1
|
Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects. Int J Mol Sci 2023; 24:ijms24065308. [PMID: 36982383 PMCID: PMC10048979 DOI: 10.3390/ijms24065308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.
Collapse
|
2
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
3
|
Fachada V, Rahkila P, Fachada N, Turpeinen T, Kujala UM, Kainulainen H. Enlarged PLIN5-uncoated lipid droplets in inner regions of skeletal muscle type II fibers associate with type 2 diabetes. Acta Histochem 2022; 124:151869. [PMID: 35220055 DOI: 10.1016/j.acthis.2022.151869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023]
Abstract
Skeletal muscle physiology remains of paramount importance in understanding insulin resistance. Due to its high lipid turnover rates, regulation of intramyocellular lipid droplets (LDs) is a key factor. Perilipin 5 (PLIN5) is one of the most critical agents in such regulation, being often referred as a protector against lipotoxicity and consequent skeletal muscle insulin resistance. We examined area fraction, size, subcellular localization and PLIN5 association of LDs in two fiber types of type 2 diabetic (T2D), obese (OB) and healthy (HC) individuals by means of fluorescence microscopy and image analysis. We found that T2D type II fibers have a significant sub-population of large and internalized LDs, uncoated by PLIN5. Based on this novel result, additional hypotheses for the pathophysiology of skeletal muscle insulin resistance are formulated, together with future research directions.
Collapse
Affiliation(s)
- Vasco Fachada
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland.
| | - Paavo Rahkila
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Nuno Fachada
- Lusofona University, COPELABS, Lisboa 1749-024, Portugal
| | - Tuomas Turpeinen
- Department of Physics, University of Jyvaskyla, Jyvaskyla 40014, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| |
Collapse
|
4
|
Holloway GP, Nickerson JG, Lally JSV, Petrick HL, Dennis KMJH, Jain SS, Alkhateeb H, Bonen A. Co-overexpression of CD36 and FABPpm increases fatty acid transport additively, not synergistically, within muscle. Am J Physiol Cell Physiol 2022; 322:C546-C553. [PMID: 35138177 DOI: 10.1152/ajpcell.00435.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine the combined effects of over-expressing FABPpm and CD36 on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ~0.019 and ~0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Co-transfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41% and CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the co-transfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15sec for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15sec. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15sec. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism-of-action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not co-immunoprecipitate.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - James S V Lally
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Kaitlyn M J H Dennis
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Swati S Jain
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - Arend Bonen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| |
Collapse
|
5
|
Jay AG, Simard JR, Huang N, Hamilton JA. SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. J Lipid Res 2020; 61:790-807. [PMID: 32102800 DOI: 10.1194/jlr.ra120000648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.
Collapse
Affiliation(s)
- Anthony G Jay
- Department of Physiology and Biomedical Engineering,Mayo Clinic, Rochester, MN 55905; Departments of Biochemistry,Boston University School of Medicine, Boston, MA 02118. mailto:
| | - Jeffrey R Simard
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118; Pharmacology and Experimental Therapeutics,Boston University School of Medicine, Boston, MA 02118
| | - Nasi Huang
- Section of Infectious Diseases Department of Medicine,Boston University School of Medicine, Boston, MA 02118
| | - James A Hamilton
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
6
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Nakajima T, Koide S, Yasuda T, Hasegawa T, Yamasoba T, Obi S, Toyoda S, Nakamura F, Inoue T, Poole DC, Kano Y. Muscle hypertrophy following blood flow-restricted, low-force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia. J Appl Physiol (1985) 2018; 125:134-145. [DOI: 10.1152/japplphysiol.00972.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-force exercise training with blood flow restriction (BFR) elicits muscle hypertrophy as seen typically after higher-force exercise. We investigated the effects of microvascular hypoxia [i.e., low microvascular O2 partial pressures (P mvO2)] during contractions on muscle hypertrophic signaling, growth response, and key muscle adaptations for increasing exercise capacity. Wistar rats were fitted with a cuff placed around the upper thigh and inflated to restrict limb blood flow. Low-force isometric contractions (30 Hz) were evoked via electrical stimulation of the tibialis anterior (TA) muscle. The P mvO2 was determined by phosphorescence quenching. Rats underwent acute and chronic stimulation protocols. Whereas P mvO2 decreased transiently with 30 Hz contractions, simultaneous BFR induced severe hypoxia, reducing P mvO2 lower than present for maximal (100 Hz) contractions. Low-force electrical stimulation (EXER) induced muscle hypertrophy (6.2%, P < 0.01), whereas control group conditions or BFR alone did not. EXER+BFR also induced an increase in muscle mass (11.0%, P < 0.01) and, unique among conditions studied, significantly increased fiber cross-sectional area in the superficial TA ( P < 0.05). Phosphorylation of ribosomal protein S6 was enhanced by EXER+BFR, as were peroxisome proliferator-activated receptor gamma coactivator-1α and glucose transporter 4 protein levels. Fibronectin type III domain-containing protein 5, cytochrome c oxidase subunit 4, monocarboxylate transporter 1 (MCT1), and cluster of differentiation 147 increased with EXER alone. EXER+BFR significantly increased MCT1 expression more than EXER alone. These data demonstrate that microvascular hypoxia during contractions is not essential for hypertrophy. However, hypoxia induced via BFR may potentiate the muscle hypertrophic response (as evidenced by the increased superficial fiber cross-sectional area) with increased glucose transporter and mitochondrial biogenesis, which contributes to the pleiotropic effects of exercise training with BFR that culminate in an improved capacity for sustained exercise. NEW & NOTEWORTHY We investigated the effects of low microvascular O2 partial pressures (P mvO2) during contractions on muscle hypertrophic signaling and key elements in the muscle adaptation for increasing exercise capacity. Although demonstrating that muscle hypoxia is not obligatory for the hypertrophic response to low-force, electrically induced muscle contractions, the reduced P mvO2 enhanced ribosomal protein S6 phosphorylation and potentiated the hypertrophic response. Furthermore, contractions with blood flow restriction increased oxidative capacity, glucose transporter, and mitochondrial biogenesis, which are key determinants of the pleiotropic effects of exercise training.
Collapse
Affiliation(s)
- Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Seiichiro Koide
- Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Shizuoka, Japan
| | - Takaaki Hasegawa
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | | | - Syotaro Obi
- Department of Cardiovascular Medicine and Research Support Center, Dokkyo Medical University, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Fumitaka Nakamura
- Third Department of Internal Medicine, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - David C. Poole
- Department of Anatomy, Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
8
|
Dehn S, Thorp EB. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J 2017; 32:254-264. [PMID: 28860151 DOI: 10.1096/fj.201700450r] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Phagocytosis after myocardial infarction (MI) is a prerequisite to cardiac repair. Recruited monocytes clear necrotic cardiomyocytes and differentiate into cardiac macrophages. Some studies have linked apoptotic cell receptors on cardiac macrophages to tissue repair; however, the contribution of precursor monocyte phagocytic receptors, which are the first to interact with the cardiac parenchyma, is unclear. The scavenger receptor cluster of differentiation (CD)36 protein was detected on cardiac Ly6cHI monocytes, and bone marrow-derived Cd36 was essential for both early phagocytosis of dying cardiomyocytes and for smaller infarct sizes in female and male mice after permanent coronary ligation. Cd36 deficiency led to reduced expression of phagocytosis receptor Mertk and nuclear receptor Nr4a1 in cardiac macrophages, the latter previously shown to be required for phagocyte survival. Nr4a1 was required for phagocytosis-induced Mertk expression, and Nr4a1 protein directly bound to Mertk gene regulatory elements. To test the overall contribution of the Cd36-Mertk axis, MI was induced in Cd36-/- Mertk-/- double-knockout mice and led to increases in myocardial rupture. These data implicate monocyte CD36 in the mitigation of early infarct size and transition to Mertk-dependent macrophage function. Increased myocardial rupture in the absence of both Cd36 and Mertk underscore the physiologic significance of phagocytosis during tissue injury.-Dehn, S., Thorp, E. B. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair.
Collapse
Affiliation(s)
- Shirley Dehn
- Department of Pathology and.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B Thorp
- Department of Pathology and .,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Chorner Z, Barbeau PA, Castellani L, Wright DC, Chabowski A, Holloway GP. Dietary α-linolenic acid supplementation alters skeletal muscle plasma membrane lipid composition, sarcolemmal FAT/CD36 abundance, and palmitate transport rates. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1234-R1242. [PMID: 27806984 DOI: 10.1152/ajpregu.00346.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022]
Abstract
The cellular processes influenced by consuming polyunsaturated fatty acids remains poorly defined. Within skeletal muscle, a rate-limiting step in fatty acid oxidation is the movement of lipids across the sarcolemmal membrane, and therefore, we aimed to determine the effects of consuming flaxseed oil high in α-linolenic acid (ALA), on plasma membrane lipid composition and the capacity to transport palmitate. Rats fed a diet supplemented with ALA (10%) displayed marked increases in omega-3 polyunsaturated fatty acids (PUFAs) within whole muscle and sarcolemmal membranes (approximately five-fold), at the apparent expense of arachidonic acid (-50%). These changes coincided with increased sarcolemmal palmitate transport rates (+20%), plasma membrane fatty acid translocase (FAT/CD36; +20%) abundance, skeletal muscle triacylglycerol content (approximately twofold), and rates of whole body fat oxidation (~50%). The redistribution of FAT/CD36 to the plasma membrane could not be explained by increased phosphorylation of signaling pathways implicated in regulating FAT/CD36 trafficking events (i.e., phosphorylation of ERK1/2, CaMKII, AMPK, and Akt), suggesting the increased n-3 PUFA composition of the plasma membrane influenced FAT/CD36 accumulation. Altogether, the present data provide evidence that a diet supplemented with ALA increases the transport of lipids into resting skeletal muscle in conjunction with increased sarcolemmal n-3 PUFA and FAT/CD36 contents.
Collapse
Affiliation(s)
- Zane Chorner
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada; and
| |
Collapse
|
10
|
Kim HJ, Yoon HM, Kwon O, Lee WJ. The Effect of Pueraria Lobata/Rehmannia Glutinosa and Exercise on Fatty Acid Transporters Expression in Ovariectomized Rats Skeletal Muscles. J Exerc Nutrition Biochem 2016; 20:32-38. [PMID: 27757385 PMCID: PMC5067417 DOI: 10.20463/jenb.2016.09.20.3.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Pueraria lobata/rehmannia glutinosa (PR) and exercise have been receiving a lot of attention from postmenopausal women, as a result of the side effects of estrogen replacement therapy. However, the effects of PR and exercise on fatty acid transporters (FATPs), which play essential role in fatty acid transport, have not been studied. In this study, we evaluated the effects of PR and aerobic exercise on FATP1, FABPpm and FAT/CD36 expression in ovariectomized rat skeletal muscles. METHODS Sixty rats were randomly divided into 6 groups: (1)HSV; high fat diet (HFD)+sedentary+vehicle, (2)HSP; HFD+sedentary+PR, (3)HSH; HFD+sedentary+17β-estradiol, (4)HEV; HFD+exercise+vehicle, (5) HEP; HFD+exercise+PR, (6)HEH; HFD+exercise+17β-estradiol. Exercise consisted of treadmill exercise (1-4th week: 15 m/min for 30 min, 5-8th week: 18 m/min for 40 min, 5 times/week). RESULTS Exercise does not alter FATP1 and FAT/CD36 gene levels in soleus and plantaris muscles. In contrast, exercise had main effect on up-regulation of FABPpm mRNA expression in both muscles. However, FABPpm level was not increased by exercise combined with treatments, indicative of no additive effects of PR or hormone on FABPpm gene expression. On the other hand, immunohistochemistry result showed that translocation of FATPs proteins to plasma membrane were higher in PR, exercise groups, and exercise combined with PR groups in both muscles. CONCLUSION These result showed that aerobic exercise and PR may help increase fat-oxidation through the induction of FABPpm, a muscle specific transporter, in OVX rat skeletal muscles. In addition, FABPpm expression is possibly regulated post-transcriptionally in exercise, or pre-translationally in PR.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| | - Hae Min Yoon
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, SeoulRepublic of Korea
| | - Won Jun Lee
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| |
Collapse
|
11
|
Kien CL, Matthews DE, Poynter ME, Bunn JY, Fukagawa NK, Crain KI, Ebenstein DB, Tarleton EK, Stevens RD, Koves TR, Muoio DM. Increased palmitate intake: higher acylcarnitine concentrations without impaired progression of β-oxidation. J Lipid Res 2015; 56:1795-807. [PMID: 26156077 DOI: 10.1194/jlr.m060137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/19/2023] Open
Abstract
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-(13)C]PA and [13-(13)C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-(13)C]PA/[1-(13)C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.
Collapse
Affiliation(s)
- C Lawrence Kien
- Departments of Pediatrics, University of Vermont, Burlington, VT Medicine, University of Vermont, Burlington, VT
| | - Dwight E Matthews
- Medicine, University of Vermont, Burlington, VT Chemistry, University of Vermont, Burlington, VT
| | | | - Janice Y Bunn
- Medical Biostatistics, University of Vermont, Burlington, VT
| | | | | | | | - Emily K Tarleton
- College of Medicine Clinical Research Center, University of Vermont, Burlington, VT
| | - Robert D Stevens
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| |
Collapse
|
12
|
Tsai YH, Garrett TJ, Carter CS, Yost RA. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:915-23. [PMID: 25893271 PMCID: PMC4553944 DOI: 10.1007/s13361-015-1133-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 05/03/2023]
Abstract
Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Christy S. Carter
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
13
|
Holloway TM, Bloemberg D, da Silva ML, Quadrilatero J, Spriet LL. High-intensity interval and endurance training are associated with divergent skeletal muscle adaptations in a rodent model of hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 308:R927-34. [DOI: 10.1152/ajpregu.00048.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is extremely adaptable to a variety of metabolic challenges, as both traditional moderate-intensity endurance (ET) and high-intensity interval training (HIIT) increases oxidative potential in a coordinated manner. Although these responses have been clearly demonstrated in healthy individuals, it remains to be determined whether both produce similar responses in the context of hypertension, one of the most prevalent and costly diseases worldwide. Therefore, in the current study, we used the Dahl sodium-sensitive rat, a model of hypertension, to determine the molecular responses to 4 wk of either ET or HIIT in the red (RG) and white gastrocnemius (WG) muscles. In the RG, both ET and HIIT increased the content of electron transport chain proteins and increased succinate dehydrogenase (SDH) content in type I fibers. Although both intensities of exercise shifted fiber type in RG (increased IIA, decreased IIX), only HIIT was associated with a reduction in endothelial nitric oxide synthase and an increase in HIF-1α proteins. In the WG, both ET and HIIT increased markers of the electron transport chain; however, HIIT decreased SDH content in a fiber-specific manner. ET increased type IIA, decreased IIB fibers, and increased capillarization, while, in contrast, HIIT increased the percentage of IIB fibers, decreased capillary-to-fiber ratios, decreased endothelial nitric oxide synthase, and increased hypoxia inducible factor-1α (HIF-1α) protein. Altogether, these data show that unlike in healthy animals, ET and HIIT have divergent effects in the skeletal muscle of hypertensive rats. This suggests ET may be optimal at improving the oxidative capacity of skeletal muscle in animals with hypertension.
Collapse
Affiliation(s)
- Tanya M. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mayne L. da Silva
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
14
|
Wang X, Feng J, Yu C, Shen QW, Wang Y. Alterations in oral [1-(14)C] 18:1n-9 distribution in lean wild-type and genetically obese (ob/ob) mice. PLoS One 2015; 10:e0122028. [PMID: 25826747 PMCID: PMC4380473 DOI: 10.1371/journal.pone.0122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-(14)C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The (14)C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The (14)C concentration was constant in adipose tissue and muscle of obese mice from 4 h to 168 h. (14)C-label content in adipose tissue was significantly affected by genotype, whereas muscle (14)C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total (14)C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The (14)C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest (14)C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest (14)C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang, P. R. China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang, P. R. China
| | - Caihua Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang, P. R. China
| | - Qingwu W. Shen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi P. R. China
- * E-mail: (QWS); (YW)
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, Zhejiang, P. R. China
- * E-mail: (QWS); (YW)
| |
Collapse
|
15
|
Campbell TL, Mitchell AS, McMillan EM, Bloemberg D, Pavlov D, Messa I, Mielke JG, Quadrilatero J. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp Biol Med (Maywood) 2014; 240:657-68. [PMID: 25361772 DOI: 10.1177/1535370214557223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 01/17/2023] Open
Abstract
Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats. High-fat feeding resulted in increased fat pad mass, altered glucose tolerance, and lower muscle pAKT levels, as well as lipid accumulation and reactive oxygen species generation in soleus muscle; however, muscle weights, fiber type-specific cross-sectional area, and fiber type distribution were not affected. Moreover, DNA fragmentation and LC3 lipidation as well as several apoptotic (ARC, Bax, Bid, tBid, Hsp70, pBcl-2) and autophagic (ATG7, ATG4B, Beclin 1, BNIP3, p70 s6k, cathepsin activity) indices were not altered in soleus or plantaris following high-fat diet. Interestingly, soleus muscle displayed small increases in caspase-3, caspase-8, and caspase-9 activity, as well as higher ATG12-5 and p62 protein, while both soleus and plantaris muscle showed dramatically reduced Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) levels. In conclusion, this work demonstrates that 16 weeks of high-fat feeding does not affect tissue morphology or induce a global autophagic or apoptotic phenotype in skeletal muscle of female rats. However, high-fat feeding selectively influenced a number of apoptotic and autophagic indices which could have implications during periods of enhanced muscle stress.
Collapse
Affiliation(s)
- Troy L Campbell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Elliott M McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Dmytro Pavlov
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Isabelle Messa
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - John G Mielke
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
16
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
17
|
Kanaley JA, Shadid S, Sheehan MT, Guo Z, Jensen MD. Hyperinsulinemia and skeletal muscle fatty acid trafficking. Am J Physiol Endocrinol Metab 2013; 305:E540-8. [PMID: 23820622 PMCID: PMC3891221 DOI: 10.1152/ajpendo.00143.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-¹³C]palmitate (0400-0900 h) and [U-¹³C]oleate (0800-1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass⁻¹·min⁻¹) clamp (0800-1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-¹³C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ~1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin.
Collapse
|
18
|
Jackson KC, Wohlers LM, Lovering RM, Schuh RA, Maher AC, Bonen A, Koves TR, Ilkayeva O, Thomson DM, Muoio DM, Spangenburg EE. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice. Am J Physiol Regul Integr Comp Physiol 2012. [PMID: 23193112 DOI: 10.1152/ajpregu.00428.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Collapse
Affiliation(s)
- Kathryn C Jackson
- Univ. of Maryland, School of Public Health, Dept. of Kinesiology, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Üllen A, Fauler G, Bernhart E, Nusshold C, Reicher H, Leis HJ, Malle E, Sattler W. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro. Free Radic Biol Med 2012; 53:1770-81. [PMID: 22982051 PMCID: PMC3485557 DOI: 10.1016/j.freeradbiomed.2012.08.575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 06/11/2012] [Accepted: 08/18/2012] [Indexed: 11/21/2022]
Abstract
2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Hans-Jörg Leis
- Research Unit of Osteology and Analytical Mass Spectrometry, University Children's Hospital, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
20
|
Ramos-Roman MA, Lapidot SA, Phair RD, Parks EJ. Insulin activation of plasma nonesterified fatty acid uptake in metabolic syndrome. Arterioscler Thromb Vasc Biol 2012; 32:1799-808. [PMID: 22723441 DOI: 10.1161/atvbaha.112.250019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. The goal of the present study was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. METHODS AND RESULTS Fatty acid kinetics were measured during a meal tolerance test and insulin sensitivity assessed by intravenous glucose tolerance test in overweight human subjects (n=15; body mass index, 35.8 ± 7.1 kg/m(2)). Non-steady state tracer kinetic models were formulated and tested using ProcessDB software. Suppression of adipose fatty acid release, by itself, could not account for postprandial nonesterified fatty acid concentration changes, but adipose suppression combined with insulin activation of fatty acid uptake was consistent with the measured data. The observed insulin K(m) for nonesterified fatty acid uptake was inversely correlated with both insulin sensitivity of glucose uptake (intravenous glucose tolerance test insulin sensitivity; r=-0.626; P=0.01) and whole body fat oxidation after the meal (r=-0.538; P=0.05). CONCLUSIONS These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states.
Collapse
Affiliation(s)
- Maria A Ramos-Roman
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9052, USA
| | | | | | | |
Collapse
|
21
|
Wang Y. Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2. Br J Pharmacol 2012; 165:603-21. [PMID: 21658023 PMCID: PMC3315034 DOI: 10.1111/j.1476-5381.2011.01528.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Dysregulated production of adipokines from adipose tissue plays a critical role in the development of obesity-associated cardiovascular abnormalities. A group of adipokines, including adipocyte fatty acid binding protein (A-FABP) and lipocalin-2, possess specific lipid-binding activity and are up-regulated in obese human subjects and animal models. They act as lipid chaperones to promote lipotoxicity in endothelial cells and cause endothelial dysfunction under obese conditions. However, different small lipid-binding proteins modulate the development of vascular complications in distinctive manners, which are partly attributed to their specialized structural features and functionalities. By focusing on A-FABP and lipocalin-2, this review summarizes recent advances demonstrating the causative roles of these newly identified adipose tissue-derived lipid chaperones in obesity-related endothelial dysfunction and cardiovascular complications. The specific lipid-signalling mechanisms mediated by these two proteins are highlighted to support their specialized functions. In summary, A-FABP and lipocalin-2 represent potential therapeutic targets to design drugs for preventing vascular diseases associated with obesity. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
22
|
Lynes M, Narisawa S, Millán JL, Widmaier EP. Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1738-47. [PMID: 21900644 DOI: 10.1152/ajpregu.00235.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms of the saturable component of long-chain fatty acid (LCFA) transport across the small intestinal epithelium and its regulation by a high-fat diet (HFD) are uncertain. It is hypothesized here that the putative fatty acid translocase/CD36 and intestinal alkaline phosphatases (IAPs) function together to optimize LCFA transport. Phosphorylated CD36 (pCD36) was expressed in mouse enterocytes and dephosphorylated by calf IAP (CIAP). Uptake of fluorescently tagged LCFA into isolated enteroctyes was increased when cells were treated with CIAP; this was blocked with a specific CD36 inhibitor. pCD36 colocalized in enterocytes with the global IAP (gIAP) isozyme and, specifically, coimmunoprecipitated with gIAP, but not the duodenal-specific isozyme (dIAP). Purified recombinant gIAP dephosphorylated immunoprecipitated pCD36, and antiserum to gIAP decreased initial LCFA uptake in enterocytes. Body weight, adiposity, and plasma leptin and triglycerides were significantly increased in HFD mice compared with controls fed a normal-fat diet. HFD significantly increased immunoreactive CD36 and gIAP, but not dIAP, in jejunum, but not duodenum. Uptake of LCFA was increased in a CD36-dependent manner in enterocytes from HFD mice. It is concluded that CD36 exists in its phosphorylated and dephosphorylated states in mouse enterocytes, that pCD36 is a substrate of gIAP, and that dephosphorylation by IAPs results in increased LCFA transport capability. HFD upregulates CD36 and gIAP in parallel and enhances CD36-dependent fatty acid uptake. The interactions between these proteins may be important for efficient fat transport in mouse intestine, but whether the changes in gIAP and CD36 in enterocytes contribute to HFD-induced obesity remains to be determined.
Collapse
Affiliation(s)
- Matthew Lynes
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
23
|
Chabowski A, Górski J, Glatz JFC, P Luiken JJF, Bonen A. Protein-mediated Fatty Acid Uptake in the Heart. Curr Cardiol Rev 2011; 4:12-21. [PMID: 19924273 PMCID: PMC2774581 DOI: 10.2174/157340308783565429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 12/22/2022] Open
Abstract
Long chain fatty acids (LCFAs) provide 70-80% of the energy for cardiac contractile activity. LCFAs are also essential for many other cellular functions, such as transcriptional regulation of proteins involved in lipid metabolism, modulation of intracellular signalling pathways, and as substrates for membrane constituents. When LCFA uptake exceeds the capacity for their cardiac utilization, the intracellular lipids accumulate and are thought to contribute to contractile dysfunction, arrhythmias, cardiac myocyte apoptosis and congestive heart failure. Moreover, increased cardiac myocyte triacylglycerol, diacylglycerol and ceramide depots are cardinal features associated with obesity and type 2 diabetes. In recent years considerable evidence has accumulated to suggest that, the rate of entry of long chain fatty acids (LCFAs) into the cardiac myocyte is a key factor contributing to a) regulating cardiac LCFA metabolism and b) lipotoxicity in the obese and diabetic heart. In the present review we i) examine the evidence indicating that LCFA transport into the heart involves a protein-mediated mechanism, ii) discuss the proteins involved in this process, including FAT/CD36, FABPpm and FATP1, iii) discuss the mechanisms involved in regulating LCFA transport by some of these proteins (including signaling pathways), as well as iv) the possible interactions of these proteins in regulating LCFA transport into the heart. In addition, v) we discuss how LCFA transport and transporters are altered in the obese/diabetic heart.
Collapse
Affiliation(s)
- Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | | | | | | |
Collapse
|
24
|
Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJF, Spriet L, Bonen A. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R67-75. [PMID: 21543634 DOI: 10.1152/ajpregu.00417.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1)-mediated peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) deacetylation is potentially key for activating mitochondrial biogenesis. Yet, at the whole muscle level, SIRT1 is not associated with mitochondrial biogenesis (Gurd, BJ, Yoshida Y, Lally J, Holloway GP, Bonen A. J Physiol 587: 1817-1828, 2009). Therefore, we examined nuclear SIRT1 protein and activity in muscle with varied mitochondrial content and in response to acute exercise. We also measured these parameters after stimulating mitochondrial biogenesis with chronic muscle contraction and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) administration in rodents and exercise training in humans. In skeletal and heart muscles, nuclear SIRT1 protein was negatively correlated with indices of mitochondrial density (citrate synthase activity, CS; cytochrome oxidase IV, COX IV), but SIRT1 activity was positively correlated with these parameters (r > 0.98). Acute exercise did not alter nuclear SIRT1 protein but did induce a time-dependent increase in nuclear SIRT1 activity. This increase in SIRT1 activity was temporally related to increases in mRNA expression of genes activated by PGC-1α. Both chronic muscle stimulation and AICAR increased mitochondrial biogenesis and muscle PGC-1α, but not nuclear PGC-1α. Concomitantly, muscle and nuclear SIRT1 protein contents were reduced, but nuclear SIRT1 activity was increased. In human muscle, training-induced mitochondrial biogenesis did not alter muscle or nuclear SIRT1 protein content, but it did increase muscle and nuclear PGC-1α and SIRT1 activity. Thus, nuclear SIRT1 activity, but not muscle or nuclear SIRT1 protein content, is associated with contraction-stimulated mitochondrial biogenesis in rat and human muscle, possibly via AMPK activation.
Collapse
Affiliation(s)
- Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Holloway GP, Snook LA, Harris RJ, Glatz JFC, Luiken JJFP, Bonen A. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. J Physiol 2010; 589:169-80. [PMID: 21041527 DOI: 10.1113/jphysiol.2010.198663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We aimed to determine whether an increased rate of long-chain fatty acid (LCFA) transport and/or a reduction in mitochondrial oxidation contributes to lipid deposition in hearts, as lipid accumulation within cardiac muscle has been associated with heart failure. In hearts of lean and obese Zucker rats we examined: (a) triacylglycerol (TAG) and mitochondrial content and distribution using transmission electron microscopy (TEM), (b) LCFA oxidation in cardiac myocytes, and in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria, and (c) rates of LCFA transport into cardiac vesicles. Compared to lean rats, in obese Zucker rats, lipid droplet size was similar but there were more (P < 0.05) droplets, and TAG esterification rates and contents were markedly increased. TEM analyses and biochemical determinations showed that SS and IMF mitochondria in obese animals did not appear to be different in their appearance, area, density and number, nor in citrate synthase, β-hydroxy-acyl-CoA dehydrogenase and carnitine palmitoyl-transferase-I enzymatic activities, electron transport chain proteins, nor in their rates of LCFA oxidation either in cardiac myocytes or in isolated SS and IMF mitochondria (P > 0.05). In contrast, sarcolemmal plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (FAT/CD36) protein and palmitate transport rates into cardiac vesicles were increased (P < 0.05; +50%) in obese animals. Collectively these data indicate that mitochondrial dysfunction in LCFA oxidation is not responsible for lipid accumulation in obese Zucker rat hearts. Rather, increased sarcolemmal LCFA transport proteins and rates of LCFA transport result in a greater number of lipid droplets within cardiac muscle.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Holloway GP, Schwenk RW, Luiken JJFP, Glatz JFC, Bonen A. Fatty acid transport in skeletal muscle: role in energy provision and insulin resistance. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R804-12. [DOI: 10.1152/ajpregu.00216.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for ≤12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxidation, AMPK/acetyl-CoA carboxylase (ACC) phosphorylation and insulin-stimulated glucose transport, plasmalemmal GLUT4, and AS160 phosphorylation were examined at 0, 6, and 12 h. Palmitate treatment for 12 h reduced fatty acid oxidation (−47%), and insulin-stimulated glucose transport (−71%), GLUT4 translocation (−40%), and AS160 phosphorylation (−26%), but it increased AMPK (+51%) and ACC phosphorylations (+44%). Thujone (6–12 h) fully rescued palmitate oxidation and insulin-stimulated glucose transport, but only partially restored GLUT4 translocation and AS160 phosphorylation, raising the possibility that an increased GLUT4 intrinsic activity may also have contributed to the restoration of glucose transport. Thujone also further increased AMPK phosphorylation but had no further effect on ACC phosphorylation. Inhibition of AMPK phosphorylation with adenine 9-β-d-arabinofuranoside (Ara) (2.5 mM) or compound C (50 μM) inhibited the thujone-induced improvement in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. In contrast, the thujone-induced improvement in palmitate oxidation was only slightly inhibited (≤20%) by Ara or compound C. Thus, while thujone, a medicinal herb component, rescues palmitate-induced insulin resistance in muscle, the improvement in fatty acid oxidation cannot account for this thujone-mediated effect. Instead, the rescue of palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving partial restoration of insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Talanian JL, Holloway GP, Snook LA, Heigenhauser GJF, Bonen A, Spriet LL. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 299:E180-8. [PMID: 20484014 DOI: 10.1152/ajpendo.00073.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid oxidation is highly regulated in skeletal muscle and involves several sites of regulation, including the transport of fatty acids across both the plasma and mitochondrial membranes. Transport across these membranes is recognized to be primarily protein mediated, limited by the abundance of fatty acid transport proteins on the respective membranes. In recent years, evidence has shown that fatty acid transport proteins move in response to acute and chronic perturbations; however, in human skeletal muscle the localization of fatty acid transport proteins in response to training has not been examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents. Ten untrained females (22 +/- 1 yr, 65 +/- 2 kg; .VO(2peak): 2.8 +/- 0.1 l/min) completed 6 wk of HIIT, and biopsies from the vastus lateralis muscle were taken before training, and following 2 and 6 wk of HIIT. Training significantly increased maximal oxygen uptake at 2 and 6 wk (3.1 +/- 0.1, 3.3 +/- 0.1 l/min). Training for 6 wk increased FAT/CD36 at the whole muscle (10%) and mitochondrial levels (51%) without alterations in sarcolemmal content. Whole muscle plasma membrane fatty acid binding protein (FABPpm) also increased (48%) after 6 wk of training, but in contrast to FAT/CD36, sarcolemmal FABPpm increased (23%), whereas mitochondrial FABPpm was unaltered. The changes on sarcolemmal and mitochondrial membranes occurred rapidly, since differences (< or =2 wk) were not observed between 2 and 6 wk. This is the first study to demonstrate that exercise training increases fatty acid transport protein content in whole muscle (FAT/CD36 and FABPpm) and sarcolemmal (FABPpm) and mitochondrial (FAT/CD36) membranes in human skeletal muscle of females. These results suggest that increases in skeletal muscle fatty acid oxidation following training are related in part to changes in fatty acid transport protein content and localization.
Collapse
Affiliation(s)
- Jason L Talanian
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Janovská A, Hatzinikolas G, Mano M, Wittert GA. The effect of dietary fat content on phospholipid fatty acid profile is muscle fiber type dependent. Am J Physiol Endocrinol Metab 2010; 298:E779-86. [PMID: 20086199 DOI: 10.1152/ajpendo.00356.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A high-saturated-fat diet (HFD) induces obesity and insulin resistance (IR). IR has been linked to alterations and increased saturation in the phospholipid composition of skeletal muscles. We aimed to determine whether HFD feeding affects fatty acid (FA) membrane profile in a muscle fiber type-specific manner. We measured phospholipid FAs and expression of FA synthesis genes in oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles from rats fed either standard chow (standard laboratory diet, SLD) or a HFD. The HFD increased fat mass, plasma insulin, and leptin levels. Compared with EDL, SOL muscles preferentially accumulated C18 over C16 FAs and n-6 over n-3 polyunsaturated FAs (PUFAs) on either diet. With the HFD, SOL muscles contained more n-9 monounsaturated FAs (MUFAs) and n-6 PUFAs and less n-7 MUFAs and n-3 PUFAs than EDL muscles and had lower unsaturation index, a pattern known to be associated with IR. Stearoyl-CoA desaturase-1 expression was approximately 13-fold greater in EDL than in SOL muscles but did not change with the HFD in either muscle. The expression of Elongase-5 was higher, and that of Elongase-6 (Elovl6) was lower in EDL compared with SOL muscles with both diets. In EDL muscles, the expression of Elovl6 was lower in the HFD than in the SLD. The pattern of FA uptake, expression, and diet-induced changes in FA desaturating and elongating enzymes maintained higher FA unsaturation in EDL muscles. Accordingly, the fiber type composition of skeletal muscles and their distribution may be important in the development and progression of obesity and IR.
Collapse
|
30
|
Trans-Membrane Uptake and Intracellular Metabolism of Fatty Acids in Atlantic Salmon (Salmo salar L.) Hepatocytes. Lipids 2010; 45:301-11. [DOI: 10.1007/s11745-010-3396-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
|
31
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
32
|
Alkhateeb H, Chabowski A, Glatz JFC, Gurd B, Luiken JJFP, Bonen A. Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids. Am J Physiol Endocrinol Metab 2009; 297:E1056-66. [PMID: 19724017 DOI: 10.1152/ajpendo.90908.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined whether AICAR or leptin rapidly rescued skeletal muscle insulin resistance via increased palmitate oxidation, reductions in intramuscular lipids, and/or restoration of insulin-stimulated AS60 phosphorylation. Incubation with palmitate (2 mM, 0-18 h) induced insulin resistance in soleus muscle. From 12-18 h, palmitate was removed or AICAR or leptin was provided while 2 mM palmitate was maintained. Palmitate oxidation, intramuscular triacylglycerol, diacylglycerol, ceramide, AMPK phosphorylation, basal and insulin-stimulated glucose transport, plasmalemmal GLUT4, and Akt and AS160 phosphorylation were examined at 0, 6, 12, and 18 h. Palmitate treatment (12 h) increased intramuscular lipids (triacylglycerol +54%, diacylglycerol +11%, total ceramide +18%, C16:0 ceramide +60%) and AMPK phosphorylation (+118%), whereas it reduced fatty acid oxidation (-60%) and insulin-stimulated glucose transport (-70%), GLUT4 translocation (-50%), and AS160 phosphorylation (-40%). Palmitate removal did not rescue insulin resistance or associated parameters. The AICAR and leptin treatments did not consistently reduce intramuscular lipids, but they did rescue palmitate oxidation and insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. Increased AMPK phosphorylation was associated with these improvements only when AICAR and leptin were present. Hence, across all experiments, AMPK phosphorylation did not correlate with any parameters. In contrast, palmitate oxidation and insulin-stimulated AS160 phosphorylation were highly correlated (r = 0.83). We speculate that AICAR and leptin activate both of these processes concomitantly, involving activation of unknown kinases in addition to AMPK. In conclusion, despite the maintenance of high concentrations of palmitate (2 mM), as well as increased concentrations of intramuscular lipids (triacylglycerol, diacylglycerol, and ceramide), the rapid AICAR- and leptin-mediated rescue of palmitate-induced insulin resistance is attributable to the restoration of insulin-stimulated AS160 phosphorylation and GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Abbott MJ, Edelman AM, Turcotte LP. CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1724-32. [PMID: 19812359 DOI: 10.1152/ajpregu.00179.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple signals have been shown to be involved in regulation of fatty acid (FA) and glucose metabolism in contracting skeletal muscle. This study aimed to determine whether a Ca(2+)-stimulated kinase, CaMKK, is involved in regulation of contraction-induced substrate metabolism and whether it does so in an AMP-activated protein kinase (AMPK)-dependent manner. Rat hindlimbs were perfused at rest (n = 16), with 3 mM caffeine (n = 15), with 2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR; n = 16), or during moderate-intensity muscle contraction (MC; n = 14) and with or without 5 microM STO-609, a CaMKK inhibitor. FA uptake and oxidation increased (P < 0.05) 64% and 71% by caffeine, 42% and 93% by AICAR, and 65% and 143% by MC. STO-609 abolished (P < 0.05) caffeine- and MC-induced FA uptake and oxidation but had no effect with AICAR treatment. Glucose uptake increased (P < 0.05) 104% by caffeine, 85% by AICAR, and 130% by MC, and STO-609 prevented the increase in glucose uptake in caffeine and muscle contraction groups. CaMKKbeta activity increased (P < 0.05) 113% by caffeine treatment and 145% by MC but was not affected by AICAR treatment. STO-609 prevented the caffeine- and MC-induced increase in CaMKKbeta activity. Caffeine, AICAR, and MC increased (P < 0.05) AMPKalpha2 activity by 295%, 11-fold, and 7-fold but did not affect AMPKalpha1 activity. STO-609 decreased (P < 0.05) AMPKalpha2 activity induced by caffeine treatment and MC by 60% and 61% but did not affect AICAR-induced activity. Plasma membrane transport protein content of CD36 and glucose transporter 4 (GLUT4) increased (P < 0.05) with caffeine, AICAR, and MC, and STO-609 prevented caffeine- and MC-induced increases in protein content. These results show the importance of Ca(2+)-dependent signaling via CaMKK activation in the regulation of substrate uptake and FA oxidation in contracting rat skeletal muscle and agree with the notion that CaMKK is an upstream kinase of AMPK in the regulation of substrate metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Marcia J Abbott
- Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0652, USA
| | | | | |
Collapse
|
34
|
Bonen A, Holloway GP, Tandon NN, Han XX, McFarlan J, Glatz JFC, Luiken JJFP. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1202-12. [DOI: 10.1152/ajpregu.90820.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined fatty acid transporters, transport, and metabolism in hearts and red and white muscles of lean and insulin-resistant ( week 6) and type 2 diabetic ( week 24) Zucker diabetic fatty (ZDF) rats. Cardiac fatty acid transport was similar in lean and ZDF hearts at week 6 but was reduced at week 24 (−40%) in lean but not ZDF hearts. Red muscle of ZDF rats exhibited an early susceptibility to upregulation (+66%) of fatty acid transport at week 6 that was increased by 50% in lean and ZDF rats at week 24 but remained 44% greater in red muscle of ZDF rats. In white muscle, no differences were observed in fatty acid transport between groups or from week 6 to week 24. In all tissues (heart and red and white muscle), FAT/CD36 protein and plasmalemmal content paralleled the changes in fatty acid transport. Triacylglycerol content in red and white muscles, but not heart, in lean and ZDF rats correlated with fatty acid transport ( r = 0.91) and sarcolemmal FAT/CD36 ( r = 0.98). Red and white muscle fatty acid oxidation by isolated mitochondria was not impaired in ZDF rats but was reduced by 18–24% in red muscle of lean rats at week 24. Thus, in red, but not white, muscle of insulin-resistant and type 2 diabetic animals, a marked upregulation in fatty acid transport and intramuscular triacylglycerol was associated with increased levels of FAT/CD36 expression and plasmalemmal content. In heart, greater rates of fatty acid transport and FAT/CD36 in ZDF rats ( week 24) were attributable to the inhibition of age-related reductions in these parameters. However, intramuscular triacylglycerol did not accumulate in hearts of ZDF rats. Thus insulin resistance and type 2 diabetes are accompanied by tissue-specific differences in FAT/CD36 and fatty acid transport and metabolism. Upregulation of fatty acid transport increased red muscle, but not cardiac, triacylglycerol accumulation. White muscle lipid metabolism dysregulation was not observed.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Narendra N. Tandon
- Thrombosis Research Laboratory, Otsuka Maryland Medicinal Laboratories, Rockville, Maryland; and
| | - Xiao-Xia Han
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jay McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jan F. C. Glatz
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Joost J. F. P. Luiken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
35
|
Holloway GP, Jain SS, Bezaire V, Han XX, Glatz JFC, Luiken JJFP, Harper ME, Bonen A. FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R960-7. [DOI: 10.1152/ajpregu.91021.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The plasma membrane fatty acid transport protein FAT/CD36 is also present at the mitochondria, where it may contribute to the regulation of fatty acid oxidation, although this has been challenged. Therefore, we have compared enzyme activities and rates of mitochondrial palmitate oxidation in muscles of wild-type (WT) and FAT/CD36 knockout (KO) mice, at rest and after muscle contraction. In WT and KO mice, carnitine palmitoyltransferase-I, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase activities did not differ in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of WT and FAT/CD36 KO mice. Basal palmitate oxidation rates were lower ( P < 0.05) in KO mice (SS −18%; IMF −13%). Muscle contraction increased fatty acid oxidation (+18%) and mitochondrial FAT/CD36 protein (+16%) in WT IMF but not in WT SS, or in either mitochondrial subpopulation in KO mice. This revealed that the difference in IMF mitochondrial fatty acid oxidation between WT and KO mice can be increased ∼2.5-fold from 13% under basal conditions to 35% during muscle contraction. The FAT/CD36 inhibitor sulfo- N-succinimidyl oleate (SSO), inhibited palmitate transport across the plasma membrane in WT, but not in KO mice. In contrast, SSO bound to mitochondrial membranes and reduced palmitate oxidation rates to a similar extent in both WT and KO mitochondria (∼80%; P < 0.05). In addition, SSO reduced state III respiration with succinate as a substrate, without altering mitochondrial coupling (P/O ratios). Thus, while SSO inhibits FAT/CD36-mediated palmitate transport at the plasma membrane, SSO has undefined effects on mitochondria. Nevertheless, the KO animals reveal that FAT/CD36 contributes to the regulation of mitochondrial fatty acid oxidation, which is especially important for meeting the increased metabolic demands during muscle contraction.
Collapse
Affiliation(s)
- Graham P. Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Swati S. Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Veronic Bezaire
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Xiao Xia Han
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jan F. C. Glatz
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Joost J. F. P. Luiken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
36
|
Abstract
AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK's role in the muscle is important. It was originally shown to stimulate fatty acid (FA) oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review, we summarize much of these data, particularly in relation to changes in FA oxidation that occur during skeletal muscle exercise. Potential roles for AMPK exist in regulating FA transport into the mitochondria via interactions with acetyl-CoA carboxylase, malonyl-CoA decarboxylase, and perhaps FA transporter/CD36 (FAT/CD36). Likewise, AMPK may regulate transport of FAs into the cell through FAT/CD36. AMPK may also regulate capacity for FA oxidation by phosphorylation of transcription factors such as CREB or coactivators such as PGC-1alpha.
Collapse
Affiliation(s)
- D M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
37
|
Nickerson JG, Alkhateeb H, Benton CR, Lally J, Nickerson J, Han XX, Wilson MH, Jain SS, Snook LA, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem 2009; 284:16522-16530. [PMID: 19380575 DOI: 10.1074/jbc.m109.004788] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r>or=0.94), fatty acid oxidation (r>or=0.88), and triacylglycerol esterification (r>or=0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.
Collapse
Affiliation(s)
- James G Nickerson
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa 13115, Jordan
| | - Carley R Benton
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - James Lally
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Nickerson
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiao-Xia Han
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Meredith H Wilson
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Swati S Jain
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laelie A Snook
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jan F C Glatz
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Joost J F P Luiken
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Arend Bonen
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
38
|
Holloway GP, Benton CR, Mullen KL, Yoshida Y, Snook LA, Han XX, Glatz JFC, Luiken JJFP, Lally J, Dyck DJ, Bonen A. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 2009; 296:E738-47. [PMID: 19141681 DOI: 10.1152/ajpendo.90896.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramuscular triacylglycerol (IMTG) accumulation in obesity has been attributed to increased fatty acid transport and/or to alterations in mitochondrial fatty acid oxidation. Alternatively, an imbalance in these two processes may channel fatty acids into storage. Therefore, in red and white muscles of lean and obese Zucker rats, we examined whether the increase in IMTG accumulation was attributable to an increased rate of fatty acid transport rather than alterations in subsarcolemmal (SS) or intermyofibrillar (IMF) mitochondrial fatty acid oxidation. In obese animals selected parameters were upregulated, including palmitate transport (red: +100%; white: +51%), plasmalemmal FAT/CD36 (red: +116%; white: +115%; not plasmalemmal FABPpm, FATP1, or FATP4), IMTG concentrations (red: approximately 2-fold; white: approximately 4-fold), and mitochondrial content (red +30%). Selected mitochondrial parameters were also greater in obese animals, namely, palmitate oxidation (SS red: +91%; SS white: +26%; not IMF mitochondria), FAT/CD36 (SS: +65%; IMF: +65%), citrate synthase (SS: +19%), and beta-hydroxyacyl-CoA dehydrogenase activities (SS: +20%); carnitine palmitoyltransferase-I activity did not differ. A comparison of lean and obese rat muscles revealed that the rate of change in IMTG concentration was eightfold greater than that of fatty acid oxidation (SS mitochondria), when both parameters were expressed relative to fatty transport. Thus fatty acid transport, esterification, and oxidation (SS mitochondria) are upregulated in muscles of obese Zucker rats, with these effects being most pronounced in red muscle. The additional fatty acid taken up is channeled primarily to esterification, suggesting that upregulation in fatty acid transport as opposed to altered fatty acid oxidation is the major determinant of intramuscular lipid accumulation.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gurd BJ, Yoshida Y, Lally J, Holloway GP, Bonen A. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 2009; 587:1817-28. [PMID: 19237425 DOI: 10.1113/jphysiol.2008.168096] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deacetylation of PGC-1alpha by SIRT1 is thought to be an important step in increasing PGC-1alpha transcriptional activity, since in muscle cell lines SIRT1 induces PGC-1alpha protein expression and mitochondrial biogenesis. We examined the relationship between SIRT1 protein and activity, PGC-1alpha and markers of mitochondrial density, (a) across a range of metabolically heterogeneous skeletal muscles and the heart, and when mitochondrial biogenesis was stimulated by (b) chronic muscle stimulation (7 days) and (c) AICAR administration (5 days), and finally, (d) we also examined the effects of SIRT1 overexpression on mitochondrial biogenesis and PGC-1alpha. SIRT1 protein and activity were correlated (r = 0.97). There were negative correlations between SIRT1 protein and PGC-1alpha (r = -0.95), COX IV (r = -0.94) and citrate synthase (r = -0.97). Chronic muscle stimulation and AICAR upregulated PGC-1alpha protein (22-159%) and oxidative capacity (COX IV, 20-69%); in each instance SIRT1 protein was downregulated by 20-40%, while SIRT1 intrinsic activity was increased. SIRT1 overexpression in rodent muscle increased SIRT1 protein (+240%) and doubled SIRT1 activity, but PGC-1alpha (-25%), mtTFA (-14%) and COX IV (-10%) proteins were downregulated. Taken altogether these experiments are not consistent with the notion that SIRT1 protein plays an obligatory regulatory role in the process of PGC-1alpha-mediated mitochondrial biogenesis in mammalian muscle.
Collapse
Affiliation(s)
- Brendon J Gurd
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | |
Collapse
|
40
|
MRI analysis of muscle/fat index of the superficial and deep neck muscles in an asymptomatic cohort. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 18:704-9. [PMID: 19214596 DOI: 10.1007/s00586-009-0898-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
All muscles of the neck have a role in motion and postural control of the cervical region. The aim of this study was to investigate the difference in muscle/fat index between (1) cervical flexors and extensors and (2) deep and superficial neck muscles. Twenty-six healthy subjects participated in the study. Magnetic resonance imaging (MRI) was used to quantify muscle fat indices in different cervical flexor and extensor muscles at the C4-C5 level. Overall, the ventral muscles had a significantly lower fat content compared with the dorsal muscles (P < or = 0.001). For the cervical extensors, significant differences between the muscle/fat index of the deep and superficial muscles were found (P < or = 0.001). For the cervical flexors, there were no significant differences between the different muscles. The higher fat content in the dorsal muscles can be explained by a discrepancy in function between the spine extensors and flexors, reflected in a different muscle fiber distribution. The rather small differences between superficial and deep neck muscles are in line with recent findings that have demonstrated that both muscles groups exhibit phasic activity during isometric muscles contractions and the presumption that there is no difference in fiber type distribution between superficial and deep neck muscles.
Collapse
|
41
|
Bonen A, Han XX, Tandon NN, Glatz JFC, Lally J, Snook LA, Luiken JJFP. FAT/CD36 expression is not ablated in spontaneously hypertensive rats. J Lipid Res 2008; 50:740-8. [PMID: 19066404 DOI: 10.1194/jlr.m800237-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is doubt whether spontaneously hypertensive rats (SHR; North American strain) are null for fatty acid translocase (FAT/CD36). Therefore, we examined whether FAT/CD36 is expressed in heart, muscle, liver and adipose tissue in SHR. Insulin resistance was present in SHR skeletal muscle. We confirmed that SHR expressed aberrant FAT mRNAs in key metabolic tissues; namely, the major 2.9 kb transcript was not expressed, but 3.8 and 5.4 kb transcripts were present. Despite this, FAT/CD36 protein was expressed in all tissues, although there were tissue-specific reductions in FAT/CD36 protein expression and plasmalemmal content, ranging from 26-85%. Fatty acid transport was reduced in adipose tissue (-50%) and was increased in liver (+47%). Normal rates of fatty acid transport occurred in heart and muscle, possibly due to compensatory upregulation of plasmalemmal fatty acid binding protein (FABPpm) in red (+123%) and white muscle (+110%). In conclusion, SHRs (North American strain) are not a natural FAT/CD36 null model, the North American strain of SHR express FAT/CD36, albeit at reduced levels.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences University of -Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jørgensen SB, Lynch GS, Kemp BE, Steinberg GR. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J Physiol 2008; 586:5819-31. [PMID: 18845612 DOI: 10.1113/jphysiol.2008.159814] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained, malonyl-CoA levels were reduced and rates of fatty acid oxidation were comparable between genotypes. During treadmill exercise both KD and WT mice had similar values of respiratory exchange ratio. These studies suggested the presence of an alternative ACC2 kinase(s). Using a phosphoproteomics-based approach we identified 18 Ser/Thr protein kinases whose phosphorylation was increased by greater than 25% in contracted KD relative to WT muscle. Utilizing bioinformatics we predicted that extracellular regulated protein-serine kinase (ERK1/2), inhibitor of nuclear factor (NF)-kappaB protein-serine kinase beta (IKKbeta) and protein kinase D (PKD) may phosphorylate ACC2 at Ser-221 but during in vitro phosphorylation assays only AMPK phosphorylated ACC2. These data demonstrate that AMPK is not essential for the regulation of fatty acid oxidation by AICAR or muscle contraction.
Collapse
Affiliation(s)
- Nicolas Dzamko
- St Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pandke KE, Mullen KL, Snook LA, Bonen A, Dyck DJ. Decreasing intramuscular phosphagen content simultaneously increases plasma membrane FAT/CD36 and GLUT4 transporter abundance. Am J Physiol Regul Integr Comp Physiol 2008; 295:R806-13. [PMID: 18650314 DOI: 10.1152/ajpregu.90540.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreasing muscle phosphagen content through dietary administration of the creatine analog beta-guanidinopropionic acid (beta-GPA) improves skeletal muscle oxidative capacity and resistance to fatigue during aerobic exercise in rodents, similar to that observed with endurance training. Surprisingly, the effect of beta-GPA on muscle substrate metabolism has been relatively unexamined, with only a few reports of increased muscle GLUT4 content and insulin-stimulated glucose uptake/clearance in rodent muscle. The effect of chronically decreasing muscle phophagen content on muscle fatty acid (FA) metabolism (transport, oxidation, esterification) is virtually unknown. The purpose of the present study was to examine changes in muscle substrate metabolism in response to 8 wk feeding of beta-GPA. Consistent with other reports, beta-GPA feeding decreased muscle ATP and total creatine content by approximately 50 and 90%, respectively. This decline in energy charge was associated with simultaneous increases in both glucose (GLUT4; +33 to 45%, P < 0.01) and FA (FAT/CD36; +28 to 33%, P < 0.05) transporters in the sarcolemma of red and white muscle. Accordingly, we also observed significant increases in insulin-stimulated glucose transport (+47%, P < 0.05) and AICAR-stimulated palmitate oxidation (+77%, P < 0.01) in the soleus muscle of beta-GPA-fed animals. Phosphorylation of AMPK (+20%, P < 0.05), but not total protein, was significantly increased in both fiber types in response to muscle phosphagen reduction. Thus the content of sarcolemmal transporters for both of the major energy substrates for muscle increased in response to a reduced energy charge. Increased phosphorylation of AMPK may be one of the triggers for this response.
Collapse
Affiliation(s)
- Kristin E Pandke
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
44
|
Benton CR, Yoshida Y, Lally J, Han XX, Hatta H, Bonen A. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4. Physiol Genomics 2008; 35:45-54. [PMID: 18523157 DOI: 10.1152/physiolgenomics.90217.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the relationship between PGC-1alpha protein; the monocarboxylate transporters MCT1, 2, and 4; and CD147 1) among six metabolically heterogeneous rat muscles, 2) in chronically stimulated red (RTA) and white tibialis (WTA) muscles (7 days), and 3) in RTA and WTA muscles transfected with PGC-1alpha-pcDNA plasmid in vivo. Among rat hindlimb muscles, there was a strong positive association between PGC-1alpha and MCT1 and CD147, and between MCT1 and CD147. A negative association was found between PGC-1alpha and MCT4, and CD147 and MCT4, while there was no relationship between PGC-1alpha or CD147 and MCT2. Transfecting PGC-1alpha-pcDNA plasmid into muscle increased PGC-1alpha protein (RTA +23%; WTA +25%) and induced the expression of MCT1 (RTA +16%; WTA +28%), but not MCT2 and MCT4. As a result of the PGC-1alpha-induced upregulation of MCT1 and its chaperone CD147 (+29%), there was a concomitant increase in the rate of lactate uptake (+20%). In chronically stimulated muscles, the following proteins were upregulated, PGC-1alpha in RTA (+26%) and WTA (+86%), MCT1 in RTA (+61%) and WTA (+180%), and CD147 in WTA (+106%). In contrast, MCT4 protein expression was not altered in either RTA or WTA muscles, while MCT2 protein expression was reduced in both RTA (-14%) and WTA (-10%). In these studies, whether comparing oxidative capacities among muscles or increasing their oxidative capacities by PGC-1alpha transfection and chronic muscle stimulation, there was a strong relationship between the expression of PGC-1alpha and MCT1, and PGC-1alpha and CD147 proteins. Thus, MCT1 and CD147 belong to the family of metabolic genes whose expression is regulated by PGC-1alpha in skeletal muscle.
Collapse
Affiliation(s)
- Carley R Benton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Aucouturier J, Baker JS, Duché P. Fat and carbohydrate metabolism during submaximal exercise in children. Sports Med 2008; 38:213-38. [PMID: 18278983 DOI: 10.2165/00007256-200838030-00003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During exercise, the contribution of fat and carbohydrate to energy expenditure is largely modulated by the intensity of exercise. Age, a short- or long-term diet enriched in carbohydrate or fat substrate stores, training and gender are other factors that have also been found to affect this balance. These factors have been extensively studied in adults from the perspective of improving performance in athletes, or from a health perspective in people with diseases. During the last decade, lifestyle changes associated with high-energy diets rich in lipid and reduced physical activity have contributed to the increase in childhood obesity. This lifestyle change has emerged as a serious health problem favouring the early development of cardiovascular diseases, insulin resistance or type 2 diabetes mellitus. Increasing physical activity levels in young people is important to increase energy expenditure and promote muscle oxidative capacity. Therefore, it is surprising that the regulation of balance between carbohydrate and lipid use during exercise has received much less attention in children than in adults. In this review, we have focused on the factors that affect carbohydrate and lipid metabolism during exercise and have identified areas that may be relevant in explaining the higher contribution of lipid to energy expenditure in children when compared with adults. Low muscle glycogen content is possibly associated with a low activity of glycolytic enzymes and high oxidative capacity, while lower levels of sympathoadrenal hormones are likely to favour lipid metabolism in children. Changes in energetic metabolism occurring during adolescence are also dependent on pubertal events with an increase in testosterone in boys and estrogen and progesterone in girls. The profound effects of ovarian hormones on carbohydrate and fat metabolism along with their effects on oxidative enzymes could explain that differences in substrate metabolism have not always been observed between girls and women. Finally, although the regulatory mechanisms of fat and carbohydrate balance during exercise are quite well identified, there are a lack of data specific to children and most of the evidences reported in this review were drawn from studies in adults. Isotope tracer techniques and nuclear magnetic resonance will allow non-invasive investigation of the metabolism of the different substrate sources in skeletal muscle.
Collapse
Affiliation(s)
- Julien Aucouturier
- Laboratory of Exercise Biology (BAPS), Auvergne University, Clermont-Ferrand, France
| | | | | |
Collapse
|
46
|
Benton CR, Holloway GP, Campbell SE, Yoshida Y, Tandon NN, Glatz JFC, Luiken JJJFP, Spriet LL, Bonen A. Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36) but not carnitine palmitoyltransferase I in rat muscle mitochondria. J Physiol 2008; 586:1755-66. [PMID: 18238811 DOI: 10.1113/jphysiol.2007.146563] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) alter the expression of genes involved in regulating lipid metabolism. Rosiglitazone, a PPARgamma agonist, induces tissue-specific effects on lipid metabolism; however, its mode of action in skeletal muscle remains unclear. Since fatty acid translocase (FAT/CD36) was recently identified as a possible regulator of skeletal muscle fatty acid transport and mitochondrial fatty acid oxidation, we examined in this tissue the effects of rosiglitazone infusion (7 days, 1 mg day(-1)) on FAT/CD36 mRNA and protein, its plasmalemmal content and fatty acid transport. In addition, in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria we examined rates of fatty acid oxidation, FAT/CD36 and carnitine palmitoyltransferase I (CPTI) protein, and CPTI and beta-hydroxyacyl CoA dehydrogenase (beta-HAD) activities. Rosiglitazone did not alter FAT/CD36 mRNA or protein expression, FAT/CD36 plasmalemmal content, or the rate of fatty acid transport into muscle (P > 0.05). In contrast, rosiglitazone increased the rates of fatty acid oxidation in both SS (+21%) and IMF mitochondria (+36%). This was accompanied by concomitant increases in FAT/CD36 in subsarcolemmal (SS) (+43%) and intermyofibrillar (IMF) mitochondria (+46%), while SS and IMF CPTI protein content, and CPTI submaximal and maximal activities (P > 0.05) were not altered. Similarly, citrate synthase (CS) and beta-HAD activities were also not altered by rosiglitazone in SS and IMF mitochondria (P > 0.05). These studies provide another example whereby changes in mitochondrial fatty oxidation are associated with concomitant changes in mitochondrial FAT/CD36 independent of any changes in CPTI. Moreover, these studies identify for the first time a mechanism by which rosiglitazone stimulates fatty acid oxidation in skeletal muscle, namely the chronic, subcellular relocation of FAT/CD36 to mitochondria.
Collapse
Affiliation(s)
- Carley R Benton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nickerson JG, Momken I, Benton CR, Lally J, Holloway GP, Han XX, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A. Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 2008; 32:865-73. [PMID: 18059611 DOI: 10.1139/h07-084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid transport into heart and skeletal muscle occurs largely through a highly regulated protein-mediated mechanism involving a number of fatty acid transporters. Chronically altered muscle activity (chronic muscle stimulation, denervation) alters fatty acid transport by altering the expression of fatty acid transporters and (or) their subcellular location. Chronic exposure to leptin downregulates while insulin upregulates fatty acid transport by altering concomitantly the expression of fatty acid transporters. Fatty acid transport can also be regulated within minutes, by muscle contraction, AMP-activated protein kinase activation, leptin, and insulin, through induction of the translocation of fatty acid translocase (FAT)/CD36 from its intracellular depot to the plasma membrane. In insulin-resistant muscle, a permanent relocation of FAT/CD36 to the sarcolemma appears to account for the excess accretion of intracellular lipids that interfere with insulin signaling. Recent work has also shown that FAT/ CD36, but not plasma membrane associated fatty acid binding protein, is involved, along with carnitine palmitoyltransferase, in regulating mitochondrial fatty acid oxidation. Finally, studies in FAT/CD36 null mice indicate that this transporter has a key role in regulating fatty acid metabolism in muscle.
Collapse
Affiliation(s)
- James G Nickerson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chabowski A, Górski J, Luiken JJFP, Glatz JFC, Bonen A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 2007; 77:345-53. [PMID: 18240411 DOI: 10.1016/j.plefa.2007.10.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is substantial molecular, biochemical and physiologic evidence that long-chain fatty acid transport involves a protein-mediated process. A number of fatty acid transport proteins have been identified, and for unknown reasons, some of these are coexpressed in the same tissues. In muscle and heart FAT/CD36 and FABPpm appear to be key transporters. Both proteins are regulated acutely (within minutes) and chronically (hours to days) by selected physiologic stimuli (insulin, AMP kinase activation). Acute regulation involves the translocation of FAT/CD36 by insulin, muscle contraction and AMP kinase activation, while FABPpm is induced to translocate by muscle contraction and AMP kinase activation, but not by insulin. Protein expression ofFAT/CD36 and FABPpm is regulated by prolonged AMP kinase activation (heart) or increased muscle contraction. Prolonged insulin exposure increases the expression of FAT/CD36 but not FABPpm. Trafficking of fatty acid transporters between an intracellular compartment(s) and the plasma membrane is altered in insulin-resistant skeletal muscle, as some FAT/CD36 is permanently relocated to plasma membrane, thereby contributing to insulin resistance due to the increased influx of fatty acids into muscle cells. Studies in FAT/CD36 null mice have revealed that this transporter is key to regulating the increase in the rate of fatty acid metabolism in heart and skeletal muscle. It appears based on a number of experiments that FAT/CD36 and FABPpm may collaborate to increase the rates of fatty acid transport, as these proteins co-immunoprecipitate.
Collapse
Affiliation(s)
- Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | | | | | | |
Collapse
|
49
|
Berthiaume M, Laplante M, Festuccia WT, Cianflone K, Turcotte LP, Joanisse DR, Olivecrona G, Thieringer R, Deshaies Y. 11beta-HSD1 inhibition improves triglyceridemia through reduced liver VLDL secretion and partitions lipids toward oxidative tissues. Am J Physiol Endocrinol Metab 2007; 293:E1045-52. [PMID: 17666487 DOI: 10.1152/ajpendo.00276.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue-specific alterations in 11beta-hydroxysteroid dehydrogenase (HSD) type 1 activity, which amplifies glucocorticoid action, are thought to contribute to some of the metabolic complications of obesity. The present study tested whether hypertriglyceridemia is one such complication by investigating the effects of an 11beta-HSD1 inhibitor (compound A, 3 mgxkg(-1)xday(-1), 21 days) on triglyceride (TG) metabolism in a rat model of diet-induced obesity. The dose of compound A used did not affect food intake or final body weight. Compound A improved fasting triglyceridemia (-42%) through a robust reduction (-41%) in hepatic TG secretion rate, without change in plasma TG clearance rate. Uptake of TG-derived fatty acids was, however, increased in oxidative tissues, including red gastrocnemius (+47%), heart (+39%), and brown adipose tissue (BAT, +46%) at the expense of the liver, with a concomitant increase in plasma membrane fatty acid-binding protein. Lipid oxidation products were increased in red gastrocnemius (+35%) and heart (+33%), as were levels of uncoupling protein 1 mRNA in BAT (+48%), and carnitine palmitoyltransferase 1 activity tended to be increased in some oxidative tissues. These findings demonstrate that pharmacological inhibition of 11beta-HSD1 at a dose that does not affect food intake improves triglyceridemia by reducing hepatic very low density lipoprotein-TG secretion, with a shift in the pattern of TG-derived fatty acid uptake toward oxidative tissues, in which lipid accumulation is prevented by increased lipid oxidation.
Collapse
Affiliation(s)
- Magalie Berthiaume
- Faculty of Medicine, Laval Hospital Research Center, Laval Univ., 2725 Ch Sainte-Foy, QC, Canada G1V 4G5
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alkhateeb H, Chabowski A, Glatz JFC, Luiken JFP, Bonen A. Two phases of palmitate-induced insulin resistance in skeletal muscle: impaired GLUT4 translocation is followed by a reduced GLUT4 intrinsic activity. Am J Physiol Endocrinol Metab 2007; 293:E783-93. [PMID: 17550999 DOI: 10.1152/ajpendo.00685.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined, in soleus muscle, the effects of prolonged palmitate exposure (0, 6, 12, 18 h) on insulin-stimulated glucose transport, intramuscular lipid accumulation and oxidation, activation of selected insulin-signaling proteins, and the insulin-stimulated translocation of GLUT4. Insulin-stimulated glucose transport was progressively reduced after 6 h (-33%), 12 h (-66%), and 18 h (-89%) of palmitate exposure. These decrements were closely associated with concurrent reductions in palmitate oxidation at 6 h (-40%), 12 h (-60%), and 18 h (-67%). In contrast, intramuscular ceramide (+24%) and diacylglycerol (+32%) concentrations, insulin-stimulated AS160 (-36%) and PRAS40 (-33%) phosphorylations, and Akt (-40%), PKCtheta (-50%), and GLUT4 translocation (-40%) to the plasma membrane were all maximally altered within the first 6 h of palmitate treatment. No further changes were observed in any of these parameters after 12 and 18 h of palmitate exposure. Thus, the intrinsic activity of GLUT4 was markedly reduced after 12 and 18 h of palmitate treatment. During this reduced GLUT4 intrinsic activity phase at 12 and 18 h, the reduction in glucose transport was twofold greater compared with the early phase (< or =6 h), when only GLUT4 translocation was impaired. Our study indicates that palmitate-induced insulin resistance is provoked by two distinct mechanisms: 1) an early phase (< or =6 h), during which lipid-mediated impairments in insulin signaling and GLUT4 translocation reduce insulin-stimulated glucose transport, followed by 2) a later phase (12 and 18 h), during which the intrinsic activity of GLUT4 is markedly reduced independently of any further alterations in intramuscular lipid accumulation, insulin signaling and GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|