1
|
Chen H, Wang X, Zhang J, Xie D, Pu Y. Exploration of TCM syndrome types of the material basis and risk prediction of Wilson disease liver fibrosis based on 1H NMR metabolomics. J Pharm Biomed Anal 2024; 245:116167. [PMID: 38663257 DOI: 10.1016/j.jpba.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
Wilson disease (WD) is an autosomal recessive disorder characterized by abnormal copper metabolism. The accumulation of copper in the liver can progress to liver fibrosis and, ultimately, cirrhosis, which is a primary cause of death in WD patients. Metabonomic technology offers an effective approach to investigate the traditional Chinese medicine (TCM) syndrome types of WD-related liver fibrosis by monitoring the alterations in small molecule metabolites within the body. In this study, we employed 1H-Nuclear Magnetic Resonance (1H NMR) metabonomics to assess the metabolic profiles associated with five TCM syndrome types of WD-related liver fibrosis and analyzed the diagnostic and predictive capabilities of various metabolites. The study found a variety of metabolites, each with varying levels of diagnostic and predictive capabilities. Furthermore, the discerned differential metabolic pathways were primarily associated with various pathways involving carbohydrate metabolism, amino acid metabolism, and lipid metabolism. This study has identified various characteristic metabolic markers and pathways associated with different TCM syndromes of liver fibrosis in WD, providing a substantial foundation for investigating the mechanisms underlying these TCM syndromes.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China.
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yue Pu
- The First Clinical Medical College of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Petit A, Tesseraud S, Beauclercq S, Nadal-Desbarats L, Cailleau-Audouin E, Réhault-Godbert S, Berri C, Le Bihan-Duval E, Métayer-Coustard S. Allantoic fluid metabolome reveals specific metabolic signatures in chicken lines different for their muscle glycogen content. Sci Rep 2023; 13:8867. [PMID: 37258592 DOI: 10.1038/s41598-023-35652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cécile Berri
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | |
Collapse
|
3
|
GÜMÜŞ E, BAYRAKTAROĞLU AG, KARA K, AKSOY NH, CUFADAR Y. Influence of the Dietary Supplement of Protected Calcium Butyrate in Growing Japanese Quail Diets on Performance, Carcass Parameters, Blood Serum Biochemical Status, Meat Quality and Jejunum Histomorphology. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In this trial, it was planned to determine the effect of protected calcium butyrate (PCB) supplemented at different amounts on performance, carcass characteristics, blood biochemical values, jejunum histomorphology, and meat traits in Japanese quails. 196 one-day-old unsexed Japanese quails divided into 4 groups with 7 replicates. A conventional corn and soybean meal-based diet was formulated, and all groups’ diets were supplemented with 0, 0.5, 1.0 and 2.0 g/kg PCB respectively for 42 days. From the results, PCB supplementation significantly improved body weight (BW) on the 21st day, body weight gain (BWG) between 0 to 21 days, hot carcass yield (HCY), relative weights of the hearth. Similarly, blood urea nitrogen (BUN), total cholesterol (TC), low-density lipoprotein (LDL) and villus height (VH) levels were lower in PCB supplemented groups. Besides, PCB supplementation in Japanese quails decreased villus-crypt rate (VCR) except for the control and the group fed with 2.0 g/kg PCB. This study showed that dietary PCB supplementation in Japanese quails’ diet improved growth performance in young chicks and carcass yield, BUN, and lipid profile. On the other hand, the supplementation didn’t affect the antioxidant status, homocysteine, and folic acid values in blood and meat traits.
Collapse
Affiliation(s)
- Erinç GÜMÜŞ
- AKSARAY ÜNİVERSİTESİ, ESKİL MESLEK YÜKSEKOKULU, VETERİNERLİK BÖLÜMÜ
| | | | - Kanber KARA
- ERCIYES UNIVERSITY, FACULTY OF VETERINARY MEDICINE
| | | | | |
Collapse
|
4
|
McCaddon A, Regland B. COVID-19: A methyl-group assault? Med Hypotheses 2021; 149:110543. [PMID: 33657459 PMCID: PMC7890339 DOI: 10.1016/j.mehy.2021.110543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
The socio-economic implications of COVID-19 are devastating. Considerable morbidity is attributed to ‘long-COVID’ – an increasingly recognized complication of infection. Its diverse symptoms are reminiscent of vitamin B12 deficiency, a condition in which methylation status is compromised. We suggest why SARS-CoV-2 infection likely leads to increased methyl-group requirements and other disturbances of one-carbon metabolism. We propose these might explain the varied symptoms of long-COVID. Our suggested mechanism might also apply to similar conditions such as myalgic encephalomyelitis/chronic fatigue syndrome. The hypothesis is evaluable by detailed determination of vitamin B12 and folate status, including serum formate as well as homocysteine and methylmalonic acid, and correlation with viral and host RNA methylation and symptomatology. If confirmed, methyl-group support should prove beneficial in such individuals.
Collapse
Affiliation(s)
- Andrew McCaddon
- Gardden Road Surgery, Rhosllanerchrugog Wrexham, LL14 2EN, UK.
| | - Björn Regland
- Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden.
| |
Collapse
|
5
|
Bazzano M, Laghi L, Zhu C, Magi GE, Tesei B, Laus F. Respiratory metabolites in bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) can differentiate horses affected by severe equine asthma from healthy horses. BMC Vet Res 2020; 16:233. [PMID: 32641035 PMCID: PMC7346432 DOI: 10.1186/s12917-020-02446-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The use of an untargeted metabolomic approach to investigate biofluids of respiratory origin is of increasing interest in human and veterinary lung research. Considering the high incidence of equine asthma (> 14%) within horse population and the importance of this animal model for human disease, we aimed to investigate the metabolomic profile of bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC) in healthy and asthmatic horses. RESULTS On the basis of clinical, endoscopic and BALF cytology findings, 6 horses with severe asthma (Group A) and 6 healthy horses (Group C) were included in the study. 1H-NMR analysis was used to identified metabolites in BALF and EBC samples. Metabolomic analysis allowed to identify and quantify 12 metabolites in BALF and seven metabolites in EBC. Among respiratory metabolites, myo-inositol, formate, glycerol and isopropanol in BALF, and methanol and ethanol in EBC, differed between groups (p < 0.05). CONCLUSIONS The application of metabolomic studies to investigate equine asthma using minimally invasive diagnostic methods, such as EBC metabolomics, provided promising results. According to our research, the study of selective profiles of BALF and EBC metabolites might be useful for identifying molecules like myo-inositol and methanol as possible biomarkers for airways diseases in horses.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Bologna, Italy
| | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Bologna, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| | - Beniamino Tesei
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
6
|
Abstract
BACKGROUND Formate is a one-carbon molecule at the crossroad between cellular and whole body metabolism, between host and microbiome metabolism, and between nutrition and toxicology. This centrality confers formate with a key role in human physiology and disease that is currently unappreciated. SCOPE OF REVIEW Here we review the scientific literature on formate metabolism, highlighting cellular pathways, whole body metabolism, and interactions with the diet and the gut microbiome. We will discuss the relevance of formate metabolism in the context of embryonic development, cancer, obesity, immunometabolism, and neurodegeneration. MAJOR CONCLUSIONS We will conclude with an outlook of some open questions bringing formate metabolism into the spotlight.
Collapse
Affiliation(s)
| | - Johannes Meiser
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Zaitsev AV, Martinov MV, Vitvitsky VM, Ataullakhanov FI. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci Rep 2019; 9:7657. [PMID: 31113966 PMCID: PMC6529478 DOI: 10.1038/s41598-019-44009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/30/2019] [Indexed: 11/27/2022] Open
Abstract
Folate metabolism in mammalian cells is essential for multiple vital processes, including purine and pyrimidine synthesis, histidine catabolism, methionine recycling, and utilization of formic acid. It remains unknown, however, whether these processes affect each other via folate metabolism or can function independently based on cellular needs. We addressed this question using a quantitative mathematical model of folate metabolism in rat liver cytoplasm. Variation in the rates of metabolic processes associated with folate metabolism (i.e., purine and pyrimidine synthesis, histidine catabolism, and influxes of formate and methionine) in the model revealed that folate metabolism is organized in a striking manner that enables activation or inhibition of each individual process independently of the metabolic fluxes in others. In mechanistic terms, this independence is based on the high activities of a group of enzymes involved in folate metabolism, which efficiently maintain close-to-equilibrium ratios between substrates and products of enzymatic reactions.
Collapse
Affiliation(s)
| | - Michael V Martinov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor M Vitvitsky
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Fazoil I Ataullakhanov
- Department of Physics, Moscow State University, Moscow, 119991, Russia
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| |
Collapse
|
8
|
Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs. Mol Cell 2019; 69:610-621.e5. [PMID: 29452640 DOI: 10.1016/j.molcel.2018.01.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.
Collapse
|
9
|
French CD, Willoughby RE, Pan A, Wong SJ, Foley JF, Wheat LJ, Fernandez J, Encarnacion R, Ondrush JM, Fatteh N, Paez A, David D, Javaid W, Amzuta IG, Neilan AM, Robbins GK, Brunner AM, Hu WT, Mishchuk DO, Slupsky CM. NMR metabolomics of cerebrospinal fluid differentiates inflammatory diseases of the central nervous system. PLoS Negl Trop Dis 2018; 12:e0007045. [PMID: 30557317 PMCID: PMC6312347 DOI: 10.1371/journal.pntd.0007045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/31/2018] [Accepted: 12/02/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Myriad infectious and noninfectious causes of encephalomyelitis (EM) have similar clinical manifestations, presenting serious challenges to diagnosis and treatment. Metabolomics of cerebrospinal fluid (CSF) was explored as a method of differentiating among neurological diseases causing EM using a single CSF sample. METHODOLOGY/PRINCIPAL FINDINGS 1H NMR metabolomics was applied to CSF samples from 27 patients with a laboratory-confirmed disease, including Lyme disease or West Nile Virus meningoencephalitis, multiple sclerosis, rabies, or Histoplasma meningitis, and 25 controls. Cluster analyses distinguished samples by infection status and moderately by pathogen, with shared and differentiating metabolite patterns observed among diseases. CART analysis predicted infection status with 100% sensitivity and 93% specificity. CONCLUSIONS/SIGNIFICANCE These preliminary results suggest the potential utility of CSF metabolomics as a rapid screening test to enhance diagnostic accuracies and improve patient outcomes.
Collapse
Affiliation(s)
- Caitlin D. French
- Department of Nutrition, University of California, Davis, California, United States of America
| | - Rodney E. Willoughby
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (REW); (CMS)
| | - Amy Pan
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susan J. Wong
- Wadsworth Center Diagnostic Immunology Laboratory, New York State Department of Health, Albany, New York, United States of America
| | - John F. Foley
- Intermountain Healthcare, Salt Lake City, Utah, United States of America
| | - L. Joseph Wheat
- Department of Medicine, Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Josefina Fernandez
- Hospital Infantil Robert Reid Cabral, Santo Domingo, Distrito Nacional, República Dominicana
| | - Rafael Encarnacion
- Hospital Infantil Robert Reid Cabral, Santo Domingo, Distrito Nacional, República Dominicana
| | | | - Naaz Fatteh
- Inova Fairfax Hospital, Fairfax, Virginia, United States of America
| | - Andres Paez
- Departamento de Ciencias Basicas, Universidad de la Salle, Bogotá, Colombia
| | - Dan David
- Rabies Lab, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Waleed Javaid
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ioana G. Amzuta
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Anne M. Neilan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gregory K. Robbins
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrew M. Brunner
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - William T. Hu
- Mayo Clinic, Rochester, Minnesota, United States of America
| | - Darya O. Mishchuk
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, California, United States of America
- Department of Food Science and Technology, University of California, Davis, California, United States of America
- * E-mail: (REW); (CMS)
| |
Collapse
|
10
|
MacMillan L, Tingley G, Young SK, Clow KA, Randell EW, Brosnan ME, Brosnan JT. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats. J Nutr 2018; 148:358-363. [PMID: 29546303 DOI: 10.1093/jn/nxx057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Objective Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Methods Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Results Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. Conclusion We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S-adenosylmethionine pool which is depleted in this condition.
Collapse
Affiliation(s)
| | | | | | | | - Edward W Randell
- Laboratory Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
11
|
Brosnan JT, Mills JL, Ueland PM, Shane B, Fan R, Chiu CY, Pangilinan F, Brody LC, Brosnan ME, Pongnopparat T, Molloy AM. Lifestyle, metabolite, and genetic determinants of formate concentrations in a cross-sectional study in young, healthy adults. Am J Clin Nutr 2018; 107:345-354. [PMID: 29566195 PMCID: PMC6373436 DOI: 10.1093/ajcn/nqx065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 01/11/2023] Open
Abstract
Background Formate is an important metabolite that serves as a donor of one-carbon groups to the intracellular tetrahydrofolate pool. However, little is known of its circulating concentrations or of their determinants. Objective This study aimed to define formate concentrations and their determinants in a healthy young population. Design Serum formate was measured in 1701 participants from the Trinity Student Study. The participants were men and women, aged 18 to 28 y, enrolled at Trinity College, Dublin. Formate concentrations were compared with other one-carbon metabolites, vitamin status, potential formate precursors, genetic polymorphisms, and lifestyle factors. Results Serum formate concentrations ranged from 8.7 to 96.5 µM, with a mean of 25.9 µM. Formate concentrations were significantly higher in women than in men; oral contraceptive use did not further affect them. There was no effect of smoking or of alcohol ingestion, but the TT genotype of the methylenetetrahydrofolate reductase (MTHFR) 677C→T (rs1801133) polymorphism was associated with a significantly decreased formate concentration. Formate was positively associated with potential metabolic precursors (serine, methionine, tryptophan, choline) but not with glycine. Formate concentrations were positively related to serum folate and negatively related to serum vitamin B-12. Conclusions Formate concentrations were sensitive to the concentrations of metabolic precursors. In view of the increased susceptibility of women with the TT genotype of MTHFR to give birth to infants with neural tube defects as well as the effectiveness of formate supplementation in decreasing the incidence of folate-resistant neural tube defects in susceptible mice, it will be important to understand how this genotype decreases the serum formate concentration. This trial was registered at www.clinicaltrials.gov as NCT03305900.
Collapse
Affiliation(s)
- John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada,Address correspondence to JTB (e-mail: )
| | | | - Per M Ueland
- Section of Pharmacology, Institute of Medicine, University of Bergen and
Haukeland University Hospital, Bergen, Norway
| | - Barry Shane
- Nutritional Science and Toxicology, University of California, Berkeley,
Berkeley, CA
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown
University Medical Center, Washington, DC
| | - Chi-Yang Chiu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child Health
and Human Development, NIH, Bethesda, MD
| | - Faith Pangilinan
- Molecular Pathogenesis Section, Medical Genomics and Metabolic Genetics Branch,
National Human Genome Research Institute, NIH, Bethesda, MD
| | - Lawrence C Brody
- Molecular Pathogenesis Section, Medical Genomics and Metabolic Genetics Branch,
National Human Genome Research Institute, NIH, Bethesda, MD
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada
| | - Theerawat Pongnopparat
- Department of Biochemistry, Memorial University of Newfoundland, St. John's,
Newfoundland, Canada
| | - Anne M Molloy
- Medicine and Biochemistry and Immunology, Trinity College Dublin, Ireland,Biochemistry and Immunology, Trinity College Dublin, Ireland
| |
Collapse
|
12
|
Zhang C, Wang Z, Zhang D, Zhou J, Lu C, Su X, Ding D. Proteomics and 1H NMR-based metabolomics analysis of pathogenic Vibrio vulnificus aquacultures isolated from sewage drains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23704-23713. [PMID: 28864971 DOI: 10.1007/s11356-017-0007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. 1H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.
Collapse
Affiliation(s)
- Chundan Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, China.
| | - Dewen Ding
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
13
|
Abstract
Formate, the only non-tetrahydrofolate (THF)-linked intermediate in one-carbon metabolism, is produced in mammals from a variety of metabolic sources. It occurs in serum of adults at a concentration of approximately 30 μM. Its principal function lies as a source of one-carbon groups for the synthesis of 10-formyl-THF and other one-carbon intermediates; these are primarily used for purine synthesis, thymidylate synthesis, and the provision of methyl groups for synthetic, regulatory, and epigenetic methylation reactions. Although formate is largely produced in mitochondria, these functions mostly occur in the cytoplasm and nucleus. Formate plays a significant role in embryonic development, as evidenced by the effectiveness of formate in the pregnant dam's drinking water on the incidence of neural tube defects in some genetic models. High formate concentrations in fetal lambs may indicate a role in fetal development and suggest that extracellular formate may play a role in the interorgan distribution of one-carbon groups.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
14
|
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, The University of Dublin, 2 Ireland;
| | - Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| |
Collapse
|
15
|
Bae S, Chon J, Field MS, Stover PJ. Alcohol Dehydrogenase 5 Is a Source of Formate for De Novo Purine Biosynthesis in HepG2 Cells. J Nutr 2017; 147:499-505. [PMID: 28228507 PMCID: PMC5368588 DOI: 10.3945/jn.116.244467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/18/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism.Objective: This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells.Methods:ADH5 knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [14C]-formate to [3H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [14C]-deoxyuridine to [3H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis.Results: The [14C]-formate-to-[3H]-hypoxanthine ratio was greater in ADH5 knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; P < 0.001) and folate sufficiency (+22%; P = 0.02). These data indicate that ADH5 deficiency increases the use of exogenous formate for de novo purine biosynthesis. The [14C]-deoxyuridine-to-[3H]-thymidine ratio did not differ between ADH5 knockout and wild-type cells, indicating that ADH5 deficiency does not affect de novo dTMP synthesis capacity relative to salvage synthesis. Under folate deficiency, ALDH2 knockdown cells exhibited a 37% lower ratio of [14C]-formate to [3H]-hypoxanthine (P < 0.001) compared with wild-type HepG2 cells, indicating decreased use of exogenous formate, or increased endogenous formate synthesis, for de novo purine biosynthesis.Conclusions: In HepG2 cells, ADH5 is a source of formate for de novo purine biosynthesis, especially during folate deficiency when folate-dependent formate production is limited. Formate is also shown to be limiting in the growth of HepG2 cells.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences and
| | - James Chon
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY
| | | | - Patrick J Stover
- Division of Nutritional Sciences and .,Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY
| |
Collapse
|
16
|
MacMillan L, Lamarre SG, daSilva RP, Jacobs RL, Brosnan ME, Brosnan JT. Riboflavin Deficiency in Rats Decreases de novo Formate Production but Does Not Affect Plasma Formate Concentration. J Nutr 2017; 147:346-352. [PMID: 28122934 DOI: 10.3945/jn.116.243535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 11/14/2022] Open
Abstract
Background: The one-carbon metabolism pathway is highly dependent on a number of B vitamins in order to provide one-carbon units for purine and thymidylate biosynthesis as well as homocysteine remethylation. Previous studies have examined folate and vitamin B-12 deficiency and their effects on formate metabolism; as of yet, to our knowledge, no studies on the effects of riboflavin deficiency on formate metabolism have been published.Objective: Our objective was to determine the effects of riboflavin deficiency on formate metabolism.Methods: Weanling male rats were randomly assigned either to control, riboflavin-replete (RR) or to experimental, riboflavin-deficient (RD) versions of the AIN-93G diet for 13 d, at which time a constant infusion of [13C]-formate was carried out to ascertain the effects of deficiency on formate production. Gas chromatography-mass spectrometry was used to measure plasma formate concentration and [13C]-formate enrichment. HPLC, LC-mass spectrometry (MS)/MS, and enzymatic assays were used for the measurement of one-carbon precursors and other metabolites.Results: RD rats had significantly lower rates of formate production (15%) as well as significantly reduced hepatic methylenetetrahydrofolate reductase activity (69%) and protein concentration (54%) compared with RR rats. There was no difference in plasma formate concentrations between the groups. Plasma serine, a potential one-carbon precursor, was significantly higher in RD rats (467 ± 73 μM) than in RR rats (368 ± 52 μM).Conclusions: Although deficiencies in folate and vitamin B-12 lead to major changes in plasma formate concentrations, riboflavin deficiency results in no significant difference; this disagrees with the prediction of a published mathematical model. Our observation of a lower rate of formate production is consistent with a role for flavoproteins in this process.
Collapse
Affiliation(s)
- Luke MacMillan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Simon G Lamarre
- Department of Biology, University of Moncton, Moncton, New Brunswick, Canada; and
| | - Robin P daSilva
- Department of Agricultural, Food and Nutritional Sciences, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Sciences, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada;
| |
Collapse
|
17
|
Kalhan SC. One carbon metabolism in pregnancy: Impact on maternal, fetal and neonatal health. Mol Cell Endocrinol 2016; 435:48-60. [PMID: 27267668 PMCID: PMC5014566 DOI: 10.1016/j.mce.2016.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
One carbon metabolism or methyl transfer, a crucial component of metabolism in all cells and tissues, supports the critical function of synthesis of purines, thymidylate and methylation via multiple methyl transferases driven by the ubiquitous methyl donor s-adenosylmethionine. Serine is the primary methyl donor to the one carbon pool. Intracellular folates and methionine metabolism are the critical components of one carbon transfer. Methionine metabolism requires vitamin B12, B6 as cofactors and is modulated by endocrine signals and is responsive to nutrient intake. Perturbations in one carbon transfer can have profound effects on cell proliferation, growth and function. Epidemiological studies in humans and experimental model have established a strong relationship between impaired fetal growth and the immediate and long term consequences to the health of the offspring. It is speculated that during development, maternal environmental and nutrient influences by their effects on one carbon transfer can impact the health of the mother, impair growth and reprogram metabolism of the fetus, and cause long term morbidity in the offspring. The potential for such effects is underscored by the unique responses in methionine metabolism in the human mother during pregnancy, the absence of transsulfuration activity in the fetus, ontogeny of methionine metabolism in the placenta and the unique metabolism of serine and glycine in the fetus. Dietary protein restriction in animals and marginal protein intake in humans causes characteristic changes in one carbon metabolism. The impact of perturbations in one carbon metabolism on the health of the mother during pregnancy, on fetal growth and the neonate are discussed and their possible mechanism explored.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Department of Pathobiology, Lerner Research Institute, NE-40, Cleveland Clinic, 9500 Euclid Av, Cleveland, OH, 44195, USA.
| |
Collapse
|
18
|
Katre P, Joshi S, Bhat DS, Deshmukh M, Gurav N, Pandit S, Lubree H, Marczewski S, Bennett C, Gruca L, Kalyanaraman K, Naik SS, Yajnik CS, Kalhan SC. Effect of multi-nutrient insufficiency on markers of one carbon metabolism in young women: response to a methionine load. Eur J Clin Nutr 2016; 70:687-93. [PMID: 26373967 PMCID: PMC4794418 DOI: 10.1038/ejcn.2015.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Multi-nutrient insufficiencies as a consequence of nutritional and economic factors are common in India and other developing countries. We have examined the impact of multi-nutrient insufficiency on markers of one carbon (1C) metabolism in the blood, and response to a methionine load in clinically healthy young women. SUBJECTS/METHODS Young women from Pune, India (n=10) and Cleveland, USA (n=13) were studied. Blood samples were obtained in the basal state and following an oral methionine load (50 mg/kg of body weight in orange juice). Plasma concentrations of vitamin B12, folate and B6 were measured in the basal state. The effect of methionine load on the levels of methionine, total homocysteine, cysteine, glutathione and amino acids was examined. RESULTS Indian women were significantly shorter and lighter compared with the American women and had lower plasma concentration of vitamins B12, folate and B6, essential amino acids and glutathione, but higher concentration of total homocysteine. The homocysteine response to methionine load was higher in Indian women. The plasma concentrations of glycine and serine increased in the Indian women after methionine (in juice) load. A significant negative correlation between plasma B6 and homocysteine (r= -0.70), and plasma folate and glycine and serine levels were observed in the Indian group (P<0.05) but not in the American group. CONCLUSIONS Multi-nutrient insufficiency in the Indian women caused unique changes in markers of whole body protein and 1C metabolism. These data would be useful in developing nutrient intervention strategies.
Collapse
Affiliation(s)
- P Katre
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - S Joshi
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - D S Bhat
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - M Deshmukh
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - N Gurav
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - S Pandit
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - H Lubree
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - S Marczewski
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - C Bennett
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - L Gruca
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - K Kalyanaraman
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - S S Naik
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - C S Yajnik
- Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital Research Centre, Pune, India
| | - S C Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
19
|
Ding YP, Pedersen EKR, Johansson S, Gregory JF, Ueland PM, Svingen GFT, Helgeland Ø, Meyer K, Fredriksen Å, Nygård OK. B vitamin treatments modify the risk of myocardial infarction associated with a MTHFD1 polymorphism in patients with stable angina pectoris. Nutr Metab Cardiovasc Dis 2016; 26:495-501. [PMID: 26803590 DOI: 10.1016/j.numecd.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Methylenetetrahydrofolate dehydrogenase (MTHFD1) catalyzes three sequential reactions that metabolize derivatives of tetrahydrofolate (THF) in folate-dependent one-carbon metabolism. Impaired MTHFD1 flux has been linked to disturbed lipid metabolism and oxidative stress. However, limited information is available on its relation to the development of atherothrombotic cardiovascular disease. METHODS AND RESULTS We explored the association between a MTHFD1 polymorphism (rs1076991 C > T) and acute myocardial infarction (AMI), and potential effect modifications by folic acid/B12 and/or vitamin B6 treatment in suspected stable angina pectoris patients (n = 2381) participating in the randomized Western Norway B Vitamin Intervention Trial (WENBIT). During the median follow-up of 4.9 years 204 participants (8.6%) suffered an AMI. After adjusting for established CVD risk factors, the MTHFD1 polymorphism was significantly associated with AMI (HR: 1.49; 95% CI, 1.23-1.81). A similar association was observed among patients allocated to treatment with vitamin B6 alone (HR: 1.53; 95% CI, 1.01-2.31), and an even stronger relationship was seen in patients treated with both vitamin B6 and folic acid/B12 (HR: 2.35; 95% CI, 1.55-3.57). However, no risk association between the MTHFD1 polymorphism and AMI was seen in patients treated with placebo (HR: 1.29; 95% CI, 0.86-1.93) or folic acid/B12 (1.17; 95% CI, 0.83-1.65). CONCLUSION A common and functional MTHFD1 polymorphism is associated with increased risk of AMI, although the risk seems to be dependent on specific B vitamin treatment. Further studies are warranted to elucidate the possible mechanisms, also in order to explore potential effect modifications by nutritional factors.
Collapse
Affiliation(s)
- Y P Ding
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| | - E K R Pedersen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - S Johansson
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - J F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - P M Ueland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen 5021, Norway
| | - G F T Svingen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Ø Helgeland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - K Meyer
- Bevital AS, Bergen 5020, Norway
| | - Å Fredriksen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - O K Nygård
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen 5021, Norway; KG Jebsen Center for Diabetes Research, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
20
|
Jung J, Ha TK, Lee J, Lho Y, Nam M, Lee D, le Roux CW, Ryu DH, Ha E, Hwang GS. Changes in one-carbon metabolism after duodenal-jejunal bypass surgery. Am J Physiol Endocrinol Metab 2016; 310:E624-E632. [PMID: 26786776 DOI: 10.1152/ajpendo.00260.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Bariatric surgery alleviates obesity and ameliorates glucose tolerance. Using metabolomic and proteomic profiles, we evaluated metabolic changes in serum and liver tissue after duodenal-jejunal bypass (DJB) surgery in rats fed a normal chow diet. We found that the levels of vitamin B12 in the sera of DJB rates were decreased. In the liver of DJB rats, betaine-homocysteine S-methyltransferase levels were decreased, whereas serine, cystathionine, cysteine, glutathione, cystathionine β-synthase, glutathione S-transferase, and aldehyde dehydrogenase levels were increased. These results suggested that DJB surgery enhanced trans-sulfuration and its consecutive reactions such as detoxification and the scavenging activities of reactive oxygen species. In addition, DJB rats showed higher levels of purine metabolites such as ATP, ADP, AMP, and inosine monophosphate. Decreased guanine deaminase, as well as lower levels of hypoxanthine, indicated that DJB surgery limited the purine degradation process. In particular, the AMP/ATP ratio and phosphorylation of AMP-activated protein kinase increased after DJB surgery, which led to enhanced energy production and increased catabolic pathway activity, such as fatty acid oxidation and glucose transport. This study shows that bariatric surgery altered trans-sulfuration and purine metabolism in the liver. Characterization of these mechanisms increases our understanding of the benefits of bariatric surgery.
Collapse
Affiliation(s)
- Jeeyoun Jung
- Integrated Metabolomics Research Group, Seoul Western Center, Korea Basic Science Institute, Seoul, Republic of Korea
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Seoul Western Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yunmee Lho
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Seoul Western Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doohae Lee
- Integrated Metabolomics Research Group, Seoul Western Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Carel W le Roux
- Diabetes Complications Research Center, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Ireland; and
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Seoul Western Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ. Biomarkers of Nutrition for Development-Folate Review. J Nutr 2015; 145:1636S-1680S. [PMID: 26451605 PMCID: PMC4478945 DOI: 10.3945/jn.114.206599] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate's history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development.
Collapse
Affiliation(s)
- Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA;
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Helene McNulty
- Northern Ireland Centre for Food and Health, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Michael F Fenech
- Genome Health Nutrigenomics Laboratory, Food, Nutrition, and Bioproducts Flagship, Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - James L Mills
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Zia Fazili
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Mindy Zhang
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Per M Ueland
- Department of Clinical Science, Univeristy of Bergen, Bergen, Norway
| | - Anne M Molloy
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA; and
| | | | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Ramkripa Raghavan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| |
Collapse
|
22
|
Washburn SE, Caudill MA, Malysheva O, MacFarlane AJ, Behan NA, Harnett B, MacMillan L, Pongnopparat T, Brosnan JT, Brosnan ME. Formate metabolism in fetal and neonatal sheep. Am J Physiol Endocrinol Metab 2015; 308:E921-7. [PMID: 25805190 PMCID: PMC4436996 DOI: 10.1152/ajpendo.00046.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/17/2015] [Indexed: 01/23/2023]
Abstract
By virtue of its role in nucleotide synthesis, as well as the provision of methyl groups for vital methylation reactions, one-carbon metabolism plays a crucial role in growth and development. Formate, a critical albeit neglected component of one-carbon metabolism, occurs extracellularly and may provide insights into cellular events. We examined formate metabolism in chronically cannulated fetal sheep (gestation days 119-121, equivalent to mid-third trimester in humans) and in their mothers as well as in normal full-term lambs. Plasma formate levels were much higher in fetal lamb plasma and in amniotic fluid (191 ± 62 and 296 ± 154 μM, respectively) than in maternal plasma (33 ± 13 μM). Measurements of folate, vitamin B12, and homocysteine showed that these high formate levels could not be due to vitamin deficiencies. Elevated formate levels were also found in newborn lambs and persisted to about 8 wk of age. Formate was also found in sheep milk. Potential precursors of one-carbon groups were also measured in fetal and maternal plasma and in amniotic fluid. There were very high concentrations of serine in the fetus (∼1.6 mM in plasma and 3.5 mM in the amniotic fluid) compared with maternal plasma (0.19 mM), suggesting increased production of formate; however, we cannot rule out decreased formate utilization. Dimethylglycine, a choline metabolite, was also 30 times higher in the fetus than in the mother.
Collapse
Affiliation(s)
- Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | | | - Nathalie A Behan
- Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada; and
| | - Brian Harnett
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Luke MacMillan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Theerawat Pongnopparat
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
23
|
Deminice R, Silva TCV, Oliveira VHFD. Elevated homocysteine levels in human immunodeficiency virus-infected patients under antiretroviral therapy: A meta-analysis. World J Virol 2015; 4:147-155. [PMID: 25964880 PMCID: PMC4419119 DOI: 10.5501/wjv.v4.i2.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To evaluate the association between the levels of homocysteine (Hcy), folate, vitamin B12 in human immunodeficiency virus (HIV)-infected patients who were treated with antiretroviral therapy (ART) or not treated with ART.
METHODS: The PubMed and Scielo databases were searched. Eligible studies regarding plasma Hcy level in HIV-infected patients were firstly identified. After careful analysis by two independent researches, the identified articles were included in the review according to two outcomes (1) Hcy, folate and vitamin B12 blood concentration in HIV-infected subjects vs health controls and; (2) Hcy blood concentration in HIV-infected subjects under ART vs not treated with ART. RevMan (version 5.2) was employed for data synthesis.
RESULTS: A total of 12 studies were included in outcome 1 (1649 participants, 932 cases and 717 controls). Outcome 1 meta-analysis demonstrated higher plasma Hcy (2.05 µmol/L; 95%CI: 0.10 to 4.00, P < 0.01) and decreased plasma folate concentrations (-2.74 ng/mL; 95%CI: -5.18 to -0.29, P < 0.01) in HIV-infected patients compared to healthy controls. No changes in vitamin B12 plasma concentration were observed between groups. All studies included in the outcome 2 meta-analysis (1167 participants; 404 HIV-infected exposed to ART and 757 HIV-infected non-ART patients) demonstrated higher mean Hcy concentration in subjects HIV-infected under ART compared to non-ART HIV subjects (4.13 µmol/L; 95%CI: 1.34 to 6.92, P < 0.01).
CONCLUSION: This meta-analysis demonstrated that the levels of Hcy and folate, but not vitamin B12, were associated with HIV infection. In addition, Hcy levels were higher in HIV-infected patients who were under ART compared to HIV-infected patients who were not exposed to ART. Our results suggest that hyperhomocysteinemia should be included among the several important metabolic disturbances that are associated with ART in patients with HIV infection.
Collapse
|
24
|
Esteghamati A, Hafezi-Nejad N, Sheikhbahaei S, Heidari B, Ebadi M, Faghihi-Kashani S, Nakhjavani M. Authors’ reply. J Cardiol 2015; 65:440. [DOI: 10.1016/j.jjcc.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Morrow GP, MacMillan L, Lamarre SG, Young SK, MacFarlane AJ, Brosnan ME, Brosnan JT. In vivo kinetics of formate metabolism in folate-deficient and folate-replete rats. J Biol Chem 2014; 290:2244-50. [PMID: 25480787 DOI: 10.1074/jbc.m114.600718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [(13)C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h(-1)·100 g of body weight(-1) in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.
Collapse
Affiliation(s)
- Gregory P Morrow
- From the Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Luke MacMillan
- From the Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Simon G Lamarre
- Departement de Biologie, Universite de Moncton, Moncton, New Brunswick E1A 3E9, Canada, and
| | - Sara K Young
- From the Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | - Margaret E Brosnan
- From the Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - John T Brosnan
- From the Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada,
| |
Collapse
|
26
|
Field MS, Kamynina E, Agunloye OC, Liebenthal RP, Lamarre SG, Brosnan ME, Brosnan JT, Stover PJ. Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. J Biol Chem 2014; 289:29642-50. [PMID: 25213861 DOI: 10.1074/jbc.m114.599589] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.
Collapse
Affiliation(s)
- Martha S Field
- From the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853 and
| | - Elena Kamynina
- From the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853 and
| | | | - Rebecca P Liebenthal
- From the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853 and
| | - Simon G Lamarre
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Patrick J Stover
- From the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853 and
| |
Collapse
|
27
|
Lamarre SG, MacMillan L, Morrow GP, Randell E, Pongnopparat T, Brosnan ME, Brosnan JT. An isotope-dilution, GC-MS assay for formate and its application to human and animal metabolism. Amino Acids 2014; 46:1885-91. [PMID: 24748098 DOI: 10.1007/s00726-014-1738-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022]
Abstract
Formate, a crucial component of one-carbon metabolism, is increasingly recognized as an important intermediate in production and transport of one-carbon units. Unlike tetrahydrofolate-linked intermediates, it is not restricted to the intracellular milieu so that circulating levels of formate can provide insight into cellular events. We report a novel isotope-dilution, GC-MS assay employing derivatization by 2,3,4,5,6-pentafluorobenzyl bromide for the determination of formate in biological samples. This assay is robust and sensitive; it may be applied to the measurement of formate in serum, plasma and urine. We demonstrate how this method may be applied by providing the first characterization of formate levels in a human population; formate levels were higher in males than in females. We also show how this procedure may be applied for the measurement of in vivo kinetics of endogenous formate production in experimental animals.
Collapse
Affiliation(s)
- Simon G Lamarre
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Plasma homocysteine levels in HIV-infected men with and without lipodystrophy. Nutrition 2013; 29:1326-30. [PMID: 24045000 DOI: 10.1016/j.nut.2013.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Lipodystrophy syndrome is an unexpected clinical manifestation in patients infected with HIV and might be a clinical marker of increased risk for cardiovascular diseases (CVDs). Because hyperhomocysteinemia has been associated with CVD, the goal of the present study was to investigate homocysteine (Hcy) levels and their association with the factors of lipodystrophy syndrome in men with HIV. METHODS Hcy metabolism-related molecules were determined in 13 men infected with HIV with lipodystrophy (HIV+LIP), 10 men with HIV without lipodystrophy (HIV), and 10 healthy controls (C). RESULTS Significant (P < 0.05) increased Hcy plasma levels were found in HIV (20.5%) and in HIV+LIP (35.2%) compared with the control group. Plasma levels of vitamin B12 (HIV, 26.5%; HIV+LIP, 28.8%) and folate (HIV, 39.1% and HIV+LIP, 49.4%) were significantly (P < 0.05) lower in the two groups of HIV patients compared with control. HIV+LIP men presented raised plasma total sulfur-containing amino acids (20.1%) and lower total plasma thiol (11.3%) than controls. The same was not observed in the HIV group. Spearman's correlation test revealed significant (P < 0.05) association between plasma Hcy and duration of highly active antiretroviral therapy (HAART) and plasma insulin, as well as plasma adiponectin levels. CONCLUSION Our results demonstrated that HIV+LIP men were more susceptible to disturbances in Hcy metabolism compared with men infected with HIV without lipodystrophy characteristics. Duration of HAART treatment, elevated plasma insulin, and low levels of adiponectin seem to be relevant for the appearance of these Hcy metabolic disorders.
Collapse
|
29
|
Gregory JF, Park Y, Lamers Y, Bandyopadhyay N, Chi YY, Lee K, Kim S, da Silva V, Hove N, Ranka S, Kahveci T, Muller KE, Stevens RD, Newgard CB, Stacpoole PW, Jones DP. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLoS One 2013; 8:e63544. [PMID: 23776431 PMCID: PMC3679127 DOI: 10.1371/journal.pone.0063544] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/05/2013] [Indexed: 12/31/2022] Open
Abstract
Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5′-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d) to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (P<0.0001) and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001). Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by 1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS). Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001) and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05). Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05), but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.
Collapse
Affiliation(s)
- Jesse F Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:343-65. [PMID: 23408533 DOI: 10.1002/wsbm.1209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
Collapse
Affiliation(s)
- Marco Scotti
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | | |
Collapse
|