1
|
Mendoza E, Duque X, Reyes-Maldonado E, Hernández-Franco JI, Martínez-Andrade G, Vilchis-Gil J, Martinez H, Morán S. Serum hepcidin recalibrated values in Mexican schoolchildren by demographic characteristics, nutritional and infection/inflammation status. Ann Hematol 2024; 103:3979-3986. [PMID: 39039174 DOI: 10.1007/s00277-024-05889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Hepcidin production is regulated by iron concentration, erythropoietic activity, and inflammation. There is no reference method for determining its levels, but results obtained through various methods strongly correlate and can be compared using recalibration equations. OBJECTIVE To describe recalibrated serum hepcidin values at different percentiles in schoolchildren, considering age, sex, inflammatory processes, H. pylori infection, and iron status. METHODS Secondary analysis of data incorporating information on inflammation, H. pylori infection, and iron status of 349 schoolchildren. Hepcidin analysis was performed using a competitive ELISA, and recalibrated hepcidin values were calculated using the inverse of the linear regression model equation obtained by van der Vorm et al. Results: Recalibrated hepcidin values were lower than non-calibrated values. In schoolchildren without infection/inflammation and without iron deficiency, recalibrated values at the 50th percentile (25th-75th) were 4.89 ng/mL (2.68-8.42). For schoolchildren without infection/inflammation but with iron deficiency, recalibrated values were 2.34 ng/mL (1.10-6.58), the lowest hepcidin values observed. The highest values were found in the group with infection/inflammation, regardless of iron deficiency status. CONCLUSIONS Recalibrated hepcidin values were lower than non-calibrated values. The highest values were observed in schoolchildren with infectious or inflammatory processes, and the lowest values were observed in schoolchildren with iron deficiency but only in the absence of infectious or inflammatory processes. Using recalibrated hepcidin values allows comparison between data obtained using different analytical methods.
Collapse
Affiliation(s)
- Eugenia Mendoza
- Infectious Diseases Research Unit, Mexican Social Security Institute, Av. Cuauhtemoc No. 330, Col. Doctores, Del. Cuauhtemoc, Mexico City, CP 06720, Mexico
| | - Ximena Duque
- Infectious Diseases Research Unit, Mexican Social Security Institute, Av. Cuauhtemoc No. 330, Col. Doctores, Del. Cuauhtemoc, Mexico City, CP 06720, Mexico.
| | - Elba Reyes-Maldonado
- Department of Hematopathology, National Polytechnic Institute, National School of Biological Sciences, Mexico City, 01135, Mexico
| | | | - Gloria Martínez-Andrade
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Pachuca Hidalgo, 42039, Mexico
| | - Jenny Vilchis-Gil
- Hospital Infantil de México "Federico Gomez", Mexico City, 06720, Mexico
| | - Homero Martinez
- Hospital Infantil de México "Federico Gomez", Mexico City, 06720, Mexico
- Global Technical Services-NTEAM, Nutrition International, Ottawa, ON, K2P 2K3, Canada
| | - Segundo Morán
- Gastroenterology Research Laboratory, Mexican Social Security Institute, Mexico City, 06720, Mexico
| |
Collapse
|
2
|
Jorgenson MC, Aguree S, Schalinske KL, Reddy MB. Effects of green tea polyphenols on inflammation and iron status. J Nutr Sci 2023; 12:e119. [PMID: 38155809 PMCID: PMC10753450 DOI: 10.1017/jns.2023.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/30/2023] Open
Abstract
Inflammation is an underlying problem for many disease states and has been implicated in iron deficiency (ID). This study aimed to determine whether iron status is improved by epigallocatechin-3-gallate (EGCG) through reducing inflammation. Thirty-two male Sprague-Dawley rats were fed an iron-deficient diet for 2 weeks and then randomly divided into four groups (n 8 each): positive controls, negative controls, lipopolysaccharide (LPS, 0⋅5 mg/kg body weight), and LPS + EGCG (LPS plus 600 mg EGCG/kg diet) for 3 additional weeks. The study involved testing two control groups, both treated with saline. One group (positive control) was fed a regular diet containing standard iron, while the negative control was fed an iron-deficient diet. Additionally, two treatment groups were tested. The first group was given LPS, while the second group was administered LPS and fed an EGCG diet. Iron status, hepcidin, C-reactive protein (CRP), serum amyloid A (SAA), and interleukin-6 (IL-6) were measured. There were no differences in treatment groups compared with control in CRP, hepcidin, and liver iron concentrations. Serum iron concentrations were significantly lower in the LPS (P = 0⋅02) and the LPS + EGCG (P = 0⋅01) than in the positive control group. Compared to the positive control group, spleen iron concentrations were significantly lower in the negative control (P < 0⋅001) but not with both LPS groups. SAA concentrations were significantly lower in the LPS + EGCG group compared to LPS alone group. EGCG reduced SAA concentrations but did not affect hepcidin or improve serum iron concentration or other iron markers.
Collapse
Affiliation(s)
| | - Sixtus Aguree
- Department of Applied Health Science, Indiana University School of Public Health—Bloomington, Bloomington, IN, USA
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Manju B. Reddy
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
4
|
Liu J, Zhao Y, Ding Z, Zhao Y, Chen T, Ge W, Zhang J. Iron accumulation with age alters metabolic pattern and circadian clock gene expression through the reduction of AMP-modulated histone methylation. J Biol Chem 2022; 298:101968. [PMID: 35460695 PMCID: PMC9117543 DOI: 10.1016/j.jbc.2022.101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Iron accumulates with age in mammals, and its possible implications in altering metabolic responses are not fully understood. Here, we report that both high-iron diet and advanced age in mice consistently altered gene expression of many pathways, including those governing the oxidative stress response and the circadian clock. We used a metabolomic approach to reveal similarities between metabolic profiles and the daily oscillation of clock genes in old and iron-overloaded mouse livers. In addition, we show that phlebotomy decreased iron accumulation in old mice, partially restoring the metabolic patterns and amplitudes of the oscillatory expression of clock genes Per1 and Per2. We further identified that the transcriptional regulation of iron occurred through a reduction in AMP-modulated methylation of histone H3K9 in the Per1 and H3K4 in the Per2 promoters, respectively. Taken together, our results indicate that iron accumulation with age can affect metabolic patterns and the circadian clock.
Collapse
Affiliation(s)
- Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Tingting Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
5
|
Tsukano K, Shimamori T, Suzuki K. Serum iron concentration in cattle with endotoxaemia. Acta Vet Hung 2020; 68:53-58. [PMID: 32384071 DOI: 10.1556/004.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023]
Abstract
The objective of this study was to examine whether serum iron (Fe) concentration is useful as a prognostic biomarker for cows with acute coliform mastitis (ACM). Our study was composed of determining the reproducibility of serum Fe concentration as a prognostic criterion in cows with ACM (Study 1) and clarifying the sequential changes in serum Fe concentration in cattle that received endotoxin (Study 2). Seventy-seven cows with (n = 47) or without (n = 30) ACM were enrolled in Study 1. The proposed diagnostic cut-off value of serum Fe concentration indicating a poor prognosis of ACM based on the analysis of the receiver operating characteristic curves was < 31.5 µg/dL. Ten young cattle aged 176.8 ± 23.7 days were enrolled in Study 2. Five young cattle received endotoxin (LPS group) and the remaining five received physiological saline (control group). Blood collections were carried out before endotoxin challenge (pre), and 0.5, 1, 2, 4, 8, 12, 24, and 48 h after the challenge. As a result, a significant decrease in serum Fe concentration was not observed until 24 h after endotoxin challenge. Because in cows with clinical ACM it is difficult to know the time course after infection, the alteration in serum Fe concentrations alone may be an insufficient prognostic criterion.
Collapse
Affiliation(s)
- Kenji Tsukano
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshio Shimamori
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido, 069-8501, Japan
| | - Kazuyuki Suzuki
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
6
|
Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K. Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J Vet Med Sci 2019; 81:626-628. [PMID: 30828032 PMCID: PMC6483902 DOI: 10.1292/jvms.19-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to assess the usefulness of serum iron (Fe) concentration as a marker of inflammation caused by the dehorning operation. Five young Holstein cows aged 205.0 ± 10.7 days and weighing 207.2 ± 24.1 kg underwent the dehorning operation. Blood samples were withdrawn before dehorning (pre) and at time periods of t=0.5, 2, 4, 6, 8, 12, 24, and 48 hr. The serum amyloid A (SAA) concentration was significantly high at t=48 hr (P<0.01). The serum Fe concentration significantly decreased, reaching 90.0 ± 36.4 µg/dl at t=24 hr (P<0.001). Therefore, serum Fe concentration showed significant and negative correlation with SAA concentration (r2=0.500, P<0.01). In conclusion, serum Fe concentration is a useful marker of inflammation in young cows that have undergone the dehorning operation.
Collapse
Affiliation(s)
- Kenji Tsukano
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Toshio Shimamori
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tatsuya Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Yasunobu Nishi
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Marina Otsuka
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Yasuyuki Kitade
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| | - Kazuyuki Suzuki
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
7
|
Abstract
Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.
Collapse
Affiliation(s)
- Gautam Rishi
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Stoffel NU, Lazrak M, Bellitir S, Mir NE, Hamdouchi AE, Barkat A, Zeder C, Moretti D, Aguenaou H, Zimmermann MB. The opposing effects of acute inflammation and iron deficiency anemia on serum hepcidin and iron absorption in young women. Haematologica 2019; 104:1143-1149. [PMID: 30630976 PMCID: PMC6545852 DOI: 10.3324/haematol.2018.208645] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023] Open
Abstract
Hepatic hepcidin synthesis is stimulated by inflammation but inhibited during iron deficiency anemia (IDA). In humans, the relative strength of these opposing signals on serum hepcidin and the net effect on iron absorption and systemic iron recycling is uncertain. In this prospective, 45-day study, in young women (n=46; age 18-49 years) with or without IDA, we compared iron and inflammation markers, serum hepcidin and erythrocyte iron incorporation from 57Fe-labeled test meals, before and 8, 24 and 36 hours (h) after influenza/DPT vaccination as an acute inflammatory stimulus. Compared to baseline, at 24-36 h after vaccination: 1) interleukin-6 increased 2-3-fold in both groups (P<0.001); 2) serum hepcidin increased >2-fold in the non-anemic group (P<0.001), but did not significantly change in the IDA group; 3) serum iron decreased in the non-anemic group (P<0.05) but did not change in the IDA group; and 4) erythrocyte iron incorporation did not change in either of the two groups, but was approximately 2-fold higher in the IDA group both before and after vaccination (P<0.001). In this study, mild acute inflammation did not increase serum hepcidin in women with IDA, suggesting low iron status and erythropoietic drive offset the inflammatory stimulus on hepcidin expression. In non-anemic women, inflammation increased serum hepcidin and produced mild hypoferremia, but did not reduce dietary iron absorption, suggesting iron-recycling macrophages are more sensitive than the enterocyte to high serum hepcidin during inflammation. The study was registered as a prospective observational trial at clinicaltrials.gov identifier: 02175888 The study was funded by the International Atomic Energy Agency.
Collapse
Affiliation(s)
- Nicole U Stoffel
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Science and Technology, Zürich, Switzerland
| | - Meryem Lazrak
- Ibn Tofaïl University-CNESTEN, Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Rabat-Kénitra, Morocco
| | - Souhaila Bellitir
- Ibn Tofaïl University-CNESTEN, Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Rabat-Kénitra, Morocco
| | - Nissrine El Mir
- Ibn Tofaïl University-CNESTEN, Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Rabat-Kénitra, Morocco
| | - Asmaa El Hamdouchi
- Ibn Tofaïl University-CNESTEN, Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Rabat-Kénitra, Morocco
| | - Amina Barkat
- Mohamed V University, Unit of Research on Nutrition and Health of Mother and Nutrition, Faculty of Medicine and Pharmacy, Rabat, Morocco
| | - Christophe Zeder
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Science and Technology, Zürich, Switzerland
| | - Diego Moretti
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Science and Technology, Zürich, Switzerland
| | - Hassan Aguenaou
- Ibn Tofaïl University-CNESTEN, Joint Research Unit in Nutrition and Food, RDC-Nutrition AFRA/IAEA, Rabat-Kénitra, Morocco
| | - Michael B Zimmermann
- ETH Zürich, Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Science and Technology, Zürich, Switzerland
| |
Collapse
|
9
|
Abstract
Impaired iron homeostasis and the suppressive effects of proinflammatory cytokines on erythropoiesis, together with alterations of the erythrocyte membrane that impair its survival, cause anemia of inflammation. Recent epidemiologic studies have connected inflammatory anemia with critical illness, obesity, aging, kidney failure, cancer, chronic infection, and autoimmune disease. The proinflammatory cytokine, interleukin-6, the iron regulatory hormone, hepcidin, and the iron exporter, ferroportin, interact to cause iron sequestration in the setting of inflammation. Although severe anemia is associated with adverse outcomes in critical illness, experimental models suggest that iron sequestration is part of a natural defense against pathogens.
Collapse
Affiliation(s)
- Paula G Fraenkel
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Abstract
Abstract
The anemia of chronic disease is an old disease concept, but contemporary research in the role of proinflammatory cytokines and iron biology has shed new light on the pathophysiology of the condition. Recent epidemiologic studies have connected the anemia of chronic disease with critical illness, obesity, aging, and kidney failure, as well as with the well-established associations of cancer, chronic infection, and autoimmune disease. Functional iron deficiency, mediated principally by the interaction of interleukin-6, the iron regulatory hormone hepcidin, and the iron exporter ferroportin, is a major contributor to the anemia of chronic disease. Although anemia is associated with adverse outcomes, experimental models suggest that iron sequestration is desirable in the setting of severe infection. Experimental therapeutic approaches targeting interleukin-6 or the ferroportin–hepcidin axis have shown efficacy in reversing anemia in either animal models or human patients, although these agents have not yet been approved for the treatment of the anemia of chronic disease.
Collapse
|
11
|
Abstract
Hepcidin is the master regulator of iron homeostasis in vertebrates. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. While the role of hepcidin in iron regulation is well established, its contribution to host defense is emerging as complex and multifaceted. In this review, we summarize the literature on the role of hepcidin as a mediator of antimicrobial immunity. Hepcidin induction during infection causes depletion of extracellular iron, which is thought to be a general defense mechanism against many infections by withholding iron from invading pathogens. Conversely, by promoting iron sequestration in macrophages, hepcidin may be detrimental to cellular defense against certain intracellular infections, although critical in vivo studies are needed to confirm this concept. It is not yet clear whether hepcidin exerts any iron-independent effects on host defenses.
Collapse
Affiliation(s)
- Kathryn Michels
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Borna Mehrad
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- The Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Internal Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Layoun A, Samba M, Santos MM. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation. J Vis Exp 2015:e52749. [PMID: 25993651 PMCID: PMC4541597 DOI: 10.3791/52749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer's thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.
Collapse
Affiliation(s)
- Antonio Layoun
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal;
| | - Macha Samba
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal
| | - Manuela M Santos
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Institut du cancer de Montréal; Département de Médecine, Université de Montréal
| |
Collapse
|
13
|
The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol Ther 2015; 146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
|
14
|
Kent P, Wilkinson N, Constante M, Fillebeen C, Gkouvatsos K, Wagner J, Buffler M, Becker C, Schümann K, Santos MM, Pantopoulos K. Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin. J Mol Med (Berl) 2015; 93:489-98. [DOI: 10.1007/s00109-015-1253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
|
15
|
Bagu ET, Layoun A, Calvé A, Santos MM. Friend of GATA and GATA-6 modulate the transcriptional up-regulation of hepcidin in hepatocytes during inflammation. Biometals 2013; 26:1051-65. [PMID: 24179092 DOI: 10.1007/s10534-013-9683-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 10/19/2013] [Indexed: 01/15/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone that plays a central role in the metabolism of iron and its expression in the liver can be induced through two major pathways: the inflammatory pathway, mainly via IL-6; and the iron-sensing pathway, mediated by BMP-6. GATA-proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif-WGATAR-in the promoter region. In hepatoma cells, GATA-proteins 4 and 6 in conjunction with the co-factor friend of GATA (FOG) were shown to modulate the transcription of HAMP. However, it is unclear as to which of the GATA-proteins drive the expression of HAMP in vivo. In this study, using in vitro and in vivo approaches, we investigated the relevance of GATA and FOG proteins in the expression of hepcidin following treatment with IL-6 and BMP-6. We found that treatment of Huh7 cells with either IL-6 or BMP-6 increased the HAMP promoter activity. The HAMP promoter activity following treatment with IL-6 or BMP-6 was further increased by co-transfection of the promoter with GATA proteins 4 and 6. However, co-transfection of the HAMP promoter with FOG proteins 1 or 2 repressed the promoter response to treatments with either IL-6 or BMP-6. The effects of both GATA and FOG proteins on the promoter activity in response to IL-6 or BMP-6 treatment were abrogated by mutation of the GATA response element-TTATCT-in the HAMP promoter region -103/-98. In vivo, treatment of mice with lipopolysaccharide led to a transient increase of Gata-6 expression in the liver that was positively correlated with the expression of hepcidin. Our results indicate that during inflammation GATA-6 is up-regulated in concert with hepcidin while GATA-4 and FOG (1 and 2) are repressed.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, (ICM), University of Montreal, Pavillon De Sève Porte Y-5625, 2099 rue Alexandre De Sève, Montreal, QC, H2L 4M1, Canada,
| | | | | | | |
Collapse
|
16
|
Bloomer SA, Kregel KC, Brown KE. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver. Arch Gerontol Geriatr 2013; 58:145-52. [PMID: 23993269 DOI: 10.1016/j.archger.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 02/08/2023]
Abstract
Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington College, Abington, PA, United States; Department of Health and Human Physiology, The University of Iowa, Iowa City, IA 52242, United States.
| | | | | |
Collapse
|
17
|
Horvathova M, Ponka P, Divoky V. Molecular basis of hereditary iron homeostasis defects. Hematology 2013; 15:96-111. [DOI: 10.1179/102453310x12583347009810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Monika Horvathova
- Department of BiologyPalacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Prem Ponka
- Lady Davis Institute for Medical ResearchJewish General Hospital, and Departments of Physiology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Vladimir Divoky
- Department of BiologyFaculty of Medicine Palacky University, Olomouc, Czech Republic, Department of Hemato-oncology, Faculty of Medicine Palacky University, Olomouc, Czech Republic
| |
Collapse
|
18
|
Bacterial cell wall constituents induce hepcidin expression in macrophages through MyD88 signaling. Inflammation 2013; 35:1500-6. [PMID: 22544439 DOI: 10.1007/s10753-012-9463-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepcidin is a key regulator of iron recycling by macrophages that is synthesized mainly by hepatocytes but also by macrophages. However, very little is known about the molecular regulation of hepcidin in macrophages. In the present study, we investigated hepcidin regulation in the RAW264.7 macrophage cell line and in murine peritoneal macrophages stimulated with different Toll-like receptor (TLR) ligands. We found that TLR-2 and TLR-4 ligands activated hepcidin expression in RAW264.7 cells and in wild-type murine peritoneal macrophages, but not in murine peritoneal macrophages isolated from TLR2(-/-), TLR-4-deficient or MyD88(-/-) mice. IL-6 production by RAW264.7 cells stimulated with lipopolysaccharide (LPS, TLR4 ligand) was enhanced by high amounts of iron present in the culture medium. We conclude that hepcidin expression in macrophages is regulated mainly through TLR2 and TLR4 receptors via the MyD88-dependent signaling pathway and that autocrine regulation of iron accumulation in macrophages by hepcidin may affect the levels of proinflammatory cytokine production.
Collapse
|
19
|
Salama MF, Bayele HK, Srai SSK. Tumour necrosis factor alpha downregulates human hemojuvelin expression via a novel response element within its promoter. J Biomed Sci 2012; 19:83. [PMID: 22998440 PMCID: PMC3500654 DOI: 10.1186/1423-0127-19-83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/30/2012] [Indexed: 02/06/2023] Open
Abstract
Background Iron homeostasis is chiefly regulated by hepcidin whose expression is tightly controlled by inflammation, iron stores, and hypoxia. Hemojuvelin (HJV) is a bone morphogenetic protein co-receptor that has been identified as a main upstream regulator of hepcidin expression; HJV mutations are associated with a severe form of iron overload (Juvenile haemochromatosis). Currently however, there is no information on how HJV is regulated by inflammation. Methods To study the regulation of Hjv expression by inflammation and whether Hfe has a role in that regulation, control and LPS-injected wild type and Hfe KO mice were used. Moreover, human hepatoma cells (HuH7) were used to study the effect of IL-6 and TNF-α on HJV mRNA expression. Results Here we show that LPS repressed hepatic Hjv and BMPs, while it induced hepcidin 1 expression in wild-type and Hfe KO mice with no effect on hepatic pSMAD 1, 5, 8 protein levels. In addition, exogenous TNF-α (20 ng/mL) decreased HJV mRNA and protein expression to 40% of control with no effect on hepcidin mRNA expression in 24 hours. On the other hand, IL-6 induced hepcidin mRNA and protein expression with no effect on HJV mRNA expression levels. Moreover, using the HJV promoter-luciferase reporter fusion construct (HJVP1.2-luc), we showed that the basal luciferase activity of HJVP1.2-luc was inhibited by 33% following TNF-α treatment of HuH7 transfected cells suggesting that the TNF-α down-regulation is exerted at the transcriptional level. Additionally, mutation of a canonical TNF- alpha responsive element (TNFRE) within HJVP1.2-luc abolished TNF-α response suggesting that this TNFRE is functional. Conclusions From these results, we conclude that TNF-α suppresses HJV transcription possibly via a novel TNFRE within the HJV promoter. In addition, the results suggest that the proposed link between inflammation and BMP-SMAD signalling is independent of HJV and BMP ligands.
Collapse
Affiliation(s)
- Mohamed Fouda Salama
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
20
|
Balesaria S, Hanif R, Salama MF, Raja K, Bayele HK, McArdle H, Srai SK. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 2012; 97:661-9. [PMID: 22180422 PMCID: PMC3342966 DOI: 10.3324/haematol.2011.055046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/10/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Iron metabolism during pregnancy maintains fetal iron levels at the expense of the mother. The mechanism behind this regulation is still not clear despite recent advances. Here we examine the role of maternal and fetal Hfe, its downstream signaling molecule, hepcidin and dietary iron in the regulation of placental iron transfer. DESIGN AND METHODS Hfe wild-type, knockout and heterozygote dams were fed iron deficient (12.5 ppm), adequate (50 ppm) and replete (150 ppm) iron diets and mated with heterozygote males to produce pups of all genotypes. Dams and pups were sacrificed at Day 18 of gestation; serum, placenta, body and liver iron parameters were measured. Protein and mRNA levels of various iron transporter genes were determined in duodenum, liver and placenta by Western blotting and real time PCR. RESULTS Maternal liver iron levels were dependent on both dietary iron intake and Hfe genotype. Increasing iron levels in the maternal diet resulted in increased total iron in the fetus, primarily in the liver. However, fetuses of Hfe-knockout mothers showed further elevation of liver iron levels, concomitant with elevated expression of Tfr1, Dmt1 and Fpn in the placenta. Hfe-knockout fetuses that express low levels of liver hepcidin accumulated more iron in their liver than wild-type fetuses due to increased ferroportin levels in the placenta. CONCLUSIONS Maternal and fetal status, as well as dietary iron, is important in regulating iron transfer across placenta. Maternal Hfe regulates iron transfer by altering gene expression in the placenta. Fetal Hfe is important in regulating placental iron transfer by modulating fetal liver hepcidin expression.
Collapse
Affiliation(s)
- Sara Balesaria
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK
| | - Rumeza Hanif
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK
| | - Mohamed F. Salama
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Kishor Raja
- Department of Clinical Biochemistry, GKT School of Medicine and Dentistry, London, UK
| | - Henry K. Bayele
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK
| | - Harry McArdle
- The Rowett Research Institute, Aberdeen, Scotland, UK
| | - Surjit K.S. Srai
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UK
| |
Collapse
|
21
|
Toll-like receptor signal adaptor protein MyD88 is required for sustained endotoxin-induced acute hypoferremic response in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2340-50. [PMID: 22497726 DOI: 10.1016/j.ajpath.2012.01.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/24/2012] [Accepted: 01/30/2012] [Indexed: 12/24/2022]
Abstract
Hypoferremia, associated with immune system activation, involves a marked reduction in the levels of circulating iron, coupled with iron sequestration within macrophages. Toll-like receptor (TLR) signaling plays an important role in the development of the hypoferremic response, but how downstream signaling events affect genes involved in iron metabolism is incompletely understood. We investigated the involvement of MyD88-dependent (MyD88) and MyD88-independent (TRIF) TLR signaling in the development of hypoferremia. Using MyD88-deficient and TRIF-deficient mice, we show that MyD88 and TRIF signaling pathways are critical for up-regulation by lipopolysaccharide (LPS) of the iron regulator hepcidin. In addition, MyD88 signaling is required for the induction of lipocalin 2 secretion and iron sequestration in the spleen. Activation of TLR4 and TLR3 signaling through LPS and polyinosinic:polycytidylic acid [poly(I:C)] treatments resulted in rapid down-regulation of HFE protein [encoded by the hemochromatosis gene (Hfe)] and ferroportin [encoded by solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1)] expression in the spleen, independent of MyD88 or TRIF signaling and proinflammatory cytokine production. However, lack of MyD88 signaling significantly impaired the hypoferremic response triggered by LPS, indicating that ferroportin and HFE protein down-regulation alone are insufficient to maintain hypoferremia. The extent of the hypoferremic response was found to be limited by initial, basal iron levels. Together, these results suggest that targeting specific TLR signaling pathways by affecting the function of adaptor molecules may provide new strategies to counteract iron sequestration within macrophages during inflammation.
Collapse
|
22
|
Kroot JJC, Tjalsma H, Fleming RE, Swinkels DW. Hepcidin in human iron disorders: diagnostic implications. Clin Chem 2011; 57:1650-69. [PMID: 21989113 DOI: 10.1373/clinchem.2009.140053] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The peptide hormone hepcidin plays a central role in regulating dietary iron absorption and body iron distribution. Many human diseases are associated with alterations in hepcidin concentrations. The measurement of hepcidin in biological fluids is therefore a promising tool in the diagnosis and management of medical conditions in which iron metabolism is affected. CONTENT We describe hepcidin structure, kinetics, function, and regulation. We moreover explore the therapeutic potential for modulating hepcidin expression and the diagnostic potential for hepcidin measurements in clinical practice. SUMMARY Cell-culture, animal, and human studies have shown that hepcidin is predominantly synthesized by hepatocytes, where its expression is regulated by body iron status, erythropoietic activity, oxygen tension, and inflammatory cytokines. Hepcidin lowers serum iron concentrations by counteracting the function of ferroportin, a major cellular iron exporter present in the membrane of macrophages, hepatocytes, and the basolateral site of enterocytes. Hepcidin is detected in biologic fluids as a 25 amino acid isoform, hepcidin-25, and 2 smaller forms, i.e., hepcidin-22 and -20; however, only hepcidin-25 has been shown to participate in the regulation of iron metabolism. Reliable assays to measure hepcidin in blood and urine by use of immunochemical and mass spectrometry methods have been developed. Results of proof-of-principle studies have highlighted hepcidin as a promising diagnostic tool and therapeutic target for iron disorders. However, before hepcidin measurements can be used in routine clinical practice, efforts will be required to assess the relevance of hepcidin isoform measurements, to harmonize the different assays, to define clinical decision limits, and to increase assay availability for clinical laboratories.
Collapse
Affiliation(s)
- Joyce J C Kroot
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | |
Collapse
|
23
|
Rodrigues PN, Gomes SS, Neves JV, Gomes-Pereira S, Correia-Neves M, Nunes-Alves C, Stolte J, Sanchez M, Appelberg R, Muckenthaler MU, Gomes MS. Mycobacteria-induced anaemia revisited: A molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin. Immunobiology 2011; 216:1127-34. [DOI: 10.1016/j.imbio.2011.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023]
|
24
|
Sebastiani G, Pantopoulos K. Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics 2011; 3:971-86. [DOI: 10.1039/c1mt00082a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, Daynes RA, Kushner JP, Li D, Ward DM, Kaplan J. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 2010; 120:2395-405. [PMID: 20530874 DOI: 10.1172/jci42011] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 04/07/2010] [Indexed: 02/06/2023] Open
Abstract
Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-alpha transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Darshan D, Frazer DM, Wilkins SJ, Anderson GJ. Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica 2010; 95:1660-7. [PMID: 20511664 DOI: 10.3324/haematol.2010.022426] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Expression of the key iron regulatory hormone hepcidin is increased by some stimuli (iron loading, inflammation) but decreased by others (increased erythropoiesis, iron deficiency). We investigated the response of hepcidin to increased erythropoiesis and iron deficiency in the presence of an acute inflammation to assess the relative strengths of these stimuli. DESIGN AND METHODS Sprague-Dawley rats were maintained on control or iron-deficient diets and treated with lipopolysaccharide to induce inflammation or phenylhydrazine to stimulate erythropoiesis. The levels of Hamp, IL-6 and α2m mRNA were determined by qualitative real-time polymerase chain reaction and those of serum interleukin-6 and tumor necrosis factor-α were measured by enzyme-linked immunosorbent assay. Cultured RAW264.7 and HuH7 cells were used in associated studies. RESULTS The increase in hepatic hepcidin levels induced by lipopolysaccharide was not affected by phenylhydrazine treatment but was blunted by iron deficiency. Lipopolysaccharide-treated iron-deficient animals also showed lower liver α2m mRNA and reduced serum interleukin-6 and tumor necrosis factor-α, suggesting a more generalized effect of iron deficiency. Similarly, RAW 264.7 cells treated with iron chelators and then stimulated with lipopolysaccharide showed lower IL-6 mRNA than cells treated with lipopolysaccharide alone. Huh7 cells treated with an iron chelator showed a blunted hepcidin response to interleukin-6, suggesting that the response of hepatic parenchymal cells to inflammatory cytokines may also be iron-dependent. CONCLUSIONS In any one physiological situation, net hepcidin levels are determined by the relative strengths of competing stimuli. The ability of severe iron deficiency to blunt the response to lipopolysaccharide of both hepcidin and other markers of inflammation suggests that adequate iron levels are necessary for a full acute phase response.
Collapse
Affiliation(s)
- Deepak Darshan
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland 4029
| | | | | | | |
Collapse
|
27
|
Norris S, White M, Mankan AK, Lawless MW. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression. Int J Immunogenet 2010; 37:125-33. [PMID: 20193033 DOI: 10.1111/j.1744-313x.2010.00904.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.
Collapse
Affiliation(s)
- S Norris
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
28
|
Pinto JP, Dias V, Zoller H, Porto G, Carmo H, Carvalho F, de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology 2010; 130:217-30. [PMID: 20102409 DOI: 10.1111/j.1365-2567.2009.03226.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepcidin regulates intracellular iron levels by interacting with and promoting the degradation of ferroportin, a membrane protein and the only known cellular iron exporter. Studies of hepcidin expression and regulation have focused on its effects in innate immunity and as a regulator of systemic iron metabolism. In the present study we characterized the expression of hepcidin messenger RNA (mRNA) in human peripheral blood mononuclear cells (PBMCs) with a focus on peripheral blood lymphocytes (PBLs). We found that (1) all human PBMCs analyzed express basal hepcidin mRNA levels; (2) hepcidin mRNA expression increases after T-lymphocyte activation; (3) expression by PBLs increases in response to challenge by holotransferrin (Fe-TF) and by ferric citrate in vitro; (4) the Fe-TF-mediated up-regulation of hepcidin decreases ferroportin expression at the cytoplasmic membrane of PBLs; and (5) silencing of tumour necrosis factor-alpha (TNF-alpha) abrogates the effect of Fe-TF. In summary, we show that hepcidin expression determines intracellular iron levels by regulating the expression of ferroportin, as described in other cells, and that inappropriately low expression of hepcidin impairs normal lymphocyte proliferation. The results establish hepcidin as a new player in lymphocyte biology.
Collapse
Affiliation(s)
- Jorge P Pinto
- Iron Genes and Immune System, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Wallace DF, Summerville L, Crampton EM, Frazer DM, Anderson GJ, Subramaniam VN. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 2009; 50:1992-2000. [PMID: 19824072 DOI: 10.1002/hep.23198] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepcidin is a central regulator of iron homeostasis. HFE and transferrin receptor 2 (TFR2) are mutated in adult-onset forms of hereditary hemochromatosis and regulate the expression of hepcidin in response to iron. Whether they act through the same or parallel pathways is unclear. To investigate this, we generated a mouse model with deletion of both Hfe and Tfr2 genes by crossing Hfe and Tfr2 null mice on a genetically identical background. Tissue and serum from wildtype, single-, and double-null mice were analyzed. Serum transferrin saturation and hepatic iron concentrations were determined. The expression of iron-related messenger RNA (mRNA) transcripts was analyzed by real-time polymerase chain reaction (PCR). Levels of the iron-related proteins Tfr1, Tfr2, ferritin, and prohepcidin, and the phosphorylation status of the cell signaling proteins extracellular signal-regulated kinase 1/2 (Erk1/2) and Smad1/5/8, were analyzed by immunoblotting. Double-null mice had more severe iron loading than mice lacking either Hfe or Tfr2; Tfr2 null mice had a greater iron burden than Hfe-null mice. Hepcidin expression relative to iron stores was reduced in the Hfe-null mice, with significantly lower values in the Tfr2-null mice. In the absence of both Hfe and Tfr2, hepcidin expression was reduced even further. A significant decrease in phospho-Erk1/2 in the livers of null mice and a reduction in phospho-Smad1/5/8 suggest that both the mitogen-activated protein kinase (MAPK) and bone morphogenetic protein / mothers against decapentaplegic homolog (BMP/SMAD) signaling pathways may be involved in Hfe- and Tfr2-mediated regulation of hepcidin. CONCLUSION These studies demonstrate that iron overload due to deletion of Tfr2 is more severe than that due to Hfe, and that loss of both molecules results in pronounced iron overload. Analysis of Hfe/Tfr2 double-null mice suggests that Hfe and Tfr2 regulate hepcidin through parallel pathways involving Erk1/2 and Smad1/5/8.
Collapse
Affiliation(s)
- Daniel F Wallace
- Membrane Transport Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
30
|
van Deuren M, Kroot JJC, Swinkels DW. Time-course analysis of serum hepcidin, iron and cytokines in a C282Y homozygous patient with Schnitzler's syndrome treated with IL-1 receptor antagonist. Haematologica 2009; 94:1297-300. [PMID: 19608676 DOI: 10.3324/haematol.2009.005975] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is currently unknown if the increase of the hepatic iron regulatory hormone hepcidin during inflammation in man depends on an intact HFE-protein. Here we describe the temporal relationship of serum hepcidin, serum iron and cytokines in a patient with HFE-related (C282Y homozygous) hereditary hemochromatosis who was treated for an auto-inflammatory condition, i.e. variant Schnitzler's syndrome, with the potent anti-inflammatory cytokine inter-leukin-1 receptor antagonist (IL-1ra, anakinra). The patient had bouts of fever with peaking serum IL-6 concentrations followed by peaking serum hepcidin levels, while serum iron was low. Upon treatment, these peaks disappeared and hepcidin levels became non-detectable, consistent with HFE deficiency. In conclusion, this in vivo human model: i) supports the importance of an HFE-independent IL-6-hepcidin axis in the development of hypoferremia and anemia of inflammation; and ii) suggests that chronic inflammation protects patients with HFE-related hereditary hemochromatosis from iron accumulation.
Collapse
Affiliation(s)
- Marcel van Deuren
- Department of Clinical Chemistry, 441 Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
31
|
Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:489-515. [PMID: 19400694 DOI: 10.1146/annurev.pathol.4.110807.092205] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepcidin, a 25-amino-acid antimicrobial peptide, is the central regulator of iron homeostasis. Hepcidin transcription is upregulated by inflammatory cytokines, iron, and bone morphogenetic proteins and is downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. The iron transporter ferroportin is the cognate receptor of hepcidin and is destroyed as a result of interaction with the peptide. Except for inherited defects of ferroportin and hepcidin itself, all forms of iron-storage disease appear to arise from hepcidin dysregulation. Studies using multiple approaches have begun to delineate the molecular mechanisms that regulate hepcidin expression, particularly at the transcriptional level. Knowledge of the regulation of hepcidin by inflammation, iron, erythropoiesis, and hypoxia will lead to an understanding of the pathogenesis of primary hemochromatosis, secondary iron overload, and anemia of inflammatory disease.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
32
|
Ramey G, Deschemin JC, Vaulont S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica 2009; 94:765-72. [PMID: 19454495 DOI: 10.3324/haematol.2008.003541] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The circulating hormone hepcidin plays a central role in iron homeostasis. Our goal was to establish an ex vivo iron-sensing model and to characterize the molecular mechanisms linking iron to hepcidin. DESIGN AND METHODS Murine hepatocytes were isolated by the collagenase method, either from wild type or HFE knockout mice, and cultured 42 h without serum before treatments. RESULTS After 42 h of serum-free culture, hepcidin gene expression was undetectable in the hepatocytes. Hepcidin gene expression could, however, be re-activated by an additional 24 h of incubation with 10% serum. Interestingly, addition of 30 microM holotransferrin consistently increased serum-dependent hepcidin levels 3- to 5-fold. The effects of serum and serum+holotransferrin were direct, transcriptional, independent of de novo protein synthesis and required the presence of bone morphogenetic protein. Transferrin receptor-2 activation by its ligand holotransferrin led to extracellular signal regulated kinase (ERK)/mitogen activated protein kinase pathway stimulation and the ERK specific inhibitor U0-126 blunted holotransferrin-mediated induction of hepcidin. ERK activation by holotransferrin provoked increased levels of phospho-Smad1/5/8 highlighting cross-talk between the bone morphogenetic protein/hemojuvelin and ERK1/2 pathways. Finally, we demonstrated, using hepatocytes isolated from Hfe(-/-) mice, that HFE was not critical for the hepcidin response to holotransferrin but important for basal hepcidin expression. CONCLUSIONS We demonstrate that hepatocytes are liver iron-sensor cells and that transferrin receptor-2, by signaling through the ERK1/2 pathway, and bone morphogenetic protein/hemojuvelin, by signaling through the Smad pathways, coordinately regulate the iron-sensing machinery linking holotransferrin to hepcidin.
Collapse
Affiliation(s)
- Guillemette Ramey
- Institut Cochin, Faculté de Médecine Cochin Port Royal, Paris, France
| | | | | |
Collapse
|
33
|
Pandur E, Nagy J, Poór VS, Sarnyai A, Huszár A, Miseta A, Sipos K. Alpha-1 antitrypsin binds preprohepcidin intracellularly and prohepcidin in the serum. FEBS J 2009; 276:2012-21. [PMID: 19292870 DOI: 10.1111/j.1742-4658.2009.06937.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent discoveries have indicated that the hormone hepcidin plays a major role in the control of iron homeostasis. Hepcidin regulates the iron level in the blood through the interaction with ferroportin, an iron exporter molecule, causing its internalization and degradation. As a result, hepcidin increases cellular iron sequestration, and decreases the iron concentration in the plasma. Only mature hepcidin (result of the cleavage of prohepcidin by furin proteases) has biological activity; however, prohepcidin, the prohormone form, is also present in the plasma. In this study, we aimed to identify new protein-protein interactions of preprohepcidin, prohepcidin and hepcidin using the BacterioMatch two-hybrid system. Screening assays were carried out on a human liver cDNA library. Preprohepcidin screening gave the following results: alpha-1 antitrypsin, transthyretin and alpha-1-acid glycoprotein showed strong interactions with preprohepcidin. We further confirmed and examined the alpha-1 antitrypsin binding in vitro (glutathione S-transferase, pull down, coimmunoprecipitation, MALDI-TOF) and in vivo (ELISA, cross-linking assay). Our results demonstrated that the serine protease inhibitor alpha-1 antitrypsin binds preprohepcidin within the cell during maturation. Furthermore, alpha-1 antitrypsin binds prohepcidin significantly in the plasma. This observation may explain the presence of prohormone in the circulation, as well as the post-translational regulation of the mature hormone level in the blood. In addition, the lack of cleavage protection in patients with alpha-1 antitrypsin deficiency may be the reason for the disturbance in their iron homeostasis.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Forensic Medicine, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
34
|
Huang H, Akira S, Santos MM. Is the iron donor lipocalin 2 implicated in the pathophysiology of hereditary hemochromatosis? Hepatology 2009; 49:1012-6. [PMID: 19152427 PMCID: PMC2891005 DOI: 10.1002/hep.22699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Under normal conditions, iron is taken up by the cells through the transferrin-mediated pathway. However, in hereditary hemochromatosis, a common iron-overloading disorder associated with mutations in the HFE gene, iron in plasma exceeds transferrin-binding capacity, and non-transferrin-bound iron (NTBI) appears in the circulation of patients with iron overload. NTBI can be taken up by hepatocytes through a transferrin-independent pathway. Lipocalin 2 (Lcn2), a secreted protein of the lipocalin family, has emerged as the mediator of an alternative, transferrin-independent pathway for cellular iron delivery. To evaluate the importance of Lcn2 in the pathogenesis of hepatic iron loading in Hfe knockout mice, we generated HfeLcn2 double-deficient mice. Our studies revealed that deletion of Lcn2 in Hfe-knockout mice does not influence hepatic iron accumulation in Hfe(-/-) mice, or their response to iron loading, as the phenotype of HfeLcn2(-/-) mice remained indistinguishable from that of Hfe(-/-) mice. CONCLUSION Lcn2 is not essential for iron delivery to hepatocytes in hemochromatosis.
Collapse
Affiliation(s)
- Hua Huang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Hôpital Notre-Dame, Département de Médicine, Université de Montréal, Montréal, Québec, Canada
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - Manuela M. Santos
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Hôpital Notre-Dame, Département de Médicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
35
|
Arruda SF, Siqueira EMDA, de Valência FF. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition 2009; 25:472-8. [PMID: 19217259 DOI: 10.1016/j.nut.2008.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/02/2008] [Accepted: 11/28/2008] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The interaction between vitamin A and iron status has been widely reported; however, the exact mechanism involved in this interaction has not been well characterized. The present study investigated the mechanism involved in tissue iron accumulation and changes in the oxidative status in vitamin A-deficient rats. METHODS Rats were treated with a control diet, a vitamin A-deficient diet, or a vitamin A/iron-deficient diet for 57 d. The animals were sacrificed; the blood, liver, and spleen were collected for biochemical analysis. Analysis of variance or Mann-Whitney tests were used to compare groups and Pearson's or Spearman's tests to investigate the bivariate correlation. RESULTS Vitamin A deficiency increased liver hepcidin mRNA and iron spleen concentrations; however, iron deficiency in vitamin A-deficient rats deeply inhibits liver hepcidin mRNA expression and significantly increases divalent metal transporter-1 mRNA levels. Liver ferroportin and hereditary hemochromatosis gene mRNA levels did not change in either treatment. In the vitamin A-deficient groups, liver carbonyl protein increased, whereas catalase and glutathione S-transferase activities decreased, suggesting that vitamin A protects the liver against protein oxidation. A significant positive correlation was found between lipid oxidative damage and iron concentration in the liver and spleen (r = 0.611, P = 0.007; r = 0.558, P = 0.025, respectively). CONCLUSION These results suggest that vitamin A maintains iron homeostasis by the modulation of liver hepcidin expression. The increase of lipid peroxidation in vitamin A deficiency seems to be iron dependent, whereas protein oxidation is not.
Collapse
Affiliation(s)
- Sandra Fernandes Arruda
- Faculdade de Ciências da Saúde, Departamento de Nutrição, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Distrito Federal, Brazil.
| | | | | |
Collapse
|
36
|
Abstract
Hepcidin, a key regulator of iron metabolism, is a small antimicrobial peptide produced by the liver that regulates intestinal iron absorption and iron recycling by macrophages. Hepcidin is stimulated when iron stores increase and during inflammation and, conversely, is inhibited by hypoxia and augmented erythropoiesis. In many pathologic situations, such as in the anemia of chronic disease (ACD) and iron-loading anemias, several of these factors may be present concomitantly and may generate opposing signaling to regulate hepcidin expression. Here, we address the question of dominance among the regulators of hepcidin expression. We show that erythropoiesis drive, stimulated by erythropoietin but not hypoxia, down-regulates hepcidin in a dose-dependent manner, even in the presence of lipopolysaccharide (LPS) or dietary iron-loading, which may act additively. These effects are mediated through down-regulation of phosphorylation of Stat3 triggered by LPS and of Smad1/5/8 induced by iron. In conclusion, hepcidin expression levels in the presence of opposing signaling are determined by the strength of the individual stimuli rather than by an absolute hierarchy among signaling pathways. Our findings also suggest that erythropoietic drive can inhibit both inflammatory and iron-sensing pathways, at least in part, via the suppression of STAT3 and SMAD4 signaling in vivo.
Collapse
|
37
|
Abstract
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
Collapse
|
38
|
Chua ACG, Herbison CE, Drake SF, Graham RM, Olynyk JK, Trinder D. The role of Hfe in transferrin-bound iron uptake by hepatocytes. Hepatology 2008; 47:1737-44. [PMID: 18393371 DOI: 10.1002/hep.22180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED HFE-related hereditary hemochromatosis results in hepatic iron overload. Hepatocytes acquire transferrin-bound iron via transferrin receptor (Tfr) 1 and Tfr1-independent pathways (possibly Tfr2-mediated). In this study, the role of Hfe in the regulation of hepatic transferrin-bound iron uptake by these pathways was investigated using Hfe knockout mice. Iron and transferrin uptake by hepatocytes from Hfe knockout, non-iron-loaded and iron-loaded wild-type mice were measured after incubation with 50 nM (125)I-Tf-(59)Fe (Tfr1 pathway) and 5 microM (125)I-Tf-(59)Fe (Tfr1-independent or putative Tfr2 pathway). Tfr1 and Tfr2 messenger RNA (mRNA) and protein expression were measured by real-time polymerase chain reaction and western blotting, respectively. Tfr1-mediated iron and transferrin uptake by Hfe knockout hepatocytes were increased by 40% to 70% compared with iron-loaded wild-type hepatocytes with similar iron levels and Tfr1 expression. Iron and transferrin uptake by the Tfr1-independent pathway was approximately 100-fold greater than by the Tfr1 pathway and was not affected by the absence of Hfe. Diferric transferrin increased hepatocyte Tfr2 protein expression, resulting in a small increase in transferrin but not iron uptake by the Tfr1-independent pathway. CONCLUSION Tfr1-mediated iron uptake is regulated by Hfe in hepatocytes. The Tfr1-independent pathway exhibited a much greater capacity for iron uptake than the Tfr1 pathway but it was not regulated by Hfe. Diferric transferrin up-regulated hepatocyte Tfr2 protein expression but not iron uptake, suggesting that Tfr2 may have a limited role in the Tfr1-independent pathway.
Collapse
Affiliation(s)
- Anita C G Chua
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle Hospital, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Regulation of hepcidin: Insights from biochemical analyses on human serum samples. Blood Cells Mol Dis 2008; 40:339-46. [DOI: 10.1016/j.bcmd.2007.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/26/2023]
|
40
|
Fleming RE. Iron and inflammation: cross-talk between pathways regulating hepcidin. J Mol Med (Berl) 2008; 86:491-4. [DOI: 10.1007/s00109-008-0349-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Verga Falzacappa MV, Casanovas G, Hentze MW, Muckenthaler MU. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med (Berl) 2008; 86:531-40. [DOI: 10.1007/s00109-008-0313-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
42
|
Pinto JP, Ramos P, de Almeida SF, Oliveira S, Breda L, Michalak M, Porto G, Rivella S, de Sousa M. Protective role of calreticulin in HFE hemochromatosis. Free Radic Biol Med 2008; 44:99-108. [PMID: 18045552 DOI: 10.1016/j.freeradbiomed.2007.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
HFE gene mutations are associated with over 80% of cases of hereditary hemochromatosis (HH), an iron-overload disease in which the liver is the most frequently affected organ. Research on HFE has traditionally focused on its interaction with the transferrin receptor. More recent studies have suggested a more complex function for this nonclassical MHC-I protein. The aim of this study was to examine how HFE and its two most common mutations affect the expression of selected genes in a hepatocyte-like cell line. Gene expression was analyzed in HepG2 cells overexpressing wild-type and mutant HFE. The effect of HFE in iron import and oxidative stress levels was assessed. Unfolded protein response (UPR)-activated gene expression was analyzed in peripheral blood mononuclear cells from characterized HH patients. C282Y HFE down-regulated hepcidin and enhanced calreticulin mRNA expression. Calreticulin levels correlated with intracellular iron increase and were associated with protection from oxidative stress. In C282Y(+/+) patients calreticulin levels correlated with the expression of the UPR marker BiP and showed a negative association with the number of hereditary hemochromatosis clinical manifestations. The data show that expression of C282Y HFE triggers a stress-protective response in HepG2 cells and suggest a role for calreticulin as a modifier of the clinical expression of HH.
Collapse
Affiliation(s)
- Jorge P Pinto
- Iron Genes and Immune System, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lawless MW, White M, Mankan AK, O'Dwyer MJ, Norris S. Elevated MCP-1 serum levels are associated with the H63D mutation and not the C282Y mutation in hereditary hemochromatosis. ACTA ACUST UNITED AC 2007; 70:294-300. [PMID: 17767550 DOI: 10.1111/j.1399-0039.2007.00895.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a major lymphocyte and inflammatory chemokine associated with persistent inflammatory states. Several abnormalities in the immune status of patients with hereditary hemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, inflammatory cytokines contributing to the pathogenesis of this disorder. The aim of this study was to assess MCP-1 levels in patients with HH and correlate these results with HFE status and iron indexes. One hundred and thirty-nine subjects diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), and 18 normal subjects heterozygous for the H63D mutation served as age- and sex-matched controls. Ferritin and transferrin saturation and the presence of HFE mutation status were correlated with MCP-1 levels. Full white blood cell count analysis was also performed. We found a strongly significant decrease in MCP-1 protein levels in the C282Y homozygotes compared with the H63D homozygotes (P = 0.0009) and C282Y/H63D heterozygotes (P = 0.002). Similarly, MCP-1 protein levels in the C282Y homozygotes were decreased compared with the healthy controls (P = 0.00076). Furthermore, MCP-1 serum levels were elevated in H63D patients compared with the healthy controls (P = 0.0008). This study suggests for the first time that a differential expression of MCP-1 protein in patients with HH is associated with the specific HFE genetic component for iron overload. Therefore, these findings offer a possible explanation in the variable clinical spectrum of pathogenesis in patients with HH through abnormalities of an imbalance in the immune states of patients with HH.
Collapse
Affiliation(s)
- M W Lawless
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin 8, Ireland.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Iron is a micronutrient that is an essential component that drives many metabolic reactions. Too little iron leads to anemia and too much iron increases the oxidative stress of body tissues leading to inflammation, cell death, and system organ dysfunction, including cancer. Maintaining normal iron balance is achieved by rigorous control of the amount absorbed by the intestine, that released from macrophages following erythrophagocytosis of effete red cells and by either release or uptake from hepatocytes. Hepcidin is a recently characterized molecule that appears to play a key role in the regulation of iron efflux from enterocytes, macrophages, and hepatocytes. It is produced by hepatocytes under basal conditions, in response to alterations in increased iron stores or reduced requirement for erythropoiesis and by inflammation. The proteins that regulate hepcidin expression are presently being defined, albeit that our present understanding is still far from complete. This review focuses on the molecules which regulate hepcidin expression. The subsequent characterization of these proteins using molecular, cellular, and physiological approaches also is discussed along with inflammatory signals and receptors involved in hepcidin expression.
Collapse
Affiliation(s)
- Phillip S Oates
- Physiology M311, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Western Australia, Australia.
| | | |
Collapse
|
45
|
Pinto JP, Ramos P, de Sousa M. Overexpression of HFE in HepG2 cells reveals differences in intracellular distribution and co-localization of wt- and mutated forms. Blood Cells Mol Dis 2007; 39:75-81. [PMID: 17428702 DOI: 10.1016/j.bcmd.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 12/12/2022]
Abstract
Liver is the primary target organ of Hereditary Hemochromatosis Type I, with the HFE mutations C282Y and H63D recognized as markers of this iron-overload disease. Hepatocytes are also the main site of synthesis of HFE. However, most early studies of overexpression of HFE were done in non-hepatic, non-HFE-expressing, cell lines. Here we report the setting up of a stable transfection model of wt- and mutant-HFE (H63D and C282Y) proteins in a hepatic cell line (HepG2), the analysis of its intracellular distribution and the effect of diferric transferrin on HFE localization. The C282Y mutant is retained in the ER, whereas HFE-wt and H63D co-localize with TfR1 exclusively in early recycling endosomes. Holotransferrin induces a re-localization of wt- and H63D-HFE, from early recycling endosomes to the cytoplasmic membrane. In conclusion our results establish the HepG2 cell line as a valuable model for the study of HFE.
Collapse
Affiliation(s)
- Jorge P Pinto
- Iron Genes and Immune System, IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
46
|
Krijt J, Niederkofler V, Salie R, Sefc L, Pelichovská T, Vokurka M, Necas E. Effect of phlebotomy on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol Dis 2007; 39:92-5. [PMID: 17395503 DOI: 10.1016/j.bcmd.2007.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 02/09/2023]
Abstract
Hemojuvelin (Hjv) is an essential component of the pathway regulating hepcidin (Hamp1) gene expression. Mice with targeted disruption of the Hjv gene (Hjv-/- mice) fail to upregulate hepatic Hamp1 expression following iron overload. The main aim of the study was to determine whether the Hjv protein is also necessary for Hamp1 downregulation. In addition, sex differences in Hamp1 expression in Hjv-/- mice were also examined. Male and female Hjv-/- mice (129SvJ background) were used for the experiments, tissue Hamp1 and Hamp2 mRNA content was determined by real-time PCR. Hepatic Hamp1 mRNA content in male Hjv-/- mice was low (0.6% of Hjv+/+ males), however, female Hjv-/- mice displayed only moderately reduced (to 17%) Hamp1 mRNA levels. Hepatic non-heme iron concentration was similar in Hjv-/- mice of both sexes. Disruption of the Hjv gene did not affect Hamp1 mRNA content in the myocardium or Hamp2 mRNA content in the pancreas. Single phlebotomy resulted in significant reduction of Hamp1 mRNA in both male and female Hjv+/+ mice (to 17% and 27% of controls respectively), measured 20 h after treatment. In Hjv-/- mice, phlebotomy decreased Hamp1 mRNA content to 46% in males and to 11% in females. Bleeding also significantly decreased (to 16%) hepatic Hamp2 mRNA levels in Hjv-/- females. The obtained results indicate that the pathway mediating hepcidin downregulation by phlebotomy does not require functional hemojuvelin protein. In addition, they confirm a significant effect of sex on hepcidin gene expression.
Collapse
Affiliation(s)
- Jan Krijt
- Institute of Pathophysiology and Center for Experimental Hematology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
47
|
Constante M, Wang D, Raymond VA, Bilodeau M, Santos MM. Repression of repulsive guidance molecule C during inflammation is independent of Hfe and involves tumor necrosis factor-alpha. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:497-504. [PMID: 17255318 PMCID: PMC1851854 DOI: 10.2353/ajpath.2007.060437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic iron overload, or hemochromatosis, can be caused by mutations in HFE, hemojuvelin, and hepcidin genes. Hepcidin, a negative regulator of intestinal iron absorption, is found to be inappropriately low in both patients and in animal models, indicating that proper control of basal hepcidin levels requires both hemojuvelin and HFE. In mice, repulsive guidance molecule c (Rgmc, the hemojuvelin mouse ortholog) and hepcidin levels are transcriptionally regulated during inflammation. Here, we report that basal Rgmc levels in Hfe-deficient mice are normal and that these mice retain the ability to suppress Rgmc expression after lipopolysaccharide (LPS) challenge. Thus, Rgmc regulation by LPS is Hfe-independent. The response of Rgmc to LPS involves signaling through toll-like receptor 4 (Tlr4), because Tlr4-deficient mice do not show altered Rgmc expression after LPS administration. We further show that tumor necrosis factor-alpha, but not interleukin-6, is sufficient to cause Rgmc down-regulation by LPS. These results contrast with previous data demonstrating that hepcidin levels are directly regulated by interleukin-6 but not by tumor necrosis factor-alpha. The regulation of iron-related genes by different cytokines may allow for time-dependent control of iron metabolism changes during inflammation and may be relevant to chronic inflammation, infections, and cancer settings, leading to the development of anemia of chronic disease.
Collapse
Affiliation(s)
- Marco Constante
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Milward E, Johnstone D, Trinder D, Ramm G, Olynyk J. The nexus of iron and inflammation in hepcidin regulation: SMADs, STATs, and ECSIT. Hepatology 2007; 45:253-6. [PMID: 17187402 DOI: 10.1002/hep.21526] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-loxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis [corrected]
Collapse
Affiliation(s)
- Elizabeth Milward
- University of Newcastle, School of Biomedical Science, Hunter Medical Research Institute Callaghan, NSW, Australia
| | | | | | | | | |
Collapse
|