1
|
Xie Z, Yao M, Castro-Mejía JL, Ma M, Zhu Y, Fu X, Huang Q, Zhang B. Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
2
|
Zhang Z, Zheng B, Tang Y, Chen L. Starch concentration is an important factor for controlling its digestibility during hot-extrusion 3D printing. Food Chem 2022; 379:132180. [DOI: 10.1016/j.foodchem.2022.132180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
|
3
|
Hu J, Zheng P, Qiu J, Chen Q, Zeng S, Zhang Y, Lin S, Zheng B. High-Amylose Corn Starch Regulated Gut Microbiota and Serum Bile Acids in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23115905. [PMID: 35682591 PMCID: PMC9180756 DOI: 10.3390/ijms23115905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary High-amylose corn starch, as a kind of resistant starch, could profoundly regulate the gut microbiota and exert anti-obesity properties. Since the gut microbiota was found to improve metabolic health by altering circulating bile acids, therefore, here we investigated the association between the gut microbiota and serum bile acids in high fat diet induced obese mice fed with high-amylose corn starch. We found high-amylose corn starch could modulate the gut microbiota composition and partially restore the alternations in circulating bile acid profiles in obese mice. These influences on gut microbiota and circulating bile acids could be the underlying mechanisms of anti-obesity activity of high-amylose corn starch. Abstract High-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.
Collapse
Affiliation(s)
- Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Peiying Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Jinhui Qiu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| |
Collapse
|
4
|
Yoshida R, Yano Y, Hoshi N, Okamoto N, Sui Y, Yamamoto A, Asaji N, Shiomi Y, Yasutomi E, Hatazawa Y, Hayashi H, Ueda Y, Kodama Y. Acid-treated high-amylose corn starch suppresses high-fat diet-induced steatosis. J Food Sci 2022; 87:2173-2184. [PMID: 35411589 DOI: 10.1111/1750-3841.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Resistant starch (RS) has been reported to improve steatosis as well as obesity. Type 4 resistant starch (RS4), a chemically modified starch, is particularly hard to digest and suggesting higher efficacy. However, because the effects of RS4 on steatosis are not yet fully understood, the effects of RS4 on steatosis were examined using a murine high-fat diet model. Seven-week-old male mice were divided into three groups and fed a normal diet, a high-fat diet (HFD), or a high-fat diet with added RS (HFD + RS). Amylofiber SH® produced from acid-treated corn starch was used as the dietary RS. At 22 weeks old, hepatic steatosis and short chain fatty acid (SCFA) content and gut microbiota in cecum stool samples were analyzed. The ratio of body weight to 7 weeks was significantly suppressed in the HFD + RS group compared to the HFD group (132.2 ± 1.4% vs. 167.2 ± 3.9%, p = 0.0076). Macroscopic and microscopic steatosis was also suppressed in the HFD + RS group. Analysis of cecum stool samples revealed elevated SCFA levels in the HFD + RS group compared with the HFD group. Metagenome analysis revealed that Bifidobacterium (17.9 ± 1.9% vs. 3.6 ± 0.7%, p = 0.0019) and Lactobacillus (14.8 ± 3.4% vs. 0.72 ± 0.23%, p = 0.0045), which degrade RS to SCFA, were more prevalent in the HFD + RS group than the HFD group. In conclusion, RS4 suppressed steatosis, and increased Bifidobacterium and Lactobacillus, and SCFAs. RS4 may prevent steatosis by modulating the intestinal environment.
Collapse
Affiliation(s)
- Ryutaro Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Norihiro Okamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yunlong Sui
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Atsushi Yamamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Naoki Asaji
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuuki Shiomi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Eiichiro Yasutomi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuri Hatazawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Hiroki Hayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
5
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
6
|
Toan NVT, Thuy PK, Hien CTT, Chau TKB, Tien NH, Dung TH. Effects of reducing postprandial hyperglycemia and metabolism of acetate wheat starch on healthy mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000118837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Hien CTT, Hoa PT, Thuy NH, Dung TH. Acetate wheat starch improving blood glucose response and bilan lipid on obesity dyslipidemia mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Liu H, Zhang M, Ma Q, Tian B, Nie C, Chen Z, Li J. Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: a review. Food Funct 2021; 11:5749-5767. [PMID: 32602874 DOI: 10.1039/d0fo00855a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant starch (RS) is well known to prevent type 2 diabetes mellitus (T2DM) and obesity. Recently, attention has been paid to gut microbiota which mediates the RS's impact on T2DM and obesity, while a mechanistic understanding of how RS prevents T2DM and obesity through gut microbiota is not clear yet. Therefore, this review aims at exploring the underlying mechanisms of it. RS prevents T2DM and obesity through gut microbiota by modifying selective microbial composition to produce starch-degrading enzymes, promoting the production of intestinal metabolites, and improving gut barrier function. Therefore, RS possessing good functional features can be used to increase the fiber content of healthier food. Furthermore, achieving highly selective effects on gut microbiota based on the slight differences of RS's chemical structure and focusing on the effects of RS on strain-levels are essential to manipulate the microbiota for human health.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| |
Collapse
|
9
|
Yue H, Qiu B, Jia M, Liu J, Wang J, Huang F, Xu T. Development and optimization of spray-dried functional oil microcapsules: Oxidation stability and release kinetics. Food Sci Nutr 2020; 8:4730-4738. [PMID: 32994934 PMCID: PMC7500757 DOI: 10.1002/fsn3.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
This study aimed to optimize the microencapsulation method for a functional oil using high amylose corn starch (HACS) and assessed its structure and antioxidant capacity. The results showed that the optimal microencapsulation condition is achieved by using 28.5% of functional oil, 15.75% of HACS, and 57.86% of proportion of monoglyceride in emulsifier with 94.86% microencapsulation efficiency. Scanning electron microscopy and particle size measurement showed that the functional oil microcapsules were uniform size, smooth surface, spherical shape, and without cracks in the wall of the capsules. In vitro oil release of microencapsulates results showed that microencapsulated functional oil containing HACS has a better sustained release effect. The microcapsules containing HACS exhibited a lower lipid oxidation rate during storage. In conclusion, microencapsulation of HACS as wall material improved the stability of functional oil and this formulation of microcapsules was satisfactorily applied in powdered food for diabetic patients.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Bin Qiu
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Min Jia
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University (BTBU) Beijing China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University (BTBU) Beijing China
| | - Fenghong Huang
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Shandong Provincial Food for Special Medical Purpose Engineering Technology Research Center/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| |
Collapse
|
10
|
Irwin N, Gault VA, O'Harte FPM, Flatt PR. Blockade of gastric inhibitory polypeptide (GIP) action as a novel means of countering insulin resistance in the treatment of obesity-diabetes. Peptides 2020; 125:170203. [PMID: 31733230 DOI: 10.1016/j.peptides.2019.170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Gastric inhibitory polypeptide (GIP) is a 42 amino acid hormone secreted from intestinal K-cells in response to nutrient ingestion. Despite a recognised physiological role for GIP as an insulin secretagogue to control postprandial blood glucose levels, growing evidence reveals important actions of GIP on adipocytes and promotion of fat deposition in tissues. As such, blockade of GIP receptor (GIPR) action has been proposed as a means to counter insulin resistance, and improve metabolic status in obesity and related diabetes. In agreement with this, numerous independent observations in animal models support important therapeutic applications of GIPR antagonists in obesity-diabetes. Sustained administration of peptide-based GIPR inhibitors, low molecular weight GIPR antagonists, GIPR neutralising antibodies as well as genetic knockout of GIPR's or vaccination against GIP all demonstrate amelioration of insulin resistance and reduced body weight gain in response to high fat feeding. These observations were consistently associated with decreased accumulation of lipids in peripheral tissues, thereby alleviating insulin resistance. Although the impact of prolonged GIPR inhibition on bone turnover still needs to be determined, evidence to date indicates that GIPR antagonists represent an exciting novel treatment option for obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Finbarr P M O'Harte
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
11
|
Rosas-Pérez AM, Honma K, Goda T. Sustained effects of resistant starch on the expression of genes related to carbohydrate digestion/absorption in the small intestine. Int J Food Sci Nutr 2020; 71:572-580. [PMID: 31976784 DOI: 10.1080/09637486.2019.1711362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistant starch (RS) consumption has beneficial effects on health, such as reduced postprandial blood glucose levels. In this study, we evaluated the effect of a 14-day diet containing RS on α-glucosidase activity and the expression of genes related to carbohydrate digestion/absorption in rats. We examined whether the effects of RS persist when the rats were shifted to a control diet. The results suggest that RS consumption reduces α-glucosidase activity and Mgam, Si and Sglt1 mRNA levels in the proximal jejunum. In addition, RS consumption appeared to influence the serum GIP level, up to 2 days after the animals were shifted to a control diet. To our knowledge, this is the first report that RS has a sustained effect on gut hormone expression and the expression of genes related to carbohydrate digestion/absorption in the proximal jejunum.
Collapse
Affiliation(s)
- Aratza M Rosas-Pérez
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
12
|
Transcriptomic and metabolomic responses in the livers of pigs to diets containing different non-starchy polysaccharides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Wang A, Liu M, Shang W, Liu J, Dai Z, Strappe P, Zhou Z. Attenuation of metabolic syndrome in the ob/ob mouse model by resistant starch intervention is dose dependent. Food Funct 2019; 10:7940-7951. [PMID: 31777896 DOI: 10.1039/c9fo01771b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The current study applied an ob/ob mouse model of obesity for investigating the impact of different RS doses in a high-fat (HF) diet on the attenuation of metabolic syndrome. Although a significant reduction of body weight was not achieved, RS intervention significantly decreased liver weight with suppressed lipid accumulation in the liver tissue and reduced adipocyte size in the fat tissue. All levels of RS intervention were associated with significantly enriched pathways for PPAR, NAFLD and cGMP-PKG signaling. In contrast, either a medium or a higher RS intake (MRS and HRS, respectively) led the AMPK signaling pathway to be significantly enriched but not a diet with lower RS intake. More importantly, sphingolipid biosynthesis activity was noted with MRS and HRS intervention, which is highly associated with the improvement in insulin resistance, and the pathway of type II diabetes mellitus was correspondingly significantly enriched in the HRS group, demonstrating a dose-dependent manner. Similarly, there was no significant difference in the ratio of Bacteroidetes and Firmicutes between high-fat diet and RS groups until RS reached a certain level (i.e. in the HRS group). Furthermore, increased profiles of both Prevotellaceae and Coriobacteriaceae in the HF group were noted for the first time with a revised function from RS intervention, which is consistent with the content of lipopolysaccharides in their corresponding serum. Gut microbiota functional analysis showed that primary and secondary bile acid biosynthesis was also noted to be enriched following the RS intervention, benefiting cholesterol homeostasis. This study further highlights the association of RS consumption with the attenuation of metabolic syndrome in an obesity model, and its functionality is characterized by dose-dependence.
Collapse
Affiliation(s)
- Anqi Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Saito S, Sakuda T, Shudo A, Sugiura Y, Osaki N. Wheat Albumin Increases the Ratio of Fat to Carbohydrate Oxidation during the Night in Healthy Participants: A Randomized Controlled Trial. Nutrients 2019; 11:nu11010197. [PMID: 30669411 PMCID: PMC6356541 DOI: 10.3390/nu11010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
Not only are energy expenditure (EE) and the respiratory quotient (RQ) parameters of the energy nutrient utilization and energy balance, they are also related to the development of obesity. In this study, post-meal night-time energy metabolism was investigated following the oral ingestion of wheat albumin (WA) with a late evening meal. A randomly assigned, double-blind, placebo-controlled crossover trial for a single oral ingestion in healthy participants was completed. The participants ingested the placebo (PL) or WA (1.5 g) containing tablets 3 minutes before the late evening meal at 22:00 hour, and energy metabolism was measured using a whole-room indirect calorie meter until wake-up. The participants were in bed from 00:00 hour until 06:30 hour. Twenty healthy participants completed the trial and were included in the analyses. Night-time RQ and carbohydrate oxidation were significantly lower following the WA treatment as compared with the PL treatment. Although the total EE was not significantly different between treatments, postprandial fat oxidation was significantly higher following the WA treatment as compared with the PL treatment. In conclusion, WA has the potential to shift the energy balance to a higher ratio of fat to carbohydrate oxidation during the night.
Collapse
Affiliation(s)
- Shinichiro Saito
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Toshitaka Sakuda
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Aiko Shudo
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Yoko Sugiura
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Noriko Osaki
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| |
Collapse
|
15
|
Saito S, Oishi S, Shudo A, Sugiura Y, Yasunaga K. Glucose Response during the Night Is Suppressed by Wheat Albumin in Healthy Participants: A Randomized Controlled Trial. Nutrients 2019; 11:nu11010187. [PMID: 30658460 PMCID: PMC6356374 DOI: 10.3390/nu11010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
Postprandial blood glucose excursions are important for achieving optimal glycemic control. In normal-weight individuals, glucose tolerance is diminished in the evening compared to glucose tolerance in the morning. Wheat albumin (WA) has the potential to suppress the postprandial glucose response with a relatively small dose, compared to the dose required when using dietary fiber. In the present study, the effect of WA on glycemic control during the night was investigated after a late evening meal. A randomly assigned crossover trial involving a single oral ingestion in healthy male participants was performed in a double-blind placebo-controlled manner. The participants ingested the placebo (PL) tablets or the WA (1.5 g)-containing tablets 3 min before an evening meal at 22:00 hour, and blood samples were drawn during the night until 07:00 hour using an intravenous cannula. The participants slept from 00:30 hour to 06:30 hour. Glucose response, as a primary outcome during the night, was suppressed significantly by the WA treatment compared to the PL treatment, but the insulin response was not. Plasma glucose-dependent insulinotropic polypeptide concentration during the night was lowered significantly by the WA treatment compared to the PL treatment. In conclusion, WA may be a useful food constituent for glycemic control during the night.
Collapse
Affiliation(s)
- Shinichiro Saito
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Sachiko Oishi
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Aiko Shudo
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Yoko Sugiura
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Koichi Yasunaga
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| |
Collapse
|
16
|
Meenu M, Xu B. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Crit Rev Food Sci Nutr 2018; 59:3019-3031. [DOI: 10.1080/10408398.2018.1481360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
17
|
Newman MA, Petri RM, Grüll D, Zebeli Q, Metzler-Zebeli BU. Transglycosylated Starch Modulates the Gut Microbiome and Expression of Genes Related to Lipid Synthesis in Liver and Adipose Tissue of Pigs. Front Microbiol 2018; 9:224. [PMID: 29487593 PMCID: PMC5816791 DOI: 10.3389/fmicb.2018.00224] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
Dietary inclusion of resistant starches can promote host health through modulation of the gastrointestinal microbiota, short-chain fatty acid (SCFA) profiles, and lipid metabolism. This study investigated the impact of a transglycosylated cornstarch (TGS) on gastric, ileal, cecal, proximal-colonic, and mid-colonic bacterial community profiles and fermentation metabolites using a growing pig model. It additionally evaluated the effect of TGS on the expression of host genes related to glucose and SCFA absorption, incretins, and satiety in the gut as well as host genes related to lipid metabolism in hepatic and adipose tissue. Sixteen growing pigs (4 months of age) were fed either a TGS or control (CON) diet for 11 days. Bacterial profiles were determined via Illumina MiSeq sequencing of the V3-5 region of the 16S rRNA gene, whereas SCFA and gene expression were measured using gas chromatography and reverse transcription-quantitative PCR. Megasphaera, which was increased at all gut sites, began to benefit from TGS feeding in gastric digesta, likely through cross-feeding with other microbes, such as Lactobacillus. Shifts in the bacterial profiles from dietary TGS consumption in the cecum, proximal colon, and mid colon were similar. Relative abundances of Ruminococcus and unclassified Ruminococcaceae genus were lower, whereas that of unclassified Veillonellaceae genus was higher in TGS- compared to CON-fed pigs (p < 0.05). TGS consumption also increased (p < 0.05) concentrations of SCFA, especially propionate, and lactate in the distal hindgut compared to the CON diet which might have up-regulated GLP1 expression in the cecum (p < 0.05) and mid colon compared to the control diet (p < 0.10). TGS-fed pigs showed increased hepatic and decreased adipocyte expression of genes for lipid synthesis (FASN, SREBP1, and ACACA) compared to CON-fed pigs, which may be related to postprandial portal nutrient flow and reduced systemic insulin signaling. Overall, our data show that TGS consumption may affect gastrointestinal bacterial signaling, caused by changes in gut bacterial profiles and the action of propionate, and host lipid metabolism.
Collapse
Affiliation(s)
- Monica A Newman
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Renée M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dietmar Grüll
- Agrana Research & Innovation Center GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
18
|
Lee ES, Lee BH, Shin DU, Lim MY, Chung WH, Park CS, Baik MY, Nam YD, Seo DH. Amelioration of obesity in high-fat diet-fed mice by chestnut starch modified by amylosucrase from Deinococcus geothermalis. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Firdaus J, Sulistyani E, Subagio A. Resistant Starch Modified Cassava Flour (MOCAF) Improves Insulin Resistance. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajcn.2018.32.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh YH, Kieffer D, Zaragoza J, Martin R, Slupsky C, Marco ML. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Mol Nutr Food Res 2017; 61. [PMID: 28736992 DOI: 10.1002/mnfr.201700184] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 01/03/2023]
Abstract
SCOPE We examined the intestinal and systemic responses to incorporating a type 2 resistant starch (RS) into a high fat diet fed to obese mice. METHODS AND RESULTS Diet-induced obese, C57BL/6J male mice were fed an HF diet without or with 20% (by weight) high-amylose maize resistant starch (HF-RS) for 6 weeks. Serum adiponectin levels were higher with RS consumption, but there were no differences in weight gain and adiposity. With HF-RS, the expression levels of ileal TLR2 and Reg3g and cecal occludin, TLR2, TLR4, NOD1 and NOD2 were induced; whereas colonic concentrations of the inflammatory cytokine IL-17A declined. The intestinal, serum, liver, and urinary metabolomes were also altered. HF-RS resulted in lower amino acid concentrations, including lower serum branched chain amino acids, and increased quantities of urinary di/trimethylamine, 3-indoxylsulfate, and phenylacetylglycine. Corresponding to these changes were enrichments in Bacteroidetes (S24-7 family) and certain Firmicutes taxa (Lactobacillales and Erysipelotrichaceae) with the HF-RS diet. Parabacteroides and S24-7 positively associated with cecal maltose concentrations. These taxa and Erysipelotrichaceae, Allobaculum, and Bifidobacterium were directly correlated with uremic metabolites. CONCLUSION Consumption of RS modified the intestinal microbiota, stimulated intestinal immunity and endocrine-responses, and modified systemic metabolomes in obese mice consuming an otherwise obesogenic diet.
Collapse
Affiliation(s)
- Javad Barouei
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA, USA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Yu-Hsin Hsieh
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dorothy Kieffer
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jose Zaragoza
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Roy Martin
- Department of Nutrition, University of California, Davis, CA, USA.,Western Human Nutrition Research Center, USDA, Davis, CA, USA
| | - Carolyn Slupsky
- Department of Food Science & Technology, University of California, Davis, CA, USA.,Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Hosoda Y, Okahara F, Mori T, Deguchi J, Ota N, Osaki N, Shimotoyodome A. Dietary steamed wheat bran increases postprandial fat oxidation in association with a reduced blood glucose-dependent insulinotropic polypeptide response in mice. Food Nutr Res 2017; 61:1361778. [PMID: 28970776 PMCID: PMC5614337 DOI: 10.1080/16546628.2017.1361778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/19/2017] [Indexed: 10/25/2022] Open
Abstract
Obesity is a global epidemic associated with a higher risk of cardiovascular disease and metabolic disorders, such as type 2 diabetes. Previous studies demonstrated that chronic feeding of steamed wheat bran (WB) decreases obesity. To clarify the underlying mechanism and the responsible component for the anti-obesity effects of steamed WB, we investigated the effects of dietary steamed WB and arabinoxylan on postprandial energy metabolism and blood variables. Overnight-fasted male C57BL/6J mice were fed an isocaloric diet with or without steamed WB (30%). Energy metabolism was evaluated using an indirect calorimeter, and plasma glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) levels were measured for 120 min after feeding. We similarly investigated the effect of arabinoxylan, a major component of steamed WB. Mice fed the WB diet had higher postprandial fat oxidation and a lower blood GIP response compared with mice fed the control diet. Mice fed the arabinoxylan diet exhibited a dose-dependent postprandial blood GIP response; increasing the arabinoxylan content in the diet led to a lower postprandial blood GIP response. The arabinoxylan-fed mice also had higher fat oxidation and energy expenditure compared with the control mice. In conclusion, the findings of the present study revealed that dietary steamed WB increases fat oxidation in mice. Increased fat oxidation may have a significant role in the anti-obesity effects of steamed WB. The postprandial effects of steamed WB are due to arabinoxylan, a major component of WB. The reduction of the postprandial blood GIP response may be responsible for the increase in postprandial fat utilization after feeding on a diet containing steamed WB and arabinoxylan.
Collapse
Affiliation(s)
- Yayoi Hosoda
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Fumiaki Okahara
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Jun Deguchi
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriko Osaki
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
22
|
Saqui-Salces M, Luo Z, Urriola PE, Kerr BJ, Shurson GC. Effect of dietary fiber and diet particle size on nutrient digestibility and gastrointestinal secretory function in growing pigs. J Anim Sci 2017; 95:2640-2648. [PMID: 28727063 DOI: 10.2527/jas.2016.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduction of diet particle size (PS) increases feed efficiency due to an increase in the apparent total tract (ATTD) of GE. However, other effects of PS on the gut secretory function are not known. Therefore, the objective of this experiment was to measure the effect of diet composition (DC) and PS on nutrient digestibility, gastrointestinal hormones, total bile acids (TBA), total cholesterol and glucose concentrations in plasma of finishing pigs ( = 8/diet). Pigs were fed finely (374 ± 29 µm) or coarsely (631 ± 35 µm) ground corn-soybean meal (CSB), CSB + 35% corn dried distillers' grains with solubles (DDGS), and CSB with 21% soybean hulls (SBH) diets for 49 d. Diet composition, nutrient digestibility, along with fasting plasma concentrations of gastrin, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), TBA, cholesterol, and glucose were measured. Fine ground diets had greater ( < 0.05) ATTD of GE as well as greater ( < 0.05) ME than coarse ground diets independent on the DC. Fine ground diets also had greater ( < 0.05) ATTD of DM, N, ether extract, and NDF, independent of DC. A decrease in PS also caused an increase ( < 0.05) in ATTD of N, K, and S, but it did not affect ATTD of Ca, P, or Na. The DC and PS affected plasma gastrin, insulin and TBA but not GIP, GLP-1, glucose, and cholesterol. Gastrin concentration was greater ( < 0.05) in pigs fed coarse DDGS compared with feeding coarse CSB and SBH diets. Insulin concentration of pigs fed CSB was greater ( < 0.01) in pigs fed fine compared with coarse DDGS, and was greater ( < 0.05) in coarse compared with fine SBH diets. Pigs fed DDGS had greater ( < 0.05) TBA than those fed SBH and fine CSB diets. Gastrin, insulin, TBA and cholesterol tended ( < 0.10), or correlated ( < 0.05) with P, K and Fe intake. Insulin, TBA, and cholesterol were correlated ( < 0.05) with Na and S intake. In conclusion, a decrease in diet PS increases the ATTD of nutrients independently of DC, while mineral intake affects gastrointestinal secretion of hormones with potential metabolic impacts. Plasma insulin and glucose concentrations were correlated with DM intake, and glucose was associated with lipid and protein intake. Diet energy, nutrient digestibility, and plasma gastrin, insulin and TBA concentrations were affected by DC and PS.
Collapse
|
23
|
Koh GY, Rowling MJ. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus. Nutr Rev 2017; 75:350-360. [DOI: 10.1093/nutrit/nux006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
24
|
Newman MA, Zebeli Q, Eberspächer E, Grüll D, Molnar T, Metzler-Zebeli BU. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model. Nutrients 2017; 9:E291. [PMID: 28300770 PMCID: PMC5372954 DOI: 10.3390/nu9030291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05) and glucose (p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.
Collapse
Affiliation(s)
- Monica A Newman
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Eva Eberspächer
- Anaesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Dietmar Grüll
- Agrana Research & Innovation Center GmbH, 3430 Tulln, Austria.
| | - Timea Molnar
- Agrana Research & Innovation Center GmbH, 3430 Tulln, Austria.
| | - Barbara U Metzler-Zebeli
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
25
|
Enhanced anti-obesity effects of complex of resistant starch and chitosan in high fat diet fed rats. Carbohydr Polym 2017; 157:834-841. [DOI: 10.1016/j.carbpol.2016.10.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
|
26
|
Newman MA, Zebeli Q, Velde K, Grüll D, Molnar T, Kandler W, Metzler-Zebeli BU. Enzymatically Modified Starch Favorably Modulated Intestinal Transit Time and Hindgut Fermentation in Growing Pigs. PLoS One 2016; 11:e0167784. [PMID: 27936165 PMCID: PMC5147999 DOI: 10.1371/journal.pone.0167784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023] Open
Abstract
Aside from being used as stabilizing agents in many processed foods, chemically modified starches may act as functional dietary ingredients. Therefore, development of chemically modified starches that are less digestible in the upper intestinal segments and promote fermentation in the hindgut receives considerable attention. This study aimed to investigate the impact of an enzymatically modified starch (EMS) on nutrient flow, passage rate, and bacterial activity at ileal and post-ileal level. Eight ileal-cannulated growing pigs were fed 2 diets containing 72% purified starch (EMS or waxy cornstarch as control) in a cross-over design for 10 d, followed by a 4-d collection of feces and 2-d collection of ileal digesta. On d 17, solid and liquid phase markers were added to the diet to determine ileal digesta flow for 8 h after feeding. Reduced small intestinal digestion after the consumption of the EMS diet was indicated by a 10%-increase in ileal flow and fecal excretion of dry matter and energy compared to the control diet (P<0.05). Moreover, EMS feeding reduced ileal transit time of both liquid and solid fractions compared to the control diet (P<0.05). The greater substrate flow to the large intestine with the EMS diet increased the concentrations of total and individual short-chain fatty acids (SCFA) in feces (P<0.05). Total bacterial 16S rRNA gene abundance was not affected by diet, whereas the relative abundance of the Lactobacillus group decreased (P<0.01) by 50% and of Enterobacteriaceae tended (P<0.1) to increase by 20% in ileal digesta with the EMS diet compared to the control diet. In conclusion, EMS appears to resemble a slowly digestible starch by reducing intestinal transit and increasing SCFA in the distal large intestine.
Collapse
Affiliation(s)
- M. A. Newman
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Cluster “Animal Gut Health”, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Q. Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Cluster “Animal Gut Health”, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - K. Velde
- Equine University Clinic, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - D. Grüll
- Agrana Research & Innovation Center GmbH, Tulln, Austria
| | - T. Molnar
- Agrana Research & Innovation Center GmbH, Tulln, Austria
| | - W. Kandler
- Center for Analytical Chemistry, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - B. U. Metzler-Zebeli
- Research Cluster “Animal Gut Health”, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
27
|
Upadhyaya B, McCormack L, Fardin-Kia AR, Juenemann R, Nichenametla S, Clapper J, Specker B, Dey M. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep 2016; 6:28797. [PMID: 27356770 PMCID: PMC4928084 DOI: 10.1038/srep28797] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography–mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management.
Collapse
Affiliation(s)
- Bijaya Upadhyaya
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA
| | - Lacey McCormack
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA
| | - Ali Reza Fardin-Kia
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, HFS-717, US Food and Drug Administration, College Park, MD 20740, USA
| | - Robert Juenemann
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA
| | - Sailendra Nichenametla
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA
| | - Jeffrey Clapper
- Department of Animal Science, South Dakota State University, Box 2170, Brookings, SD 57007, USA
| | - Bonny Specker
- Ethel Austin Martin Program in Human Nutrition, South Dakota State University, Box 506, Brookings, SD 57007, USA
| | - Moul Dey
- Health and Nutritional Sciences, South Dakota State University, Box 2203, Brookings, SD 57007, USA
| |
Collapse
|
28
|
Increased plasma levels of glucose-dependent insulinotropic polypeptide are associated with decreased postprandial energy expenditure after modern Japanese meals. Eur J Nutr 2016; 56:1693-1705. [PMID: 27112963 PMCID: PMC5486637 DOI: 10.1007/s00394-016-1216-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Purpose The nutritional changes that have accompanied the modernization of Japanese dietary patterns have led to significant increases in the number of people who are overweight or obese. This study aimed to clarify the effects of these nutritional changes on postprandial energy expenditure and the release of metabolism-regulating hormones. Methods The total daily energy content (20 % breakfast, 40 % lunch, and 40 % dinner) and macronutrient composition (carbohydrate/fat/protein) was 8807.3 kJ and 364.3:30.1:66.4 (g) for the traditional test diet and 9217.6 kJ and 331.7:66.1:76.9 (g) for the modern test diet. In experiment 1, nine healthy Japanese men participated in a crossover study during which they ingested a test diet comprising three meals; postprandial blood parameters were measured after each meal. In experiment 2, another ten men participated in a crossover study during which they ingested 2 meals, after which metabolic responses and blood variables were evaluated. Results The modern diet induced greater blood levels of glucose-dependent insulinotropic polypeptide (GIP) and ghrelin than did the traditional diet. The expected increase in postprandial energy expenditure (∆REE) tended to be dampened after the modern compared with the traditional diet. GIP was inversely correlated with ∆REE after lunch, and ghrelin was positively associated with ∆REE. Conclusion Both GIP and ghrelin are robust indicators of postprandial energy expenditure. The nutritional changes accompanying the modernization of Japanese dietary patterns may increase the levels of the anabolic intestinal hormone GIP, which is associated with ∆REE, in the Japanese population. The contribution of an increased ghrelin concentration to the decreased ∆REE after the modern diet warrants further investigation.
Collapse
|
29
|
Triterpene alcohols and sterols from rice bran reduce postprandial hyperglycemia in rodents and humans. Mol Nutr Food Res 2016; 60:1521-31. [DOI: 10.1002/mnfr.201500897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
|
30
|
Sun Y, Yu K, Zhou L, Fang L, Su Y, Zhu W. Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch1. J Anim Sci 2016; 94:1083-94. [DOI: 10.2527/jas.2015-9715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
31
|
Misawa K, Hashizume K, Yamamoto M, Minegishi Y, Hase T, Shimotoyodome A. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. J Nutr Biochem 2015; 26:1058-67. [PMID: 26101135 DOI: 10.1016/j.jnutbio.2015.04.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
The initiation of obesity entails an imbalance wherein energy intake exceeds expenditure. Obesity is increasing in prevalence and is now a worldwide health problem. Food-derived peroxisome proliferator-activated receptor δ (PPARδ) stimulators represent potential treatment options for obesity. Ginger (Zingiber officinale Roscoe) was previously shown to regulate the PPARγ signaling pathway in adipocytes. In this study, we investigated the antiobesity effects of ginger in vivo and the mechanism of action in vitro. Energy expenditure was increased, and diet-induced obesity was attenuated in C57BL/6J mice treated with dietary ginger extract (GE). GE also increased the number of Type I muscle fibers, improved running endurance capacity and upregulated PPARδ-targeted gene expression in skeletal muscle and the liver. 6-Shogaol and 6-gingerol acted as specific PPARδ ligands and stimulated PPARδ-dependent gene expression in cultured human skeletal muscle myotubes. An analysis of cellular respiration revealed that pretreating cultured skeletal muscle myotubes with GE increased palmitate-induced oxygen consumption rate, which suggested an increase in cellular fatty acid catabolism. These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity by increasing skeletal muscle fat catabolism. 6-Shogaol and 6-gingerol may be responsible for the regulatory effects of dietary ginger on PPARδ signaling.
Collapse
Affiliation(s)
- Koichi Misawa
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Kojiro Hashizume
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Masaki Yamamoto
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Yoshihiko Minegishi
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Akira Shimotoyodome
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| |
Collapse
|
32
|
Enzymatically Modified Starch Ameliorates Postprandial Serum Triglycerides and Lipid Metabolome in Growing Pigs. PLoS One 2015; 10:e0130553. [PMID: 26076487 PMCID: PMC4468079 DOI: 10.1371/journal.pone.0130553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.
Collapse
|
33
|
Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr 2015; 6:198-205. [PMID: 25770258 PMCID: PMC4352178 DOI: 10.3945/an.114.007419] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable.
Collapse
Affiliation(s)
| | - June Zhou
- Geriatric Endocrinology and Metabolism Laboratory, Veterans Affairs Medical Center, Washington, DC
| | - Maren Hegsted
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI
| | | | | | - Diana B Coulon
- Bioassay Core Laboratory, Louisiana State University Agricultural Center, Baton Rouge, LA
| | | |
Collapse
|
34
|
Keyhani-Nejad F, Irmler M, Isken F, Wirth EK, Beckers J, Birkenfeld AL, Pfeiffer AFH. Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice. Diabetologia 2015; 58:374-83. [PMID: 25348610 DOI: 10.1007/s00125-014-3423-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/24/2014] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS High intake of carbohydrates, particularly sucrose, in western societies is associated with the development of non-alcoholic fatty liver (NAFL) and diabetes mellitus. It is unclear whether this is related primarily to the carbohydrate quantity or to the hormonal responses, particularly glucose-dependent insulinotropic polypeptide (GIP), which is released in the proximal intestine. Therefore, we investigated the role of GIP by comparing two glucose-fructose dimers, sucrose and Palatinose (isomaltulose), resorbed proximally or distally. METHODS The glycaemic and incretin responses to sucrose and Palatinose were studied by oral gavage and meal tests. We then analysed phenotypic and metabolic diet-induced changes in C57Bl/6J mice exposed to isoenergetic diets differing in carbohydrate type. Studies were repeated in GIP receptor knockout (Gipr(-/-)) mice and their wild-type littermates. RESULTS Compared with sucrose, Palatinose intake resulted in slower glucose absorption and reduced postprandial insulin and GIP levels. After 22 weeks, Palatinose feeding prevented hepatic steatosis (48.5%) compared with sucrose and improved glucose tolerance, without differences in body composition and food intake. Ablation of GIP signalling in Gipr(-/-) mice completely prevented the deleterious metabolic effects of sucrose feeding. Furthermore, our microarray analysis indicated that sucrose increased 2.3-fold the hepatic expression of Socs2, which is involved in the growth hormone signalling pathway and participates in the development of NAFL. CONCLUSIONS/INTERPRETATION Our results suggest that the site of glucose absorption and the GIP response determine liver fat accumulation and insulin resistance. GIP may play a role in sucrose induced fatty liver by regulating the expression of Socs2.
Collapse
Affiliation(s)
- Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Nakayama K, Watanabe K, Boonvisut S, Makishima S, Miyashita H, Iwamoto S. Common variants of GIP are associated with visceral fat accumulation in Japanese adults. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1108-14. [PMID: 25324507 DOI: 10.1152/ajpgi.00282.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animal studies have demonstrated that glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) contribute to the etiology of obesity. In humans, genomewide association studies have identified single nucleotide polymorphisms (SNPs) in the GIPR gene that are strongly associated with body mass index (BMI); however, it is not clear whether genetic variations in the GIP gene are involved in the development of obesity. In the current study, we assessed the impact of GIP SNPs on obesity-related traits in Japanese adults. Six tag SNPs were tested for associations with obesity-related traits in 3,013 individuals. Multiple linear regression analyses showed that rs9904288, located at the 3'-end of GIP, was significantly associated with visceral fat area (VFA). Moreover, rs1390154 and rs4794008 showed significant associations with plasma triglyceride levels and hemoglobin A1c levels, respectively. Among the significant SNPs, rs9904288 and rs1390154 were independently linked with SNPs in active enhancers of the duodenum mucosa, the main GIP-secreting tissue. The haplotypes of these two SNPs exhibited stronger associations with VFA. Numbers of VFA-increasing alleles of rs9904288 and BMI-increasing alleles of previously identified GIPR SNPs showed a strong additive effect on VFA, waist circumference, and BMI in the subject population. These novel results support the notion that the GIP-GIPR axis plays a role in the etiology of central obesity in humans, which is characterized by the accumulation of visceral fat.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| | - Kazuhisa Watanabe
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| | - Supichaya Boonvisut
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| | - Saho Makishima
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| | | | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; and
| |
Collapse
|
36
|
Fukuoka D, Okahara F, Hashizume K, Yanagawa K, Osaki N, Shimotoyodome A. Triterpene alcohols and sterols from rice bran lower postprandial glucose-dependent insulinotropic polypeptide release and prevent diet-induced obesity in mice. J Appl Physiol (1985) 2014; 117:1337-48. [DOI: 10.1152/japplphysiol.00268.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity is now a worldwide health problem. Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone that is secreted following the ingestion of food and modulates energy metabolism. Previous studies reported that lowering diet-induced GIP secretion improved energy homeostasis in animals and humans, and attenuated diet-induced obesity in mice. Therefore, food-derived GIP regulators may be used in the development of foods that prevent obesity. Rice bran oil and its components are known to have beneficial effects on health. Therefore, the aim of the present study was to clarify the effects of the oil-soluble components of rice bran on postprandial GIP secretion and obesity in mice. Triterpene alcohols [cycloartenol (CA) and 24-methylene cycloartanol (24Me)], β-sitosterol, and campesterol decreased the diet-induced secretion of GIP in C57BL/6J mice. Mice fed a high-fat diet supplemented with a triterpene alcohol and sterol preparation (TASP) from rice bran for 23 wk gained less weight than control mice. Indirect calorimetry revealed that fat utilization was higher in TASP-fed mice than in control mice. Fatty acid oxidation-related gene expression in the muscles of mice fed a TASP-supplemented diet was enhanced, whereas fatty acid synthesis-related gene expression in the liver was suppressed. The treatment of HepG2 cells with CA and 24Me decreased the gene expression of sterol regulatory element-binding protein (SREBP)-1c. In conclusion, we clarified for the first time that triterpene alcohols and sterols from rice bran prevented diet-induced obesity by increasing fatty acid oxidation in muscles and decreasing fatty acid synthesis in the liver through GIP-dependent and GIP-independent mechanisms.
Collapse
Affiliation(s)
- Daisuke Fukuoka
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan; and
| | - Fumiaki Okahara
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan; and
| | - Kohjiro Hashizume
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan; and
| | - Kiyotaka Yanagawa
- Analytical Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriko Osaki
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan; and
| | | |
Collapse
|
37
|
Ai Y, Zhao Y, Nelson B, Birt DF, Wang T, Jane JL. Characterization and In Vivo Hydrolysis of Amylose–Stearic Acid Complex. Cereal Chem 2014. [DOI: 10.1094/cchem-11-13-0233-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yongfeng Ai
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
| | - Yinsheng Zhao
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
| | - Bridget Nelson
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
| | - Diane F. Birt
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
| | - Tong Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
| | - Jay-lin Jane
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, U.S.A
- Corresponding author. Phone: (515) 294-9892. Fax: (515) 294-8181
| |
Collapse
|
38
|
Higgins JA. Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr 2014; 54:1158-66. [PMID: 24499148 DOI: 10.1080/10408398.2011.629352] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.
Collapse
Affiliation(s)
- Janine A Higgins
- a Department of Pediatrics, University of Colorado Denver , Anschutz Medical Campus , Aurora , CO , 80045 , USA
| |
Collapse
|
39
|
Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats. J Nutr Biochem 2013; 24:1920-30. [PMID: 24011718 DOI: 10.1016/j.jnutbio.2013.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/12/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) constitutes the most important feature of the metabolic syndrome, whose prevalence is highly associated to the consumption of Western diets. Resistant starch (RS) consumption has been shown to have beneficial metabolic effects, including improved insulin sensitivity, and glucose and lipid homeostasis. However, the mechanisms (especially at the molecular level) by which this takes place are still not completely known. In the present study, we aimed to evaluate the role of the liver in the ameliorated high-fat (HF)-induced IR status by RS. Thus, three groups of rats were fed either a control diet, or an HF diet containing or not RS. After 9 weeks of feeding, we evaluated the whole-body insulin sensitivity, and the hepatic glucose and lipid metabolism at the biochemical and molecular levels and the metabolome of the cecum content. We demonstrated for the first time that at least part of the beneficial effects of RS consumption in the context of an HF feeding can be driven by changes elicited at the hepatic level. The ability of the RS to correct the HF-induced dyslipidemia and the associated IR resulted from the return to the basal expression levels of transcription factors involved in lipogenesis (SREBP-1c), cholesterol metabolism (SREBP-2, LXRs) and fatty acid oxidation (PPARα). Moreover, the RS feeding was able to correct the HF-induced reduction in hepatic glucose phosphorylation and muscle glucose transport, improving glucose tolerance. Finally, as a whole, the improved hepatic metabolism seemed to be the result of an ameliorated inflammatory status.
Collapse
|
40
|
Chawla R, Thakur P, Chowdhry A, Jaiswal S, Sharma A, Goel R, Sharma J, Priyadarshi SS, Kumar V, Sharma RK, Arora R. Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: a dreadful lifestyle disorder of 21st century. J Diabetes Metab Disord 2013; 12:35. [PMID: 23822656 PMCID: PMC7983574 DOI: 10.1186/2251-6581-12-35] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/02/2013] [Indexed: 11/25/2022]
Abstract
Plants by virtue of its composition of containing multiple constituents developed during its growth under various environmental stresses providing a plethora of chemical families with medicinal utility. Researchers are exploring this wealth and trying to decode its utility for enhancing health standards of human beings. Diabetes is dreadful lifestyle disorder of 21st century caused due to lack of insulin production or insulin physiological unresponsiveness. The chronic impact of untreated diabetes significantly affects vital organs. The allopathic medicines have five classes of drugs, or otherwise insulin in Type I diabetes, targeting insulin secretion, decreasing effect of glucagon, sensitization of receptors for enhanced glucose uptake etc. In addition, diet management, increased food fiber intake, Resistant Starch intake and routine exercise aid in managing such dangerous metabolic disorder. One of the key factors that limit commercial utility of herbal drugs is standardization. Standardization poses numerous challenges related to marker identification, active principle(s), lack of defined regulations, non-availability of universally acceptable technical standards for testing and implementation of quality control/safety standard (toxicological testing). The present study proposed an integrated herbal drug development & standardization model which is an amalgamation of Classical Approach of Ayurvedic Therapeutics, Reverse Pharmacological Approach based on Observational Therapeutics, Technical Standards for complete product cycle, Chemi-informatics, Herbal Qualitative Structure Activity Relationship and Pharmacophore modeling and, Post-Launch Market Analysis. Further studies are warranted to ensure that an effective herbal drug standardization methodology will be developed, backed by a regulatory standard guide the future research endeavors in more focused manner.
Collapse
Affiliation(s)
- Raman Chawla
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Pallavi Thakur
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Ayush Chowdhry
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Sarita Jaiswal
- Department of Plant Sciences Room 4D70 - 51, Campus Drive College of Agriculture and Bioresources University of Saskatchewan Saskatoon, Saskatchewan, Canada
| | - Anamika Sharma
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Rajeev Goel
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Jyoti Sharma
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | | | - Vinod Kumar
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Rakesh Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, India
| | - Rajesh Arora
- Office of CC R&D (LS & IC), Defence Research and Development Organisation, DRDO Bhawan, New Delhi, India
| |
Collapse
|
41
|
Shimotoyodome A, Osaki N, Onizawa K, Mizuno T, Suzukamo C, Okahara F, Fukuoka D, Hase T. Dietary 1-monoolein decreases postprandial GIP release by reducing jejunal transport of glucose and fatty acid in rodents. Am J Physiol Gastrointest Liver Physiol 2012; 303:G298-310. [PMID: 22651926 DOI: 10.1152/ajpgi.00457.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postprandial secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) is differentially regulated by not only dietary carbohydrate but also fat. Recent studies have shown that the ingestion of diacylglycerol (DAG) results in lower postprandial insulin and GIP release than that of triacylglycerol (TAG), suggesting a possible mechanism for the antiobesity effect of DAG. The structural and metabolic characteristics of DAG are believed to be responsible for its beneficial effects. This study was designed to clarify the effect of 1-monoacylglycerol [oleic acid-rich (1-MO)], the characteristic metabolite of DAG, on postprandial insulin and GIP secretion, and the underlying mechanism. Dietary 1-MO dose dependently stimulated whole body fat utilization, and reduced high-fat diet-induced body weight gain and visceral fat accumulation in mice, both of which are consistent with the physiological effect of dietary DAG. Although glucose-stimulated insulin and GIP release was augmented by the addition of fat, coingestion of 1-MO reduced the postprandial hormone release in a dose-dependent manner. Either glucose or fatty acid transport into the everted intestinal sacs and enteroendocrine HuTu-80 cells was also reduced by the addition of 1-MO. Reduction of either glucose or fatty acid transport or the nutrient-stimulated GIP release by 1-MO was nullified when the intestine was pretreated with sodium-glucose cotransporter-1 (SGLT-1) or fatty acid translocase (FAT)/CD36 inhibitor. We conclude that dietary 1-MO attenuates postprandial GIP and insulin secretion by reducing the intestinal transport of the GIP secretagogues, which may be mediated via SGLT-1 and FAT/CD36. Reduced secretion of these anabolic hormones by 1-MO may be related to the antiobesity effect of DAG.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Recent findings in animal models suggest that resistant starch is beneficial for both body weight regulation and glycaemic control. The purpose of this review is to summarize the current evidence and recommendations in humans. RECENT FINDINGS When resistant starch replaces available carbohydrate in a meal, postprandial glycaemia is reduced. There are some data to suggest that resistant starch may affect glycaemia even when the available carbohydrate portion remains constant; however, there is inconsistency in the literature. Recent animal data suggest that chronic resistant starch feeding upregulates glucagon-like peptide 1 expression in the large bowel with concomitant increases in neuropeptide expression in the hypothalamus, combining to result in weight loss and improvements in glycaemic control. However, to date there is no evidence for this in humans. SUMMARY Resistant starch may have a role in glycaemic control in healthy individuals and those with type 2 diabetes; however, there are limited interventional trials in humans to support this. There are no data concerning resistant starch feeding in human diabetes and as such no health recommendation can be made.
Collapse
Affiliation(s)
- M Denise Robertson
- Diabetes and Metabolic Medicine, Department of Nutrition and Metabolism, University of Surrey, Guildford, UK.
| |
Collapse
|
43
|
Ha AW, Han GJ, Kim WK. Effect of retrograded rice on weight control, gut function, and lipid concentrations in rats. Nutr Res Pract 2012; 6:16-20. [PMID: 22413036 PMCID: PMC3296917 DOI: 10.4162/nrp.2012.6.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
The effects of retrograded rice on body weight gain, gut functions, and hypolipidemic actions in rats were examined. When the retrograded rice was produced by repetitive heating and cooling cycles, it contained significantly higher amounts of resistant starch (13.9 ± 0.98%) than is found in common rice (9.1 ± 1.02%) (P < 0.05). Sprague-Dawley rats were fed either common rice powder or retrograded rice powder, and mean body weight gain was significantly lower in the retrograded rice group (P < 0.05). The liver weight of the retrograded rice group (14.5 ± 0.5 g) was significantly lower than that of the common rice group (17.1 ± 0.3 g, P < 0.05). However, the weights of other organs, such as the kidney, spleen, thymus, and epididymal fat pad were not significantly affected by rice feeding. Intestinal transit time tended to be lower in rats fed retrograded rice when compared to rats fed the common rice, but the difference was not significant. The retrograded rice diet significantly increased stool output when compared to that in the common rice powder diet (P < 0.05), whereas fecal moisture content (%) was significantly higher in the retrograded rice group (23.3 ± 1.2) than that in the common rice group (19.1 ± 1.2) (P < 0.05). The retrograded rice group had significantly lower plasma cholesterol (P < 0.05), liver cholesterol (P < 0.05), and triacylglycerol contents in adipose tissue (P < 0.05) when compared to those in the common rice group. In conclusion, retrograded rice had higher resistant starch levels compared with those of common rice powder, and it lowered body weight gain and improved lipid profiles and gut function in rats.
Collapse
Affiliation(s)
- Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyenggi 448-701, Korea
| | | | | |
Collapse
|
44
|
Haramizu S, Shimotoyodome A, Fukuoka D, Murase T, Hase T. Hydroxypropylated distarch phosphate versus unmodified tapioca starch: fat oxidation and endurance in C57BL/6J mice. Eur J Appl Physiol 2012; 112:3409-16. [DOI: 10.1007/s00421-011-2301-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
45
|
Evaluation of the long-term effects of gastric inhibitory polypeptide–ovalbumin conjugates on insulin resistance, metabolic dysfunction, energy balance and cognition in high-fat-fed mice. Br J Nutr 2012; 108:46-56. [DOI: 10.1017/s0007114511005228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of active immunisation with gastric inhibitory polypeptide (GIP) or (proline3)GIP–ovalbumin conjugates on insulin resistance, metabolic dysfunction, energy expenditure and cognition were examined in high-fat-fed mice. Normal mice were injected (subcutaneously) once every 14 d for 98 d with GIP–ovalbumin conjugates, with transfer to a high-fat diet on day 21. Active immunisation resulted in GIP antibody generation and significantly (P < 0·01 to P < 0·001) reduced circulating non-fasting plasma insulin concentrations compared to high-fat control mice from day 70 onwards. The glycaemic responses to intraperitoneal glucose or nutrient ingestion were significantly improved in all treated mice, with corresponding stimulated plasma insulin levels depressed compared to high-fat controls. These changes were associated with substantially (P < 0·001) improved glucose-lowering responses to exogenous insulin and decreases of muscle and fat TAG, pancreatic insulin, circulating total and LDL-cholesterol levels (P < 0·01 to P < 0·001). Treatment with GIP–ovalbumin conjugates was not associated with alterations in energy expenditure, indirect calorimetry or aspects of cognitive function. The observed changes were almost identical in GIP and (Pro3)GIP immunised mice and were independent of any effects on food intake or body weight. Further tests established that coupling of GIP peptides to ovalbumin abolished any intrinsic insulin-releasing or glucose-lowering activity. These results suggest that induction of GIP-neutralising antibodies with GIP–ovalbumin conjugates is an effective means of countering the metabolic abnormalities induced by high-fat feeding and does not adversely have an impact on a marker of cognition function or energy expenditure.
Collapse
|
46
|
Paschetta E, Hvalryg M, Musso G. Glucose-dependent insulinotropic polypeptide: from pathophysiology to therapeutic opportunities in obesity-associated disorders. Obes Rev 2011; 12:813-28. [PMID: 21815989 DOI: 10.1111/j.1467-789x.2011.00897.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted from the intestinal K-cells with established insulin-releasing actions. However, the GIP receptor is widely distributed in peripheral organs, including the adipose tissue, gut, bone and brain, where GIP modulates energy intake, cell metabolism and proliferation, and lipid and glucose metabolism, eventually promoting lipid and glucose storage. In diabetes and obesity, the incretin effect of GIP is blunted, while the extrapancreatic tissues keep a normal sensitivity to this hormone. As GIP levels are normal or elevated in obesity and diabetes, mounting evidence from chemical or genetic GIP deletion in animal models of obesity-related diabetes suggests that GIP may have a pro-obesogenic action and that a strategy antagonizing GIP action may be beneficial in these conditions, clearing triglyceride deposits from adipose tissue, liver and muscle, and restoring normal insulin sensitivity. Emerging evidence also suggests that the metabolic benefits of bypass surgery are mediated, at least in part, by surgical removal of GIP-secreting K-cells in the upper small intestine.
Collapse
Affiliation(s)
- E Paschetta
- Department of Internal Medicine, University of Turin, Turin, Italy Helgelandssykehu set, Mosjøen, Norway Gradenigo Hospital, Turin, Italy
| | | | | |
Collapse
|
47
|
Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br J Nutr 2011; 106:96-104. [PMID: 21338535 DOI: 10.1017/s0007114510005854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to investigate the effects of hydroxypropyl-distarch phosphate (HDP) supplementation on postprandial energy metabolism and glucose-dependent insulinotropic polypeptide (GIP) in human subjects. A total of ten healthy male subjects, with a mean BMI of 23·6 (SEM 1·3) kg/m(2), age 35·2 (SEM 1·9) years and body weight 71·1 (SEM 4·0) kg, participated in a randomised, cross-over, intervention study with two different test meals (1673·6 kJ) containing either waxy maize starch or HDP from waxy maize starch (degree of substitution 0·154, P content 0·004 %). Resting energy expenditure (REE) and blood concentrations of various biomarkers were measured at fasting and up to 180 min postprandially. Indirect calorimetry showed that the HDP meal caused higher REE (P < 0·05) and fat utilisation (P < 0·001) than the waxy maize starch meal. The HDP meal led to significantly lower postprandial glucose (P < 0·05), insulin (P < 0·05) and GIP (P < 0·05) responses than the waxy maize starch meal. Both postprandial REE (R - 0·576, P < 0·01) and fat utilisation (R - 0·514, P < 0·05) were negatively correlated with the postprandial GIP response, but not with the glucose and insulin responses. In conclusion, dietary supplementation with HDP lowers postprandial GIP and increases postprandial REE and fat utilisation in healthy humans. An HDP-rich diet may therefore have beneficial implications in weight management. Further studies are required to confirm the efficacy in overweight or obese subjects, and to determine the precise mechanisms.
Collapse
|
48
|
Irwin N, Gault V, Flatt PR. Therapeutic potential of the original incretin hormone glucose-dependent insulinotropic polypeptide: diabetes, obesity, osteoporosis and Alzheimer's disease? Expert Opin Investig Drugs 2010; 19:1039-48. [DOI: 10.1517/13543784.2010.513381] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Diabetes and Pharmacy, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK ;
| | - Victor Gault
- SAAD Centre for Diabetes and Pharmacy, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK ;
| | - Peter R Flatt
- SAAD Centre for Diabetes and Pharmacy, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| |
Collapse
|