Amino Acids in Swine Nutrition and Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:81-107. [PMID: 33770404 DOI: 10.1007/978-3-030-54462-1_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Dinesh OC, Kankayaliyan T, Rademacher M, Tomlinson C, Bertolo RF, Brunton JA. Neonatal Piglets Can Synthesize Adequate Creatine, but Only with Sufficient Dietary Arginine and Methionine, or with Guanidinoacetate and Excess Methionine. J Nutr 2021; 151:531-539. [PMID: 33437999 DOI: 10.1093/jn/nxaa369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Suckling piglets synthesize most of their creatine requirement, which consumes substantial amounts of arginine in order to synthesize guanidinoacetic acid (GAA) and methionine in order to transmethylate GAA to creatine. OBJECTIVES To determine whether supplemental GAA or creatine spare arginine and/or methionine for protein synthesis and, if GAA is supplemented, whether excess methionine is needed for conversion to creatine. METHODS Yucatan miniature piglets (9-11 days old; both sexes) were fed 1 of 5 elemental diets for 5 days: 1) low arginine (0.3 g·kg-1·d-1) and low methionine (0.20 g·kg-1·d-1; Base); 2) Base plus GAA (0.093 g·kg-1·d-1; +GAA); 3) Base plus GAA plus excess methionine (0.5 g·kg-1·d-1; +GAA/Met); 4) Base plus creatine (0.12 g·kg-1·d-1; +Cre); or 5) excess arginine (1.8 g·kg-1·d-1) and excess methionine (+Arg/Met). Isotope tracers were infused to determine whole-body GAA, creatine, and protein synthesis; tissues were analyzed for creatine synthesis enzymes and metabolite concentrations. Data were analyzed by 1-way ANOVA. RESULTS : GAA and creatine syntheses were 115% and 32% higher, respectively, with the +Arg/Met diet (P < 0.0001), in spite of 33% lower renal L-arginine: glycine amidinotransferase activity (P < 0.0001) compared to Base, suggesting substrate availability dictates synthesis rather than enzyme capacity. GAA or creatine supplementation reduced arginine conversion to creatine by 46% and 43%, respectively (P < 0.01), but did not spare amino acids for whole-body protein synthesis, suggesting that limited amino acids were diverted to protein at the expense of creatine synthesis. The +GAA/Met diet led to higher creatine concentrations in the kidney (2.6-fold) and liver (7.6-fold) than the +GAA diet (P < 0.01), suggesting excess methionine is needed for GAA conversion to creatine. CONCLUSIONS Piglets are capable of synthesizing sufficient creatine from the precursor amino acids arginine and methionine, or from GAA plus methionine.
Collapse
Affiliation(s)
- O Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | | - Meike Rademacher
- Animal Nutrition, Evonik Nutrition & Care GmbH (Gesellschaft mit beschränkter Haftung), Hanau, Germany
| | - Christopher Tomlinson
- Departments of Paediatrics and Nutritional Sciences, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
8
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:571-579. [DOI: 10.1080/00365513.2020.1818280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Penelope D. Manta-Vogli
- Department of Clinical Nutrition & Dietetics, Agia Sofia Children’s Hospital, Athens, Greece
| | | | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab 2019; 32:803-809. [PMID: 31246579 DOI: 10.1515/jpem-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Arginine family amino acids (AFAAs) include glutamine (Gln) plus glutamate (Glu), ornithine (Orn), proline (Pro), citrulline (Cit) and arginine (Arg). We aimed to quantitate these amino acids in the blood of full-term infants in relation to their birth weight (BW) perinatally. Methods Breastfeeding full-term infants (n = 2000, 1000 males, 1000 females) with a BW of 2000-4000 g were divided into four equal groups: group A, 2000-2500 g; B, 2500-3000 g; C, 3000-3500 g and D, 3500-4000 g. Blood samples as dried blood spots (DBS) were collected on the third day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. Results Gln plus Glu mean values were found to be statistically significantly different between males and females in all studied groups. The highest values of these amino acids were detected in both males and females in group D. Orn mean values were found to be statistically significantly different between males and females of the same BW in all groups except the last one. The lower mean value was determined in group A, whereas the highest was determined in group D. Cit and Arg mean values were determined to be almost similar in all studied groups. Conclusions Gln plus Glu and Orn blood concentrations were directly related to infants' BW. Conversely, Cit and Arg did not vary significantly in all groups.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece, Phone: +30 210 7274696, Fax: +30 210 7274039
| |
Collapse
|
10
|
Wu G, Bazer FW, Johnson GA, Hou Y. BOARD-INVITED REVIEW: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 2019; 96:5035-5051. [PMID: 30445424 DOI: 10.1093/jas/sky377] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Arginine (Arg) has traditionally not been considered as a deficient nutrient in diets for gestating or lactating swine due to the assumption that these animals can synthesize sufficient amounts of Arg to meet their physiological needs. The lack of full knowledge about Arg nutrition has contributed to suboptimal efficiency of pork production. Over the past 25 yr, there has been growing interest in Arg metabolism in the pig, which is an agriculturally important species and a useful model for studying human biology. Arginine is a highly abundant amino acid in tissues of pigs, a major amino acid in allantoic fluid, and a key regulator of gene expression, cell signaling, and antioxidative reactions. Emerging evidence suggests that dietary supplementation with 0.5% to 1% Arg maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. Also, the inclusion of 1% Arg in diets is required to maximize skeletal muscle accretion and feed efficiency in growing pigs, whereas dietary supplementation with 1% Arg reduces muscle loss in endotoxin-challenged pigs. Furthermore, supplementing 0.83% Arg to corn- and soybean meal-based diets promotes embryonic/fetal survival in swine and milk production by lactating sows. Thus, an adequate amount of dietary Arg as a quantitatively major nutrient is necessary to support maximum growth, lactation, and reproduction performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX.,Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Fuller W Bazer
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
11
|
Wu L, Zhang X, Tang Z, Li Y, Li T, Xu Q, Zhen J, Huang F, Yang J, Chen C, Wu Z, Li M, Sun J, Chen J, An R, Zhao S, Jiang Q, Zhu W, Yin Y, Sun Z. Low-Protein Diets Decrease Porcine Nitrogen Excretion but with Restrictive Effects on Amino Acid Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8262-8271. [PMID: 29984998 DOI: 10.1021/acs.jafc.8b03299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reducing dietary crude protein (CP) intake effectively decreases nitrogen excretion in growing-finishing pigs but at the expense of poor growth when dietary CP content is reduced by ≥3%. In this study, we investigated the main disadvantages of low-protein diets supplemented with lysine, methionine, threonine, and tryptophan in pigs. First, changes in the nitrogen balance in response to differences in dietary CP content (18%, 15%, and 13.5%) were investigated in barrows (40 kg). Then, barrows (40 kg) surgically fitted with catheters in the mesenteric vein, portal vein, hepatic vein, and carotid artery were used to investigate changes in amino acid (AA) metabolism in the portal-drained viscera and liver in response to differences in dietary CP content. The results showed that low-protein diets reduced fecal and urinary nitrogen excretion ( P < 0.05) meanwhile resulted in significant decreases in nitrogen retention ( P < 0.05). Moreover, a reduction in the dietary CP content from 18% to 13.5% resulted in decreases in the net portal fluxes of NH3, glycine, and alanine as well as in the urea production in the liver ( P < 0.05), whereas their values as a percentage of nitrogen intake did not decline ( P > 0.05). The net portal fluxes of nonessential AA (NEAA) were reduced in the low-protein diet groups ( P < 0.05), while essential AA consumption in the liver increased ( P < 0.05). Thus, low-protein diets result in reductions in both nitrogen excretion and retention, and NEAA deficiency may be a major disadvantage of low-protein diets.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Xiangxin Zhang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Yunxia Li
- Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu 611130 , P. R. China
| | - Tiejun Li
- Institute of Subtropical Agriculture , The Chinese Academy of Sciences , Changsha 410125 , P. R. China
| | - Qingqing Xu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Jifu Zhen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Feiruo Huang
- College of Animal Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Jing Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Cheng Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Zhaoliang Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Mao Li
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Jiajing Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Jinchao Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Rui An
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Shengjun Zhao
- School of Animal Science and Nutritional Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Qingyan Jiang
- College of Animal Science and Technology , Huanan Agricultural University , Guangzhou 510642 , P. R. China
| | - Weiyun Zhu
- College of Animal Science and Technology , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yulong Yin
- Institute of Subtropical Agriculture , The Chinese Academy of Sciences , Changsha 410125 , P. R. China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
12
|
Dinesh OC, Bertolo RF, Brunton JA. Creatine supplementation to total parenteral nutrition improves creatine status and supports greater liver and kidney protein synthesis in neonatal piglets. Pediatr Res 2018; 83:135-141. [PMID: 28846669 DOI: 10.1038/pr.2017.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022]
Abstract
BackgroundCreatine is not included in commercial pediatric parenteral products; the entire creatine requirement must be met by de novo synthesis from arginine during parenteral nutrition (PN). Poor arginine status is common during PN in neonates, which may compromise creatine accretion. We hypothesized that creatine supplementation will improve creatine status and spare arginine in PN-fed piglets.MethodsPiglets (3-5-day (d) old) were provided PN with or without creatine for 14 d. Tissue concentrations of creatine metabolites and activities of creatine-synthesizing enzymes, as well as tissue protein synthesis rates and liver lipid parameters, were measured.ResultsCreatine provision lowered kidney and pancreas L-arginine:glycine amidinotransferase (AGAT, EC number 2.1.4.1) activities and plasma guanidinoacetic acid (GAA) concentration, suggesting the downregulation of de novo creatine synthesis. Creatine increased plasma creatine concentrations to sow-fed reference levels and increased the creatine concentrations in most tissues, but not in the brain. PN creatine resulted in greater protein synthesis in the liver and the kidney, but not in the pancreas, skeletal muscle, or gut. Creatine supplementation also reduced liver cholesterol concentrations, but not triglyceride or total fat.ConclusionThe addition of creatine to PN may optimize the accretion of creatine and reduce the metabolic burden of creatine synthesis in rapidly growing neonates.
Collapse
Affiliation(s)
- O Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
13
|
Getty CM, Almeida FN, Baratta AA, Dilger RN. Plasma metabolomics indicates metabolic perturbations in low birth weight piglets supplemented with arginine. J Anim Sci 2016; 93:5754-63. [PMID: 26641185 DOI: 10.2527/jas.2015-9293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large profit losses in the swine industry can be attributed to morbidity and mortality of piglets before weaning, especially in the low birth weight (LBW) piglet. Recent evidence suggests sow's milk contains insufficient concentrations of Arg to support optimal growth and health of piglets. Therefore, our objective was to assess global metabolomic profiles and the potential for Arg supplementation to promote growth of LBW (≤0.9 kg BW) and average birth weight (ABW; 1.3 to 1.5 kg BW) piglets. Piglets were selected in littermate pairs at processing to receive either Arg or an isonitrogenous control (Ala) and weighed daily to assess growth rate, and blood was collected at approximately 16 d of age for metabolomics analysis. In terms of growth, LBW and ABW piglets supplemented with Arg weighed 22.3 and 12.7% less, respectively, at d 16 compared with Ala-supplemented piglets of the same birth weight group. Overall, differences ( < 0.05) were observed among treatments for metabolic pathways involving energy (i.e., tricarboxylic acid cycle intermediates), AA, nucleotides, and fatty acids. Increased nucleotide turnover, indicative of an increase in DNA damage and cell death, was particularly noted in the LBW piglet. However, Arg supplementation reduced these effects to levels comparable to those observed in ABW piglets. Moreover, changes in glucose metabolism suggested a compromised ability to extract energy from dietary sources may have occurred in the LBW piglet, but these effects were partially recovered by Arg supplementation. We conclude that a reduction in the growth potential of LBW piglets may be associated with alterations in multiple metabolic pathways, and further reduction due to Arg supplementation may have resulted from perturbations in multiple metabolic pathways.
Collapse
|
14
|
Dinesh OC, Dodge ME, Baldwin MP, Bertolo RF, Brunton JA. Enteral Arginine Partially Ameliorates Parenteral Nutrition–Induced Small Intestinal Atrophy and Stimulates Hepatic Protein Synthesis in Neonatal Piglets. JPEN J Parenter Enteral Nutr 2013; 38:973-81. [DOI: 10.1177/0148607113498906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- O. Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - M. Elaine Dodge
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Mark P. Baldwin
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Robert F. Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Janet A. Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| |
Collapse
|
15
|
Nakamura H, Kawamata Y, Kuwahara T, Torii K, Sakai R. Nitrogen in dietary glutamate is utilized exclusively for the synthesis of amino acids in the rat intestine. Am J Physiol Endocrinol Metab 2013; 304:E100-8. [PMID: 23115079 DOI: 10.1152/ajpendo.00331.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies have shown that virtually the entire carbon skeleton of dietary glutamate (glutamate-C) is metabolized in the gut for energy production and amino acid synthesis, little is known regarding the fate of dietary glutamate nitrogen (glutamate-N). In this study, we hypothesized that dietary glutamate-N is an effective nitrogen source for amino acid synthesis and investigated the fate of dietary glutamate-N using [(15)N]glutamate. Fischer male rats were given hourly meals containing [U-(13)C]- or [(15)N]glutamate. The concentration and isotopic enrichment of several amino acids were measured after 0-9 h of feeding, and the net release of each amino acid into the portal vein was calculated. Most of the dietary glutamate-C was metabolized into CO(2), lactate, or alanine (56, 13, and 12% of the dietary input, respectively) in the portal drained viscera (PDV). Most of the glutamate-N was utilized for the synthesis of other amino acids such as alanine and citrulline (75 and 3% of dietary input, respectively) in the PDV, and only minor amounts were released into the portal vein in the form of ammonia and glutamate (2 and 3% of the dietary input, respectively). Substantial incorporation of (15)N into systemic amino acids such as alanine, glutamine, and proline, amino acids of the urea cycle, and branched-chain amino acids was also evident. These results provide quantitative evidence that dietary glutamate-N distributes extensively to amino acids synthesized in the PDV and, consequently, to circulating amino acids.
Collapse
|
16
|
Marini JC, Stoll B, Didelija IC, Burrin DG. De novo synthesis is the main source of ornithine for citrulline production in neonatal pigs. Am J Physiol Endocrinol Metab 2012; 303:E1348-53. [PMID: 23074237 PMCID: PMC3774079 DOI: 10.1152/ajpendo.00399.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Citrulline is an amino acid synthesized in the gut and utilized for the synthesis of the conditionally essential amino acid arginine. Recently, the origin of the ornithine utilized for citrulline synthesis has become a matter of discussion. Multiple physiological factors may have contributed to the differences found among different researchers; one of these is the developmental stage of the subjects studied. To test the hypothesis that during the neonatal period de novo synthesis is the main source of ornithine for citrulline synthesis, neonatal piglets were infused intravenously or intragastrically with [U-(13)C(6)]arginine, [U-(13)C(5)]glutamine, or [U-(13)C(5)]proline during the fasted and fed periods. [ureido-(15)N]citrulline and [(2)H(2)]ornithine were infused intravenously for the entire infusion protocol. During fasting, plasma proline (13%) and ornithine (19%) were the main precursors for citrulline synthesis, whereas plasma arginine (62%) was the main precursor for plasma ornithine. During feeding, enteral (27%) and plasma (12%) proline were the main precursors for the ornithine utilized in the synthesis of citrulline, together with plasma ornithine (27%). Enteral proline and glutamine were utilized directly by the gut to produce ornithine utilized for citrulline synthesis. Arginine was not utilized by the gut, which is consistent with the lack of arginase activity in the neonate. Arginine, however, was the main source (47%) of plasma ornithine and in this way contributed to citrulline synthesis. In conclusion, during the neonatal period, the de novo pathway is the predominant source for the ornithine utilized in the synthesis of citrulline, and proline is the preferred precursor.
Collapse
Affiliation(s)
- Juan C Marini
- United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
17
|
Brunton JA, Baldwin MP, Hanna RA, Bertolo RF. Proline supplementation to parenteral nutrition results in greater rates of protein synthesis in the muscle, skin, and small intestine in neonatal Yucatan miniature piglets. J Nutr 2012; 142:1004-8. [PMID: 22535763 DOI: 10.3945/jn.111.154534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proline and arginine are each indispensable during parenteral feeding due to limited interconversion by an atrophied gut. Commercial amino acid parenteral products designed for neonates contain proline concentrations that differ by almost 4-fold. To assess the adequacy of the lowest concentration of proline provided in commercial total parenteral nutrition (TPN) products, we compared rates of tissue-specific protein synthesis and nitrogen balance in neonatal piglets provided TPN at 2 different proline concentrations. Yucatan miniature piglets (9-11 d old, n = 12) were randomized to complete isonitrogenous TPN diets with low proline (LP; L-proline as 3% of amino acids) or proline supplemented (PS; 9%). After 7 d of receiving TPN, rates of protein synthesis in liver, gastrocnemius muscle, jejunal mucosa, and skin were determined by the flooding dose technique and tissue free amino acids were measured. Nitrogen balance was assessed during the last 3 d. The LP TPN resulted in lower free proline concentrations in plasma, muscle, and skin (P < 0.05) and lower rates of protein synthesis in the jejunum (by 25%; P = 0.02), muscle (by 45%; P = 0.015), and skin (by 60%; P = 0.01); there was no difference in liver. Nitrogen retention was 20% lower in the LP group (P = 0.01). In conclusion, muscle and skin protein synthesis was profoundly sensitive to parenteral proline supply and the reduced protein synthesis in the intestine could affect intestinal integrity. Low-proline TPN solutions that are currently in wide use in neonatal care may result in impaired tissue growth.
Collapse
Affiliation(s)
- Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | | | | | |
Collapse
|
18
|
Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 2011; 43:233-44. [DOI: 10.1007/s00726-011-1067-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022]
|
19
|
Tomlinson C, Rafii M, Sgro M, Ball RO, Pencharz P. Arginine is synthesized from proline, not glutamate, in enterally fed human preterm neonates. Pediatr Res 2011; 69:46-50. [PMID: 20856169 DOI: 10.1203/pdr.0b013e3181fc6ab7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In neonatal mammals, arginine is synthesized in the enterocyte, with either proline or glutamate as the dietary precursor. We have shown several times in piglets that proline is the only precursor to arginine, although in vitro evidence supports glutamate in this role. Because of this uncertainty, we performed a multitracer stable isotope study to determine whether proline, glutamate, or both are dietary precursors for arginine in enterally fed human neonates. Labeled arginine (M + 2), proline (M + 1), and glutamate (M + 3) were given enterally to 15 stable, growing preterm infants (GA at birth 30-35 wk) at 1-3 wk postnatal age. Enrichment in urine of the tracer amino acids and the M + 1 and M + 3 isotopomers of arginine were measured by LC-tandem mass spectrometry to determine the contribution of proline and glutamate to arginine synthesis. Plateau enrichments of arginine and proline tracers were measurable in urine. Urinary glutamate enrichment was not detected. Conversion of proline to arginine was detected. However, the M + 3 isotopomer of arginine, which would have been synthesized from glutamate, was not detected. We conclude that, in contrast to the current consensus in the literature based on in vitro studies, proline is the major contributor to arginine synthesis in human preterm infants.
Collapse
Affiliation(s)
- Chris Tomlinson
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | | | | | | | | |
Collapse
|
20
|
Bauchart-Thevret C, Cui L, Wu G, Burrin DG. Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. Am J Physiol Endocrinol Metab 2010; 299:E899-909. [PMID: 20841502 DOI: 10.1152/ajpendo.00068.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine is an indispensable amino acid in neonates and is required for growth. Neonatal intestinal epithelial cells (IEC) are capable of arginine transport, catabolism, and synthesis and express nitric oxide (NO) synthase to produce NO from arginine. Our aim was to determine whether arginine directly stimulates IEC growth and protein synthesis and whether this effect is mediated via mammalian target of rapamycin (mTOR) and is NO-dependent. We studied neonatal porcine IEC (IPEC-J2) cultured in serum- and arginine-free medium with increasing arginine concentrations for 4 or 48 h. Our results show that arginine enhances IPEC-J2 cell survival and protein synthesis, with a maximal response at a physiological concentration (0.1-0.5 mM). Addition of arginine increased the activation of mTOR, p70 ribosomal protein S6 (p70 S6) kinase, and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in a time- and dose-dependent manner. The arginine-induced protein synthesis response was not inhibited by the NO inhibitors nitro-l-arginine methyl ester (l-NAME) and aminoguanidine, despite inducible NO synthase expression in IPEC-J2 cells. Moreover, protein synthesis was not increased or decreased in some cases by addition of an NO donor (S-nitroso-N-acetylpenicillamine), arginine precursors (proline and citrulline) in the absence of arginine, or insulin; S-nitroso-N-acetylpenicillamine suppressed phosphorylation of mTOR, p70 S6 kinase, and 4E-BP1. We found a markedly higher arginase activity in IPEC-J2 cells than in primary pig IEC. Furthermore, mTOR inhibition by rapamycin partially (42%) reduced the arginine-induced protein synthesis response and phosphorylation of mTOR and 4E-BP1. We conclude that arginine-dependent cell survival and protein synthesis signaling in IPEC-J2 cells are mediated by mTOR, but not by NO.
Collapse
|
21
|
Abstract
Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton vs. nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutamine and nonspecific nitrogen in the synthesis of citrulline, l-[2-(15)N]- and l-[5-(15)N]glutamine and (15)N-ammonium acetate were infused intragastrically in mice. The amino group of glutamine labeled the three nitrogen groups of citrulline almost equally. The amido group and ammonium acetate labeled the ureido and amino groups of citrulline, but not the delta-nitrogen. D(5)-glutamine also infused in this arm of the study, which traces the carbon skeleton of glutamine, was utilized poorly, accounting for only 0.2-0.4% of the circulating citrulline. Dietary glutamine nitrogen (both N groups) incorporation was 25-fold higher than the incorporation of its carbon skeleton into citrulline. To investigate the relative contributions of the carbon skeleton and nonspecific carbon of glutamine, arginine, and proline to citrulline synthesis, U-(13)C(n) tracers of these amino acids were infused intragastrically. Dietary arginine was the main precursor for citrulline synthesis, accounting for approximately 40% of the circulating citrulline. Proline contribution was minor (3.4%), and glutamine was negligible (0.4%). However, the glutamine tracer resulted in a higher enrichment in the ureido group, indicating incorporation of nonspecific carbon from glutamine oxidation into carbamylphosphate used for citrulline synthesis. In conclusion, dietary glutamine is a poor carbon skeleton precursor for the synthesis of citrulline, although it contributes both nonspecific nitrogen and carbon to citrulline synthesis.
Collapse
Affiliation(s)
- Juan C Marini
- Children's Nutrition Research Center, Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
22
|
Chapman KP, Courtney-Martin G, Moore AM, Langer JC, Tomlinson C, Ball RO, Pencharz PB. Lysine requirement in parenterally fed postsurgical human neonates. Am J Clin Nutr 2010; 91:958-65. [PMID: 20164307 DOI: 10.3945/ajcn.2009.28729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The lysine requirement of human neonates receiving parenteral nutrition (PN) has not been determined experimentally. OBJECTIVE The objective was to determine the parenteral lysine requirement for human neonates by using the minimally invasive indicator amino acid oxidation technique with l-[1-(13)C] phenylalanine as the indicator amino acid. DESIGN Eleven postsurgical neonates were randomly assigned to 15 lysine intakes ranging from 50 to 260 mg . kg(-1) . d(-1). Breath and urine samples were collected at baseline and at plateau for (13)CO(2) (F(13)CO(2)) and amino acid enrichment, respectively. The mean lysine requirement was determined by applying a 2-phase linear regression crossover analysis to the measured rates of F(13)CO(2) release and l-[1-(13)C]phenylalanine oxidation. RESULTS The mean parenteral lysine requirement determined by F(13)CO(2) release oxidation was 104.9 mg . kg(-1) . d(-1) (upper and lower CIs: 120.6 and 89.1 mg . kg(-1) . d(-1), respectively). The mean lysine parenteral requirement determined by phenylalanine oxidation was 117.6 mg . kg(-1) . d(-1) (upper and lower CIs: 157.5 and 77.6 mg . kg(-1) . d(-1), respectively). Graded intakes of lysine had no effect on phenylalanine flux. CONCLUSION We recommend a mean lysine requirement for the postsurgical PN-fed neonate of 104.9 mg . kg(-1) . d(-1), which is 32-43% of the lysine concentration presently found in commercial PN solutions (246-330 mg . kg(-1) . d(-1)). This trial was registered at clinicaltrials.gov as NCT00779753.
Collapse
Affiliation(s)
- Karen P Chapman
- Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Courtney-Martin G, Moore AM, Ball RO, Pencharz PB. The addition of cysteine to the total sulphur amino acid requirement as methionine does not increase erythrocytes glutathione synthesis in the parenterally fed human neonate. Pediatr Res 2010; 67:320-4. [PMID: 19915518 DOI: 10.1203/pdr.0b013e3181ca036f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Controversy exists as to whether the parenterally (PN) fed human neonate is capable of synthesizing adequate cysteine from methionine if the total dietary requirement for sulfur amino acid (SAA) is provided as methionine only. The goal of this study was to gather data on whether glutathione (GSH) synthesis is maximized at a methionine intake previously shown to be adequate for protein synthesis in the PN-fed human neonate. We measured GSH concentration, fractional, and absolute synthesis rate in five PN-fed human neonates. Each neonate underwent two isotope infusion studies of 7 h duration after a 2-d adaptation to the total SAA requirement (methionine only) and again after a further 2-d adaptation to the same methionine intake supplemented with cysteine at 10 mg x kg(-1) x d(-1). Cysteine supplementation did not significantly affect GSH synthesis. These data suggest that term infants are capable of synthesizing cysteine from methionine, not only for protein but also for GSH synthesis.
Collapse
|
24
|
Chapman KP, Courtney-Martin G, Moore AM, Ball RO, Pencharz PB. Threonine requirement of parenterally fed postsurgical human neonates. Am J Clin Nutr 2009; 89:134-41. [PMID: 19056607 DOI: 10.3945/ajcn.2008.26654] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The threonine requirement of human neonates who receive parenteral nutrition (PN) has not been determined experimentally. OBJECTIVE The objective was to determine the parenteral threonine requirement for human neonates by using the minimally invasive indicator amino acid oxidation technique with L-[1-(13)C]phenylalanine as the indicator amino acid. DESIGN Nine postsurgical neonates were randomly assigned to 16 threonine intakes ranging from 10 to 100 mg . kg(-1) . d(-1). Breath and urine samples were collected at baseline and at plateau for (13)CO(2) and amino acid enrichment, respectively. The mean threonine requirement was determined by applying a 2-phase linear regression crossover analysis to the measured rates of (13)CO(2) release (F(13)CO(2)) and L-[1-(13)C]phenylalanine oxidation. RESULTS The mean threonine parenteral requirement determined by using phenylalanine oxidation was 37.6 mg . kg(-1) . d(-1) (upper and lower confidence limits, respectively: 29.9 and 45.2 mg . kg(-1) . d(-1)) and by using F(13)CO(2) oxidation was 32.8 mg . kg(-1) . d(-1) (upper and lower confidence limits, respectively: 29.7 and 35.9 mg . kg(-1) . d(-1)). Graded intakes of threonine had no effect on phenylalanine flux. CONCLUSION This is the first study to report on the threonine requirement for human neonates receiving PN. We found that the threonine requirement for postsurgical PN-fed neonates is 22-32% of the content of threonine that is presently found in commercial PN solutions (111-165 mg . kg(-1) . d(-1)).
Collapse
Affiliation(s)
- Karen P Chapman
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
25
|
Kimura T, Renwick AG, Kadowaki M, Cynober LA. The 7th workshop on the assessment of adequate intake of dietary amino acids: summary of general discussion. J Nutr 2008; 138:2050S-2205S. [PMID: 18806123 DOI: 10.1093/jn/138.10.2050s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extensive discussion sessions were held at the end of each of the 2 d of the workshop. Through the course of the workshop, it became clear that there were different opinions on how to use uncertainty factors to obtain upper levels of intake from no observed adverse effect levels of a particular nutrient and that the selection of an appropriate uncertainty factor would be rather arbitrary. Much of the discussion centered around the potential for using metabolic limits, expressed as the level of intake at which the major pathway of metabolism may approach saturation and at which the amino acid is metabolized by alternative pathways, as a measurable early or surrogate marker for amino acid excess and possible toxicity. After extensive discussion on various conditions that would need to be satisfied for metabolic limits to be used as markers of excessive intake of amino acids, there was a general consensus that methods such as measuring oxidation limits are an attractive approach that merit future investigation. It was noted that there are many data on the clinical use of glutamine, whereas data for proline are very scarce. There was recognition that regardless of the available data, there is regulatory pressure for setting upper levels of intake for amino acids and that much more data are required.
Collapse
Affiliation(s)
- Takeshi Kimura
- Ajinomoto Co., Inc., Quality Assurance and External Scientific Affairs Department, 104-8315 Tokyo, Japan.
| | | | | | | |
Collapse
|
26
|
Bertolo RF, Burrin DG. Comparative aspects of tissue glutamine and proline metabolism. J Nutr 2008; 138:2032S-2039S. [PMID: 18806120 DOI: 10.1093/jn/138.10.2032s] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cellular metabolism of glutamine and proline are closely interrelated, because they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrroline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrulline is converted to arginine in the kidney. In neonates, arginine is a semiindispensable amino acid and is synthesized from proline completely in the gut; because of low P5C synthase activity, glutamine is not an important precursor for neonatal arginine synthesis. Thus, splanchnic metabolism of glutamine and proline is important, because both amino acids serve as key precursors for arginine synthesis with some developmental differences. Studies investigating splanchnic extraction demonstrate that about two-thirds of dietary glutamine and almost all dietary glutamate are extracted on first pass and the vast majority is oxidized in the gut. This capacity to extract glutamine and glutamate appears to be very large, so diets high in glutamine or glutamate probably have little impact on circulating concentrations and consequent potential toxicity. In contrast, it appears that very little proline is extracted by the gut and liver, at least in the neonate, which may result in hyperprolinemia and potential toxicity. Therefore, the upper limits of safe dietary intake for glutamine and proline, and other amino acids, appear to be substantially different depending on the extent of first-pass splanchnic extraction and irreversible catabolism.
Collapse
Affiliation(s)
- Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | |
Collapse
|
27
|
Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 2008; 7:1587-97. [PMID: 18487603 PMCID: PMC2556023 DOI: 10.1074/mcp.m800113-mcp200] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/06/2008] [Indexed: 11/06/2022] Open
Abstract
Recent studies using stable isotope labeling with amino acids in culture (SILAC) in quantitative proteomics have made mention of the problematic conversion of isotope-coded arginine to proline in cells. The resulting converted proline peptide divides the heavy peptide ion signal causing inaccuracy when compared with the light peptide ion signal. This is of particular concern as it can effect up to half of all peptides in a proteomic experiment. Strategies to both compensate for and limit the inadvertent conversion have been demonstrated, but none have been shown to prevent it. Additionally, these methods combined with SILAC labeling in general have proven problematic in their large scale application to sensitive cell types including embryonic stem cells (ESCs) from the mouse and human. Here, we show that by providing as little as 200 mg/liter L-proline in SILAC media, the conversion of arginine to proline can be rendered completely undetectable. At the same time, there was no compromise in labeling with isotope-coded arginine, indicating there is no observable back conversion from the proline supplement. As a result, when supplemented with proline, correct interpretation of "light" and "heavy" peptide ratios could be achieved even in the worst cases of conversion. By extending these principles to ESC culture protocols and reagents we were able to routinely SILAC label both mouse and human ESCs in the absence of feeder cells and without compromising the pluripotent phenotype. This study provides the simplest protocol to prevent proline artifacts in SILAC labeling experiments with arginine. Moreover, it presents a robust, feeder cell-free, protocol for performing SILAC experiments on ESCs from both the mouse and the human.
Collapse
Affiliation(s)
- Sean C Bendall
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Courtney-Martin G, Chapman KP, Moore AM, Kim JH, Ball RO, Pencharz PB. Total sulfur amino acid requirement and metabolism in parenterally fed postsurgical human neonates. Am J Clin Nutr 2008; 88:115-24. [PMID: 18614731 DOI: 10.1093/ajcn/88.1.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Except for tyrosine, the amino acid requirements of human neonates receiving parenteral nutrition (PN) have not been experimentally derived. OBJECTIVES The objectives were to determine the total sulfur amino acid (TSAA) requirement (methionine in the absence of cysteine) of postsurgical, PN-fed human neonates by using the indicator amino acid oxidation (IAAO) technique with L-[1-(13)C]phenylalanine as the indicator. DESIGN Fifteen postsurgical neonates were randomly assigned to receive 1 of 18 methionine intakes ranging from 10 to 120 mg x kg(-1) x d(-1), delivered in a customized, cysteine-free amino acid solution. Breath and urine samples were collected for the measurement of (13)CO(2) and amino acid enrichment. Blood samples were collected at baseline and after the test methionine infusion for the measurement of plasma methionine, homocysteine, cystathionine, and cysteine concentrations. RESULTS Breakpoint analysis determined the mean TSAA requirements to be 47.4 (95% CI: 38.7, 56.1) and 49.0 (95% CI: 39.9, 58.0) mg x kg(-1) x d(-1) with the use of oxidation and F(13)CO(2), respectively. CONCLUSIONS This is the first study to report the TSAA requirement of postsurgical, PN-fed human neonates. The estimated methionine requirement expressed as a proportion of the methionine content of current commercial pediatric PN solutions was 90% (range: 48-90%) of that found in the lowest methionine-containing PN solution.
Collapse
|
29
|
Urschel KL, Rafii M, Pencharz PB, Ball RO. A multitracer stable isotope quantification of the effects of arginine intake on whole body arginine metabolism in neonatal piglets. Am J Physiol Endocrinol Metab 2007; 293:E811-8. [PMID: 17595215 DOI: 10.1152/ajpendo.00290.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that deficient arginine intake increased the rate of endogenous arginine synthesis from proline. In this paper, we report in vivo quantification of the effects of arginine intake on total endogenous arginine synthesis, on the rates of conversion between arginine, citrulline, ornithine, and proline, and on nitric oxide synthesis. Male piglets, with gastric catheters for diet and isotope infusion and femoral vein catheters for blood sampling, received a complete diet for 2 days and then either a generous (+Arg; 1.80 g x kg(-1) x day(-1); n = 5) or deficient (-Arg; 0.20 g.kg(-1).day(-1); n = 5) arginine diet for 5 days. On day 7, piglets received a primed, constant infusion of [guanido-(15)N(2)]arginine, [ureido-(13)C;5,5-(2)H(2)]citrulline, [U-(13)C(5)]ornithine, and [(15)N;U-(13)C(5)]proline in an integrated study of the metabolism of arginine and its precursors. Arginine synthesis (micromol x kg(-1) x h(-1)) from both proline (+Arg: 42, -Arg: 74, pooled SE: 5) and citrulline (+Arg: 67, -Arg: 120; pooled SE: 15) were higher in piglets receiving the -Arg diet (P < 0.05); and for both diets proline accounted for approximately 60% of total endogenous arginine synthesis. The conversion of proline to citrulline (+Arg: 39, -Arg: 67, pooled SE: 6) was similar to the proline-to-arginine conversion, confirming that citrulline formation limits arginine synthesis from proline in piglets. Nitric oxide synthesis (micromol x kg(-1) x h(-1)), measured by the rate conversion of [guanido-(15)N(2)]arginine to [ureido-(15)N]citrulline, was greater in piglets receiving the +Arg diet (105) than in those receiving the -Arg diet (46, pooled SE: 10; P < 0.05). This multi-isotope method successfully allowed many aspects of arginine metabolism to be quantified simultaneously in vivo.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
30
|
Vicario M, Amat C, Rivero M, Moretó M, Pelegrí C. Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis. J Nutr 2007; 137:1931-7. [PMID: 17634266 DOI: 10.1093/jn/137.8.1931] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development of inflammatory bowel disease may involve immune dysfunction. Because enteral glutamine is the main source of amino acids for the intestinal mucosa and is metabolized at high rates by both enterocytes and immunocytes, the aim of this study was to ascertain the protective role of glutamine supplementation in a DSS-induced model of mild experimental colitis on metabolic, immune, and intestinal variables. Lewis rats were fed diets supplemented with glutamine (glutamine diet, G group) or an isoenergetic isonitrogenous control diet (C group) from postnatal d 21 (weaning) and continuing to d 35. On d 30, half of the rats from both groups were given 0.5% DSS in drinking water (G-DSS and C-DSS groups). Glutamine supplementation increased the plasma concentrations of Thr, Gln, Cit, His, and Arg and enhanced the ratio of essential to nonessential amino acids irrespective of DSS treatment. DSS administration increased the plasma Gln concentration, indicating a reduced utilization of this amino acid by the intestinal tissue. Regarding the gut-associated lymphoid tissue lymphocyte populations, DSS increased the percentages of CD3(+) T lymphocytes from Peyer's patches, NK and B lymphocytes from mesenteric lymph nodes, and NK CD8(-) cells from intraepithelial lymphocytes. The administration of glutamine did not affect the inductive populations nor did it modify T-cell subtypes or the percentage of intraepithelial lymphocytes of gut-associated lymphoid tissue. However, glutamine supplementation reduced the feces water contents in the DSS-treated but not in the untreated rats. These results indicate that glutamine supplementation can improve barrier function in rats with colitis.
Collapse
Affiliation(s)
- María Vicario
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Ball RO, Urschel KL, Pencharz PB. Nutritional consequences of interspecies differences in arginine and lysine metabolism. J Nutr 2007; 137:1626S-1641S. [PMID: 17513439 DOI: 10.1093/jn/137.6.1626s] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.
Collapse
Affiliation(s)
- Ronald O Ball
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, and The Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G.
| | | | | |
Collapse
|
32
|
Urschel K, Pencharz P, Ball R. Ornithine metabolism, but not arginine synthesis, is affected by the addition of ornithine to an arginine-deficient diet in enterally-fed piglets. Livest Sci 2007. [DOI: 10.1016/j.livsci.2007.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Urschel KL, Evans AR, Pencharz PB, Ball RO. Infusion of glucagon-like peptide 2 with an arginine deficient diet increases endogenous arginine synthesis from proline in parenterally-fed neonatal piglets. Livest Sci 2007. [DOI: 10.1016/j.livsci.2007.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Urschel KL, Evans AR, Wilkinson CW, Pencharz PB, Ball RO. Parenterally fed neonatal piglets have a low rate of endogenous arginine synthesis from circulating proline. J Nutr 2007; 137:601-6. [PMID: 17311947 DOI: 10.1093/jn/137.3.601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parenterally fed neonatal piglets cannot synthesize sufficient arginine to maintain arginine status, presumably due to the intestinal atrophy that occurs with parenteral feeding. Parenteral feeding-induced atrophy can be reduced by the infusion of glucagon-like peptide 2 (GLP-2). GLP-2 infusion was hypothesized to increase the rate of endogenous arginine synthesis from proline, the major arginine precursor, in parenterally fed piglets receiving an arginine-deficient diet. Male piglets, fitted with jugular vein catheters for diet and isotope infusion, and femoral vein catheters for blood sampling (d 0), were allocated to a continuous infusion of either GLP-2 (n = 5; 10 nmol x kg(-1) x d(-1)) or saline (n = 5) for 7 d. Piglets received 2 d of a complete diet, followed by 5 d of an arginine-deficient [0.60 g x kg(-1) x d(-1)] diet. Piglets received primed, constant infusions of [guanido-(14)C]arginine to measure arginine flux (d 6) and [U-(14)C]proline (d 7) to measure proline conversion to arginine. Plasma arginine concentrations and arginine fluxes indicated a similar whole-body arginine status. Piglets receiving GLP-2 showed improvements in intestinal variables, including mucosal mass (P < 0.01) and villus height (P < 0.001), and a greater rate of arginine synthesis (micromol x kg(-1) x h(-1)) from proline (11.6 vs. 6.3) (P = 0.03). Mucosal mass (R(2) = 0.71; P = 0.002) and villus height were correlated (R(2) = 0.66; P = 0.004) with arginine synthesis. This study was the first to quantitate arginine synthesis in parenterally fed neonates and showed that although GLP-2 infusion increased arginine synthesis in a manner directly related to mucosal mass, this increased arginine synthesis was insufficient to improve whole-body arginine status in piglets receiving a low arginine diet.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | | | | | |
Collapse
|
35
|
Frank JW, Escobar J, Nguyen HV, Jobgen SC, Jobgen WS, Davis TA, Wu G. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr 2007; 137:315-9. [PMID: 17237304 DOI: 10.1093/jn/137.2.315] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study investigated the potential mechanisms by which oral supplementation of N-carbamylglutamate (NCG), an analogue of endogenous N-acetylglutamate (an activator of arginine synthesis) increases growth rate in sow-reared piglets. Two piglets of equal body weight (BW) and of the same gender from each lactating sow were allotted to receive oral administration of 0 (control) or 50 mg of NCG/kg BW every 12 h for 7 d. Piglets (n=32; BW=3 kg) were studied in the food-deprived or fed state following the 7 d of treatment. Overnight food-deprived piglets were given NCG or water (control) at time 0 and 60 min. Piglets studied in the fed state were gavage-fed sow's milk with their respective NCG treatment at 0 and 60 min. At 60 min, the piglets were administered a flooding dose of [3H]phenylalanine and killed at 90 min to measure tissue protein synthesis. Piglets treated with NCG gained 28% more weight than control pigs (P<0.001) over the 7-d period. Fed pigs had greater rates of protein synthesis in longissimus dorsi and gastrocnemius muscles and duodenum compared with food-deprived pigs (P<0.001). Absolute protein synthesis rates in longissimus dorsi (P=0.050) and gastrocnemius (P=0.068) muscles were 30 and 21% greater, respectively, in NCG-treated compared with control pigs. Piglets supplemented with NCG also had greater plasma concentrations of arginine and somatotropin than control pigs (P<0.001). The results suggest that oral NCG supplementation increases plasma arginine and somatotropin levels, leading to an increase in growth rate and muscle protein synthesis in nursing piglets.
Collapse
Affiliation(s)
- Jason W Frank
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030-2600, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Urschel KL, Wilkinson CW, Pencharz PB, Ball RO. Coadministration of ornithine and alpha-ketoglutarate is no more effective than ornithine alone as an arginine precursor in piglets enterally fed an arginine-deficient diet. J Nutr 2007; 137:55-62. [PMID: 17182801 DOI: 10.1093/jn/137.1.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simultaneous administration of alpha-ketoglutarate and ornithine, in a 1:2 molar ratio, may improve the effectiveness of ornithine as an arginine precursor in neonatal piglets by shifting ornithine metabolism away from oxidation and toward the synthesis of arginine and other metabolically important compounds. To study this proposed mechanism, enterally fed piglets were allocated to receive 1 of 4 diets for 5 d: an arginine-deficient [1.2 mmol/(kg . d) arginine] diet (basal), or the basal diet supplemented with either alpha-ketoglutarate [4.6 mmol/(kg x d)] (+alpha-KG), ornithine [9.2 mmol/(kg x d)] (+Orn), or both ornithine and alpha-ketoglutarate (+alpha-KG/+Orn, molar ratio 1:2). Primed, constant infusions of [1-(14)C]ornithine given both intragastrically and intraportally were used to measure ornithine kinetics and determine the role of first-pass intestinal metabolism in ornithine metabolism. Whole body arginine and glutamate kinetics were measured using a primed, constant intragastric infusion of [guanido-(14)C]arginine and [3,4-(3)H]glutamate. The diets did not affect plasma arginine or ammonia concentrations, arginine flux, or arginine synthesis from ornithine. Therefore, arginine synthesis was not increased by the simultaneous infusion of ornithine and alpha-ketoglutarate. Piglets that received dietary ornithine had a 2-fold greater rate of proline synthesis from ornithine (P < 0.05) and oxidized a greater (P < 0.05) portion of the infused ornithine than piglets in the basal and +alpha-KG groups. Overall, ornithine addition to an arginine deficient diet had a greater effect on ornithine and arginine metabolism than the addition of alpha-ketoglutarate. First-pass intestinal metabolism was critical for ornithine synthesis and conversion to other metabolites but not for ornithine oxidation.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | | | |
Collapse
|
37
|
Urschel KL, Shoveller AK, Uwiera RRE, Pencharz PB, Ball RO. Citrulline is an effective arginine precursor in enterally fed neonatal piglets. J Nutr 2006; 136:1806-13. [PMID: 16772441 DOI: 10.1093/jn/136.7.1806] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although neonatal piglets can synthesize some arginine from proline, there is a limit to this synthesis, and piglets fed an arginine-deficient diet have diminished whole-body arginine status. To help elucidate where the limitation in arginine synthesis may occur, our objective was to determine the most effective arginine precursor in 1-wk-old enterally fed piglets. Piglets were administered either an arginine-deficient (basal) diet [1.15 mmol arginine/(kg.d)] or the basal diet supplemented with equimolar [9.18 mmol/(kg.d)] amounts of proline (+Pro), ornithine (+Orn), citrulline (+Cit) or arginine (+Arg) for 5 d (n = 5/diet). Daily blood samples were taken and indicators of whole-body arginine status including plasma amino acid, ammonia, and urea concentrations were measured. A primed, constant intragastric (i.g.) infusion of l-[U-(14)C]proline was given to measure the proline to arginine conversion, and intravenous (i.v.) and i.g. infusions of l-[guanido-(14)C]arginine were given to determine arginine flux and to quantify the splanchnic extraction of dietary arginine. Piglets fed the +Cit and +Arg diets had lower plasma ammonia and urea concentrations (P < 0.05) and higher plasma arginine concentrations (P < 0.0001) and arginine fluxes (P < 0.05) than piglets fed the other 3 diets. Piglets fed +Cit and +Arg had a lower proline to arginine conversion (P < 0.05). During first-pass splanchnic metabolism, 52% of the dietary arginine was extracted, and this extraction was not affected by whole-body arginine status (P > 0.05). These data indicate that citrulline, but not ornithine or proline, is an effective arginine precursor, and that either citrulline formation or availability appears to limit arginine synthesis in neonatal piglets.
Collapse
|
38
|
Urschel KL, Shoveller AK, Pencharz PB, Ball RO. Arginine synthesis does not occur during first-pass hepatic metabolism in the neonatal piglet. Am J Physiol Endocrinol Metab 2005; 288:E1244-51. [PMID: 15657089 DOI: 10.1152/ajpendo.00530.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that first-pass intestinal metabolism is necessary for approximately 50% of whole body arginine synthesis from its major precursor proline in neonatal piglets. Furthermore, the intestine is not the site of increased arginine synthesis observed during dietary arginine deficiency. Primed constant intravenous (iv) and intraportal (ip) infusions of L-[U-14C]proline, and iv infusion of either L-[guanido-14C]arginine or L-[4,5-3H]arginine were used to measure first-pass hepatic arginine synthesis in piglets enterally fed either deficient (0.20 g.kg(-1).day(-1)) or generous (1.80 g.kg(-1).day(-1)) quantities of arginine for 5 days. Conversion of arginine to other urea cycle intermediates and arginine recycling were also calculated for both dietary treatments. Arginine synthesis (g.kg(-1).day(-1)) from proline was greater in piglets (P < 0.05) fed the deficient arginine diet in both the presence (generous: 0.07; deficient: 0.17; pooled SE = 0.01) and absence (generous: 0.06; deficient: 0.20; pooled SE = 0.01) of first-pass hepatic metabolism. There was no net arginine synthesis from proline during first-pass hepatic metabolism regardless of arginine intake. Arginine conversion to urea, citrulline, and ornithine was significantly greater (P < 0.05) in piglets fed the generous arginine diet. Calculated arginine fluxes were significantly lower (P = 0.01) for [4,5-3H]arginine than for [guanido-14C]arginine, and the discrepancy between the values was greater in piglets fed the deficient arginine diet (35% vs. 20%). Collectively, these findings show that first-pass hepatic metabolism is not a site of net arginine synthesis and that piglets conserve dietary arginine in times of deficiency by decreasing hydrolysis and increasing recycling.
Collapse
Affiliation(s)
- Kristine L Urschel
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | | | |
Collapse
|