1
|
Butovich I, Yuksel S, Wilkerson A. Probing dietary triacylglycerol metabolism and meibogenesis in mice: A stable isotope-labeled tracer LC-MS/MS study. J Biol Chem 2023; 299:103046. [PMID: 36822324 PMCID: PMC10070659 DOI: 10.1016/j.jbc.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Exocrine Meibomian glands (MGs) play a central role in the ocular physiology and biochemistry by producing in situ and, mostly, de novo, a secretion (meibum), which is composed of a complex mixture of homologous lipids of various classes, in a metabolic pathway termed meibogenesis. Recent in vivo experiments with a number of mouse models demonstrated that inactivation of any of the major genes of meibogenesis led to alterations in the lipid composition of meibum and severe ocular and MG abnormalities that replicated various human ocular pathologies. However, the role of dietary lipids in meibogenesis, and in the onset and/or alleviation of these diseases, remains controversial. To uncover the role of dietary lipids, the metabolic transformations of a dietary lipid tracer - stable isotope-labeled glyceryl tri(oleate-1,2,3,7,8-13C5) (13C15-TO) - were investigated using LC-high-resolution TOF-MS/MS. We demonstrated that major metabolic transformations of the tracer occurred in the stomach and small intestines where 13C15-TO underwent immediate and extensive transesterification into 13C5- and 13C10-substituted triacylglycerols of various lengths, giving a mixture of 13C-labeled compounds that remain virtually unchanged in the mouse plasma, liver, and white adipose tissue, but were almost undetectable in the feces. Importantly, the tracer and its metabolites were virtually undetectable in MGs, even after 4 weeks of daily supplementation. Notably, unbiased Principal Component Analysis of the data revealed no measurable changes in the overall chemical composition of meibum after the treatment, which implies no direct effect of dietary triacylglycerols on meibogenesis, and left their systemic effects as the most likely mechanism.
Collapse
Affiliation(s)
- IgorA Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA; The Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Seher Yuksel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Mucinski JM, Perry AM, Fordham TM, Diaz-Arias A, Ibdah JA, Rector RS, Parks EJ. Labeled breath tests in patients with NASH: Octanoate oxidation relates best to measures of glucose metabolism. Front Physiol 2023; 14:1172675. [PMID: 37153214 PMCID: PMC10160408 DOI: 10.3389/fphys.2023.1172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
In vivo methods to estimate human liver mitochondrial activity are lacking and this project's goal was to use a non-invasive breath test to quantify complete mitochondrial fat oxidation and determine how test results changed when liver disease state was altered over time. Patients with suspected non-alcoholic fatty liver disease (NAFLD; 9 men, 16 women, 47 ± 10 years, 113 ± 23 kg) underwent a diagnostic liver biopsy and liver tissue was histologically scored by a pathologist using the NAFLD activity score (0-8). To assess liver oxidation activity, a labeled medium chain fatty acid was consumed orally (23.4 mg 13C4-octanoate) and breath samples collected over 135 min. Total CO2 production rates were measured using breath 13CO2 analysis by isotope ratio mass spectrometry. Fasting endogenous glucose production (EGP) was measured using an IV infusion of 13C6-glucose. At baseline, subjects oxidized 23.4 ± 3.9% (14.9%-31.5%) of the octanoate dose and octanoate oxidation (OctOx) was negatively correlated with fasting plasma glucose (r = -0.474, p = 0.017) and EGP (r = -0.441, p = 0.028). Twenty-two subjects returned for repeat tests 10.2 ± 1.0 months later, following lifestyle treatment or standardized care. OctOx (% dose/kg) was significantly greater across all subjects (p = 0.044), negatively related to reductions in EGP (r = -0.401, p = 0.064), and tended to correlate with reduced fasting glucose (r = -0.371, p = 0.090). Subjects exhibited reductions in steatosis (p = 0.007) which tended to correlate with increased OctOx (% of dose/kg, r = -0.411, p = 0.058). Based on our findings, the use of an 13C-octanoate breath test may be an indicator of hepatic steatosis and glucose metabolism, but these relationships require verification through larger studies in NAFLD populations.
Collapse
Affiliation(s)
- Justine M. Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Alisha M. Perry
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Talyia M. Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Professional Services, Columbia, MO, United States
| | - Jamal A. Ibdah
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Elizabeth J. Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- *Correspondence: Elizabeth J. Parks,
| |
Collapse
|
3
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
4
|
Salvador AF, Shyu CR, Parks EJ. Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1348-1353. [PMID: 36075949 PMCID: PMC9534914 DOI: 10.1038/s12276-022-00838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past 70 years, the study of lipid metabolism has led to important discoveries in identifying the underlying mechanisms of chronic diseases. Advances in the use of stable isotopes and mass spectrometry in humans have expanded our knowledge of target molecules that contribute to pathologies and lipid metabolic pathways. These advances have been leveraged within two research paths, leading to the ability (1) to quantitate lipid flux to understand the fundamentals of human physiology and pathology and (2) to perform untargeted analyses of human blood and tissues derived from a single timepoint to identify lipidomic patterns that predict disease. This review describes the physiological and analytical parameters that influence these measurements and how these issues will propel the coming together of the two fields of metabolic tracing and lipidomics. The potential of data science to advance these fields is also discussed. Future developments are needed to increase the precision of lipid measurements in human samples, leading to discoveries in how individuals vary in their production, storage, and use of lipids. New techniques are critical to support clinical strategies to prevent disease and to identify mechanisms by which treatments confer health benefits with the overall goal of reducing the burden of human disease. Personalized tracking of how lipid (fat) metabolism changes over time could lead to improvements in the diagnosis and treatment of several diseases. Elizabeth Parks and colleagues from the University of Missouri, Columbia, USA, discuss the ways in which researchers use stable isotope labeling to monitor the kinetics of fatty acids and other lipids in the body. Usually, lipid quantities are measured only at a single timepoint, however the tracking of lipid turnover over time provides further diagnostic information. Aided by new techniques such as high-throughput mass spectrometry and machine learning, researchers are now able to continuously map total lipid contents in individual patients. The transition of measurements of lipid flux from the research laboratory to the doctor’s office will likely play a role in a new era of precision medicine.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.,Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Chi-Ren Shyu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Liu X, Han Y, Zhou S, Tian J, Qin X, Ji C, Zhao W, Chen A. Serum metabolomic responses to aerobic exercise in rats under chronic unpredictable mild stress. Sci Rep 2022; 12:4888. [PMID: 35318439 PMCID: PMC8941184 DOI: 10.1038/s41598-022-09102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
This study analyzed the effects of aerobic exercise on endogenous serum metabolites in response to chronic unpredictable mild stress (CUMS) using a rat model, aiming to identify the metabolic regulatory pathways involved in the antidepressant effect resulted from a 28-day treadmill aerobic exercise intervention. The animals were randomly divided into four groups (n = 8): normal control, normal with aerobic exercise, CUMS control, and CUMS with aerobic exercise. Body weight, sucrose preference and open field tests were performed weekly during the intervention period for changes in depressant symptoms. Serum metabolic profiles obtained by using the LC-MS/MS metabolomics were analyzed to explore the regulatory mechanism for the effect of the aerobic exercise on depression. Behavior tests showed that the aerobic exercise resulted in a significant improvement in depression-like behavior in the CUMS rats. A total of 21 differential metabolites were identified as being associated with depression in serum metabolic profile, of which the aerobic exercise significantly modulated 15, mainly related to amino acid metabolism and energy metabolism. Collectively, this is the first study that LC-MS/MS techniques were used to reveal the modulatory effects of aerobic exercise on the serum metabolic profile of depressed rats and the findings further enriched our understanding of potential mechanisms of aerobic exercise interventions on depression.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China.
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China.
| | - Shi Zhou
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, Australia
| | - Junsheng Tian
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Institute of Biomedicine and Health, Shanxi University, Taiyuan, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Cui Ji
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Weidi Zhao
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, China.
| |
Collapse
|