1
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
2
|
Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J Clin Med 2023; 12:jcm12030893. [PMID: 36769541 PMCID: PMC9917549 DOI: 10.3390/jcm12030893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The hair cycle is composed of four primary phases: anagen, catagen, telogen, and exogen. Anagen is a highly mitotic phase characterized by the production of a hair shaft from the hair follicle, whereas catagen and telogen describe regression and the resting phase of the follicle, respectively, ultimately resulting in hair shedding. While 9% of hair follicles reside in telogen at any time, a variety of factors promote anagen to telogen transition, including inflammation, hormones, stress, nutritional deficiency, poor sleep quality, and cellular division inhibiting medication. Conversely, increased blood flow, direct stimulation of the hair follicle, and growth factors promote telogen to anagen transition and subsequent hair growth. This review seeks to comprehensively describe the hair cycle, anagen and telogen balance, factors that promote anagen to telogen transition and vice versa, and the clinical utility of a variety of lab testing and evaluations. Ultimately, a variety of factors impact the hair cycle, necessitating a holistic approach to hair loss.
Collapse
|
3
|
Tawfik I, Gottschalk B, Jarc A, Bresilla D, Rost R, Obermayer-Pietsch B, Graier WF, Madreiter-Sokolowski CT. T3-induced enhancement of mitochondrial Ca 2+ uptake as a boost for mitochondrial metabolism. Free Radic Biol Med 2022; 181:197-208. [PMID: 35091061 DOI: 10.1016/j.freeradbiomed.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Thyroid hormones act as master regulators of cellular metabolism. Thereby, the biologically active triiodothyronine (T3) induces the expression of genes to enhance mitochondrial metabolic function. Notably, Ca2+ ions are necessary for the activity of dehydrogenases of the tricarboxylic acid cycle and, thus, mitochondrial respiration. We investigated whether treating HeLa cells with T3 causes alterations in mitochondrial Ca2+ ([Ca2+]mito) levels. Real-time measurements by fluorescence microscopy revealed that treatment with T3 for 3 h induces a significant increase in basal [Ca2+]mito levels and [Ca2+]mito uptake upon the depletion of the endoplasmic reticulum (ER) Ca2+ store, while cytosolic Ca2+ levels remained unchanged. T3 incubation was found to upregulate mRNA expression levels of uncoupling proteins 2 and 3 (UCP2, UCP3) and of protein arginine methyltransferase 1 (PRMT1). Live-cell imaging revealed that T3-induced enhancement of mitochondrial Ca2+ uptake depends on the mitochondrial Ca2+ uniporter (MCU), UCP2, and PRMT1 that are essential for increased mitochondrial ATP ([ATP]mito) production after T3 treatment. Besides, increased [Ca2+]mito and [ATP]mito levels correlated with enhanced production of reactive oxygen species (ROS) in mitochondria. Notably, ROS scavenging causes mitochondrial Ca2+ elevation and outplays the impact of T3 on [Ca2+]mito homeostasis. Based on these results, we assume that thyroid hormones adjust [Ca2+]mito homeostasis by modulating the UCP2- and PRMT1-balanced [Ca2+]mito uptake via MCU in case of physiological ROS levels to convey their impact on mitochondrial ATP and ROS production.
Collapse
Affiliation(s)
- Ines Tawfik
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Angelo Jarc
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Doruntina Bresilla
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Medical University of Graz, Auenbruggerplatz 15, 8010, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria; BioTechMed, Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
4
|
Major E, Keller I, Horváth D, Tamás I, Erdődi F, Lontay B. Smoothelin-Like Protein 1 Regulates the Thyroid Hormone-Induced Homeostasis and Remodeling of C2C12 Cells via the Modulation of Myosin Phosphatase. Int J Mol Sci 2021; 22:10293. [PMID: 34638630 PMCID: PMC8508602 DOI: 10.3390/ijms221910293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
The pathological elevation of the active thyroid hormone (T3) level results in the manifestation of hyperthyroidism, which is associated with alterations in the differentiation and contractile function of skeletal muscle (SKM). Myosin phosphatase (MP) is a major cellular regulator that hydrolyzes the phosphoserine of phosphorylated myosin II light chain. MP consists of an MYPT1/2 regulatory and a protein phosphatase 1 catalytic subunit. Smoothelin-like protein 1 (SMTNL1) is known to inhibit MP by directly binding to MP as well as by suppressing the expression of MYPT1 at the transcriptional level. Supraphysiological vs. physiological concentration of T3 were applied on C2C12 myoblasts and differentiated myotubes in combination with the overexpression of SMTNL1 to assess the role and regulation of MP under these conditions. In non-differentiated myoblasts, MP included MYPT1 in the holoenzyme complex and its expression and activity was regulated by SMTNL1, affecting the phosphorylation level of MLC20 assessed using semi-quantitative Western blot analysis. SMTNL1 negatively influenced the migration and cytoskeletal remodeling of myoblasts measured by high content screening. In contrast, in myotubes, the expression of MYPT2 but not MYPT1 increased in a T3-dependent and SMTNL1-independent manner. T3 treatment combined with SMTNL1 overexpression impeded the activity of MP. In addition, MP interacted with Na+/K+-ATPase and dephosphorylated its inhibitory phosphorylation sites, identifying this protein as a novel MP substrate. These findings may help us gain a better understanding of myopathy, muscle weakness and the disorder of muscle regeneration in hyperthyroid patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.M.); (I.K.); (D.H.); (I.T.); (F.E.)
| |
Collapse
|
5
|
Engels K, Rakov H, Hönes GS, Brix K, Köhrle J, Zwanziger D, Moeller LC, Führer D. Aging Alters Phenotypic Traits of Thyroid Dysfunction in Male Mice With Divergent Effects on Complex Systems but Preserved Thyroid Hormone Action in Target Organs. J Gerontol A Biol Sci Med Sci 2020; 74:1162-1169. [PMID: 30770932 DOI: 10.1093/gerona/glz040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Clinical manifestation of hyperthyroidism and hypothyroidism vary with age, with an attenuated, oligosymptomatic presentation of thyroid dysfunction (TD) in older patients. We asked, whether in rodents TD phenotypes are influenced by age and whether this involves changes in systemic and/or organ thyroid hormone (TH) signaling. Chronic hyper- or hypothyroidism was induced in male mice at different life stages (5, 12, and 20 months). TH excess resulted in pronounced age-specific body weight changes (increase in youngest and decrease in old mice), neither explained by changes in food intake (similar increase at all ages), nor by thermogenic gene expression in brown adipose tissue (BAT) or TH serum concentrations. Relative increase in body temperature and activity were more pronounced in old compared to young hyperthyroid mice. An attenuated hypothyroid state was found in old mice for locomotor activity and in heart and BAT on functional (less bradycardia) and gene expression level (heart and BAT). In contrast, decrease in body weight was pronounced in old hypothyroid mice. Thus, age has divergent impact on features of TD in mice, whereby effects on highly complex systems, such as energy homeostasis are not proportional to serum TH state, in contrast to organ-specific responses in heart and BAT.
Collapse
Affiliation(s)
- Kathrin Engels
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Helena Rakov
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany.,Clinical Chemistry - Division of Research, University Hospital Essen, University Duisburg-Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany.,Clinical Chemistry - Division of Research, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
6
|
Davies KL, Camm EJ, Atkinson EV, Lopez T, Forhead AJ, Murray AJ, Fowden AL. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. J Physiol 2020; 598:2453-2468. [PMID: 32087026 PMCID: PMC7317365 DOI: 10.1113/jp279194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Key points Skeletal muscle energy requirements increase at birth but little is known regarding the development of mitochondria that provide most of the cellular energy as ATP. Thyroid hormones are known regulators of adult metabolism and are important in driving several aspects of fetal development, including muscle fibre differentiation. Mitochondrial density and the abundance of mitochondrial membrane proteins in skeletal muscle increased during late gestation. However, mitochondrial functional capacity, measured as oxygen consumption rate, increased primarily after birth. Fetal hypothyroidism resulted in significant reductions in mitochondrial function and density in skeletal muscle before birth. Mitochondrial function matures towards birth and is dependent on the presence of thyroid hormones, with potential implications for the health of pre‐term and hypothyroid infants.
Abstract Birth is a significant metabolic challenge with exposure to a pro‐oxidant environment and the increased energy demands for neonatal survival. This study investigated the development of mitochondrial density and activity in ovine biceps femoris skeletal muscle during the perinatal period and examined the role of thyroid hormones in these processes. Muscle capacity for oxidative phosphorylation increased primarily after birth but was accompanied by prepartum increases in mitochondrial density and the abundance of electron transfer system (ETS) complexes I–IV and ATP‐synthase as well as by neonatal upregulation of uncoupling proteins. This temporal disparity between prepartum maturation and neonatal upregulation of mitochondrial oxidative capacity may protect against oxidative stress associated with birth while ensuring energy availability to the neonate. Fetal thyroid hormone deficiency reduced oxidative phosphorylation and prevented the prepartum upregulation of mitochondrial density and ETS proteins in fetal skeletal muscle. Overall, the data show that mitochondrial function matures over the perinatal period and is dependent on thyroid hormones, with potential consequences for neonatal viability and adult metabolic health. Skeletal muscle energy requirements increase at birth but little is known regarding the development of mitochondria that provide most of the cellular energy as ATP. Thyroid hormones are known regulators of adult metabolism and are important in driving several aspects of fetal development, including muscle fibre differentiation. Mitochondrial density and the abundance of mitochondrial membrane proteins in skeletal muscle increased during late gestation. However, mitochondrial functional capacity, measured as oxygen consumption rate, increased primarily after birth. Fetal hypothyroidism resulted in significant reductions in mitochondrial function and density in skeletal muscle before birth. Mitochondrial function matures towards birth and is dependent on the presence of thyroid hormones, with potential implications for the health of pre‐term and hypothyroid infants.
Collapse
Affiliation(s)
- K L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - E J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - E V Atkinson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - T Lopez
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - A J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - A J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - A L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
7
|
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2019; 139:1435-1450. [PMID: 30856000 DOI: 10.1161/circulationaha.118.036259] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of HFpEF and appears to be caused by both cardiac and peripheral abnormalities in the arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to impaired oxygen utilization and the resulting exercise intolerance in HFpEF. We review key aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function, the methods that are currently available to assess mitochondrial function in humans, and the evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We also discuss the role of mitochondrial function as a therapeutic target, some key considerations for the design of early-phase clinical trials using agents that specifically target mitochondrial function to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in HFpEF.
Collapse
Affiliation(s)
- Anupam A Kumar
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Daniel P Kelly
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Julio A Chirinos
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.).,the Hospital of the University of Pennsylvania, Philadelphia (J.C.)
| |
Collapse
|
8
|
Suzuki M, Banno K, Usui T, Funasaka N, Segawa T, Kirihata T, Kamisako H, Ueda K, Munakata A. Seasonal changes in plasma levels of thyroid hormones and the effects of the hormones on cellular ATP content in common bottlenose dolphin. Gen Comp Endocrinol 2018. [PMID: 29524524 DOI: 10.1016/j.ygcen.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In general, thyroid hormones (THs) stimulate cellular metabolism by inducing ATP utilization that collaterally leads to thermogenesis. However, in cetaceans, TH functions and the contribution of THs to cold adaptation are not fully understood. To investigate the role of THs in metabolism of cetaceans, seasonal changes in circulating levels in THs were investigated in the common bottlenose dolphin Tursiops truncatus that were monitored under two different conditions for two years, with routine measurements of body temperature (BT), water temperature (WT) and air temperature (AT). The effects of THs on ATP synthesis were determined using cultured cells. Blood samples were collected from the species kept in different conditions at the Taiji Whale Museum located in the temperate zone and at Okinawa Expo Park in the subtropical zone. Circulating levels in total thyroxine (T4) for the dolphins at both aquaria and total 3,5,3'-tri-iodothyronine (T3) levels in dolphins at Taiji were measured by enzyme-linked immunoassay methods, respectively, and average concentrations were compared among seasons. To confirm the effects of THs on ATP synthesis, T3 or T4 was administrated to cultured kidney cells from the same species and cellular ATP contents were quantified at 0, 24, 48, 96 and 192 h after administration. BT of common bottlenose dolphins in each aquarium was measured for health check by chance in Taiji and every morning in Okinawa. WT in pools and AT were also measured every morning. Circulating T4 levels in autumn and winter were lower than those in spring and summer in dolphins in Taiji where WT and AT varied greatly from season to season. T4 levels showed a small difference between spring and autumn in dolphins in Okinawa with warmer WT and AT in smaller amplitude ranges than in Taiji. Total T3 level in Taiji was highest in spring and lowest in autumn as T4 levels, but not significant. The BT of dolphins in Taiji was also lower in autumn and winter compared with those in spring and summer, whereas the BT of dolphins in Okinawa fell in autumn but rose in summer, albeit to a lesser extent than in Taiji. Cellular ATP was increased by administration of both T3 and T4 compared to control. Collectively, these results suggest that the cellular metabolic activities regulated by THs may be enhanced in dolphins exposed to increasing surrounding temperature for lipolysis and reduced in dolphins exposed to colder conditions for fat accumulation.
Collapse
Affiliation(s)
| | - Kaho Banno
- Nihon University, Kameino, Kanagawa, Japan
| | | | - Noriko Funasaka
- Mie University, Tsu, Mie, Japan; Taiji Whale Museum, Higashimurogun, Wakayama, Japan
| | - Takao Segawa
- Nihon University, Kameino, Kanagawa, Japan; Mie University, Tsu, Mie, Japan
| | | | | | - Keiichi Ueda
- Okinawa Churashima Foundation, Motobu, Okinawa, Japan
| | | |
Collapse
|
9
|
Chung JO, Koutsari C, Blachnio-Zabielska AU, Hames KC, Jensen MD. Intramyocellular Ceramides: Subcellular Concentrations and Fractional De Novo Synthesis in Postabsorptive Humans. Diabetes 2017; 66:2082-2091. [PMID: 28483801 PMCID: PMC5521869 DOI: 10.2337/db17-0082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
We investigated the relationship between insulin resistance markers and subsarcolemmal (SS) and intramyofibrillar (IMF) ceramide concentrations, as well as the contribution of plasma palmitate (6.5-h infusion of [U-13C]palmitate) to intramyocellular ceramides. Seventy-six postabsorptive men and women had muscle biopsies 1.5, 6.5, and 24 h after starting the tracer infusion. Concentrations and enrichment of muscle ceramides were measured by liquid chromatography-tandem mass spectrometry. We found that HOMA of insulin resistance, plasma insulin, and triglyceride concentrations were positively correlated with SS C16:0 and C18:1 ceramide, but not SS C14:0-Cer, C20:0-Cer, C24:0-Cer, and C24:1-Cer concentrations; IMF ceramide concentrations were not correlated with any metabolic parameters. The fractional contribution of plasma palmitate to 16:0 ceramide was greater in SS than IMF (SS, 18.2% vs. IMF, 8.7%; P = 0.0006). Plasma insulin concentrations correlated positively with the fractional contribution of plasma palmitate to SS 16:0 ceramide. The fractional contribution of plasma palmitate to intramyocellular SS 16:0 ceramide was positively correlated with SS C16:0 ceramide concentrations (γ = 0.435; P = 0.002). We conclude that skeletal muscle SS ceramides, especially C16 to C18 chain lengths and the de novo synthesis of intramyocellular ceramide from plasma palmitate are associated with markers of insulin resistance.
Collapse
Affiliation(s)
- Jin Ook Chung
- Endocrine Research Unit, Mayo Clinic, Rochester, MN
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | |
Collapse
|
10
|
Wu Z, Martinez ME, St. Germain DL, Hernandez A. Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology 2017; 158:419-430. [PMID: 27911598 PMCID: PMC5413080 DOI: 10.1210/en.2016-1680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023]
Abstract
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - M. Elena Martinez
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Donald L. St. Germain
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Arturo Hernandez
- Center for Molecular Medicine, and
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| |
Collapse
|
11
|
Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM, López M. Thyroid hormones induce browning of white fat. J Endocrinol 2017; 232:351-362. [PMID: 27913573 PMCID: PMC5292977 DOI: 10.1530/joe-16-0425] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3',5,5' tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3',5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4 Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José M Moreno-Navarrete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Cristina Contreras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Johan Fernø
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Department of Clinical ScienceKG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Rubén Nogueiras
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| | - José-Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
- Department of DiabetesEndocrinology and Nutrition, Hospital de Girona 'Dr Josep Trueta', Institut D'investigació Biomèdica de Girona (IdIBGi) and University of Girona, Girona, Spain
| | - Miguel López
- Department of PhysiologyCIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)Santiago de Compostela, Spain
| |
Collapse
|
12
|
Teixeira SDS, Panveloski-Costa AC, Carvalho A, Monteiro Schiavon FP, Ruiz Marque ADC, Campello RS, Bazotte RB, Nunes MT. Thyroid hormone treatment decreases hepatic glucose production and renal reabsorption of glucose in alloxan-induced diabetic Wistar rats. Physiol Rep 2016; 4:4/18/e12961. [PMID: 27655796 PMCID: PMC5037915 DOI: 10.14814/phy2.12961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
The thyroid hormone (TH) plays an important role in glucose metabolism. Recently, we showed that the TH improves glycemia control by decreasing cytokines expression in the adipose tissue and skeletal muscle of alloxan‐induced diabetic rats, which were also shown to present primary hypothyroidism. In this context, this study aims to investigate whether the chronic treatment of diabetic rats with T3 could affect other tissues that are involved in the control of glucose homeostasis, as the liver and kidney. Adult Male Wistar rats were divided into nondiabetic, diabetic, and diabetic treated with T3 (1.5 μg/100 g BW for 4 weeks). Diabetes was induced by alloxan monohydrate (150 mg/kg, BW, i.p.). Animals showing fasting blood glucose levels greater than 250 mg/dL were selected for the study. After treatment, we measured the blood glucose, serum T3, T4, TSH, and insulin concentration, hepatic glucose production by liver perfusion, liver PEPCK, GAPDH, and pAKT expression, as well as urine glucose concentration and renal expression of SGLT2 and GLUT2. T3 reduced blood glucose, hepatic glucose production, liver PEPCK, GAPDH, and pAKT content and the renal expression of SGLT2 and increased glycosuria. Results suggest that the decreased hepatic glucose output and increased glucose excretion induced by T3 treatment are important mechanisms that contribute to reduce serum concentration of glucose, accounting for the improvement of glucose homeostasis control in diabetic rats.
Collapse
Affiliation(s)
- Silvania da Silva Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Raquel S Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto B Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringa, Parana, Brazil
| | - Maria T Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Bocco BMLC, Louzada RAN, Silvestre DHS, Santos MCS, Anne-Palmer E, Rangel IF, Abdalla S, Ferreira AC, Ribeiro MO, Gereben B, Carvalho DP, Bianco AC, Werneck-de-Castro JP. Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-γ coactivator-1α expression in skeletal muscle. J Physiol 2016; 594:5255-69. [PMID: 27302464 PMCID: PMC5023700 DOI: 10.1113/jp272440] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In skeletal muscle, physical exercise and thyroid hormone mediate the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a) expression that is crucial to skeletal muscle mitochondrial function. The expression of type 2 deiodinase (D2), which activates thyroid hormone in skeletal muscle is upregulated by acute treadmill exercise through a β-adrenergic receptor-dependent mechanism. Pharmacological block of D2 or disruption of the Dio2 gene in skeletal muscle fibres impaired acute exercise-induced PGC-1a expression. Dio2 disruption also impaired muscle PGC-1a expression and mitochondrial citrate synthase activity in chronically exercised mice. ABSTRACT Thyroid hormone promotes expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a), which mediates mitochondrial biogenesis and oxidative capacity in skeletal muscle (SKM). Skeletal myocytes express the type 2 deiodinase (D2), which generates 3,5,3'-triiodothyronine (T3 ), the active thyroid hormone. To test whether D2-generated T3 plays a role in exercise-induced PGC-1a expression, male rats and mice with SKM-specific Dio2 inactivation (SKM-D2KO or MYF5-D2KO) were studied. An acute treadmill exercise session (20 min at 70-75% of maximal aerobic capacity) increased D2 expression/activity (1.5- to 2.7-fold) as well as PGC-1a mRNA levels (1.5- to 5-fold) in rat soleus muscle and white gastrocnemius muscle and in mouse soleus muscle, which was prevented by pretreatment with 1 mg (100 g body weight)(-1) propranolol or 6 mg (100 g body weight)(-1) iopanoic acid (5.9- vs. 2.8-fold; P < 0.05), which blocks D2 activity . In the SKM-D2KO mice, acute treadmill exercise failed to induce PGC-1a fully in soleus muscle (1.9- vs. 2.8-fold; P < 0.05), and in primary SKM-D2KO myocytes there was only a limited PGC-1a response to 1 μm forskolin (2.2- vs. 1.3-fold; P < 0.05). Chronic exercise training (6 weeks) increased soleus muscle PGC-1a mRNA levels (∼25%) and the mitochondrial enzyme citrate synthase (∼20%). In contrast, PGC-1a expression did not change and citrate synthase decreased by ∼30% in SKM-D2KO mice. The soleus muscle PGC-1a response to chronic exercise was also blunted in MYF5-D2KO mice. In conclusion, acute treadmill exercise increases SKM D2 expression through a β-adrenergic receptor-dependent mechanism. The accelerated conversion of T4 to T3 within myocytes mediates part of the PGC-1a induction by treadmill exercise and its downstream effects on mitochondrial function.
Collapse
Affiliation(s)
- Barbara M L C Bocco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
- Department of Translational Medicine, Federal University of São Paulo, Brazil
| | - Ruy A N Louzada
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Maria C S Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | - Igor F Rangel
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil
| | - Sherine Abdalla
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea C Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Denise P Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | - João P Werneck-de-Castro
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA.
- Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Erkol İnal E, Çarlı AB, Çanak S, Aksu O, Köroğlu BK, Savaş S. Effects of hyperthyroidism on hand grip strength and function. ACTA ACUST UNITED AC 2016; 52:663-8. [PMID: 26562373 DOI: 10.1682/jrrd.2014.09.0221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/14/2015] [Indexed: 11/05/2022]
Abstract
Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism was confirmed by clinical examination and laboratory tests. Hand grip strength was tested at the dominant hand with a Jamar hand dynamometer. The grooved pegboard test (PGT) was used to evaluate hand dexterity. The Duruöz Hand Index (DHI) was used to assess hand function. No significant differences were found in terms of clinical and demographic findings between the patients with hyperthyroidism and healthy controls (p > 0.05). Significant differences were found between the patients with hyperthyroidism and healthy controls regarding PGT and DHI scores (p < 0.05). Hyperthyroidism seemed to affect hand dexterity and function more than hand grip strength and seemed to be associated with reduced physical function more than muscle strength. This may also indicate that patients with hyperthyroidism should be evaluated by multidisplinary modalities.
Collapse
Affiliation(s)
- Esra Erkol İnal
- Department of Physical Medicine and Rehabilitation, Süleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Górecka M, Synak M, Brzezińska Z, Dąbrowski J, Żernicka E. Effect of triiodothyronine (T3) excess on fatty acid metabolism in the soleus muscle from endurance-trained rats. Biochem Cell Biol 2016; 94:101-8. [DOI: 10.1139/bcb-2015-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We studied whether short-term administration of triiodothyronine (T3) for the last 3 days of endurance training would influence the rate of uptake of palmitic acid (PA) as well as metabolism in rat soleus muscle, in vitro. Training per se did not affect the rate of PA uptake by the soleus; however, an excess of T3increased the rate of this process at 1.5 mmol/L PA, as well as the rate that at which PA was incorporated into intramuscular triacylglycerols (TG). The rate of TG synthesis in trained euthyroid rats was reduced after exercise (1.5 mmol/L PA). The rate of PA oxidation in all of the trained rats immediately after exercise was enhanced by comparison with the sedentary values. Hyperthyroidism additionally increased the rate of this process at 1.5 mmol/L PA. After a recovery period, the rate of PA oxidation returned to the control values in both the euthyroid and the hyperthyroid groups. Examination of the high-energy phosphate levels indicated that elevated PA oxidation after exercise-training in euthyroid rats was associated with stable ATP levels and increased ADP and AMP levels, thus reducing energy cellular potential (ECP). In the hyperthyroid rats, levels of ADP and AMP were increased in the sedentary as well as the exercise-trained rats. ECP levels were high as a result of high levels of ATP and decreased levels of ADP and AMP in hyperthyroid rats after the recovery period. In conclusion, short-term hyperthyroidism accelerates PA utilization in well-trained soleus muscle.
Collapse
Affiliation(s)
- M. Górecka
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - M. Synak
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Z. Brzezińska
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - J. Dąbrowski
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - E. Żernicka
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
17
|
Liu X, Du Y, Trakooljul N, Brand B, Muráni E, Krischek C, Wicke M, Schwerin M, Wimmers K, Ponsuksili S. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes. Int J Biol Sci 2015; 11:1348-62. [PMID: 26681915 PMCID: PMC4671993 DOI: 10.7150/ijbs.13132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers.
Collapse
Affiliation(s)
- Xuan Liu
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Yang Du
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Bodo Brand
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Muráni
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Carsten Krischek
- 2. 2 Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany
| | - Michael Wicke
- 3. 3 Department of Animal Science, Quality of Food of Animal Origin, Georg-August-University Goettingen, D-37075 Goettingen, Germany
| | - Manfred Schwerin
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- 1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
18
|
Lombardi A, Moreno M, de Lange P, Iossa S, Busiello RA, Goglia F. Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the "old" triiodothyronine and the "emerging" 3,5-diiodothyronine. Front Physiol 2015; 6:237. [PMID: 26347660 PMCID: PMC4543916 DOI: 10.3389/fphys.2015.00237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
3,5,3′-Triiodo-L-thyronine (T3) plays a crucial role in regulating metabolic rate and fuel oxidation; however, the mechanisms by which it affects whole-body energy metabolism are still not completely understood. Skeletal muscle (SKM) plays a relevant role in energy metabolism and responds to thyroid state by remodeling the metabolic characteristics and cytoarchitecture of myocytes. These processes are coordinated with changes in mitochondrial content, bioenergetics, substrate oxidation rate, and oxidative phosphorylation efficiency. Recent data indicate that “emerging” iodothyronines have biological activity. Among these, 3,5-diiodo-L-thyronine (T2) affects energy metabolism, SKM substrate utilization, and mitochondrial functionality. The effects it exerts on SKM mitochondria involve more aspects of mitochondrial bioenergetics; among these, respiratory chain activity, mitochondrial thermogenesis, and lipid-handling are stimulated rapidly. This mini review focuses on signaling and biochemical pathways activated by T3 and T2 in SKM that influence the above processes. These novel aspects of thyroid physiology could reveal new perspectives for understanding the involvement of SKM mitochondria in hypo- and hyper-thyroidism.
Collapse
Affiliation(s)
- Assunta Lombardi
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Rosa A Busiello
- Department of Science and Technology, University of Sannio Benevento, Italy
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio Benevento, Italy
| |
Collapse
|
19
|
Walrand S, Short KR, Heemstra LA, Novak CM, Levine JA, Coenen-Schimke JM, Nair KS. Altered regulation of energy homeostasis in older rats in response to thyroid hormone administration. FASEB J 2013; 28:1499-510. [PMID: 24344330 DOI: 10.1096/fj.13-239806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperthyroidism causes increased energy intake and expenditure, although anorexia and higher weight loss have been reported in elderly individuals with hyperthyroidism. To determine the effect of age on energy homeostasis in response to experimental hyperthyroidism, we administered 200 μg tri-iodothyronine (T3) in 7- and 27-mo-old rats for 14 d. T3 increased energy expenditure (EE) in both the young and the old rats, although the old rats lost more weight (147 g) than the young rats (58 g) because of the discordant effect of T3 on food intake, with a 40% increase in the young rats, but a 40% decrease in the old ones. The increased food intake in the young rats corresponded with a T3-mediated increase in the appetite-regulating proteins agouti-related peptide, neuropeptide Y, and uncoupling protein 2 in the hypothalamus, but no increase occurred in the old rats. Evidence of mitochondrial biogenesis in response to T3 was similar in the soleus muscle and heart of the young and old animals, but less consistent in old plantaris muscle and liver. Despite the comparable increase in EE, T3's effect on mitochondrial function was modulated by age in a tissue-specific manner. We conclude that older rats lack compensatory mechanisms to increase caloric intake in response to a T3-induced increase in EE, demonstrating a detrimental effect of age on energy homeostasis.
Collapse
Affiliation(s)
- Stephane Walrand
- 1Endocrinology Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Vazquez A. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS One 2013; 8:e63822. [PMID: 23667676 PMCID: PMC3646825 DOI: 10.1371/journal.pone.0063822] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a “metabolic cell death by overcrowding” as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0–6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6–8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6–9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.
Collapse
Affiliation(s)
- Alexei Vazquez
- Department of Radiation Oncology and Center for Systems Biology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America.
| |
Collapse
|
21
|
Mittag J, Lyons DJ, Sällström J, Vujovic M, Dudazy-Gralla S, Warner A, Wallis K, Alkemade A, Nordström K, Monyer H, Broberger C, Arner A, Vennström B. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest 2012; 123:509-16. [PMID: 23257356 DOI: 10.1172/jci65252] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/18/2012] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone's central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.
Collapse
Affiliation(s)
- Jens Mittag
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aguer C, Harper ME. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab 2012; 26:805-19. [PMID: 23168281 DOI: 10.1016/j.beem.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the development of type 2 diabetes mellitus, skeletal muscle is a major site of insulin resistance. The latter has been linked to mitochondrial dysfunction and impaired fatty acid oxidation. Some hormones like insulin, thyroid hormones and adipokines (e.g., leptin, adiponectin) have positive effects on muscle mitochondrial bioenergetics through their direct or indirect effects on mitochondrial biogenesis, mitochondrial protein expression, mitochondrial enzyme activities and/or AMPK pathway activation--all of which can improve fatty acid oxidation. It is therefore not surprising that treatment with these hormones has been proposed to improve muscle and whole body insulin sensitivity. However, treatment of diabetic patients with leptin and adiponectin has no effect on muscle mitochondrial bioenergetics showing resistance to these hormones during type 2 diabetes. Furthermore, treatment with most thyroid hormones has unexpectedly revealed negative effects on muscle insulin sensitivity. Future research should focus on development of agents that improve metabolic dysfunction downstream of hormone receptors.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5.
| | | |
Collapse
|
23
|
Befroy DE, Rothman DL, Petersen KF, Shulman GI. ³¹P-magnetization transfer magnetic resonance spectroscopy measurements of in vivo metabolism. Diabetes 2012; 61:2669-78. [PMID: 23093656 PMCID: PMC3478545 DOI: 10.2337/db12-0558] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Magnetic resonance spectroscopy offers a broad range of noninvasive analytical methods for investigating metabolism in vivo. Of these, the magnetization-transfer (MT) techniques permit the estimation of the unidirectional fluxes associated with metabolic exchange reactions. Phosphorus (³¹P) MT measurements can be used to examine the bioenergetic reactions of the creatine-kinase system and the ATP synthesis/hydrolysis cycle. Observations from our group and others suggest that the inorganic phosphate (P(i)) → ATP flux in skeletal muscle may be modulated by certain conditions, including aging, insulin resistance, and diabetes, and may reflect inherent alterations in mitochondrial metabolism. However, such effects on the P(i) → ATP flux are not universally observed under conditions in which mitochondrial function, assessed by other techniques, is impaired, and recent articles have raised concerns about the absolute magnitude of the measured reaction rates. As the application of ³¹P-MT techniques becomes more widespread, this article reviews the methodology and outlines our experience with its implementation in a variety of models in vivo. Also discussed are potential limitations of the technique, complementary methods for assessing oxidative metabolism, and whether the P(i) → ATP flux is a viable biomarker of metabolic function in vivo.
Collapse
Affiliation(s)
- Douglas E Befroy
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.
Collapse
Affiliation(s)
- Amy Warner
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
25
|
Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PLoS One 2011; 6:e25881. [PMID: 22073143 PMCID: PMC3206798 DOI: 10.1371/journal.pone.0025881] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022] Open
Abstract
Previous experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from serine biosynthesis, one-carbon metabolism and the glycine cleavage system, and show that the pathway is transcriptionally upregulated in an inducible murine model of Myc-driven liver tumorigenesis. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate - but higher rate of alanine secretion. Thus, in cells using the standard - or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis.
Collapse
Affiliation(s)
- Alexei Vazquez
- Division of Bioinformatics and Surveillance, Department of Radiation Oncology, The Cancer Institute of New Jersey and University of Medicine and Dentistry of New Jersey, Robert-Wood Johnson Medical School, New Brunswick, New Jersey, United States of America.
| | | | | |
Collapse
|
26
|
Irving BA, Short KR, Nair KS, Stump CS. Nine days of intensive exercise training improves mitochondrial function but not insulin action in adult offspring of mothers with type 2 diabetes. J Clin Endocrinol Metab 2011; 96:E1137-41. [PMID: 21508128 PMCID: PMC3417164 DOI: 10.1210/jc.2010-2863] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT A close association between insulin resistance and reduced skeletal muscle oxidative capacity has been reported in adult offspring of people with type 2 diabetes (T2D), prompting a hypothesis that insulin resistance may result from mitochondrial dysfunction or vice versa. OBJECTIVE We determined whether 9 d of intensive exercise training ameliorates the mitochondrial dysfunction and insulin resistance in offspring of T2D. METHODS We compared the response to 9 d of intensive exercise training in eight (seven females, one male) healthy adult offspring of mothers with T2D with eight (six females, two males) nondiabetic controls. Skeletal muscle mitochondrial ATP production was assessed using a luciferase-based assay, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamps. RESULTS Short-term intensive training increased skeletal muscle mitochondrial ATP production and citrate synthase activity similarly in both groups (P < 0.01). In contrast, whereas short-term intensive training reduced the fasting glucose (~5%, P = 0.035) and insulin levels (~40%, P = 0.011) as well as increased the glucose infusion rate during the hyperinsulinemic-euglycemic clamp (~50%, P = 0.028) among controls, no changes in these parameters were observed among offspring except for an increase in fasting glucose (~7%, P = 0.004). CONCLUSION A short-term intensive exercise training program was equally effective at increasing skeletal muscle oxidative capacity in nondiabetic people and in the offspring of mothers with diabetes. In contrast, the exercise improved insulin sensitivity only in nondiabetic people but not in the offspring of T2D mothers, revealing dissociation between improvements in skeletal muscle mitochondrial function and insulin sensitivity. The exercise effect on mitochondrial function and insulin sensitivity seems to be mediated by different regulatory pathways.
Collapse
Affiliation(s)
- Brian A Irving
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota 55009, USA.
| | | | | | | |
Collapse
|
27
|
Vazquez A, Oltvai ZN. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 2011; 6:e19538. [PMID: 21559344 PMCID: PMC3084886 DOI: 10.1371/journal.pone.0019538] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.
Collapse
Affiliation(s)
- Alexei Vazquez
- Department of Radiation Oncology, Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America.
| | | |
Collapse
|
28
|
Mitrou P, Raptis SA, Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue. Endocr Rev 2010; 31:663-79. [PMID: 20519325 DOI: 10.1210/er.2009-0046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyperthyroidism leads to an enhanced demand for glucose, which is primarily provided by increased rates of hepatic glucose production due to increased gluconeogenesis (in the fasting state) and increased Cori cycle activity (in the late postprandial and fasting state). Adipose tissue lipolysis is increased in the fasting state, resulting in increased production of glycerol and nonesterified fatty acids. Under these conditions, increased glycerol generated by lipolysis and increased amino acids generated by proteolysis are used as substrates for gluconeogenesis. Increased nonesterified fatty acid levels are necessary to stimulate gluconeogenesis and provide substrate for oxidation in other tissues (such as muscle). In the postprandial period, insulin-stimulated glucose uptake by the skeletal muscle has been found to be normal or increased, mainly due to increased blood flow. Under hyperthyroid conditions, insulin-stimulated rates of glycogen synthesis in skeletal muscle are decreased, whereas there is a preferential increase in the rates of lactate formation vs. glucose oxidation leading to increased Cori cycle activity. In hyperthyroidism, the Cori cycle could be considered as a large substrate cycle; by maintaining a high flux through it, a dynamic buffer of glucose and lactate is provided, which can be used by other tissues as required. Moreover, lipolysis is rapidly suppressed to normal after the meal to facilitate the disposal of glucose by the insulin-resistant muscle. This ensures the preferential use of glucose when available and helps to preserve fat stores.
Collapse
Affiliation(s)
- Panayota Mitrou
- Hellenic National Center for Research, Prevention, and Treatment of Diabetes Mellitus and Its Complications, 10675 Athens, Greece
| | | | | |
Collapse
|
29
|
Lanza IR, Sreekumaran Nair K. Regulation of skeletal muscle mitochondrial function: genes to proteins. Acta Physiol (Oxf) 2010; 199:529-47. [PMID: 20345409 DOI: 10.1111/j.1748-1716.2010.02124.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The impact of ageing on mitochondrial function and the deterministic role of mitochondria on senescence continue to be topics of vigorous debate. Many studies report that skeletal muscle mitochondrial content and function are reduced with ageing and metabolic diseases associated with insulin resistance. However, an accumulating body of literature suggests that physical inactivity typical of ageing may be a more important determinant of mitochondrial function than chronological age, per se. Reports of age-related declines in mitochondrial function have spawned a vast body of literature devoted to understanding the underlying mechanisms. These mechanisms include decreased abundance of mtDNA, reduced mRNA levels, as well as decreased synthesis and expression of mitochondrial proteins, ultimately resulting in decreased function of the whole organelle. Effective therapies to prevent, reverse or delay the onset of the aforementioned mitochondrial changes, regardless of their inevitability or precise underlying causes, require an intimate understanding of the processes that regulate mitochondrial biogenesis, which necessitates the coordinated regulation of nuclear and mitochondrial genomes. Herein we review the current thinking on regulation of mitochondrial biogenesis by transcription factors and transcriptional co-activators and the role of hormones and exercise in initiating this process. We review how exercise may help preserve mitochondrial content and functionality across the lifespan, and how physical inactivity is emerging as a major determinant of many age-associated changes at the level of the mitochondrion. We also review evidence that some mitochondrial changes with ageing are independent of exercise or physical activity and appear to be inevitable consequences of old age.
Collapse
Affiliation(s)
- I R Lanza
- Endocrinology Research Unit, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
30
|
Vazquez A, Liu J, Zhou Y, Oltvai ZN. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC SYSTEMS BIOLOGY 2010; 4:58. [PMID: 20459610 PMCID: PMC2880972 DOI: 10.1186/1752-0509-4-58] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/06/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. RESULTS Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. CONCLUSIONS Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.
Collapse
Affiliation(s)
- Alexei Vazquez
- Department of Radiation Oncology, The Cancer Institute of New Jersey and UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08963, USA.
| | | | | | | |
Collapse
|
31
|
Tatpati LL, Irving BA, Tom A, Bigelow ML, Klaus K, Short KR, Nair KS. The effect of branched chain amino acids on skeletal muscle mitochondrial function in young and elderly adults. J Clin Endocrinol Metab 2010; 95:894-902. [PMID: 20022987 PMCID: PMC2840857 DOI: 10.1210/jc.2009-1822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT A reduction in maximal mitochondrial ATP production rate (MAPR) and mitochondrial DNA (mtDNA) abundance occurs with age in association with muscle weakness and reduced endurance in elderly people. Branched chain amino acids (BCAA) have been extensively used to improve physical performance. OBJECTIVE The objective was to determine whether an 8-h infusion of BCAA enhances MAPR equally in healthy young and elderly adults. METHODS Using a crossover study design, we compared the effect BCAA vs. saline infusion in 12 young (23.0 +/- 0.8 yr) and 12 elderly (70.7 +/- 1.1 yr) participants matched for sex and body mass index. Skeletal muscle MAPR and mtDNA abundance were measured in muscle biopsy samples obtained before and at the end of the 8-h infusion. RESULTS In young participants, MAPR with the substrates glutamate plus malate (supplying electrons to complex I) and succinate plus rotenone (complex II) increased in response to BCAA infusion, relative to a decline in MAPR in response to the saline infusion. In contrast, MAPR was unaffected by BCAA infusion in the elderly participants. Moreover, mtDNA abundance was lower in the elderly compared with the young participants but was unaffected by the BCAA infusion. Insulin and C-peptide concentrations declined over time during the saline infusion, but these declines were prevented by the BCAA infusion. CONCLUSIONS BCAA increased skeletal muscle MAPR in the young participants in comparison with saline, but this effect was not seen in the elderly participants indicating, that unlike in the young, BCAA does not increase muscle mitochondrial function in the elderly.
Collapse
Affiliation(s)
- Laura L Tatpati
- Mayo Clinic, 200 First Street SW, Joseph 5-194, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Karakelides H, Irving BA, Short KR, O'Brien P, Nair KS. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 2010; 59:89-97. [PMID: 19833885 PMCID: PMC2797949 DOI: 10.2337/db09-0591] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Reductions in insulin sensitivity in conjunction with muscle mitochondrial dysfunction have been reported to occur in many conditions including aging. The objective was to determine whether insulin resistance and mitochondrial dysfunction are directly related to chronological age or are related to age-related changes in body composition. RESEARCH DESIGN AND METHODS Twelve young lean, 12 young obese, 12 elderly lean, and 12 elderly obese sedentary adults were studied. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial ATP production rates (MAPRs) were measured in freshly isolated mitochondria obtained from vastus lateralis biopsy samples using the luciferase reaction. RESULTS Obese participants, independent of age, had reduced insulin sensitivity based on lower rates of glucose infusion during a hyperinsulinemic-euglycemic clamp. In contrast, age had no independent effect on insulin sensitivity. However, the elderly participants had lower muscle MAPRs than the young participants, independent of obesity. Elderly participants also had higher levels inflammatory cytokines and total adiponectin. In addition, higher muscle MAPRs were also noted in men than in women, whereas glucose infusion rates were higher in women. CONCLUSIONS The results demonstrate that age-related reductions in insulin sensitivity are likely due to an age-related increase in adiposity rather than a consequence of advanced chronological age. The results also indicate that an age-related decrease in muscle mitochondrial function is neither related to adiposity nor insulin sensitivity. Of interest, a higher mitochondrial ATP production capacity was noted in the men, whereas the women were more insulin sensitive, demonstrating further dissociation between insulin sensitivity and muscle mitochondrial function.
Collapse
Affiliation(s)
- Helen Karakelides
- From the Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Brian A. Irving
- From the Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kevin R. Short
- From the Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter O'Brien
- From the Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - K. Sreekumaran Nair
- From the Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
- Corresponding author: K. Sreekumaran Nair,
| |
Collapse
|
33
|
Chan SL, Wei Z, Chigurupati S, Tu W. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Res Rev 2010; 9:20-40. [PMID: 19800420 DOI: 10.1016/j.arr.2009.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.
Collapse
|
34
|
|
35
|
Yehuda-Shnaidman E, Kalderon B, Azazmeh N, Bar-Tana J. Gating of the mitochondrial permeability transition pore by thyroid hormone. FASEB J 2009; 24:93-104. [PMID: 19723706 DOI: 10.1096/fj.09-133538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calorigenic-thermogenic activity of thyroid hormone (T3) has long been ascribed to uncoupling of mitochondrial oxidative phosphorylation. However, the mode of action of T3 in promoting mitochondrial proton leak is still unresolved. Mitochondrial uncoupling by T3 is reported here to be transduced in vivo in rats and in cultured Jurkat cells by gating of the mitochondrial permeability transition pore (PTP). T3-induced PTP gating is shown here to be abrogated in inositol 1,4,5-trisphosphate (IP(3)) receptor 1 (IP(3)R1)(-/-) cells, indicating that the endoplasmic reticulum IP(3)R1 may serve as upstream target for the mitochondrial activity of T3. IP(3)R1 gating by T3 is due to its increased expression and truncation into channel-only peptides, resulting in IP(3)-independent Ca(2+) efflux. Increased cytosolic Ca(2+) results in activation of protein phosphatase 2B, dephosphorylation and depletion of mitochondrial Bcl2 (S70), and increase in mitochondrial free Bax leading to low-conductance PTP gating. The T3 transduction pathway integrates genomic and nongenomic activities of T3 in regulating mitochondrial energetics and may offer novel targets for thyromimetics designed to modulate energy expenditure.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
36
|
Wu Q, Gong D, Tian N, Zhu L, Guan L, Yang M, Yuan B, Qiu Q, Lv H, Zou Y. Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: roles of mitochondrial uncoupling protein 2 and ATP stores. Dig Dis Sci 2009; 54:1918-25. [PMID: 19104935 DOI: 10.1007/s10620-008-0650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/21/2008] [Indexed: 12/09/2022]
Abstract
Uncoupling protein 2 (UCP(2)), an inner mitochondrial membrane protein, can limit the generation of reactive oxygen species (ROS) and protect cells from injuries mediated by oxidative stress. We investigated the effect of upregulation of UCP(2) in the regenerating liver 96 h after 68% partial hepatectomy (PH) on the self-protection of regenerating liver against carbon tetrachloride (CCl(4)) poisoning. Hepatotoxicity was induced in vivo by administering CCl(4) to rats that had undergone PH. After CCl(4) poisoning, the regenerating liver appeared to have less histological damage and lower serum alanine aminotransferase (ALT) levels. Lower malondialdehyde production and higher glutathione contents were also observed in the regenerating liver compared with the sham-operated liver after CCl(4) poisoning. UCP(2) expression was markedly elevated in the regenerating liver, and further increased after CCl(4) intoxication. Mitochondrial membrane potential and adenosine triphosphate stores maintained higher levels in the regenerating liver than in sham-operated liver after CCl(4) intoxication. The results showed that the regenerating liver exhibited a potent ability to resist CCl(4) intoxication, and the autoprotection of regenerating liver might result from reduction of ROS by UCP(2) and maintenance of higher ATP stores.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mehta SL, Li PA. Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab 2009; 29:1069-78. [PMID: 19240738 DOI: 10.1038/jcbfm.2009.4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The uncoupling proteins (UCPs) are mitochondrial transporter proteins involved in proton conductance across inner mitochondrial membrane (IMM). UCP2, which is one of the members of this class of proteins, has a wide but restricted tissue distribution including brain. Its physiologic role according to emerging evidences, although still not clear, indicate that distribution of UCP2 may be related to regulation of mitochondria membrane potential (DeltaPsim), production of reactive oxygen species (ROS), preservation of calcium homeostasis, modulation of neuronal activity, and eventually inhibition of cellular damage. These factors are very important in determining the fate of neurons and damage progression in the brain during various neurodegenerative diseases including cerebral stroke. Recent evidence indicates that an increased expression and activity of UCP2 are well correlated with neuronal survival after stroke and trauma. This review briefly covers the present understanding of UCP2, which eventually may be beneficial to understand the precise role of UCP2 to develop strategy to identify its potential therapeutic application.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Pharmaceutical Sciences, Biotechnical Research Institute and Technology Research Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA.
| | | |
Collapse
|
38
|
You YN, Short KR, Jourdan M, Klaus KA, Walrand S, Nair KS. The effect of high glucocorticoid administration and food restriction on rodent skeletal muscle mitochondrial function and protein metabolism. PLoS One 2009; 4:e5283. [PMID: 19381333 PMCID: PMC2667640 DOI: 10.1371/journal.pone.0005283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
Background Glucocorticoids levels are high in catabolic conditions but it is unclear how much of the catabolic effects are due to negative energy balance versus glucocorticoids and whether there are distinct effects on metabolism and functions of specific muscle proteins. Methodology/Principal Findings We determined whether 14 days of high dose methylprednisolone (MPred, 4 mg/kg/d) Vs food restriction (FR, food intake matched to MPred) in rats had different effects on muscle mitochondrial function and protein fractional synthesis rates (FSR). Lower weight loss (15%) occurred in FR than in MPred (30%) rats, while a 15% increase occurred saline-treated Controls. The per cent muscle loss was significantly greater for MPred than FR. Mitochondrial protein FSR in MPred rats was lower in soleus (51 and 43%, respectively) and plantaris (25 and 55%) than in FR, while similar decline in protein FSR of the mixed, sarcoplasmic, and myosin heavy chain occurred. Mitochondrial enzymatic activity and ATP production were unchanged in soleus while in plantaris cytochrome c oxidase activity was lower in FR than Control, and ATP production rate with pyruvate + malate in MPred plantaris was 28% lower in MPred. Branched-chain amino acid catabolic enzyme activities were higher in both FR and MPred rats indicating enhanced amino acid oxidation capacity. Conclusion/Significance MPred and FR had little impact on mitochondrial function but reduction in muscle protein synthesis occurred in MPred that could be explained on the basis of reduced food intake. A greater decline in proteolysis may explain lesser muscle loss in FR than in MPred rats.
Collapse
Affiliation(s)
- Y. Nancy You
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Kevin R. Short
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Marion Jourdan
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Katherine A. Klaus
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Stephane Walrand
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - K. Sreekumaran Nair
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Jaleel A, Short KR, Asmann YW, Klaus KA, Morse DM, Ford GC, Nair KS. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metab 2008; 295:E1255-68. [PMID: 18765679 PMCID: PMC2584812 DOI: 10.1152/ajpendo.90586.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle mitochondrial dysfunction occurs in many conditions including aging and insulin resistance, but the molecular pathways of the mitochondrial dysfunction remain unclear. Presently, no methodologies are available to measure synthesis rates of individual mitochondrial proteins, which limits our ability to fully understand the translational regulation of gene transcripts. Here, we report a methodology to measure synthesis rates of multiple muscle mitochondrial proteins, which, along with large-scale measurements of mitochondrial gene transcripts and protein concentrations, will enable us to determine whether mitochondrial alteration is due to transcriptional or translational changes. The methodology involves in vivo labeling of muscle proteins with l-[ring-(13)C(6)]phenylalanine, protein purification by two-dimensional gel electrophoresis of muscle mitochondrial fraction, and protein identification and stable isotope abundance measurements by tandem mass spectrometry. Synthesis rates of 68 mitochondrial and 23 nonmitochondrial proteins from skeletal muscle mitochondrial fraction showed a 10-fold range, with the lowest rate for a structural protein such as myosin heavy chain (0.16 +/- 0.04%/h) and the highest for a mitochondrial protein such as dihydrolipoamide branched chain transacylase E2 (1.5 +/- 0.42%/h). This method offers an opportunity to better define the translational regulation of proteins in skeletal muscle or other tissues.
Collapse
Affiliation(s)
- Abdul Jaleel
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.
Collapse
Affiliation(s)
- Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
41
|
Yamauchi M, Kambe F, Cao X, Lu X, Kozaki Y, Oiso Y, Seo H. Thyroid hormone activates adenosine 5'-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-beta. Mol Endocrinol 2008; 22:893-903. [PMID: 18187603 DOI: 10.1210/me.2007-0249] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of glucose and fatty acid homeostasis. In muscle cells, AMPK stimulates mitochondrial fatty acid oxidation and ATP production. The thyroid hormone T3 increases cellular oxygen consumption and is considered to be a major regulator of mitochondrial activities. In this study, we examined the possible involvement of AMPK in the stimulatory action of T3 on mitochondria. Treatment of C2C12 myoblasts with T3 rapidly led to phosphorylation of AMPK. Acetyl-coenzyme A carboxylase, a direct target of AMPK, was also phosphorylated after T3 treatment. Similar results were obtained with 3T3-L1, FRTL-5, and HeLa cells. Stable expression of T3 receptor (TR)-alpha or TRbeta in Neuro2a cells enhanced this effect of T3, indicating the involvement of TRs. Because HeLa cells express only Ca2+/calmodulin-dependent protein kinase kinase-beta (CaMKKbeta), one of two known AMPK kinases, it was suggested that the effect of T3 is mediated by CaMKKbeta. Indeed, experiments using a CaMKK inhibitor, STO-609, and an isoform-specific small interfering RNA demonstrated the CaMKKbeta-dependent phosphorylation of AMPK. Furthermore, T3 was found to rapidly induce intracellular Ca2+ mobilization in HeLa cells, and a Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suppressed T3- as well as ionomycin-dependent phosphorylation of AMPK. In addition, T3-dependent oxidation of palmitic acids was attenuated by BAPTA, STO-609, and the small interfering RNA for CaMKKbeta, indicating that T3-induced activation of AMPK leads to increased fatty acid oxidation. These results demonstrate that T3 nontranscriptionally activates AMPK via intracellular Ca2+ mobilization and CaMKKbeta activation, thereby stimulating mitochondrial fatty acid oxidation.
Collapse
Affiliation(s)
- Masako Yamauchi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Dubois S, Abraham P, Rohmer V, Rodien P, Audran M, Dumas JF, Ritz P. Thyroxine therapy in euthyroid patients does not affect body composition or muscular function. Thyroid 2008; 18:13-9. [PMID: 17988199 DOI: 10.1089/thy.2007.0037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The main objective of the study was to evaluate the effects of small increments in thyroxine (T4) levels following levothyroxine (L-T4) administration on the body composition of women patients. The secondary objective was to assess the effect of the therapy on energy expenditure and muscular function. METHODS The prospective, randomized study consisted of a 12-month follow-up of 37 women with thyroid nodules. The patients were divided into two groups for comparison, one treated with L-T4 (20 women) and the other untreated (17 women). L-T4 dose was individually adjusted to obtain a serum thyroid-stimulating hormone in the lower portion of the normal range. Multiple tests, including bioelectrical impedance analysis, dual-energy X-ray absorptiometry, air displacement plethysmography, measurement of waist circumference, and skinfold anthropometry, were used to investigate the muscular, fat, and water compartments; energy expenditure and muscular function were assessed by cycle ergometry. RESULTS There were no significant differences in body composition, heart rate, energy metabolism, or muscular function between the group of women treated with L-T4 and the untreated group. CONCLUSION The controlled increase of circulating T4 does not appear to modify the body composition or muscular function in women patients.
Collapse
Affiliation(s)
- Séverine Dubois
- Pôle de maladies métaboliques et médecine interne; Centre Hospitalier Universitaire d'Angers, Angers Cedex 01, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Nabben M, Hoeks J. Mitochondrial uncoupling protein 3 and its role in cardiac- and skeletal muscle metabolism. Physiol Behav 2007; 94:259-69. [PMID: 18191161 DOI: 10.1016/j.physbeh.2007.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3), is primarily expressed in skeletal muscle mitochondria and has been suggested to be involved in mediating energy expenditure via uncoupling, hereby dissipating the mitochondrial proton gradient necessary for adenosine triphosphate (ATP) synthesis. Although some studies support a role for UCP3 in energy metabolism, other studies pointed towards a function in fatty acid metabolism. Thus, the protein is up regulated or high when fatty acid supply to the mitochondria exceeds the capacity to oxidize fatty acids and down regulated or low when oxidative capacity is high or improved. Irrespective of the exact operating mechanism, UCP3 seems to protect mitochondria against lipid-induced oxidative stress, which makes this protein a potential player in the development of type 2 diabetes mellitus. Next to skeletal muscle, UCP3 is also expressed in cardiac muscle where its role is relatively unexplored. Interestingly, energy deficiency in cardiac muscle is associated to heart failure and UCP3 might contribute to this energy deficiency. It has been suggested that UCP3 decreases energy status via uncoupling of mitochondrial respiration, but the available data does not provide a unified answer. In fact, the results obtained regarding cardiac UCP3 are very similar as in skeletal muscle, implying that its physiological function can be extrapolated. Therefore, cardiac UCP3 can just as well serve to protect the heart against lipid-induced oxidative stress, similar to the function described for skeletal muscle UCP3. The present review will deal with the available literature on both skeletal muscle- and cardiac UCP3 to elucidate its physiological function in these tissues.
Collapse
Affiliation(s)
- Miranda Nabben
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | |
Collapse
|
44
|
Karakelides H, Asmann YW, Bigelow ML, Short KR, Dhatariya K, Coenen-Schimke J, Kahl J, Mukhopadhyay D, Nair KS. Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes 2007; 56:2683-9. [PMID: 17660267 DOI: 10.2337/db07-0378] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Muscle mitochondrial dysfunction occurs in many insulin-resistant states, such as type 2 diabetes, prompting a hypothesis that mitochondrial dysfunction may cause insulin resistance. We determined the impact of insulin deficiency on muscle mitochondrial ATP production by temporarily depriving type 1 diabetic patients of insulin treatment. RESEARCH DESIGN AND METHODS We withdrew insulin for 8.6 +/- 0.6 h in nine C-peptide-negative type 1 diabetic subjects and measured muscle mitochondrial ATP production and gene transcript levels (gene array and real-time quantitative PCR) and compared with insulin-treated state. We also measured oxygen consumption (indirect calorimetry); plasma levels of glucagon, bicarbonate, and other substrates; and urinary nitrogen. RESULTS Withdrawal of insulin resulted in increased plasma glucose, branched chain amino acids, nonesterified fatty acids, beta-hydroxybutyrate, and urinary nitrogen but no change in bicarbonate. Insulin deprivation decreased muscle mitochondrial ATP production rate (MAPR) despite an increase in whole-body oxygen consumption and altered expression of many muscle mitochondrial gene transcripts. Transcript levels of genes involved in oxidative phosphorylation were decreased, whereas those involved in vascular endothelial growth factor (VEGF) signaling, inflammation, cytoskeleton signaling, and integrin signaling pathways were increased. CONCLUSIONS Insulin deficiency and associated metabolic changes reduce muscle MAPR and expression of oxidative phosphorylation genes in type 1 diabetes despite an increase in whole-body oxygen consumption. Increase in transcript levels of genes involved in VEGF, inflammation, cytoskeleton, and integrin signaling pathways suggest that vascular factors and cell proliferation that may interact with mitochondrial changes occurred.
Collapse
Affiliation(s)
- Helen Karakelides
- Division of Endocrinology and Metabolism and Endocrine Research Unit, Mayo Clinic, 200 First St. SW, Joseph 5-194, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Athéa Y, Garnier A, Fortin D, Bahi L, Veksler V, Ventura-Clapier R. Mitochondrial and energetic cardiac phenotype in hypothyroid rat. Relevance to heart failure. Pflugers Arch 2007; 455:431-42. [PMID: 17638011 PMCID: PMC4710782 DOI: 10.1007/s00424-007-0307-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/16/2007] [Accepted: 06/11/2007] [Indexed: 12/24/2022]
Abstract
Changes in thyroid status are associated with profound alterations in biochemical and physiological functioning of cardiac muscle, although its impact on cardiac energy metabolism is still debated. Similarities between the changes in cardiac gene expression in pathological hypertrophy leading to heart failure and hypothyroidism prompted scientists to suggest a role for thyroid hormone status in the development of metabolic and functional alterations in this disease. We thus investigated the effects of hypothyroidism on cardiac energy metabolism. Hypothyroid state (HYPO) was induced by thyroidectomy and propyl-thio-uracyl in male rats for 3 weeks. We examined the effects of hypothyroid state on oxidative capacity and mitochondrial substrate utilization by measuring oxygen consumption of saponin permeabilized cardiac fibers, mitochondrial biogenesis by reverse transcription polymerase chain reaction and energy metabolism, and energy transfer enzymes by spectrophotometry. The results show that maximal oxidative capacity of the myocardium was decreased from 24.9 +/- 0.9 in control (CT) to 19.3 +/- 0.7 micromol O(2) min(-1) g dry weight(-1) in HYPO. However, protein content and messenger RNA (mRNA) of PGC-1alpha and mRNA of its transcription cascade that is thought to control mitochondrial content in normal myocardium and heart failure, were unchanged in HYPO. Mitochondrial utilization of glycerol-3P (-70%), malate (-45%), and octanoate (-24%) but not pyruvate was decreased in HYPO. Moreover, the creatine kinase system and energy transfer were hardly affected in HYPO. Besides, hypothyroidism decreased the activation of other signaling pathways like p38 mitogen-activated protein kinases, AMP-activated protein kinase, and calcineurin. These results show that cellular hypothyroidism can hardly account for the specific energetic alterations of heart failure.
Collapse
Affiliation(s)
- Yoni Athéa
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
| | - Anne Garnier
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
| | - Dominique Fortin
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
| | - Lahoucine Bahi
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
| | - Vladimir Veksler
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
| | - Renée Ventura-Clapier
- Signalisation et Physiopathologie Cardiaque
INSERMUniversité Paris-Sud - Paris 11IFR141Faculté de Pharmacie 5 Rue Jean-Baptiste Clément 92296 Chatenay Malabry Cedex
- * Correspondence should be addressed to Renée Ventura-Clapier
| |
Collapse
|
46
|
Cassar-Malek I, Picard B, Kahl S, Hocquette JF. Relationships between thyroid status, tissue oxidative metabolism, and muscle differentiation in bovine fetuses. Domest Anim Endocrinol 2007; 33:91-106. [PMID: 16797912 DOI: 10.1016/j.domaniend.2006.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/17/2022]
Abstract
The temporal relationships between thyroid status and differentiation of liver, heart and different skeletal muscles were examined in 42 bovine fetuses from day 110 to day 260 of development using principal component analysis of the data. Plasma concentrations of reverse-triiodothyronine (rT(3)) and thyroxine (T(4)) increased during development from day 110 to day 210 or 260, respectively, whereas concentration of triiodothyronine (T(3)) and hepatic type-1 5'-deiodinase activity (5'D1) increased from day 180 onwards. On day 260, high T(4) and rT(3) and low T(3) concentrations were observed together with a mature 5'D1 activity. Cytochrome-c oxidase (COX) activity expressed per mg protein increased at day 180 in masseter and near birth in masseter, rectus abdominis and cutaneus trunci muscles (P<0.05). Significant changes in citrate synthase (CS) activity per mg protein were observed between day 110 and day 180 in the liver and between day 210 and day 260 in the liver, the heart and the longissimus thoracis muscle (P<0.05). Muscle contractile differentiation was shown by the disappearance of the fetal myosin heavy chain from day 180 onwards. A positive correlation (r>0.47, P<0.01) was shown between thyroid status parameters (5'D1, concentrations of T(4) and T(3)) and COX activity in muscles known to be oxidative after birth (masseter, rectus abdominis) but not in liver and heart, nor in muscles known to be glycolytic after birth (cutaneus trunci, longissimus thoracis). A similar correlation was found between thyroid parameters and CS activity in liver and masseter. Results indicate that elevation of plasma T(3) concentrations in the last gestational trimester could be involved in the differentiation of oxidative skeletal muscles.
Collapse
Affiliation(s)
- I Cassar-Malek
- Equipe Croissance et Métabolismes du Muscle, Unité de Recherches sur les Herbivores, INRA, Centre de Clermont-Ferrand/Theix, 63122 St Genès-Champanelle, France.
| | | | | | | |
Collapse
|
47
|
Short KR, Nygren J, Nair KS. Effect of T(3)-induced hyperthyroidism on mitochondrial and cytoplasmic protein synthesis rates in oxidative and glycolytic tissues in rats. Am J Physiol Endocrinol Metab 2007; 292:E642-7. [PMID: 17047159 DOI: 10.1152/ajpendo.00397.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism increases metabolic rate, mitochondrial ATP production, and protein synthesis, but it remains to be determined whether all tissues and synthesis of specific protein pools are equally affected by hyperthyroidism. Previous studies showed that mitochondrial function was less responsive to elevated triiodothyronine (T(3)) levels in the low-oxidative plantaris muscle compared with other tissues in rats. We tested the hypothesis that in T(3)-treated animals mitochondrial protein synthesis would increase in oxidative but not glycolytic tissues. Male rats received either T(3) (200 mug/day, n = 10) or saline (controls, n = 9) by subcutaneous pump for 14 days, and then in vivo protein synthesis rates were measured using [(15)N]phenylalanine in liver, heart, plantaris, and red gastrocnemius (Red Gast). Mitochondrial protein synthesis rate in T(3)-treated rats was higher than in controls by 62% in Red Gast and plantaris and 89 and 115% in liver and heart, respectively (P < 0.01). Cytoplasmic protein synthesis rates in the T(3) group were 107-176% higher than control values (P < 0.01). There was also indirect evidence that protein breakdown was increased in all tissues of the T(3)-treated rats. Phosphorylation of selected regulators of protein synthesis in plantaris and Red Gast (mTOR, p70 S6 kinase, 4E-BP1), however, were not significantly affected by T(3). We conclude that T(3) infusion stimulates a general increase in mitochondrial and cytoplasmic protein synthesis rate among tissues and that this does not appear to explain the tissue-specific responses in mitochondrial oxidative capacity.
Collapse
Affiliation(s)
- Kevin R Short
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
48
|
Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA, Nair KS. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol (1985) 2006; 102:1078-89. [PMID: 17110513 DOI: 10.1152/japplphysiol.00791.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We hypothesized that enhanced skeletal muscle mitochondrial function following aerobic exercise training is related to an increase in mitochondrial transcription factors, DNA abundance [mitochondrial DNA (mtDNA)], and mitochondria-related gene transcript levels, as well as spontaneous physical activity (SPA) levels. We report the effects of daily treadmill training on 12-wk-old FVB mice for 5 days/wk over 8 wk at 80% peak O(2) consumption and studied the training effect on changes in body composition, glucose tolerance, muscle mtDNA muscle, mitochondria-related gene transcripts, in vitro muscle mitochondrial ATP production capacity (MATPC), and SPA levels. Compared with the untrained mice, the trained mice had higher peak O(2) consumption (+18%; P < 0.001), lower percentage of abdominal (-25.4%; P < 0.02) and body fat (-19.5%; P < 0.01), improved glucose tolerance (P < 0.04), and higher muscle mitochondrial enzyme activity (+19.5-43.8%; P < 0.04) and MATPC (+28.9 to +32.4%; P < 0.01). Gene array analysis showed significant differences in mRNAs of mitochondria-related ontology groups between the trained and untrained mice. Training also increased muscle mtDNA (+88.4 to +110%; P < 0.05), peroxisome proliferative-activated receptor-gamma coactivator-1alpha protein (+99.5%; P < 0.04), and mitochondrial transcription factor A mRNA levels (+21.7%; P < 0.004) levels. SPA levels were higher in trained mice (P = 0.056, two-sided t-test) and significantly correlated with two separate substrate-based measurements of MATPC (P < 0.02). In conclusion, aerobic exercise training enhances muscle mitochondrial transcription factors, mtDNA abundance, mitochondria-related gene transcript levels, and mitochondrial function, and this enhancement in mitochondrial function occurs in association with increased SPA.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Endocrinology, Nutrition and Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Brennan MD, Powell C, Kaufman KR, Sun PC, Bahn RS, Nair KS. The impact of overt and subclinical hyperthyroidism on skeletal muscle. Thyroid 2006; 16:375-80. [PMID: 16646684 DOI: 10.1089/thy.2006.16.375] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Patients with overt hyperthyroidism (OH) commonly have proximal limb muscle weakness that improves after correction of hyperthyroidism. It is unclear, however, if patients with milder degrees of hyperthyroidism (referred to as subclinical hyperthyroidism or SCH) may also have a degree of muscle weakness. This may have clinical relevance as SCH patients are often elderly and may therefore have concurrent sarcopenia of aging and would represent a previously unrecognized complication of SCH. DESIGN We measured both thigh strength and cross-sectional area in patients with OH (n = 30) or SCH (n = 24), both prior to treatment of hyperthyroidism and again at 6-9 months after the restoration of a euthyroid state. Euthyroid controls (n = 48) were studied at similar time intervals. MAIN OUTCOME Prior to treatment, both knee flexor and extensor muscle strength was reduced in both patients with OH and SCH compared to controls (p < 0.05). After treatment all strength measurements improved in the OH group (p < 0.01) while in the SCH group the majority of muscle strength measurements improved (p < 0.05). Midthigh muscle cross-sectional area was reduced in both the OH and SCH group at baseline (p < 0.05) compared to controls and increased significantly following treatment (p < 0.05). There were no significant changes in any parameter in the euthyroid control (EC) group during the study period. CONCLUSIONS The finding that muscle strength and cross-sectional area are reduced in SCH and improved after treatment lends support for the clinical decision to treat rather than observe this condition. This may have particular relevance to certain SCH patient groups including the elderly who are prone to falls and athletically active younger patients who require optimal skeletal muscle function.
Collapse
Affiliation(s)
- Michael D Brennan
- Division of Endocrinology, Diabetes, Nutrition & Metabolism, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Sarkar M, Varshney R, Chopra M, Sekhri T, Adhikari JS, Dwarakanath BS. Flow-cytometric analysis of reactive oxygen species in peripheral blood mononuclear cells of patients with thyroid dysfunction. CYTOMETRY PART B-CLINICAL CYTOMETRY 2006; 70:20-3. [PMID: 16342062 DOI: 10.1002/cyto.b.20082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Thyroid hormones are major regulators of energy metabolism and increased levels of the hormones (hyperthyroidism) results in an increase in the metabolic rate. Thyroid dysfunction causing alteration in hormone secretion leads to perturbations in the metabolic status. The hypermetabolic state may cause increased generation of reactive oxygen species (ROS), leading to oxidative stress in these patients. This study was carried out to verify our proposition by measuring the ROS in the terminally differentiated cells like the peripheral blood mononuclear cells of the patients. METHODS Flow-cytometric analysis of the ROS was carried out using 2',7' dichlorofluorescein diacetate in the isolated peripheral blood mononuclear cells of the subjects. RESULTS ROS generation was found to be 3-folds higher in hyperthyroids as compared with euthyroids and hypothyroids and this was not found to be gender specific. CONCLUSIONS Hyperthyroidism results in ROS generation in patients, which can be detected flow cytometrically in the peripheral blood mononuclear cells. Hence, this could complement the other thyroid function tests facilitating the diagnosis and design of appropriate therapy.
Collapse
Affiliation(s)
- Mita Sarkar
- Division of Biocybernetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | |
Collapse
|