1
|
Dolenšek J, Pohorec V, Skelin Klemen M, Gosak M, Stožer A. Ultrafast multicellular calcium imaging of calcium spikes in mouse beta cells in tissue slices. Acta Physiol (Oxf) 2025; 241:e14261. [PMID: 39803792 PMCID: PMC11726428 DOI: 10.1111/apha.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings. METHODS Since multicellular calcium imaging of spikes would enable a better understanding of coupling between changes in membrane potential and calcium concentration in beta cell collectives, we set out to design an appropriate methodological approach. RESULTS Combining the acute tissue slice method with ultrafast calcium imaging, we were able to resolve and quantify individual spikes within bursts at a temporal resolution of >150 Hz over prolonged periods, as well as describe their glucose-dependent properties. In addition, by simultaneous patch-clamp recordings we were able to show that calcium spikes closely follow membrane potential changes. Both bursts and spikes coordinate across islets in the form of intercellular waves, with bursts typically displaying global and spikes more local patterns. CONCLUSIONS This method and the associated findings provide additional insight into the complex signaling within beta cell networks. Once extended to tissue from diabetic animals and human donors, this approach could help us better understand the mechanistic basis of diabetes and find new molecular targets.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Faculty of MedicineUniversity of MariborMariborSlovenia
- Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
| | | | | | - Marko Gosak
- Faculty of MedicineUniversity of MariborMariborSlovenia
- Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
- Alma Mater Europaea UniversityMariborSlovenia
| | - Andraž Stožer
- Faculty of MedicineUniversity of MariborMariborSlovenia
| |
Collapse
|
2
|
Umapathysivam MM, Araldi E, Hastoy B, Dawed AY, Vatandaslar H, Sengupta S, Kaufmann A, Thomsen S, Hartmann B, Jonsson AE, Kabakci H, Thaman S, Grarup N, Have CT, Færch K, Gjesing AP, Nawaz S, Cheeseman J, Neville MJ, Pedersen O, Walker M, Jennison C, Hattersley AT, Hansen T, Karpe F, Holst JJ, Jones AG, Ristow M, McCarthy MI, Pearson ER, Stoffel M, Gloyn AL. Type 2 Diabetes risk alleles in Peptidyl-glycine Alpha-amidating Monooxygenase influence GLP-1 levels and response to GLP-1 Receptor Agonists. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288197. [PMID: 37090505 PMCID: PMC10120798 DOI: 10.1101/2023.04.07.23288197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.
Collapse
Affiliation(s)
- Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Department of Endocrinology, Queen Elizabeth Hospital, SA Health, Australia
- Southern Adelaide and Diabetes and Endocrinology Service, Bedford Park, Australia
- NHRMC Centre of Clinical research Excellence in Nutritional Physiology, Interventions and outcomes University of Adelaide, South Australia, Australia
| | - Elisa Araldi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Department of Cardiology and Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adem Y Dawed
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adrian Kaufmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Søren Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
| | - Anna E Jonsson
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
| | - Niels Grarup
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian T Have
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Færch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anette P Gjesing
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Jane Cheeseman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, UK
| | | | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Angus G Jones
- University of Exeter College of Medicine & Health, Exeter, UK
| | - Michael Ristow
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Ewan R Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Stanford Diabetes Research Centre, Stanford, USA
| |
Collapse
|
3
|
Koprulu M, Carrasco-Zanini J, Wheeler E, Lockhart S, Kerrison ND, Wareham NJ, Pietzner M, Langenberg C. Proteogenomic links to human metabolic diseases. Nat Metab 2023; 5:516-528. [PMID: 36823471 PMCID: PMC7614946 DOI: 10.1038/s42255-023-00753-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Studying the plasma proteome as the intermediate layer between the genome and the phenome has the potential to identify new disease processes. Here, we conducted a cis-focused proteogenomic analysis of 2,923 plasma proteins measured in 1,180 individuals using antibody-based assays. We (1) identify 256 unreported protein quantitative trait loci (pQTL); (2) demonstrate shared genetic regulation of 224 cis-pQTLs with 575 specific health outcomes, revealing examples for notable metabolic diseases (such as gastrin-releasing peptide as a potential therapeutic target for type 2 diabetes); (3) improve causal gene assignment at 40% (n = 192) of overlapping risk loci; and (4) observe convergence of phenotypic consequences of cis-pQTLs and rare loss-of-function gene burden for 12 proteins, such as TIMD4 for lipoprotein metabolism. Our findings demonstrate the value of integrating complementary proteomic technologies with genomics even at moderate scale to identify new mediators of metabolic diseases with the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Julia Carrasco-Zanini
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Sam Lockhart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Ahrén B. The Glucose Sensitivity of Insulin Secretion-Lessons from In Vivo and In Vitro Studies in Mice. Biomolecules 2022; 12:biom12070976. [PMID: 35883532 PMCID: PMC9312818 DOI: 10.3390/biom12070976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
This study explored the relationship between the glucose dose and insulin response from beta cells in vivo and in vitro in mice. Glucose was administered intravenously at different dose levels (from 0 to 0.75 g/kg) in anesthetized C57BL/6J mice, and the glucose and insulin concentrations were determined in samples taken after 50 min. Furthermore, freshly isolated mouse islets were incubated for 60 min in the presence of different concentrations of glucose (from 2.8 to 22.2 mmol/L) and insulin levels were analyzed in the medium. It was found that insulin levels increased after an intravenous injection of glucose with the maximal increase seen after 0.35 g/kg with no further increase after 0.5 or 0.75 g/kg. The acute increase in insulin levels (during the first 5 min) and the maximum glucose level (achieved after 1 min) showed a curvilinear relation with the half-maximal increase in insulin levels achieved at 11.4 mmol/L glucose and the maximal increase in insulin levels at 22.0 mmol/L glucose. In vitro, there was also a curvilinear relation between glucose concentrations and insulin secretion. Half maximal increase in insulin concentrations was achieved at 12.5 mmol/L glucose and the maximal increase in insulin concentrations was achieved at 21.5 mmol/L. Based on these data, we concluded that the glucose-insulin relation was curvilinear both in vivo and in vitro in mice with similar characteristics in relation to which glucose levels that achieve half-maximal and maximal increases in insulin secretion. Besides the new knowledge of knowing these relations, the results have consequences on how to design studies on insulin secretion to obtain the most information.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| |
Collapse
|
5
|
Brierley DI, de Lartigue G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating. Br J Pharmacol 2021; 179:584-599. [PMID: 34185884 PMCID: PMC8714868 DOI: 10.1111/bph.15603] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Here, we provide a focused review of the evidence for the roles of the vagus nerve in mediating the regulatory effects of peripherally and centrally produced GLP-1 on eating behaviour and energy balance. We particularly focus on recent studies which have used selective genetic, viral, and transcriptomic approaches to provide important insights into the anatomical and functional organisation of GLP-1-mediated gut-brain signalling pathways. A number of these studies have challenged canonical ideas of how GLP-1 acts in the periphery and the brain to regulate eating behaviour, with important implications for the development of pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Guillaume de Lartigue
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
NFAT5 Is Involved in GRP-Enhanced Secretion of GLP-1 by Sodium. Int J Mol Sci 2021; 22:ijms22083951. [PMID: 33921209 PMCID: PMC8069329 DOI: 10.3390/ijms22083951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Gastrin, secreted by G-cells, and glucagon-like peptide-1 (GLP-1), secreted by L-cells, may participate in the regulation of sodium balance. We studied the effect of sodium in mice in vivo and mouse ileum and human L-cells, on GLP-1 secretion, and the role of NFAT5 and gastrin-releasing peptide receptor (GRPR) in this process. A high-sodium diet increases serum GLP-1 levels in mice. Increasing sodium concentration stimulates GLP-1 secretion from mouse ileum and L-cells. GRP enhances the high sodium-induced increase in GLP-1 secretion. High sodium increases cellular GLP-1 expression, while low and high sodium concentrations increase NFAT5 and GRPR expression. Silencing NFAT5 in L-cells abrogates the stimulatory effect of GRP on the high sodium-induced GLP-1 secretion and protein expression, and the sodium-induced increase in GRPR expression. GLP-1 and gastrin decrease the expression of Na+-K+/ATPase and increase the phosphorylation of sodium/hydrogen exchanger type 3 (NHE3) in human renal proximal tubule cells (hRPTCs). This study gives a new perspective on the mechanisms of GLP-1 secretion, especially that engendered by ingested sodium, and the ability of GLP-1, with gastrin, to decrease Na+-K+/ATPase expression and NHE3 function in hRPTCs. These results may contribute to the better utilization of current and future GLP-1-based drugs in the treatment of hypertension.
Collapse
|
7
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
8
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1068] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
9
|
Windeløv JA, Wewer Albrechtsen NJ, Kuhre RE, Jepsen SL, Hornburg D, Pedersen J, Jensen EP, Galsgaard KD, Winther-Sørensen M, Ørgaard A, Deacon CF, Mann M, Kissow H, Hartmann B, Holst JJ. Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia 2017; 60:2066-2075. [PMID: 28669086 DOI: 10.1007/s00125-017-4347-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS In humans, glucagon-like peptide-1 (GLP-1) is rapidly degraded by dipeptidyl peptidase-4 to a relatively stable metabolite, GLP-1(9-36)NH2, which allows measurement of GLP-1 secretion. However, little is known about the kinetics of the GLP-1 metabolite in mice. We hypothesised that the GLP-1 metabolite is rapidly degraded in this species by neutral endopeptidase(s) (NEP[s]). METHODS We administered glucose, mixed meal or water orally to 256 mice, and took blood samples before and 2, 6, 10, 20, 30, 60 or 90 min after stimulation. To study the metabolism of the GLP-1 metabolite, i.v. GLP-1(9-36)NH2 (800 fmol) or saline (154 mmol/l NaCl) was administered to 160 mice, some of which had a prior injection of a selective NEP 24.11 ± inhibitor (candoxatril, 5 mg/kg) or saline. Blood was collected before and 1, 2, 4 and 12 min after GLP-1/saline injection. Plasma GLP-1 levels were analysed using a customised single-site C-terminal ELISA, two different two-site ELISAs and MS. RESULTS GLP-1 secretion profiles after oral glucose administration differed markedly when assayed by C-terminal ELISA compared with sandwich ELISAs, with the former showing a far higher peak value and AUC. In mice injected with GLP-1(9-36)NH2, immunoreactive GLP-1 plasma levels peaked at approximately 75 pmol/l at 1 min when measured with sandwich ELISAs, returning to baseline (~20 pmol/l) after 12 min, but remained elevated using the C-terminal ELISA (~90 pmol/l at 12 min). NEP 24.11 inhibition by candoxatril significantly attenuated GLP-1(9-36)NH2 degradation in vivo and in vitro. MS identified GLP-1 fragments consistent with NEP 24.11 degradation. CONCLUSIONS/INTERPRETATION In mice, the GLP-1 metabolite is eliminated within a few minutes owing to endoproteolytic cleavage by NEP 24.11. Therefore, accurate measurement of GLP-1 secretion in mice requires assays for NEP 24.11 metabolites. Conventional sandwich ELISAs are inadequate because of endoproteolytic cleavage of the dipeptidyl peptidase-4-generated metabolite.
Collapse
Affiliation(s)
- Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ørgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Engelstoft MS, Schwartz TW. Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors. Trends Endocrinol Metab 2016; 27:665-675. [PMID: 27474997 DOI: 10.1016/j.tem.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled by a limited number of G-protein coupled receptors (GPCRs); half of which recognize and bind dietary nutrient metabolites, metabolites generated by gut microbiota, and metabolites of the host's intermediary metabolism. Most metabolite GPCRs controlling ghrelin secretion are inhibitory, whereas all metabolite receptors controlling GLP-1 secretion are stimulatory. This dichotomy in metabolite sensor function, which is obtained through a combination of differential expression and cell-dependent signaling bias, offers pharmacological targets to stimulate GLP-1 and inhibit ghrelin through the same mechanism.
Collapse
Affiliation(s)
- M S Engelstoft
- Metabolic Receptology, NNF Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy, 5000 Odense, Denmark
| | - T W Schwartz
- Metabolic Receptology, NNF Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
11
|
Foppen E, Tan AAT, Ackermans MT, Fliers E, Kalsbeek A. Suprachiasmatic Nucleus Neuropeptides and Their Control of Endogenous Glucose Production. J Neuroendocrinol 2016; 28. [PMID: 26791158 DOI: 10.1111/jne.12365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Defective control of endogenous glucose production is an important factor responsible for hyperglycaemia in the diabetic individual. During the past decade, progressively more evidence has appeared indicating a strong and potentially causal relationship between disturbances of the circadian system and defects of metabolic regulation, including glucose metabolism. The detrimental effects of disturbed circadian rhythms may have their origin in disturbances of the molecular clock mechanisms in peripheral organs, such as the pancreas and liver, or in the central brain clock in the hypothalamic suprachiasmatic nuclei (SCN). To assess the role of SCN output per se on glucose metabolism, we investigated (i) the effect of several SCN neurotransmitters on endogenous glucose production and (ii) the effect of SCN neuronal activity on hepatic and systemic insulin sensitivity. We show that silencing of SCN neuronal activity results in decreased hepatic insulin sensitivity and increased peripheral insulin sensitivity. Furthermore, both oxytocin neurones in the paraventricular nucleus of the hypothalamus (PVN) and orexin neurones in the lateral hypothalamus may be important targets for the SCN control of glucose metabolism. These data further highlight the role of the central clock in the pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- E Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A A T Tan
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - E Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
12
|
Carnovale V, Pilon G, Britten M, Bazinet L, Couillard C. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice. Int J Food Sci Nutr 2016; 67:298-304. [DOI: 10.3109/09637486.2016.1157139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Valérie Carnovale
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Department of Food Science, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Québec Heart and Lung Institute Research Center, 2725 chemin Ste-Foy, Québec, Canada
| | - Michel Britten
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe (Québec), Canada,
| | - Laurent Bazinet
- Dairy Science and Technology Research Centre (STELA), Université Laval, 2425 rue de l’Agriculture, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- Department of Food Science, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| | - Charles Couillard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, 2440 boulevard Hochelaga, Québec, Canada
- School of Nutrition, Université Laval, 2425 rue de l’Agriculture, Québec, Canada
| |
Collapse
|
13
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation.
Collapse
Affiliation(s)
- Ramona Pais
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M. Gribble
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrookes’s Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
14
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
15
|
Jha PK, Foppen E, Challet E, Kalsbeek A. Effects of central gastrin-releasing peptide on glucose metabolism. Brain Res 2015; 1625:135-41. [PMID: 26358150 DOI: 10.1016/j.brainres.2015.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Gastrin-releasing peptide (GRP) mediated signals in the central nervous system (CNS) influence many functions associated with energy metabolism. The purpose of the present study was to investigate the central effect of GRP on glucose metabolism in the male rat. Intracerebroventricular (icv) administration of GRP caused an immediate hyperglycaemia which was sustained till the end of the infusion. The rise in plasma glucose levels was accompanied by an increase in endogenous glucose production (EGP), as well as increases in plasma glucagon and insulin concentrations. Furthermore, no differences in plasma corticosterone levels were noted between control and GRP treated rats. These results demonstrate that central GRP increases plasma glucose levels, probably by stimulating pancreatic glucagon release and concomitantly or subsequently endogenous glucose production.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| |
Collapse
|
16
|
Sato T, Hayashi H, Hiratsuka M, Hirasawa N. Glucocorticoids decrease the production of glucagon-like peptide-1 at the transcriptional level in intestinal L-cells. Mol Cell Endocrinol 2015; 406:60-7. [PMID: 25700603 DOI: 10.1016/j.mce.2015.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 02/13/2015] [Indexed: 01/28/2023]
Abstract
Glucocorticoids are widely used as anti-inflammatory or immunosuppressive drugs, but often induce hyperglycemia as a side effect. Glucagon-like peptide-1 (GLP-1) is secreted from intestinal L cells and plays crucial roles in maintaining glucose homeostasis. However, the direct effects of glucocorticoids on the GLP-1 production pathway in L cells remain unclear. We investigated the effects of glucocorticoids on GLP-1 production in vitro and in vivo. In L cell lines, glucocorticoids decreased GLP-1 release and expression of the precursor, proglucagon, at protein and mRNA levels, which were inhibited by mifepristone. The administration of dexamethasone or budesonide to mice significantly decreased the mRNA expression of proglucagon in the ileum and partially decreased glucose-stimulated GLP-1 secretion. Compound A, a dissociated glucocorticoid receptor modulator, did not affect the expression of proglucagon in vitro. These results suggested that glucocorticoids directly reduced GLP-1 production at the transcriptional level in L cells through a glucocorticoid receptor dimerization-dependent mechanism.
Collapse
Affiliation(s)
- Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hayashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
17
|
Seino Y, Ogata H, Maekawa R, Izumoto T, Iida A, Harada N, Miki T, Seino S, Inagaki N, Tsunekawa S, Oiso Y, Hamada Y. Fructose induces glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 and insulin secretion: Role of adenosine triphosphate-sensitive K(+) channels. J Diabetes Investig 2015; 6:522-6. [PMID: 26417408 PMCID: PMC4578490 DOI: 10.1111/jdi.12356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/24/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022] Open
Abstract
Adenosine triphosphate-sensitive K+ (KATP) channels play an essential role in glucose-induced insulin secretion from pancreatic β-cells. It was recently reported that the KATP channel is also found in the enteroendocrine K-cells and L-cells that secrete glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), respectively. In the present study, we investigated the involvement of the KATP channel in fructose-induced GIP, GLP-1 and insulin secretion in mice. Fructose stimulated GIP secretion, but pretreatment with diazoxide, a KATP channel activator, did not affect fructose-induced GIP secretion under streptozotocin-induced hyperglycemic conditions. Fructose significantly stimulated insulin secretion in Kir6.2+/+ mice, but not in mice lacking KATP channels (Kir6.2−/−), and fructose stimulated GLP-1 secretion in both Kir6.2+/+ mice and Kir6.2−/− mice under the normoglycemic condition. In addition, diazoxide completely blocked fructose-induced insulin secretion in Kir6.2+/+ mice and in MIN6-K8 β-cells. These results show that fructose-induced GIP and GLP-1 secretion is KATP channel-independent and that fructose-induced insulin secretion is KATP channel-dependent.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Hidetada Ogata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ryuya Maekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takako Izumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Atsushi Iida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine Kobe, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine Nagoya, Japan
| |
Collapse
|
18
|
Abstract
The enteroendocrine system is the primary sensor of ingested nutrients and is responsible for secreting an array of gut hormones, which modulate multiple physiological responses including gastrointestinal motility and secretion, glucose homeostasis, and appetite. This Review provides an up-to-date synopsis of the molecular mechanisms underlying enteroendocrine nutrient sensing and highlights our current understanding of the neuro-hormonal regulation of gut hormone secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the development of novel therapeutic strategies.
Collapse
|
19
|
Li SK, Zhu D, Gaisano HY, Brubaker PL. Role of vesicle-associated membrane protein 2 in exocytosis of glucagon-like peptide-1 from the murine intestinal L cell. Diabetologia 2014; 57:809-18. [PMID: 24356748 DOI: 10.1007/s00125-013-3143-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1), secreted by the enteroendocrine L cell, is an incretin hormone that potently stimulates insulin secretion. Although signalling pathways promoting GLP-1 release are well characterised, the mechanisms by which GLP-1-containing granules fuse to the L cell membrane are unknown. As soluble NSF attachment proteins (SNAREs) are known to mediate granule-membrane fusion, the role of vesicle-associated membrane proteins (VAMPs) in GLP-1 exocytosis was examined. METHODS SNARE expression was determined in murine GLUTag L cells by RT-PCR and immunoblot and in primary murine L cells by immunofluorescence. Co-immunoprecipitation was used to examine SNARE interactions, while tetanus toxin (TetX)-mediated cleavage of VAMP was used with a GLP-1 secretion assay and total internal reflection fluorescence microscopy to determine the role of VAMP2 in exocytosis. RESULTS VAMP2 was expressed in murine L cells and localised to secretory granules in GLUTag cells. VAMP1/3 and the core membrane proteins syntaxin1a and synaptosomal-associated protein 25 kDa (SNAP25) were also detected. TetX cleaved VAMPs in GLUTag cells. However, only VAMP2 interacted with syntaxin1a, as did SNAP25 and Munc18-1. TetX treatment of GLUTag cells prevented glucose-dependent insulinotrophic peptide- and oleic-acid-stimulated GLP-1 secretion (p < 0.05-0.01), as well as K(+)-stimulated single-cell exocytosis (p < 0.05-0.001), while TetX-resistant VAMP2 expression rescued GLP-1 secretion (p < 0.01-0.001). CONCLUSIONS/INTERPRETATION Together, these findings indicate an essential role for VAMP2 in GLP-1 exocytosis from the GLUTag L cell in response to a variety of established secretagogues. An improved understanding of the mechanisms governing the release of GLP-1 may lead to new therapeutic approaches to enhance the levels of this incretin hormone in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Samantha K Li
- Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | |
Collapse
|
20
|
Chowdhury S, Reeds DN, Crimmins DL, Patterson BW, Laciny E, Wang S, Tran HD, Griest TA, Rometo DA, Dunai J, Wallendorf MJ, Ladenson JH, Polonsky KS, Wice BM. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2014; 306:G301-9. [PMID: 24356886 PMCID: PMC3920124 DOI: 10.1152/ajpgi.00383.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.
Collapse
Affiliation(s)
- Sara Chowdhury
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dominic N. Reeds
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dan L. Crimmins
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Bruce W. Patterson
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Erin Laciny
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Songyan Wang
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Hung D. Tran
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Terry A. Griest
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - David A. Rometo
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Judit Dunai
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Michael J. Wallendorf
- 4Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Jack H. Ladenson
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Kenneth S. Polonsky
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; ,5Division of the Biological Sciences and Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Burton M. Wice
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
21
|
Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2012; 36:909-21. [PMID: 23057494 PMCID: PMC3535499 DOI: 10.1111/apt.12084] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 09/22/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent research has led to an interest in the role of the gut and liver in type 2 diabetes mellitus (T2DM). AIM To review the role of the gastrointestinal system in glucose homoeostasis, with particular focus on the effects of incretin hormones, hepatic steatosis and bile acids. METHODS PubMed and Google Scholar were searched using terms such as incretin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4), hepatic steatosis, bile acid and gastric bypass. Additional relevant references were identified by reviewing the reference lists of articles. RESULTS Perturbations of incretin hormones and bile acid secretion contribute to the pathogenesis of T2DM, leading to their potential as therapeutic targets. The incretin hormones (GIP and GLP-1) are deactivated by DPP-4. GLP-1 agonists and DPP-4 inhibitors improve glycaemic control in patients with T2DM. Hepatic steatosis, along with insulin resistance, may precede the development of T2DM, and may benefit from anti-diabetes medications. Bile acids play an important role in glucose homoeostasis, with effects mediated via the farnesoid X receptor (FXR) and the cell surface receptor TGR5. The bile acid sequestrant colesevelam has been shown to be effective in improving glycaemic control in patients with T2DM. Altered gastrointestinal anatomy after gastric bypass surgery may also affect enterohepatic recirculation of bile acids and contribute to improved glycaemic control. CONCLUSIONS Research in recent years has led to new pathways and processes with a role in glucose homoeostasis, and new therapeutic targets and options for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Amir Zarrinpar
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
,Division of Epidemiology, Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Chen Y, Li ZY, Yang Y, Zhang HJ. Uncoupling protein 2 regulates glucagon-like peptide-1 secretion in L-cells. World J Gastroenterol 2012; 18:3451-7. [PMID: 22807616 PMCID: PMC3396199 DOI: 10.3748/wjg.v18.i26.3451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/07/2012] [Accepted: 04/21/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether uncoupling protein 2 (UCP2) affects oleic acid-induced secretion of glucagon-like peptide-1 (GLP-1) in L-cells.
METHODS: mRNA and protein expression of UCP2 were analyzed in human NCI-H716 cells, which serve as a model for enteroendocrine L-cells, by quantitative reverse transcription-polymerase chain reaction and Western blotting before and after treatment with oleic acid. Localization of UCP2 and GLP-1 in NCI-H716 cells was assessed by immunofluorescence labeling. NCI-H716 cells were transiently transfected with a small interfering RNA (siRNA) that targets UCP2 (siUCP2) or with a non-specific siRNA using Lipofectamine 2000. The concentrations of bioactive GLP-1 in the medium were measured by enzyme linked immunosorbent assay.
RESULTS: Both GLP-1 and UCP2 granules were expressed mainly in the cytoplasm of NCI-H716 cells. NCI-H716 cells that secreted GLP-1 also expressed UCP2. Time-course experiments revealed that release of GLP-1 from NCI-H716 cells into the medium reached a maximum at 120 min and remained stable until at least 180 min after treatment with oleic acid (the level of GLP-1 increased about 2.3-fold as compared with the level of GLP-1 in the control cells, P < 0.05). In an experiment to determine dose dependence, stimulation of NCI-H716 cells with ≤ 8 mmol oleic acid led to a concentration-dependent release of GLP-1 into the medium; 10 mmol oleic acid diminished the release of GLP-1. Furthermore, GLP-1 secretion induced by oleic acid from NCI-H716 cells that were transfected with siUCP2 decreased to 41.8%, as compared with NCI-H716 cells that were transfected with a non-specific siRNA (P < 0.01).
CONCLUSION: UCP2 affected GLP-1 secretion induced by oleic acid. UCP2 plays an important role in L-cell secretion that is induced by free fatty acids.
Collapse
|
23
|
Kawano T, Tanaka K, Chi H, Eguchi S, Yamazaki F, Kitamura S, Kumagai N, Yokoyama M. Biophysical and pharmacological properties of glucagon-like peptide-1 in rats under isoflurane anesthesia. Anesth Analg 2012; 115:62-9. [PMID: 22504208 DOI: 10.1213/ane.0b013e318253cbf0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) increases insulin secretion and has an important role in maintaining glucose homeostasis. In this study, we evaluated the biophysical and pharmacological properties of GLP-1 by performing in vivo and in vitro experiments to determine the applicability of GLP-1 in glycemic control in rats under isoflurane anesthesia. METHODS Levels of portal GLP-1, insulin, and glucose and dipeptidyl peptidase-4 activity were measured in the basal fasting state and after gastric glucose load before, during, and after exposure to 30% O(2) in air (control) or 1.4% isoflurane in a mixture of 30% O(2) and air. The direct effects of isoflurane on GLP-1 secretion were assessed in human enteroendocrine NCI-H716 cells. Insulin release from isolated pancreatic islets was measured using a radioimmunoassay. Single pancreatic β-cell membrane potentials were recorded using whole-cell current-clamp patches perforated by β-escin. RESULTS In fasting rats, inhalation of isoflurane led to a decrease in the basal levels of GLP-1 but did not affect insulin and glucose levels. Levels of GLP-1, insulin, and glucose increased after gastric administration of glucose in control rats. However, isoflurane attenuated the glucose-induced increase in GLP-1 and insulin levels and increased plasma glucose levels. In contrast, isoflurane did not affect dipeptidyl peptidase-4 activity before or after gastric glucose loading. Isoflurane (0.35 mM) inhibited GLP-1 release in NCI-H716 cells; this finding was similar to that observed in in vivo studies. In perifusion experiments, isoflurane (0.35 mM) inhibited glucose-induced insulin release, whereas exogenous GLP-1 (10 nM) enhanced insulin release. Importantly, combined administration of isoflurane and GLP-1 enhanced both phases of glucose-induced insulin release to an extent similar to that achieved with GLP-1 alone. Whole-cell patches showed that exposure to GLP-1 (10 nM) led to nearly complete restoration of glucose-stimulated depolarization that had been suppressed by isoflurane (0.35 mM). CONCLUSIONS GLP-1 secretion is impaired during isoflurane anesthesia. However, our study showed that the insulinotropic action of GLP-1 was not affected by isoflurane. Furthermore, exposure to GLP-1 increased the membrane activity of pancreatic β-cells, preventing isoflurane-induced impairment of glucose-induced insulin secretion. These results support the hypothesis that GLP-1-based therapy may be a useful approach for achieving intraoperative glycemic control.
Collapse
Affiliation(s)
- Takashi Kawano
- Department of Anesthesiology and Critical Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7:e35240. [PMID: 22506074 PMCID: PMC3323649 DOI: 10.1371/journal.pone.0035240] [Citation(s) in RCA: 892] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.
Collapse
Affiliation(s)
- Hua V Lin
- Diabetes and In Vivo Pharmacology, Merck Research Laboratories, Rahway, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152:4610-9. [PMID: 21971158 DOI: 10.1210/en.2011-1485] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1(7-36NH2) (GLP-1) is secreted by the intestinal L cell in response to both nutrient and neural stimulation, resulting in enhanced glucose-dependent insulin secretion. GLP-1 is therefore an attractive therapeutic for the treatment of type 2 diabetes. The antidiabetic drug, metformin, is known to increase circulating GLP-1 levels, although its mechanism of action is unknown. Direct effects of metformin (5-2000 μm) or another AMP kinase activator, aminoimidazole carboxamide ribonucleotide (100-1000 μm) on GLP-1 secretion were assessed in murine human NCI-H716, and rat FRIC L cells. Neither agent stimulated GLP-1 secretion in any model, despite increasing AMP kinase phosphorylation (P < 0.05-0.01). Treatment of rats with metformin (300 mg/kg, per os) or aminoimidazole carboxamide ribonucleotide (250 mg/kg, sc) increased plasma total GLP-1 over 2 h, reaching 37 ± 9 and 29 ± 9 pg/ml (P < 0.001), respectively, compared with basal (7 ± 1 pg/ml). Plasma activity of the GLP-1-degrading enzyme, dipeptidylpeptidase-IV, was not affected by metformin treatment. Pretreatment with the nonspecific muscarinic antagonist, atropine (1 mg/kg, iv), decreased metformin-induced GLP-1 secretion by 55 ± 11% (P < 0.05). Pretreatment with the muscarinic (M) 3 receptor antagonist, 1-1-dimethyl-4-diphenylacetoxypiperidinium iodide (500 μg/kg, iv), also decreased the GLP-1 area under curve, by 48 ± 8% (P < 0.05), whereas the antagonists pirenzepine (M1) and gallamine (M2) had no effect. Furthermore, chronic bilateral subdiaphragmatic vagotomy decreased basal secretion compared with sham-operated animals (7 ± 1 vs. 13 ± 1 pg/ml, P < 0.001) but did not alter the GLP-1 response to metformin. In contrast, pretreatment with the gastrin-releasing peptide antagonist, RC-3095 (100 μg/kg, sc), reduced the GLP-1 response to metformin, by 55 ± 6% (P < 0.01) at 30 min. These studies elucidate the mechanism underlying metformin-induced GLP-1 secretion and highlight the benefits of using metformin with dipeptidylpeptidase-IV inhibitors in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Andrew J Mulherin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Iakoubov R, Ahmed A, Lauffer LM, Bazinet RP, Brubaker PL. Essential role for protein kinase Cζ in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology 2011; 152:1244-52. [PMID: 21325047 DOI: 10.1210/en.2010-1352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Luminal monounsaturated long-chain fatty acids [e.g. oleic acid (OA)] increase secretion of the incretin, glucagon-like peptide-1 (GLP-1) from the ileocolonic L cell. However, it is not known whether OA ingestion causes a sufficient increase in distal luminal concentrations to directly enhance GLP-1 secretion. Furthermore, we have demonstrated that protein kinase Cζ (PKCζ) is required for OA-induced GLP-1 secretion in vitro; however, the physiological relevance of this finding remains unknown. Therefore, we have determined luminal OA concentrations in OA-fed rats and examined the effects of direct OA stimulation on GLP-1 secretion using a novel model of intestinal-specific PKCζ knockdown. Murine GLUTag L cells express numerous fatty acid transport proteins and take up OA in a saturable manner. Oral administration of OA increased the ileal chyme content of OA by 140-fold over 60-120 min (P < 0.05-0.01), peaking at 105 ± 50 μmol/g. To evaluate the direct effects of OA on GLP-1 secretion, 125 mm OA was rectally infused into the colon and terminal ileum of rats. Plasma bioactive GLP-1 increased from 20 ± 6 to 102 ± 21 pg/ml at 60 min (P < 0.01). However, pretreatment with ileocolonic adenoviral PKCζ small interfering RNA resulted in a 68 ± 8% reduction in the GLP-1 response to rectal OA (P < 0.001). The results of these studies indicate that OA levels in the rat terminal gut after oral ingestion are sufficient to induce GLP-1 secretion and that PKCζ is necessary for the effects of OA on GLP-1 secretion in vivo. PKCζ may therefore serve as a novel therapeutic target to enhance GLP-1 levels in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Roman Iakoubov
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
27
|
Paula GSM, Souza LL, Cabanelas A, Bloise FF, Mello-Coelho V, Wada E, Ortiga-Carvalho TM, Oliveira KJ, Pazos-Moura CC. Female mice target deleted for the neuromedin B receptor have partial resistance to diet-induced obesity. J Physiol 2010; 588:1635-45. [PMID: 20211980 DOI: 10.1113/jphysiol.2009.185322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies have proposed a role for neuromedin B (NB), a bombesin-like peptide, in the control of body weight homeostasis. However, the nature of this role is unclear. The actions of NB are mediated preferentially by NB-preferring receptors (NBRs). Here we examined the consequences of targeted deletion of NBRs in female mice on body weight homeostasis in mice fed a normolipid diet (ND) or a high-fat diet (HFD) for 13 weeks. Body weight and food ingestion of neuromedin B receptor knockout (NBR-KO) mice fed a normolipid diet showed no difference in relation to wild-type (WT). However, the high-fat diet induced an 8.9- and 4.8-fold increase in body weight of WT and NBR-KO, respectively, compared to their controls maintained with a normolipid diet, even though the mice ingested the same amount of calories, regardless of genotype. Comparing mice fed the high-fat diet, NBR-KO mice accumulated approximately 45% less fat depot mass than WT, exhibited a lower percentage of fat in their carcasses (19.2 vs. 31.3%), and their adipocytes were less hypertrophied. Serum leptin and leptin mRNA in inguinal and perigonadal fat were lower in HFD NBR-KO than HFD WT, and serum adiponectin was similar among HFD groups and unaltered in comparison to ND-fed mice. HFD-fed WT mice developed glucose intolerance but not the HFD-fed NBR-KO mice, although they had similar glycaemia and insulinaemia. NBR-KO and WT mice on the normolipid diet showed no differences in any parameters, except for a trend to lower insulin levels. Therefore, disruption of the neuromedin B receptor pathway did not change body weight homeostasis in female mice fed a normolipid diet; however, it did result in partial resistance to diet-induced obesity.
Collapse
Affiliation(s)
- Gabriela Silva Monteiro Paula
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, bloco G, Ilha do Fundão, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 2009; 150:580-91. [PMID: 18818290 PMCID: PMC5393261 DOI: 10.1210/en.2008-0726] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin resistance and type 2 diabetes mellitus are associated with impaired postprandial secretion of glucagon-like peptide-1 (GLP-1), a potent insulinotropic hormone. The direct effects of insulin and insulin resistance on the L cell are unknown. We therefore hypothesized that the L cell is responsive to insulin and that insulin resistance impairs GLP-1 secretion. The effects of insulin and insulin resistance were examined in well-characterized L cell models: murine GLUTag, human NCI-H716, and fetal rat intestinal cells. MKR mice, a model of chronic hyperinsulinemia, were used to assess the function of the L cell in vivo. In all cells, insulin activated the phosphatidylinositol 3 kinase-Akt and MAPK kinase (MEK)-ERK1/2 pathways and stimulated GLP-1 secretion by up to 275 +/- 58%. Insulin resistance was induced by 24 h pretreatment with 10(-7) m insulin, causing a marked reduction in activation of Akt and ERK1/2. Furthermore, both insulin-induced GLP-1 release and secretion in response to glucose-dependent insulinotropic peptide and phorbol-12-myristate-13-acetate were significantly attenuated. Whereas inhibition of phosphatidylinositol 3 kinase with LY294002 potentiated insulin-induced GLP-1 release, secretion was abrogated by inhibiting the MEK-ERK1/2 pathway with PD98059 or by overexpression of a kinase-dead MEK1-ERK2 fusion protein. Compared with controls, MKR mice were insulin resistant and displayed significantly higher fasting plasma insulin levels. Furthermore, they had significantly higher basal GLP-1 levels but displayed impaired GLP-1 secretion after an oral glucose challenge. These findings indicate that the intestinal L cell is responsive to insulin and that insulin resistance in vitro and in vivo is associated with impaired GLP-1 secretion.
Collapse
Affiliation(s)
- Gareth E Lim
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d'être is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to beta-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.
Collapse
Affiliation(s)
- Wook Kim
- National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
30
|
Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 2008; 283:18365-76. [PMID: 18420580 DOI: 10.1074/jbc.m710466200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The K cell is a specific sub-type of enteroendocrine cell located in the proximal small intestine that produces glucose-dependent insulinotropic polypeptide (GIP), xenin, and potentially other unknown hormones. Because GIP promotes weight gain and insulin resistance, reducing hormone release from K cells could lead to weight loss and increased insulin sensitivity. However, the consequences of coordinately reducing circulating levels of all K cell-derived hormones are unknown. To reduce the number of functioning K cells, regulatory elements from the rat GIP promoter/gene were used to express an attenuated diphtheria toxin A chain in transgenic mice. K cell number, GIP transcripts, and plasma GIP levels were profoundly reduced in the GIP/DT transgenic mice. Other enteroendocrine cell types were not ablated. Food intake, body weight, and blood glucose levels in response to insulin or intraperitoneal glucose were similar in control and GIP/DT mice fed standard chow. In contrast to single or double incretin receptor knock-out mice, the incretin response was absent in GIP/DT animals suggesting K cells produce GIP plus an additional incretin hormone. Following high fat feeding for 21-35 weeks, the incretin response was partially restored in GIP/DT mice. Transgenic versus wild-type mice demonstrated significantly reduced body weight (25%), plasma leptin levels (77%), and daily food intake (16%) plus enhanced energy expenditure (10%) and insulin sensitivity. Regardless of diet, long term glucose homeostasis was not grossly perturbed in the transgenic animals. In conclusion, studies using GIP/DT mice demonstrate an important role for K cells in the regulation of body weight and insulin sensitivity.
Collapse
Affiliation(s)
- Matthew C Althage
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
32
|
Iakoubov R, Izzo A, Yeung A, Whiteside CI, Brubaker PL. Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology 2007; 148:1089-98. [PMID: 17110421 DOI: 10.1210/en.2006-1403] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long-chain, monounsaturated fatty acids (FAs) stimulate secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1) from the intestinal L cell. Because the atypical protein kinase C (PKC), PKCzeta, is involved in FA signaling in many cells, the role of PKCzeta in FA-induced GLP-1 secretion was investigated, using the murine GLUTag L cell line and primary rat intestinal L cells. GLUTag cells expressed mRNA for several PKC isoforms, including PKCzeta, and PKCzeta protein was localized throughout the cytoplasm in GLUTag and primary L cells as well as normal mouse and rat L cells. Treatment with oleic acid (150-1000 microm) for 2 h increased GLP-1 secretion (P < 0.001), and this was abrogated by the PKCzeta inhibitor ZI (P < 0.05) and PKCzeta small interfering RNA transfection (P < 0.05) but not inhibition of classical/novel PKC isoforms. Although most PKCzeta was localized in the particulate compartment of GLUTag cells, oleate treatment did not alter PKCzeta levels or activity in this cell fraction. GLUTag cells expressed mRNA for the Gq-coupled FA receptor GPR120; however, oleic acid did not induce any changes in Akt, MAPK, or calcium, and pretreatment with LY294002 and PD98059 to inhibit phosphatidylinositol 3-kinase and MAPK, respectively, did not prevent the effects of oleic acid. Finally, GLUTag cells also released GLP-1 in response to arachidonic acid (P < 0.001) but were not affected by other long-chain FAs. These findings demonstrate that PKCzeta is required for oleic acid-induced GLP-1 secretion. This enzyme may therefore serve as a therapeutic target to enhance GLP-1 release in type 2 diabetes.
Collapse
Affiliation(s)
- Roman Iakoubov
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
33
|
Roges OA, Baron M, Philis-Tsimikas A. The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management. Expert Opin Investig Drugs 2005; 14:705-27. [PMID: 16004598 DOI: 10.1517/13543784.14.6.705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The incretin effect is a phenomenon in which enteral glucose administration provokes greater insulin secretion than intravenous administration. The main incretins, glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1 are defective in Type 2 diabetes; whereas glucose-dependent insulinotropic peptide displays diminished effectiveness, GLP-1 secretion is decreased; thus, GLP-1 was a stronger candidate for a new class of anti-diabetic agents designed to potentiate the incretin effect. In the past decade, GLP-1 mimetics, peptidase inhibitors and GLP-1 have been developed. Early randomised trials show that these agents contribute to glucose homeostasis and enhance beta-cell function, without causing hypoglycaemia or weight gain. This review includes an historical perspective, physiology of incretins, and discussions of the pathophysiology in Type 2 diabetes, pharmacology of the main agents and randomised clinical trials published to date.
Collapse
Affiliation(s)
- Octaviano A Roges
- The Whittier Institute for Diabetes, 9894 Genesee Avenue, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
34
|
Hui H, Zhao X, Perfetti R. Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab Res Rev 2005; 21:313-31. [PMID: 15852457 DOI: 10.1002/dmrr.553] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived peptide secreted from gut endocrine cells in response to nutrient ingestion. The multifaceted actions of GLP-1 include the following: (1) the stimulation of insulin secretion and of its gene expression, (2) the inhibition of glucagon secretion, (3) the inhibition of food intake, (4) the proliferation and differentiation of beta cells, and (5) the protection of beta-cells from apoptosis. The therapeutic utility of the native GLP-1 molecule is limited by its rapid enzymatic degradation by a serine protease termed dipeptidyl peptidase-IV (DPP-IV). The present article reviews the research studies aimed at elucidating the biosynthesis, metabolism, and molecular characteristics of GLP-1 since it is from these studies that the development of a GLP-1-like pharmacological agent may be derived.
Collapse
Affiliation(s)
- Hongxiang Hui
- Division of Endocrinology and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | |
Collapse
|
35
|
Winzell MS, Pacini G, Wollheim CB, Ahrén B. Beta-cell-targeted expression of a dominant-negative mutant of hepatocyte nuclear factor-1alpha in mice: diabetes model with beta-cell dysfunction partially rescued by nonglucose secretagogues. Diabetes 2004; 53 Suppl 3:S92-6. [PMID: 15561929 DOI: 10.2337/diabetes.53.suppl_3.s92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied islet function in mice with beta-cell-targeted expression of a dominant-negative mutant of hepatocyte nuclear factor (HNF)-1alpha. At age 2-3 months, anesthetized transgenic and wild-type male mice underwent an intravenous glucose (1 g/kg) tolerance test (IVGTT). It was found that transgenic mice had an abolished insulin response in association with severe glucose intolerance. In other tests, the 5-min insulin response to intravenous arginine was impaired by 79% (P=0.032) and the 15-min insulin response to gastric glucose was suppressed by 97% (P=0.006). In islets incubated for 60 min, the insulin response to glucose (3.3-22.2 mmol/l) was impaired by >80% in transgenic mice. In contrast, insulin responses to nonglucose secretagogues were only partially suppressed (to GLP-1 [100 nmol/l] by 40%, to carbachol [1 micromol/l] by 20%, and to palmitate [0.5 mmol/l] by 15%), whereas the response to depolarization by KCl (50 mmol/l) was not reduced. Finally, the IVGTT data insulin sensitivity in transgenic mice was not significantly different from that of wild-type mice. Thus, mice with targeted suppression of beta-cell HNF-1alpha represent a good diabetes model exhibiting severely impaired insulin secretion after glucose with marked glucose intolerance. In contrast, the insulin responses to nonglucose stimuli are not suppressed when the islet insulin content is taken into account.
Collapse
|
36
|
de Meester I, Lambeir AM, Proost P, Scharpé S. Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPPIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 524:3-17. [PMID: 12675218 DOI: 10.1007/0-306-47920-6_1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ingrid de Meester
- Department of Pharmaceutical Sciences University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | | | | | | |
Collapse
|
37
|
Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003; 40:209-94. [PMID: 12892317 DOI: 10.1080/713609354] [Citation(s) in RCA: 721] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of the incretins. DPP IV inhibitors improve glucose tolerance and pancreatic islet cell function in animal models of type 2 diabetes and in diabetic patients. The role of DPP IV/ CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules. This enables DPP IV/CD26 to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis. DPP IV is also implicated in HIV-1 entry, malignant transformation, and tumor invasion.
Collapse
Affiliation(s)
- Anne-Marie Lambeir
- Department of Pharmaceutical Sciences, Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
38
|
Abstract
Glucagon-like peptide-1 (GLP-1), released from intestinal endocrine L cells, is a potent insulinotropic hormone. GLP-1 secretion is diminished in obese patients. Because obesity is linked to abnormal leptin signaling, we hypothesized that leptin may modulate GLP-1 secretion. Leptin significantly stimulated GLP-1 secretion (by up to 250% of control) from fetal rat intestinal cells, a mouse L cell line (GLUTag), and a human L cell line (NCI-H716) in a dose-dependent manner (P < 0.05-0.001). The long form of the leptin receptor was shown to be expressed, and leptin induced the phosphorylation of STAT3 in the three cell types. The leptin receptor was also expressed by rodent and human intestinal L cells, and leptin (1 mg/kg i.p.) significantly stimulated GLP-1 secretion in rats and ob/ob mice. To determine the effect of leptin resistance on GLP-1 secretion, C57BL/6 mice were fed a high-fat (45%) or low-fat (10%) diet for 8 weeks. Mice on the high-fat diet became obese; developed glucose intolerance, hyperinsulinemia, and hyperleptinemia; and were leptin resistant. Mice on the high-fat diet also had twofold lower basal plasma GLP-1 and a diminished GLP-1 response to oral glucose, by 28.5 +/- 5.0% (P < 0.05). These results show for the first time that leptin stimulates GLP-1 secretion from rodent and human intestinal L cells, and they suggest that leptin resistance may account for the decreased levels of GLP-1 found in obese humans.
Collapse
Affiliation(s)
- Younes Anini
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Crit Rev Clin Lab Sci 2003. [DOI: 10.1080/713609354/?{alert(1)}] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
40
|
Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 2002; 51:3440-9. [PMID: 12453898 DOI: 10.2337/diabetes.51.12.3440] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Whereas the loss of ATP-sensitive K(+) channel (K(ATP) channel) activity in human pancreatic beta-cells causes severe hypoglycemia in certain forms of hyperinsulinemic hypoglycemia, similar channel loss in sulfonylurea receptor-1 (SUR1) and Kir6.2 null mice yields a milder phenotype that is characterized by normoglycemia, unless the animals are stressed. While investigating potential compensatory mechanisms, we found that incretins, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), can increase the cAMP content of Sur1KO islets but do not potentiate glucose-stimulated insulin release. This impairment is secondary to a restriction in the ability of Sur1KO beta-cells to sense cAMP correctly. Potentiation does not appear to require cAMP-activated protein kinase (PKA) because H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) and KT5720, inhibitors of PKA, do not affect stimulation by GLP-1, GIP, or exendin-4 in wild-type islets, although they block phosphorylation of cAMP-response element-binding protein. The impaired incretin response in Sur1KO islets is specific; the stimulation of insulin release by other modulators, including mastoparan and activators of protein kinase C, is conserved. The results suggest that the defect responsible for the loss of cAMP-induced potentiation of insulin secretion is PKA independent. We hypothesize that a reduced release of insulin in response to incretins may contribute to the unexpected normoglycemic phenotype of Sur1KO mice versus the pronounced hypoglycemia seen in neonates with loss of K(ATP) channel activity.
Collapse
Affiliation(s)
- Mitsuhiro Nakazaki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ahrén B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 2001; 50:1030-8. [PMID: 11334405 DOI: 10.2337/diabetes.50.5.1030] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied the mechanisms and physiological relevance of the cephalic insulin response to meal ingestion in 12 healthy women (age 63 +/- 0.4 years; BMI 27.7 +/- 1.7 kg/m2). The ganglionic antagonist, trimethaphan, which impairs neurotransmission across parasympathetic and sympathetic autonomic ganglia, or atropine or saline was given intravenously during the first 15 min after ingestion of a standard meal (350 kcal). During saline infusion, insulin levels increased during the first 10 min after meal ingestion, whereas the first increase in glucose was evident at 15 min. The preabsorptive 10-min insulin response was reduced by 73 +/- 11% by trimethaphan (P = 0.009), accompanied by impaired reduction of glucose levels from 25 to 60 min after meal ingestion (deltaglucose = -1.27 +/- 0.5 [with saline] vs. 0.1 +/- 0.4 mmol/l [with trimethaphan]; P = 0.008). This reduction at 25-60 min in glucose levels correlated significantly to the 10-min insulin response (r = 0.65, P = 0.024). The 10-min insulin response to meal ingestion was also reduced by atropine, but only by 20 +/- 9% (P = 0.045), which was lower than the reduction with trimethaphan (P = 0.004). The preabsorptive insulin response was not accompanied by any increase in circulating levels of gastric inhibitory polypeptide (GIP) or glucagon-like peptide 1 (GLP-1). In conclusion, 1) the early preabsorptive insulin response to meal ingestion in humans can be largely attributed to autonomic activation mediated by noncholinergic and cholinergic mechanisms, 2) this cephalic insulin response is required for a normal postprandial glucose tolerance, and 3) GIP and GLP-1 do not contribute to the preabsorptive cephalic phase insulin response to meal ingestion.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Sweden.
| | | |
Collapse
|