1
|
Hupa-Breier KL, Schenk H, Campos-Murguia A, Wellhöner F, Heidrich B, Dywicki J, Hartleben B, Böker C, Mall J, Terkamp C, Wilkens L, Becker F, Rudolph KL, Manns MP, Mederacke YS, Marhenke S, Redeker H, Lieber M, Iordanidis K, Taubert R, Wedemeyer H, Noyan F, Hardtke-Wolenski M, Jaeckel E. Novel translational mouse models of metabolic dysfunction-associated steatotic liver disease comparable to human MASLD with severe obesity. Mol Metab 2025; 93:102104. [PMID: 39855563 DOI: 10.1016/j.molmet.2025.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease, especially in patients with severe obesity. However, current mouse models for MASLD do not reflect the polygenetic background nor the metabolic changes in this population. Therefore, we investigated two novel mouse models of MASLD with a polygenetic background for the metabolic syndrome. METHODS TALLYHO/JngJ mice and NONcNZO10/LtJ mice were fed a high-fat- high-carbohydrate (HF-HC) diet with a surplus of cholesterol diet. A second group of TH mice was additional treated with empagliflozin. RESULTS After sixteen weeks of feeding, both strains developed metabolic syndrome with severe obesity and histological manifestation of steatohepatitis, which was associated with significantly increased intrahepatic CD8+cells, CD4+cells and Tregs, contributing to a significant increase in pro-inflammatory and pro-fibrotic gene activation as well as ER stress and oxidative stress. In comparison with the human transcriptomic signature, we could demonstrate a good metabolic similarity, especially for the TH mouse model. Furthermore, TH mice also developed signs of kidney injury as an extrahepatic comorbidity of MASLD. Additional treatment with empagliflozin in TH mice attenuates hepatic steatosis and improves histological manifestation of MASH. CONCLUSIONS Overall, we have developed two promising new mouse models that are suitable for preclinical studies of MASLD as they recapitulate most of the key features of MASLD.
Collapse
Affiliation(s)
- Katharina L Hupa-Breier
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alejandro Campos-Murguia
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Freya Wellhöner
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Heidrich
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Björn Hartleben
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Clara Böker
- Department of General, Visceral, Vascular and Bariatric Surgery, Klinikum Nordstadt, 30167, Hannover, Germany
| | - Julian Mall
- Department of General, Visceral, Vascular and Bariatric Surgery, Klinikum Nordstadt, 30167, Hannover, Germany
| | - Christoph Terkamp
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ludwig Wilkens
- Department of Pathology, Nordstadt Hospital Hannover, 30167, Hannover, Germany
| | - Friedrich Becker
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Karl Lenhard Rudolph
- Research Group on Stem Cell and Metabolism Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Michael Peter Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hanna Redeker
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Maren Lieber
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Ajmera Transplant Centre, Toronto General Hospital, United Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Ojeh N, Vecin NM, Pastar I, Volk SW, Wilgus T, Griffiths S, Ramey‐Ward AN, Driver VR, DiPietro LA, Gould LJ, Tomic‐Canic M. The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. Wound Repair Regen 2025; 33:e13232. [PMID: 39639458 PMCID: PMC11621255 DOI: 10.1111/wrr.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Preclinical studies for wound healing disorders are an essential step in translating discoveries into therapies. Also, they are an integral component of initial safety screening and gaining mechanistic insights using an in vivo approach. Given the complexity of the wound healing process, existing guidelines for animal testing do not capture key information due to the inevitable variability in experimental design. Variations in study interpretation are increased by complexities associated with wound aetiology, wounding procedure, multiple treatment conditions, wound assessment, and analysis, as well as lack of acknowledgement of limitation of the model used. Yet, no standards exist to guide reporting crucial experimental information required to interpret results in translational studies of wound healing. Consistency in reporting allows transparency, comparative, and meta-analysis studies and avoids repetition and redundancy. Therefore, there is a critical and unmet need to standardise reporting for preclinical wound studies. To aid in reporting experimental conditions, The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines have now been created by the authors working with the Wound Care Collaborative Community (WCCC) GAPS group to provide a checklist and reporting template for the most frequently used preclinical models in support of development for human clinical trials for wound healing disorders. It is anticipated that the WRAHPS Guidelines will standardise comprehensive methods for reporting in scientific manuscripts and the wound healing field overall. This article is not intended to address regulatory requirements but is intended to provide general guidelines on important scientific considerations for such studies.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Preclinical and Health Sciences, Faculty of Medical SciencesThe University of the West IndiesBridgetownBarbados
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Traci Wilgus
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Vickie R. Driver
- School of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue RegenerationUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lisa J. Gould
- South Shore Hospital Center for Wound HealingWeymouthMassachusettsUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
3
|
Gavanji S, Bakhtari A, Abdel-Latif R, Bencurova E, Othman EM. Experimental approaches for induction of diabetes mellitus and assessment of antidiabetic activity: An in vitro and in vivo methodological review. Fundam Clin Pharmacol 2024; 38:842-861. [PMID: 38747157 DOI: 10.1111/fcp.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Diabetes mellitus poses a global health challenge, driving the need for innovative therapeutic solutions. Experimental methods play a crucial role in evaluating the efficacy of potential antidiabetic drugs, both in vitro and in vivo. Yet concerns about reproducibility persist, necessitating comprehensive reviews. OBJECTIVES This review aims to outline experimental approaches for inducing diabetes and evaluating antidiabetic activity, synthesizing data from authoritative sources and academic literature. METHODS We conducted a systematic search of prominent databases, including PubMed, ScienceDirect, and Scopus, to identify relevant articles spanning from 1943 to the present. A total of 132 articles were selected for inclusion in this review, focusing on in vitro and in vivo experimental validations of antidiabetic treatments. RESULTS Our review highlights the diverse array of experimental methods employed for inducing diabetes mellitus and evaluating antidiabetic interventions. From cell culture assays to animal models, researchers have employed various techniques to study the effectiveness of novel therapeutic agents. CONCLUSION This review provides a comprehensive guide to experimental approaches for assessing antidiabetic activity. By synthesizing data from a range of sources, we offer valuable insights into the current methodologies used in diabetes research. Standardizing protocols and enhancing reproducibility are critical for advancing effective antidiabetic treatments.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Elena Bencurova
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eman M Othman
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Uppuganti S, Creecy A, Fernandes D, Garrett K, Donovan K, Ahmed R, Voziyan P, Rendina-Ruedy E, Nyman JS. Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice. Calcif Tissue Int 2024; 115:298-314. [PMID: 39012489 PMCID: PMC11333511 DOI: 10.1007/s00223-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.
Collapse
Affiliation(s)
- Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, 46202, USA
| | - Daniel Fernandes
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Kate Garrett
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
| | - Kara Donovan
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Elizabeth Rendina-Ruedy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave., Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN, 37212, USA.
| |
Collapse
|
5
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci 2024; 25:1882. [PMID: 38339160 PMCID: PMC10855901 DOI: 10.3390/ijms25031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
7
|
Athmuri DN, Shiekh PA. Experimental diabetic animal models to study diabetes and diabetic complications. MethodsX 2023; 11:102474. [PMID: 38023309 PMCID: PMC10661736 DOI: 10.1016/j.mex.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is an endocrine illness involving numerous physiological systems. To understand the intricated pathophysiology and disease progression in diabetes, small animals are still the most relevant model systems, despite the availability and progression in numerous invitro and insilico research methods in recent years. In general, experimental diabetes is instigated mainly due to the effectiveness of animal models in illuminating disease etiology. Most diabetes trials are conducted on rodents, while some research is conducted on larger animals. This review will discuss the methodology and mechanisms in detail for preparing diabetic animal models, considering the following important points. The exact pathophysiology of the disease may or may not be replicated in animal models, the correct induction doses must be given and the combination of different approaches for the models is recommended to get desired results.•Animal models are essential to understand diabetes etiology and pathophysiology.•Diabetic models can be developed in both rodents and non-rodents.•Chemically induced and genetic models of diabetes are widely used to study diabetes and diabetic complications.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
9
|
Reifsnyder PC, Flurkey K, Doty R, Calcutt NA, Koza RA, Harrison DE. Rapamycin/metformin co-treatment normalizes insulin sensitivity and reduces complications of metabolic syndrome in type 2 diabetic mice. Aging Cell 2022; 21:e13666. [PMID: 35986566 PMCID: PMC9470898 DOI: 10.1111/acel.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of "insulin signaling restriction" that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging.
Collapse
Affiliation(s)
| | | | | | - Nigel A. Calcutt
- Department of PathologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Robert A. Koza
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaineUSA,Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA,Pennington Biomedical Research CenterBaton RougeLouisianaUSA
| | | |
Collapse
|
10
|
The effect of chronic exposure to metformin in a new type-2 diabetic NONcNZO10/LtJ mouse model of stroke. Pharmacol Rep 2022; 74:696-708. [PMID: 35792967 DOI: 10.1007/s43440-022-00382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Diabetes is an independent risk factor of stroke and previous studies have confirmed that diabetic patients and animals experience poorer clinical outcomes following stroke. In this study, we aim to determine the effect of chronic exposure of the first-line antidiabetic agent, metformin, to restore euglycemia and to impact brain cell death following stroke in a new type-2 diabetes, NONcNZO10/LtJ (RCS-10) mouse model of stroke. METHODS Male RCS-10 mice received a moderate (11%) fat diet post-weaning, at 4 weeks of age, and became diabetic by 12-14 weeks, thus resembling human maturity-onset diabetes. The mice received either metformin or vehicle for 4 weeks before undergoing a hypoxic/ischemic (HI) insult. Blood samples were collected pre-, post-treatment, and post HI for glucose and lipid measurements, and brains were analyzed for infarct size, glial activation, neuronal cell death, and metformin-mediated adenosine monophosphate-activated protein kinase (AMPK) signaling at 48 h post HI. RESULTS Pretreatment with metformin maintained euglycemia for 4 weeks but did not change body weight or lipid profile. Metformin treatment significantly enhanced the microglial Bfl-1 mRNA expression and showed a non-significant increase in GFAP mRNA, however, GFAP protein levels were reduced. Metformin treatment slightly increased neuronal NeuN and MAP-2 protein levels and significantly reduced overall mortality post HI but did not elicit any significant change in infarct size. CONCLUSION The study suggests that the prolonged effect of metformin-induced euglycemia promoted the microglial activation, reduced neuronal cell death, and improved the overall survival following stroke, without any change in infarct size.
Collapse
|
11
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2020; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
12
|
Murakami T, Fujimoto H, Fujita N, Hamamatsu K, Yabe D, Inagaki N. Association of glucagon-like peptide-1 receptor-targeted imaging probe with in vivo glucagon-like peptide-1 receptor agonist glucose-lowering effects. J Diabetes Investig 2020; 11:1448-1456. [PMID: 32323451 PMCID: PMC7610126 DOI: 10.1111/jdi.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Aims/Introduction Glucagon‐like peptide‐1 receptor agonists (GLP‐1RA) are used for treatment of type 2 diabetes mellitus worldwide. However, some patients do not respond well to the therapy, and caution must be taken for certain patients, including those with reduced insulin secretory capacity. Thus, it is clinically important to predict the efficacy of GLP‐1RA therapy. GLP‐1R‐targeted imaging has recently emerged to visualize and quantify β‐cells. We investigated whether GLP‐1R‐targeted imaging can predict the efficacy of GLP‐1RA treatment. Materials and Methods We developed 111Indium‐labeled exendin‐4 derivative (111In‐Ex4) as a GLP‐1R‐targeting probe. Diabetic mice were selected from NONcNZO10/LtJ male mice that were fed for different durations with 11% fat chow. After 3‐week administration of dulaglutide as GLP‐1RA therapy, mice with non‐fasting blood glucose levels <300 mg/dL and >300 mg/dL were defined as responders and non‐responders, respectively. In addition, ex vivo111In‐Ex4 pancreatic accumulations (111In‐Ex4 pancreatic values) were examined. Results The non‐fasting blood glucose levels after treatment were 172.5 ± 42.4 mg/dL in responders (n = 4) and 330.8 ± 20.7 mg/dL in non‐responders (n = 5), respectively. Ex vivo111In‐Ex4 pancreatic values showed significant correlations with post‐treatment glycohemoglobin and glucose area under curve during an oral glucose tolerance test (R2 = 0.76 and 0.80; P < 0.01 and <0.01, respectively). The receiver operating characteristic area under curve for identifying responders by ex vivo111In‐Ex4 pancreatic values was 1.00 (P < 0.01). Conclusion Ex vivo111In‐Ex4 pancreatic values reflected dulaglutide efficacy, suggesting clinical possibilities for expanding GLP‐1R‐targeted imaging applications.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal Models of Diabetes-Associated Renal Injury. J Diabetes Res 2020; 2020:9416419. [PMID: 32566684 PMCID: PMC7256713 DOI: 10.1155/2020/9416419] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the main factor leading to end-stage renal disease (ESRD) and subsequent morbidity and mortality. Importantly, the prevalence of DN is continuously increasing in developed countries. Many rodent models of type 1 and type 2 diabetes have been established to elucidate the pathogenesis of diabetes and examine novel therapies against DN. These models are developed by chemical, surgical, genetic, drug, and diet/nutrition interventions or combination of two or more methods. The main characteristics of DN including a decrease in renal function, albuminuria and mesangiolysis, mesangial expansion, and nodular glomerulosclerosis should be exhibited by an animal model of DN. However, a rodent model possessing all of the abovementioned features of human DN has not yet been developed. Furthermore, mice of different genetic backgrounds and strains show different levels of susceptibility to DN with respect to albuminuria and development of glomerular and tubulointerstitial lesions. Therefore, the type of diabetes, development of nephropathy, duration of the study, cost of maintaining and breeding, and animals' mortality rate are important factors that might be affected by the type of DN model. In this review, we discuss the pros and cons of different rodent models of diabetes that are being used to study DN.
Collapse
Affiliation(s)
- Zahra Samadi Noshahr
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A Comprehensive Review on Preclinical Diabetic Models. Curr Diabetes Rev 2020; 16:104-116. [PMID: 31074371 DOI: 10.2174/1573399815666190510112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. INTRODUCTION Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. METHODS The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. RESULTS A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. CONCLUSION This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Sushil Kumar Chaudary
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Debapriya Garabadu
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
15
|
Kim AK, Hamadani C, Zeidel ML, Hill WG. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am J Physiol Renal Physiol 2020; 318:F160-F174. [PMID: 31682171 DOI: 10.1152/ajprenal.00207.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic bladder dysfunction is a frequent complication of diabetes. Although many mouse models of diabetes now exist, there has been little systematic effort to characterize them for the timing of onset and severity of bladder dysfunction. We monitored metabolic status and tested bladder function by void spot assay and limited anesthetized cystometry in both male and female mice of three models of obesity and diabetes: a type 1 diabetes model (the Akita mouse) and two type 2 diabetes models [the diet-induced obese (DIO) model and the ob/ob mouse]. Akita mice had insulin pellets implanted subcutaneously every 3 mo to mimic poorly controlled type 1 diabetes in humans. Mice were hyperglycemic by 48 days after implants. Female mice exhibited no bladder dysfunction at any age up to 20 mo and gained weight normally. In contrast, by 7 mo, male Akita mice developed a profound polyuria and failed to show normal weight gain. There were no observable signs of bladder dysfunction in either sex. DIO mice on high/low-fat diets for 16 mo exhibited mild hyperglycemia in female mice (not in male mice), mild weight gain, and no evidence of bladder dysfunction. Ob/ob mice were followed for 8 mo and became extremely obese. Male and female mice were glucose intolerant, insulin intolerant, and hyperinsulinemic at 4 mo. By 8 mo, their metabolic status had improved but was still abnormal. Urine volume increased in male mice but not in female mice. Bladder dysfunction was observed in the spotting patterns of female mice at 4 and 6 mo of age, resolving by 8 mo. We conclude there are dramatic sex-related differences in lower urinary tract function in these models. Male Akita mice may be a good model for polyuria-related bladder remodeling, whereas female ob/ob mice may better mimic storage problems related to loss of outlet control in a setting of type 2 diabetes complicated by obesity.
Collapse
Affiliation(s)
- Alexandra K Kim
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Christine Hamadani
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Fuchs T, Loureiro MDP, Macedo LE, Nocca D, Nedelcu M, Costa-Casagrande TA. Modelos animais na síndrome metabólica. Rev Col Bras Cir 2018; 45:e1975. [PMID: 30379216 DOI: 10.1590/0100-6991e-20181975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
RESUMO O conhecimento sobre modelos animais para estudo metabólico representa a base da pesquisa nessa área. Este trabalho tem por objetivo revisar os principais modelos animais a serem utilizados no estudo da obesidade e da síndrome metabólica. Para isso, pesquisa no banco de dados Pubmed foi realizada usando as palavras-chave “animal models”, “obesity”, "metabolic syndrome”, e “bariatric surgery”. Várias espécies de animais podem ser usadas para o estudo de distúrbios metabólicos, no entanto, os roedores, tanto modelos monogênicos quanto modelos de obesidade induzida por dieta (DIO), são os animais mais utilizados nessa área. Animais monogênicos são a melhor escolha se apenas um aspecto estiver sendo avaliado. Animais DIO tendem a demonstrar melhor a interação entre doença, ambiente e gene. No entanto, eles ainda não são totalmente eficazes para a compreensão de todos os mecanismos dessa doença.
Collapse
|
17
|
Cogan NG, Mellers AP, Patel BN, Powell BD, Aggarwal M, Harper KM, Blaber M. A mathematical model for the determination of mouse excisional wound healing parameters from photographic data. Wound Repair Regen 2018; 26:136-143. [DOI: 10.1111/wrr.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas G. Cogan
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Alana P. Mellers
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Bhavi N. Patel
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Brett D. Powell
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Manu Aggarwal
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Kathleen M. Harper
- Biomedical Research Laboratory Animal Resources; Florida State University; Tallahassee Florida
| | - Michael Blaber
- Biomedical Sciences; Florida State University; Tallahassee Florida
| |
Collapse
|
18
|
Matsumoto K, Yoshitomi T, Shimada T. [The role of pharmacology to produce firuglipel (DS-8500a), an orally available GPR119 agonist for type 2 diabetes mellitus]. Nihon Yakurigaku Zasshi 2018; 152:119-124. [PMID: 30185729 DOI: 10.1254/fpj.152.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
GPR119 (G-protein coupled receptor 119) has been shown to be highly expressed in the lower small intestinal and colorectal L-cells and pancreatic β-cells, and mediates intracellular cAMP concentration, glucagon like peptide (GLP-1) secretion, and glucose stimulated insulin secretion (GSIS). As the next generation for the treatment of type 2 diabetes mellitus (T2DM), GPR119 agonist has been intensively studied by pharmaceutical companies and a lot of patents have been applied by them. In such highly competitive condition, biological differentiation and to find an advantage among GPR119 agonists were necessary to proceed the candidate compound in further clinical investigation. Firuglipel (DS-8500a) is an orally available GPR119 agonist synthesized in DAIICHI SANKYO CO., LTD (DS). It was originated from DS-chemical library and optimized in the aspect of bioavailability and safety. Firuglipel had a higher intrinsic activity (IA) of the production of intracellular cAMP in human GPR119 expressing CHO-K1 cells than those of other GPR119 agonists studied. The level of IA in each GPR119 agonist was correlated with the existence of agonist conformer. In parallel with the study for the differentiation from other GPR119 agonists, we compared firuglipel with dipeptidyl peptide-4 (DPP-4) inhibitor in NONcNZO10/LtJ mice and evaluated their combination in streptozotocin (STZ) treated C57BL/6J mice to clarify future positioning among anti-diabetics therapy. These pharmacological studies illustrated here can draw out a clinical value of compound and expected to lead the production of first-in-class agent in pharmaceutical companies.
Collapse
|
19
|
Lightell DJ, Moss SC, Woods TC. Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 2017; 269:71-78. [PMID: 29276985 DOI: 10.1016/j.atherosclerosis.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Diabetes is associated with accelerated arterial intimal thickening that contributes to the increased cardiovascular disease seen in this population. In healthy arteries, intimal thickening is inhibited by elevated levels of the cyclin-dependent kinase inhibitor, p27Kip1, and intimal thickening is promoted by activation of the mammalian Target of Rapamycin to promote degradation of p27Kip1 protein. Recently, we reported that two microRNAs, miR-221 and -222, which promote intimal thickening via down-regulation of mRNA encoding p27Kip1, are elevated in the arteries of diabetic patients. To determine if these miRNAs are critical to the increased intimal thickening under diabetic conditions, we examined the regulation of p27Kip1in a mouse model of diabetes. METHODS Comparisons of p27Kip1 signaling in NONcNZO10 mice fed a diabetogenic versus control diet were performed using immunochemistry and real-time PCR. RESULTS Vascular smooth muscle cells and arteries of diabetic mice exhibited decreased levels of p27Kip1 that derived from destabilization of p27Kip1 mRNA in an extracellular signal response kinase-1/2 (ERK-1/2) dependent manner. The activity of ERK-1/2 is increased in the arteries of diabetic mice and promotes an increase in miR-221 and -222. Inhibition of miR-221 and -222 restores normal levels of p27Kip1 mRNA and protein in the arteries of diabetic mice and reduces intimal thickening following wire injury. CONCLUSIONS These data suggest diabetes is accompanied by increases in arterial miR-221 and -222 expression that promotes intimal thickening. Inhibition of the increased miR-221 and -222 may be efficacious in the prevention of the cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Daniel J Lightell
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Stephanie C Moss
- Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - T Cooper Woods
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA.
| |
Collapse
|
20
|
Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Gene 2017; 629:52-58. [PMID: 28760554 DOI: 10.1016/j.gene.2017.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
Abstract
The NONcNZO10/LtJ mouse is a polygenic model of type-2 diabetes (T2D) that shows moderate obesity and diabetes, and is regarded as a good model reflective of the conditions of human T2D. In this study, we analyzed pathological changes of pancreases with the progress of time by using histopathology and gene expression analysis, including microRNA. A number of gene expression changes associated with decreased insulin secretion (possibly regulated by miR-29a/b) were observed, and zinc homeostasis (Slc30a8, Mt1 and Mt2) or glucose metabolism (Slc2a2) was suggested as being the candidate mechanism of pancreas failure in NONcNZO10/LtJ mice. These results demonstrate NONcNZO10/LtJ mice have a complex pathogenic mechanism of diabetes, and moreover, this fundamental information of NONcNZO10/LtJ mice would offer the opportunity for research and development of a novel antidiabetic drug.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Tomomi Yoshitomi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Minoru Inoue
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Iigo
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koji Matsumoto
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Akira Shinagawa
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
21
|
Li Z, Frey JL, Wong GW, Faugere MC, Wolfgang MJ, Kim JK, Riddle RC, Clemens TL. Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology 2016; 157:4094-4103. [PMID: 27689415 PMCID: PMC5086531 DOI: 10.1210/en.2016-1583] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have identified the osteoblast as an insulin responsive cell that participates in global energy homeostasis. Here, we show that glucose transporter-4 (Glut4) is required for insulin-dependent uptake and oxidation of glucose in mature osteoblasts. In primary cultures of mouse osteoblasts, insulin increased uptake and oxidation of 14C-glucose in a dose-dependent fashion but did not significantly affect uptake or oxidation of 14C-oleate. In vitro, undifferentiated osteoblasts expressed 3 high-affinity Gluts: Glut1, Glut4, and Glut3. However, although levels of Glut1 and Glut3 remained constant during the course of osteoblast differentiation, Glut4 expression increased by 5-fold in association with enhanced insulin-stimulated glucose uptake. Glut4 ablation in osteoblasts in vitro eliminated insulin-stimulated glucose uptake, reduced proliferation and diminished measures of osteoblast maturation. In vivo, Glut4 expression was observed in osteoblasts, osteocytes, and chondrocytes at a level approaching that observed in adjacent skeletal muscle. To determine the importance of Glut4 in bone in vivo, we generated mice lacking Glut4 in osteoblasts and osteocytes (ΔGlut4). ΔGlut4 mice exhibited normal bone architecture but exhibited an increase in peripheral fat in association with hyperinsulinemia, β-cell islet hypertrophy, and reduced insulin sensitivity. Surprisingly, the expression of insulin target genes in liver, muscle, and adipose from ΔGlut4 mice were unchanged or increased, indicating that alterations in glucose homeostasis were the result of reduced clearance by bone. These findings suggest that Glut4 mediates insulin-stimulated glucose uptake by mature osteoblasts/osteocytes and that the magnitude of glucose use by bone cells is sufficient to impact global glucose disposal in the mouse.
Collapse
Affiliation(s)
- Zhu Li
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Julie L Frey
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - G William Wong
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Marie-Claude Faugere
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Michael J Wolfgang
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Jason K Kim
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Ryan C Riddle
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| |
Collapse
|
22
|
Blaber SI, Diaz J, Blaber M. Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF-1. Wound Repair Regen 2016; 23:538-49. [PMID: 25891187 DOI: 10.1111/wrr.12305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity-induced type 2 diabetes; however, detailed wound healing properties have not been reported. Herein, we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor-1 (FGF-1). Quantitation of reepithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF-1/heparin formulation effectively accelerates reepithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF-1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type 2 diabetes, and further, identify engineered forms of FGF-1 as a potential “second-generation” therapeutic to promote diabetic dermal wound healing.
Collapse
|
23
|
Adi N, Adi J, Lassance-Soares RM, Kurlansky P, Yu H, Webster KA. High protein/fish oil diet prevents hepatic steatosis in NONcNZO10 mice; association with diet/genetics-regulated micro-RNAs. JOURNAL OF DIABETES & METABOLISM 2016; 7:676. [PMID: 28529818 PMCID: PMC5436721 DOI: 10.4172/2155-6156.1000676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE NONcNZO10 (NZ10) mice are predisposed to obesity and develop type 2 diabetes (T2D) and hepatic steatosis even when maintained on a control diet (CD) of 6% fat. Studies were designed to determine whether this extreme susceptibility phenotype could be alleviated by diet and if so the molecular targets of diet. METHODS NZ10 and SWR/J (SWR) control mice were fed a CD or a test diet of high protein and fish oil (HPO) for 19 weeks and then analyzed for steatosis, blood chemistry, hepatic gene and micro-RNA expression. RESULTS HPO diet prevented steatosis, significantly increased serum adiponectin and reduced serum cholesterol and triglycerides only in NZ10 mice. The HPO diet repressed hepatic expression of fatty acid metabolic regulators including PPAR-γ, sterol regulatory element-binding protein-c1, peroxisome proliferator-activated receptor gamma co-activator-1, fatty acid synthase, fatty acid binding protein-4, and apolipoprotein A4 genes only in NZ10 mice. Also repressed by a HPO diet were adiponectinR2 receptor, leptin-R, PPAR-α, pyruvate dehydrogenase kinase isoforms 2 and 4, AKT2 and GSK3β. Micro-RNA (miR) arrays identified miRs that were diet and/or genetics regulated. QRTPCR confirmed increased expression of miR-205 and suppression of a series of miRs including miRs-411, 155, 335 and 21 in the NZ10-HPO group, each of which are implicated in the progression of diabetes and/or steatosis. Evidence is presented that miR-205 co-regulates with PPARγ and may regulate fibrosis and EMT during the progression of steatosis in the livers of NZ10-CD mice. The dietary responses of miR-205 are tissue-specific with opposite effects in adipose and liver. CONCLUSION The results confirm that a HPO diet overrides the genetic susceptibility of NZ10 mice and this correlates with the suppression of key genes and perhaps micro-RNAs involved in hyperglycemia, dyslipidemia and inflammation including master PPAR regulators, adiponectin and leptin receptors.
Collapse
Affiliation(s)
- Nikhil Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Jennipher Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Roberta Marques Lassance-Soares
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | | - Hong Yu
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
- Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
24
|
Atamni HJAT, Mott R, Soller M, Iraqi FA. High-fat-diet induced development of increased fasting glucose levels and impaired response to intraperitoneal glucose challenge in the collaborative cross mouse genetic reference population. BMC Genet 2016; 17:10. [PMID: 26728312 PMCID: PMC4700737 DOI: 10.1186/s12863-015-0321-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background The prevalence of Type 2 Diabetes (T2D) mellitus in the past decades, has reached epidemic proportions. Several lines of evidence support the role of genetic variation in the pathogenesis of T2D and insulin resistance. Elucidating these factors could contribute to developing new medical treatments and tools to identify those most at risk. The aim of this study was to characterize the phenotypic response of the Collaborative Cross (CC) mouse genetic resource population to high-fat diet (HFD) induced T2D-like disease to evluate its suitability for this purpose. Results We studied 683 mice of 21 different lines of the CC population. Of these, 265 mice (149 males and 116 females) were challenged by HFD (42 % fat); and 384 mice (239 males and145 females) of 17 of the 21 lines were reared as control group on standard Chow diet (18 % fat). Briefly, 8 week old mice were maintained on HFD until 20 weeks of age, and subsequently assessed by intraperitoneal glucose tolerance test (IPGTT). Biweekly body weight (BW), body length (BL), waist circumstance (WC), and body mass index (BMI) were measured. On statistical analysis, trait measurements taken at 20 weeks of age showed significant sex by diet interaction across the different lines and traits. Consequently, males and females were analyzed, separately. Differences among lines were analyzed by ANOVA and shown to be significant (P <0.05), for BW, WC, BMI, fasting blood glucose, and IPGTT-AUC. We use these data to infer broad sense heritability adjusted for number of mice tested in each line; coefficient of genetic variation; genetic correlations between the same trait in the two sexes, and phenotypic correlations between different traits in the same sex. Conclusions These results are consistent with the hypothesis that host susceptibility to HFD-induced T2D is a complex trait and controlled by multiple genetic factors and sex, and that the CC population can be a powerful tool for genetic dissection of this trait. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0321-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| | | | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| |
Collapse
|
25
|
Ghanem SS, Heinrich G, Lester SG, Pfeiffer V, Bhattacharya S, Patel PR, DeAngelis AM, Dai T, Ramakrishnan SK, Smiley ZN, Jung DY, Lee Y, Kitamura T, Ergun S, Kulkarni RN, Kim JK, Giovannucci DR, Najjar SM. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 2015; 291:980-8. [PMID: 26586918 DOI: 10.1074/jbc.m115.692582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.
Collapse
Affiliation(s)
- Simona S Ghanem
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Garrett Heinrich
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sumona G Lester
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Sumit Bhattacharya
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Anthony M DeAngelis
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Tong Dai
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Zachary N Smiley
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Dae Y Jung
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yongjin Lee
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tadahiro Kitamura
- the Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan, and
| | - Suleyman Ergun
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Rohit N Kulkarni
- the Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Jason K Kim
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David R Giovannucci
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| |
Collapse
|
26
|
Johnson NR, Wang Y. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen 2015; 23:591-600. [PMID: 26032846 PMCID: PMC5957479 DOI: 10.1111/wrr.12319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.
Collapse
Affiliation(s)
- Noah R. Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Adi N, Adi J, Cesar L, Kurlansky P, Agatston A, Webster KA. Role of Micro RNA-205 in Promoting Visceral Adiposity of NZ10 Mice with Polygenic Susceptibility for Type 2 Diabetes. ACTA ACUST UNITED AC 2015; 6. [PMID: 26664929 PMCID: PMC4671289 DOI: 10.4172/2155-6156.1000574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SCOPE To characterize diet-dependent miRNA profiles and their targets in the visceral adipose of mice with polygenic susceptibility to type 2 diabetes. METHODS AND RESULTS Six-week NONcNZO10/LtJ (NZ10) and control SWR/J mice were subjected to high protein-fish oil or control diets for 19 weeks and micro-RNA microarray analyses were implemented on visceral adipose RNA. We found that 27 miRNAs were significantly induced and 10 significantly repressed in the VA of obese NZ10 mice compared with controls. 12 selected regulated miRNAs were confirmed by RT-PCR based on the microarray data and we demonstrated that the expression of these miRNAs remained unaltered in the VA of control SWR mice. To assess the possible functional roles of miRNAs in adipogenesis, we also analyzed their expression in 3T3-L1 cells during growth and differentiation. This revealed that suppression of miRNA-205 alone correlated selectively with increased cell proliferation and lipid formation of adipocytes. CONCLUSION Diet and genetics control the expression of obesity-regulated miRNAs in the visceral adipose of NZ10 mice.
Collapse
Affiliation(s)
- Nikhil Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA ; Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jennipher Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA ; Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Liliana Cesar
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA ; Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
28
|
Dhuria RS, Singh G, Kaur A, Kaur R, Kaur T. Current status and patent prospective of animal models in diabetic research. Adv Biomed Res 2015; 4:117. [PMID: 26261819 PMCID: PMC4513317 DOI: 10.4103/2277-9175.157847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is a heterogeneous complex metabolic disorder with multiple etiology which characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action or both. The widespread occurrence of diabetes throughout the world has increased dramatically over the past few years. For better understanding, appropriate animal models that closely mimic the changes in humans needed, as vital tool for understanding the etiology and pathogenesis of the disease at the cellular/molecular level and for preclinical testing of drugs. This review aims to describe the animal models of type-1 diabetes (T1Ds) and T2Ds to mimic the causes and progression of the disease in humans. And also we highlight patent applications published in the last few years related to animal models in diabetes as an important milestone for future therapies that are aim to treating diabetes with specific symptoms and complications.
Collapse
Affiliation(s)
- Radhey S. Dhuria
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anudeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tanurajvir Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
29
|
Reifsnyder PC, Doty R, Harrison DE. Rapamycin ameliorates nephropathy despite elevating hyperglycemia in a polygenic mouse model of type 2 diabetes, NONcNZO10/LtJ. PLoS One 2014; 9:e114324. [PMID: 25473963 PMCID: PMC4256216 DOI: 10.1371/journal.pone.0114324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
While rapamycin treatment has been reported to have a putatively negative effect on glucose homeostasis in mammals, it has not been tested in polygenic models of type 2 diabetes. One such mouse model, NONcNZO10/LtJ, was treated chronically with rapamycin (14 ppm encapsulated in diet) and monitored for the development of diabetes. As expected, rapamycin treatment accelerated the onset and severity of hyperglycemia. However, development of nephropathy was ameliorated, as both glomerulonephritis and IgG deposition in the subendothelial tuft were markedly reduced. Insulin production and secretion appeared to be inhibited, suppressing the developing hyperinsulinemia present in untreated controls. Rapamycin treatment also reduced body weight gain. Thus, rapamycin reduced some of the complications of diabetes despite elevating hyperglycemia. These results suggest that multiple factors must be evaluated when assessing the benefit vs. hazard of rapamycin treatment in patients that have overt, or are at risk for, type 2 diabetes. Testing of rapamycin in combination with insulin sensitizers is warranted, as such compounds may ameliorate the putative negative effects of rapamycin in the type 2 diabetes environment.
Collapse
Affiliation(s)
| | - Rosalinda Doty
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
30
|
Leiter EH, Strobel M, O'Neill A, Schultz D, Schile A, Reifsnyder PC. Comparison of Two New Mouse Models of Polygenic Type 2 Diabetes at the Jackson Laboratory, NONcNZO10Lt/J and TALLYHO/JngJ. J Diabetes Res 2013; 2013:165327. [PMID: 23671854 PMCID: PMC3647594 DOI: 10.1155/2013/165327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023] Open
Abstract
This review compares two novel polygenic mouse models of type 2 diabetes (T2D), TALLYHO/JngJ and NONcNZO10/LtJ, and contrasts both with the well-known C57BLKS/J-Lepr(db) (db/db) monogenic diabesity model. We posit that the new polygenic models are more representative of the "garden variety" obesity underlying human T2D in terms of their polygenetic rather than monogenic etiology. Moreover, the clinical phenotypes in these new models are less extreme, for example, more moderated development of obesity coupled with less extreme endocrine disturbances. The more progressive development of obesity produces a maturity-onset development of hyperglycemia in contrast to the juvenile-onset diabetes observed in the morbidly obese db/db model. Unlike the leptin receptor-deficient db/db models with central leptin resistance, the new models develop a progressive peripheral leptin resistance and are able to maintain reproductive function. Although the T2D pathophysiology in both TALLYHO/JngJ and NONcNZO10/LtJ is remarkably similar, their genetic etiologies are clearly different, underscoring the genetic heterogeneity underlying T2D in humans.
Collapse
Affiliation(s)
- Edward H. Leiter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- *Edward H. Leiter:
| | - Marjorie Strobel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Adam O'Neill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - David Schultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Andrew Schile
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
31
|
Abstract
Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients.
Collapse
|
32
|
Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, Nguyen K, Tran T, Miao L, Dransfield PJ, Vimolratana M, Houze JB, Wong S, Toteva M, Shan B, Li F, Zhuang R, Lin DCH. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 2012; 7:e46300. [PMID: 23056280 PMCID: PMC3467217 DOI: 10.1371/journal.pone.0046300] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1) is a G-protein-coupled receptor (GPCR), primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9–39)NH2.
Collapse
Affiliation(s)
- Jian Luo
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Gayathri Swaminath
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Sean P. Brown
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Jane Zhang
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Qi Guo
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Michael Chen
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Kathy Nguyen
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Thanhvien Tran
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Lynn Miao
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Paul J. Dransfield
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Marc Vimolratana
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Jonathan B. Houze
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Simon Wong
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California, United States of America
| | - Maria Toteva
- Department of Pharmaceutics, Amgen Inc., South San Francisco, California, United States of America
| | - Bei Shan
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Frank Li
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Run Zhuang
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Daniel C.-H. Lin
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Adi N, Adi J, Cesar L, Agatston A, Kurlansky P, Webster KA. Influence of diet on visceral adipose remodeling in NONcNZO10 mice with polygenic susceptibility for type 2 diabetes. Obesity (Silver Spring) 2012; 20:2142-6. [PMID: 22858798 PMCID: PMC3458149 DOI: 10.1038/oby.2012.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Visceral adipose tissue (VAT) is a source of inflammatory cytokines that in obese subjects may contribute to low-level systemic inflammation and development of metabolic syndrome. Expansion of VAT involves adipocyte hyperplasia and hypertrophy and requires breakdown of the extracellular matrix and increased vascular outgrowth. To investigate changes of gene expression associated with VAT expansion and the role of combined genetics and diet, we implemented gene microarray analyses of VAT in NONcNZO10 (NZ10) and control SWR/J mice subjected to control chow (CD) or a diet of high protein and fish oil (HPO). NZ10 mice on CD showed increased body weight, hyperglycemia, and hyperinsulinemia at 25 weeks whereas those on HPO diet retained normal insulin levels and were normoglycemic. Two-way ANOVA revealed a significant interaction between diet and strain on blood glucose, serum insulin, and percent fat but not for body weight. Microarray heat maps revealed a remarkable combined effect of genetics and diet on genes that regulate extracellular matrix as well as angiogenic genes. Real time-PCR (RT-PCR) confirmed markedly increased expression of matrix metalloproteinases (MMPs) 2, 3, 11, and 12, vascular endothelial growth factor-A and C (VEGF-A and C), Von Willebrand Factor, and peroxisome proliferator-activated receptor-γ (PPAR-γ) selectively in the NZ10/CD group. MMP7 was significantly decreased. Protein levels of MMP2, 3, and 9 were significantly increased in the VA of NZ10 mice fed CD while those of MMP7 were downregulated. Microarrays also revealed diet-dependent two to fourfold increased expression of all four tissue inhibitor of metalloproteinases (TIMP) isoforms in NZ10 mice. Two-way ANOVA confirmed strongly interactive roles of diet and genetics on fat deposition and progression of type 2 diabetes in this polygenic mouse model.
Collapse
Affiliation(s)
- Nikhil Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Jennipher Adi
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Liliana Cesar
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | | | | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
34
|
Affiliation(s)
- David M. Ansell
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| | | | - Matthew J. Hardman
- The Healing Foundation Centre; Faculty of Life Sciences; The University of Manchester; Manchester; UK
| |
Collapse
|
35
|
Poungvarin N, Lee JK, Yechoor VK, Li MV, Assavapokee T, Suksaranjit P, Thepsongwajja JJ, Saha PK, Oka K, Chan L. Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in beta cell glucotoxicity. Diabetologia 2012; 55:1783-96. [PMID: 22382520 PMCID: PMC4010252 DOI: 10.1007/s00125-012-2506-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS This study was aimed at the elucidation of the pathogenesis of glucotoxicity, i.e. the mechanism whereby hyperglycaemia damages pancreatic beta cells. The identification of pathways in the process may help identify targets for beta cell-protective therapy. Carbohydrate response element-binding protein (ChREBP), a transcription factor that regulates the expression of multiple hyperglycaemia-induced genes, is produced in abundance in pancreatic beta cells. We hypothesise that ChREBP plays a pivotal role in mediating beta cell glucotoxicity. METHODS We assessed the role of ChREBP in glucotoxicity in 832/13 beta cells, isolated mouse islets and human pancreas tissue sections using multiple complementary approaches under control and high-glucose-challenge conditions as well as in adeno-associated virus-induced beta cell-specific overexpression of Chrebp (also known as Mlxipl) in mice. RESULTS Under both in vitro and in vivo conditions, ChREBP activates downstream target genes, including fatty acid synthase and thioredoxin-interacting protein, leading to lipid accumulation, increased oxidative stress, reduced insulin gene transcription/secretion and enhanced caspase activity and apoptosis, processes that collectively define glucotoxicity. Immunoreactive ChREBP is enriched in the nucleuses of beta cells in pancreatic tissue sections from diabetic individuals compared with non-diabetic individuals. Finally, we demonstrate that induced beta cell-specific Chrebp overexpression is sufficient to phenocopy the glucotoxicity manifestations of hyperglycaemia in mice in vivo. CONCLUSIONS/INTERPRETATION These data indicate that ChREBP is a key transcription factor that mediates many of the hyperglycaemia-induced activations in a gene expression programme that underlies beta cell glucotoxicity at the molecular, cellular and whole animal levels.
Collapse
Affiliation(s)
- N Poungvarin
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, R614, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duarte JMN, Agostinho PM, Carvalho RA, Cunha RA. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 2012; 7:e21899. [PMID: 22514596 PMCID: PMC3326010 DOI: 10.1371/journal.pone.0021899] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/08/2011] [Indexed: 12/20/2022] Open
Abstract
Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1) and A(2A) receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A) receptors and down-regulated A(1) receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.
Collapse
Affiliation(s)
- João M. N. Duarte
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula M. Agostinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui A. Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Nilsson C, Raun K, Yan FF, Larsen MO, Tang-Christensen M. Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin 2012; 33:173-81. [PMID: 22301857 PMCID: PMC4010334 DOI: 10.1038/aps.2011.203] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/21/2011] [Indexed: 11/08/2022] Open
Abstract
Obesity and obesity-related metabolic diseases represent a growing socioeconomic problem throughout the world. Great emphasis has been put on establishing treatments for this condition, including pharmacological intervention. However, there are many obstacles and pitfalls in the development process from pre-clinical research to the pharmacy counter, and there is no certainty that what has been observed pre-clinically will translate into an improvement in human health. Hence, it is important to test potential new drugs in a valid translational model early in their development. In the current mini-review, a number of monogenetic and polygenic models of obesity will be discussed in view of their translational character.
Collapse
Affiliation(s)
- Cecilia Nilsson
- Diabetes Research Unit, Novo Nordisk A/S, Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co Ltd, Beijing 100020, China
| | - Kirsten Raun
- Diabetes Research Unit, Novo Nordisk A/S, Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co Ltd, Beijing 100020, China
| | - Fei-fei Yan
- Diabetes Research China, Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co Ltd, Beijing 100020, China
| | - Marianne O Larsen
- Diabetes Research China, Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co Ltd, Beijing 100020, China
| | - Mads Tang-Christensen
- Diabetes Research Unit, Novo Nordisk A/S, Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co Ltd, Beijing 100020, China
| |
Collapse
|
38
|
Stebbins JL, De SK, Pavlickova P, Chen V, Machleidt T, Chen LH, Kuntzen C, Kitada S, Karin M, Pellecchia M. Design and characterization of a potent and selective dual ATP- and substrate-competitive subnanomolar bidentate c-Jun N-terminal kinase (JNK) inhibitor. J Med Chem 2011; 54:6206-14. [PMID: 21815634 DOI: 10.1021/jm200479c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
c-Jun N-terminal kinases (JNKs) represent valuable targets in the development of new therapies. Present on the surface of JNK is a binding pocket for substrates and the scaffolding protein JIP1 in close proximity to the ATP binding pocket. We propose that bidentate compounds linking the binding energies of weakly interacting ATP and substrate mimetics could result in potent and selective JNK inhibitors. We describe here a bidentate molecule, 19, designed against JNK. 19 inhibits JNK kinase activity (IC(50) = 18 nM; K(i) = 1.5 nM) and JNK/substrate association in a displacement assay (IC(50) = 46 nM; K(i) = 2 nM). Our data demonstrate that 19 targets for the ATP and substrate-binding sites on JNK concurrently. Finally, compound 19 successfully inhibits JNK in a variety of cell-based experiments, as well as in vivo where it is shown to protect against Jo-2 induced liver damage and improve glucose tolerance in diabetic mice.
Collapse
Affiliation(s)
- John L Stebbins
- Infectious and Inflammatory Disease Center, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fang RC, Kryger ZB, Buck DW, De la Garza M, Galiano RD, Mustoe TA. Limitations of the db/db mouse in translational wound healing research: Is the NONcNZO10 polygenic mouse model superior? Wound Repair Regen 2010; 18:605-13. [PMID: 20955341 DOI: 10.1111/j.1524-475x.2010.00634.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Murine models have provided valuable insights into the pathogenesis of both diabetes and chronic wounds. However, only a few published reports to date have investigated wound healing differences among the differing diabetic mouse models. The goal of the present study was to further define the wound healing deficiency phenotypes of streptozotocin-induced (STZ-induced), Akita, and db/db diabetic mice in comparison with a promising new polygenic strain of Type 2 diabetes (NONcNZO10) by using three specific wound models that targeted different critical processes in the pathogenesis of chronic wounds. Incisional, excisional, and ischemia/reperfusion wound models were established on mice of each strain. Wound healing parameters including tensile strength, epithelial gap, and wound necrosis were evaluated. In contrast to the other diabetic mice, the NONcNZO10 strain was found to have significant wound healing impairments in all wound healing models. Not only do the NONcNZO10 mice appear to better model human Type 2 diabetes, these provocative findings suggest that the mice may show more clinically relevant wound healing deficiencies than previous diabetic mouse models.
Collapse
Affiliation(s)
- Robert C Fang
- Laboratory for Wound Repair and Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
40
|
Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond) 2010; 7:57. [PMID: 20624298 PMCID: PMC2914079 DOI: 10.1186/1743-7075-7-57] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/12/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Leucine may function as a signaling molecule to regulate metabolism. We have previously shown that dietary leucine supplementation significantly improves glucose and energy metabolism in diet-induced obese mice, suggesting that leucine supplementation could potentially be a useful adjuvant therapy for obesity and type 2 diabetes. Since the underlying cause for obesity and type 2 diabetes is multifold, we further investigated metabolic effects of leucine supplementation in obese/diabetes mouse models with different etiologies, and explored the underlying molecular mechanisms. METHODS Leucine supplementation was carried out in NONcNZO10/LtJ (RCS10) - a polygenic model predisposed to beta cell failure and type 2 diabetes, and in B6.Cg-Ay/J (Ay) - a monogenic model for impaired central melanocortin receptor signaling, obesity, and severe insulin resistance. Mice in the treatment group received the drinking water containing 1.5% leucine for up to 8 months; control mice received the tap water. Body weight, body composition, blood HbA1c levels, and plasma glucose and insulin levels were monitored throughout and/or at the end of the study period. Indirect calorimetry, skeletal muscle gene expression, and adipose tissue inflammation were also assessed in Ay mice. RESULTS Leucine supplementation significantly reduced HbA1c levels throughout the study period in both RCS10 and Ay mice. However, the treatment had no long term effect on body weight or adiposity. The improvement in glycemic control was associated with an increased insulin response to food challenge in RCS10 mice and decreased plasma insulin levels in Ay mice. In leucine-treated Ay mice, energy expenditure was increased by ~10% (p < 0.05) in both dark and light cycles while the physical activity level was unchanged. The expression levels of UCP3, CrAT, PPAR-alpha, and NRF-1, which are known to regulate mitochondrial oxidative function, were significantly increased in the soleus muscle of leucine-treated Ay mice whereas the expression levels of MCP-1 and TNF-alpha and macrophage infiltration in adipose tissue were significantly reduced. CONCLUSIONS Chronic leucine supplementation significantly improves glycemic control in multiple mouse models of obesity and diabetes with distinct etiologies. The metabolic benefits of leucine supplementation are likely mediated via multiple mechanisms in different tissues, but are not necessarily dependent of weight reduction.
Collapse
Affiliation(s)
- Kaiying Guo
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, New York, USA.
| | | | | | | |
Collapse
|
41
|
Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes KC, Hafezi-Moghadam A. An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 2010; 24:2443-53. [PMID: 20335226 DOI: 10.1096/fj.09-152678] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolic syndrome (MetS) is a prevalent and complex disease, characterized by the variable coexistence of obesity, dyslipidemia, hyperinsulinaemia, and hypertension. The alarming rise in the prevalence of metabolic disorders makes it imperative to innovate preventive or therapeutic measures for MetS and its complications. However, the elucidation of the pathogenesis of MetS has been hampered by the lack of realistic models. For example, the existing animal models of MetS, i.e., genetically engineered rodents, imitate certain aspects of the disease, while lacking other important components. Defining the natural course of MetS in a spontaneous animal model of the disease would be desirable. Here, we introduce the Nile grass rat (NGR), Arvicanthis niloticus, as a novel model of MetS. Studies of over 1100 NGRs in captivity, fed normal chow, revealed that most of these animals spontaneously develop dyslipidemia (P<0.01), and hyperglycemia (P<0.01) by 1 yr of age. Further characterization showed that the diabetic rats develop liver steatosis, abdominal fat accumulation, nephropathy, atrophy of pancreatic islets of Langerhans, fatty streaks in the aorta, and hypertension (P<0.01). Diabetic NGRs in the early phase of the disease develop hyperinsulinemia, and show a strong inverse correlation between plasma adiponectin and HbA1c levels (P<0.01). These data indicate that the NGR is a valuable, spontaneous model for exploring the etiology and pathophysiology of MetS as well as its various complications.
Collapse
Affiliation(s)
- Kousuke Noda
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Type II diabetes is a fast-growing epidemic in industrialized countries. Many recent advances have led to the discovery and marketing of efficient novel therapeutic medications. Yet, because of side effects of these medications and the variability in individual patient responsiveness, unmet needs subsist for the discovery of new drugs. The mouse has proven to be a reliable model for discovering and validating new treatments for type II diabetes mellitus. We review here the most common mouse models used for drug discovery for the treatment of type II diabetes. The methods presented focus on measuring the equivalent end points in mice to the clinical values of glucose metabolism used for the diagnostic of type II diabetes in humans: i.e., baseline fasting glucose and insulin, glucose tolerance test, and insulin sensitivity index. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Helene Baribault
- Department of Metabolic Disorders, Amgen, South San Francisco, CA, USA
| |
Collapse
|
43
|
Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, Friedline RH, Kurt-Jones E, Finberg R, Fischer MA, Granger EL, Norbury CC, Hauschka SD, Philbrick WM, Lee CG, Elias JA, Kim JK. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 2009; 58:2525-35. [PMID: 19690064 PMCID: PMC2768157 DOI: 10.2337/db08-1261] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10). RESEARCH DESIGN AND METHODS MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses. RESULTS MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-alpha, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle. CONCLUSIONS These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Eun-Gyoung Hong
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hwi Jin Ko
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - You-Ree Cho
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hyo-Jeong Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zhexi Ma
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Tim Y. Yu
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Randall H. Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Evelyn Kurt-Jones
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Robert Finberg
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Matthew A. Fischer
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Erica L. Granger
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - William M. Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chun-Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jack A. Elias
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Corresponding author: Jason K. Kim,
| |
Collapse
|
44
|
Leiter EH. Selecting the "right" mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 2009; 560:1-17. [PMID: 19504239 DOI: 10.1007/978-1-59745-448-3_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is not a "Methods" chapter in the traditional sense. Rather, it is an essay designed to help address one of the most frequently asked questions by investigators about to embark on a study requiring an animal model of diabetes - what is the "right" model for the reader's specific research application. Because genetic heterogeneity and the requirement for complex gene-environment interaction characterize the various mouse models of Type 2 diabetes as well as the human disease manifestations, the readers may come to share the author's conclusion that more than one model is required if the investigator is interested in knowing how broadly effective a given compound with putative therapeutic efficacy might be.
Collapse
Affiliation(s)
- Edward H Leiter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
45
|
Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG, Chua SC, Kim JK, Kaestner KH, Karsenty G. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. ACTA ACUST UNITED AC 2008; 183:1235-42. [PMID: 19103808 PMCID: PMC2606962 DOI: 10.1083/jcb.200809113] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|