1
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
2
|
Tang S, Li J, Li Y, Du H, Zhu W, Zhang R, Wan J. Effects of Saccharomyces boulardii on microbiota composition and metabolite levels in the small intestine of constipated mice. BMC Microbiol 2024; 24:493. [PMID: 39578737 PMCID: PMC11585213 DOI: 10.1186/s12866-024-03647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Saccharomyces boulardii (S. boulardii) is a fungal probiotic used to treat digestive disorders. However, the mechanism(s) by which S. boulardii affects the small intestine remains unclear. Here, we aimed to explore the effects of S. boulardii on the small intestine and the underlying mechanisms in mice with loperamide-induced constipation. While S. boulardii administration did not fully reverse the alterations in loperamide-induced defecation parameters, it altered the small intestinal floral composition toward a community conducive to alleviate constipation. Moreover, S. boulardii up-regulated the expression of tyrosine-protein kinase Kit (c-Kit), aquaporin 3 (AQP3), interleukin (IL)-10, myosin light chain kinase (MLCK), and phosphorylated myosin light chain 20 (P-MLC20), while concurrently down-regulating the expression levels of inducible nitric oxide synthase (iNOS), p65, and IL-17 A. These alterations indicate a discernible effect of small intestinal water reabsorption, inflammatory factor levels, and smooth muscle contraction. Saccharomyces boulardii also positively regulated small intestinal metabolite levels, such as fructose 6-phosphate, dihomo-alpha-linolenic acid, and 3-(4-hydroxyphenyl) lactate, and participated in metabolic pathways such as arginine biosynthesis, linoleic acid metabolism, and protein digestion and absorption. While not fully reversing defecation changes, Saccharomyces boulardii alters intestinal flora, up-regulates key proteins affecting water reabsorption and inflammation, and positively influences metabolic pathways. Our study provides serves as a basis for further studies on the application of S. boulardii in the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Shuai Tang
- Medical School of Chinese PLA, 28 Fuxing Road, Haidian District, Beijing, 100039, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, Huangwei Road, Hebei District, Tianjin, 300142, China
| | - Yi Li
- Department of Gastroenterology, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Haitao Du
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China
| | - Wenya Zhu
- Department of Geriatrics, The Sixth Medical Center, Chinese PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China.
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
3
|
Schmid SM, Tolbert MK. Harnessing the microbiome: probiotics, antibiotics and their role in canine and feline gastrointestinal disease. Vet Rec 2024; 195:13-25. [PMID: 39545593 DOI: 10.1002/vetr.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Unfavourable alterations of the host microbial environment, known as dysbiosis, have been identified in many canine and feline gastrointestinal (GI) diseases. As a result, normalisation of microbial composition and function has become an important therapeutic target. Given the complex and individualistic interplay between the resident microbiota, host and environment, a multimodal approach is often necessary when addressing dysbiosis in dogs and cats with GI disease. Systemic antibiotics are often empirically used to treat acute and chronic GI diseases. However, with modern genomic techniques demonstrating the profound negative effect antibiotics can have on the GI microbiota and the rapid emergence of resistant bacteria globally, there has been an increased focus on identifying antibiotic alternatives for use in small animal practice. Biotics, such as prebiotics, probiotics and synbiotics, are of growing interest due to their potential supportive effect on the microbiota. This article reviews the evidence for the use of biotics in canine and feline GI disease, highlighting how judicious use of antibiotics and targeted probiotic supplementation can enhance patient outcomes by promoting a balanced gut microbial environment.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Frith ME, Kashyap PC, Linden DR, Theriault B, Chang EB. Microbiota-dependent early-life programming of gastrointestinal motility. iScience 2024; 27:110895. [PMID: 39351201 PMCID: PMC11440258 DOI: 10.1016/j.isci.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Gastrointestinal microbes modulate peristalsis and stimulate the enteric nervous system (ENS), whose development, as in the central nervous system (CNS), continues into the murine postweaning period. Given that adult CNS function depends on stimuli received during critical periods of postnatal development, we hypothesized that adult ENS function, namely motility, depends on microbial stimuli during similar critical periods. We gave fecal microbiota transplantation (FMT) to germ-free mice at weaning or as adults and found that only the mice given FMT at weaning recovered normal transit, while those given FMT as adults showed limited improvements. RNA sequencing (RNA-seq) of colonic muscularis propria revealed enrichments in neuron developmental pathways in mice exposed to gut microbes earlier in life, while mice exposed later-or not at all-showed exaggerated expression of inflammatory pathways. These findings highlight a microbiota-dependent sensitive period in ENS development, pointing to potential roles of the early-life microbiome in later-life dysmotility.
Collapse
Affiliation(s)
- Mary E. Frith
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - David R. Linden
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Betty Theriault
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
de Araujo A, Sree Kumar H, Yang T, Plata AA, Dirr EW, Bearss N, Baekey DM, Miller DS, Donertas-Ayaz B, Ahmari N, Singh A, Kalinoski AL, Garrett TJ, Martyniuk CJ, de Lartigue G, Zubcevic J. Intestinal serotonergic vagal signaling as a mediator of microbiota-induced hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603451. [PMID: 39314425 PMCID: PMC11419149 DOI: 10.1101/2024.07.17.603451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hypertension is a pervasive global health challenge, impacting over a billion individuals worldwide. Despite strides in therapeutic strategies, a significant proportion of patients remain resistant to the currently available therapies. While conventional treatments predominantly focus on cardiac, renal, and cerebral targets, emerging research underscores the pivotal role of the gut and its microbiota. Yet, the precise mechanisms governing interactions between the gut microbiota and the host blood pressure remain unclear. Here we describe a neural host-microbiota interaction that is mediated by the intestinal serotonin (5-HT) signaling via vagal 5HT3a receptors and which is crucial for maintenance of blood pressure homeostasis. Notably, a marked decrease in both intestinal 5-HT and vagal 5HT3aR signaling is observed in hypertensive rats, and in rats subjected to fecal microbiota transplantation from hypertensive rats. Leveraging an intersectional genetic strategy in a Cre rat line, we demonstrate that intestinal 5HT3aR vagal signaling is a crucial link between the gut microbiota and blood pressure homeostasis and that recovery of 5-HT signaling in colon innervating vagal neurons can alleviate hypertension. This paradigm-shifting finding enhances our comprehension of hypertensive pathophysiology and unveils a promising new therapeutic target for combating resistant hypertension associated with gut dysbiosis.
Collapse
|
6
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly SD, Kebede N, Williams AE, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. NPJ Biofilms Microbiomes 2024; 10:75. [PMID: 39209925 PMCID: PMC11362535 DOI: 10.1038/s41522-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) results in numerous systemic dysfunctions, including intestinal dysmotility and enteric nervous system (ENS) atrophy. The ENS has capacity to recover following perturbation, yet intestinal pathologies persist. With emerging evidence demonstrating SCI-induced alterations to gut microbiome composition, we hypothesized that microbiome modulation contributes to post-injury enteric recovery. Here, we show that intervention with the dietary fiber, inulin, prevents SCI-induced ENS atrophy and dysmotility in mice. While SCI-associated microbiomes and specific injury-sensitive gut microbes are not sufficient to modulate intestinal dysmotility after injury, intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions in injured mice. Notably, inulin-mediated resilience is dependent on IL-10 signaling, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience post-injury. Overall, we demonstrate that diet and microbially-derived signals distinctly impact ENS survival after traumatic spinal injury and represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna E Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sandra M Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Knez E, Kadac-Czapska K, Grembecka M. The importance of food quality, gut motility, and microbiome in SIBO development and treatment. Nutrition 2024; 124:112464. [PMID: 38657418 DOI: 10.1016/j.nut.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
The prevalence of small intestinal bacterial overgrowth (SIBO) is rising worldwide, particularly in nations with high rates of urbanization. Irritable bowel syndrome, inflammatory bowel illnesses, and nonspecific dysmotility are strongly linked to SIBO. Moreover, repeated antibiotic therapy promotes microorganisms' overgrowth through the development of antibiotic resistance. The primary cause of excessive fermentation in the small intestine is a malfunctioning gastrointestinal motor complex, which results in the gut's longer retention of food residues. There are anatomical and physiological factors affecting the functioning of the myoelectric motor complex. Except for them, diet conditions the activity of gastrointestinal transit. Indisputably, the Western type of nutrition is unfavorable. Some food components have greater importance in the functioning of the gastrointestinal motor complex than others. Tryptophan, an essential amino acid and precursor of the serotonin hormone, accelerates intestinal transit, and gastric emptying, similarly to fiber and polyphenols. Additionally, the effect of food on the microbiome is important, and diet should prevent bacterial overgrowth and exhibit antimicrobial effects against pathogens. Therefore, knowledge about proper nutrition is essential to prevent the development and recurrence of SIBO. Since the scientific world was unsure whether there was a long-term or potential solution for SIBO until quite recently, research on a number of the topics included in the article should be performed. The article aimed to summarize current knowledge about proper nutrition after SIBO eradication and the prevention of recurrent bacterial overgrowth. Moreover, a connection was found between diet, gut dysmotility, and SIBO.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
8
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
9
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2024:10.1111/febs.17200. [PMID: 38922780 PMCID: PMC11664017 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly S, Kebede N, Williams A, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597793. [PMID: 38895207 PMCID: PMC11185755 DOI: 10.1101/2024.06.06.597793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M. Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sean Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Anna Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta GA 30329
| | - Timothy R. Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| |
Collapse
|
11
|
Wang K, Qiu H, Chen F, Cai P, Qi F. Considering traditional Chinese medicine as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Biosci Trends 2024; 18:127-140. [PMID: 38522913 DOI: 10.5582/bst.2024.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic constipation is one of the most common gastrointestinal disorders worldwide. Due to changes in diet, lifestyle, and the aging population, the incidence of chronic constipation has increased year by year. It has had an impact on daily life and poses a considerable economic burden. Nowadays, many patients with chronic constipation try to seek help from complementary and alternative therapies, and traditional Chinese medicine (TCM) is often their choice. The intestinal flora play an important role in the pathogenesis of constipation by affecting the body's metabolism, secretion, and immunity. Regulating the intestinal flora and optimizing its composition might become an important prevention and treatment for chronic constipation. TCM has unique advantages in regulating the imbalance of intestinal flora, and its curative effect is precise. Therefore, we reviewed the relationship between intestinal flora and chronic constipation as well as advances in research on TCM as adjunct therapy in the management of chronic constipation by regulating intestinal flora. Some single Chinese herbs and their active ingredients (e.g., Rheum palmatum, Radix Astragalus, and Cistanche deserticola), some traditional herbal formulations (e.g., Jichuan decoction, Zengye decoction, and Zhizhu decoction) and some Chinese patent medicines (e.g., Maren pills and Shouhui Tongbian capsules) that are commonly used to treat chronic constipation by regulating intestinal flora are highlighted and summarized. Moreover, some external forms of TCM, and especially acupuncture, have also been found to improve intestinal movement and alleviate constipation symptoms by regulating intestinal flora. We hope this review can contribute to an understanding of TCM as an adjunct therapy for chronic constipation and that it can provide useful information for the development of more effective constipation therapies.
Collapse
Affiliation(s)
- Ke Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Hua Qiu
- Gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Fang Chen
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Pingping Cai
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| | - Fanghua Qi
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Ji'nan, China
| |
Collapse
|
12
|
Xiang N, Xu L, Qian H, Zhang D. Multiple obesity indices suggest a close relationship between obesity and constipation: evidence from NHANES. BMC Public Health 2024; 24:1273. [PMID: 38724957 PMCID: PMC11084052 DOI: 10.1186/s12889-024-18647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE This study aims to investigate the relationship between obesity and constipation among American adults. METHODS Our study leveraged data from the National Health and Nutrition Examination Survey (NHANES). This comprehensive approach enabled us to summarize the weighted prevalence rates of obesity in adults. To further deepen our understanding, we employed a variety of analytical methods. These included multivariable logistic regression, subgroup analysis and restricted cubic splines. Through these methodologies, we were able to effectively evaluate the correlation between various obesity indicators and constipation, offering new insights into this complex relationship. RESULTS The weighted prevalence of constipation stands at 9.42%. Notably, an increased risk of constipation is linked with a BMI (body mass index) exceeding 28 kg/m2, WSR (waist-stature ratio) that is either between 58.3 and 64.8 or above 64.8, as well as a LAP (lipid accumulation products) ranging from 50.8 to 90.1. In contrast, a reduced risk of constipation is associated with WWI (weight-adjusted-waist index) that falls between 0.015 and 0.020, exceeds 0.020, and without the presence of central obesity (P < 0.05). Restricted cubic spline analysis, a significant non-linear relationship was discerned between BMI, WSR, and LAP in relation to constipation. CONCLUSIONS This pioneering large-scale study explores the relationship between various obesity indices and constipation. It reveals that reducing the BMI, WSR, LAP and waist circumference can decrease the risk of constipation. Conversely, a higher value of WWI correlates with a lower constipation risk, and this remains true even after adjusting for a wide range of variables.
Collapse
Affiliation(s)
- Nengjun Xiang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lulu Xu
- Department of General Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haihua Qian
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Dan Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Li H, Ji Y, Luo H, Huizinga JD, Chen J. Ingesting yeast extract causes excitation of neurogenic and myogenic colonic motor patterns in the rat. J Cell Mol Med 2024; 28:e18343. [PMID: 38760903 PMCID: PMC11101669 DOI: 10.1111/jcmm.18343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 05/20/2024] Open
Abstract
Fermented foods play a significant role in the human diet for their natural, highly nutritious and healthy attributes. Our aim was to study the effect of yeast extract, a fermented substance extracted from natural yeast, on colonic motility to better understand its potential therapeutic role. A yeast extract was given to rats by gavage for 3 days, and myogenic and neurogenic components of colonic motility were studied using spatiotemporal maps made from video recordings of the whole colon ex vivo. A control group received saline gavages. The yeast extract caused excitation of the musculature by increasing the propagation length and duration of long-distance contractions, the major propulsive activity of the rat colon. The yeast extract also evoked rhythmic propulsive motor complexes (RPMCs) which were antegrade in the proximal and mid-colon and retrograde in the distal colon. RPMC activity was evoked by distention-induced neural activity, but it was myogenic in nature since we showed it to be generated by bethanechol in the presence of tetrodotoxin. In conclusion, ingestion of yeast extract stimulates rat colon motility by exciting neurogenic and myogenic control mechanisms.
Collapse
Affiliation(s)
- Hongfei Li
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yanzhao Ji
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Hesheng Luo
- Department of Gastroenterology and HepatologyRenmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System DiseasesWuhanHubeiChina
| | - Jan D. Huizinga
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| | - Ji‐Hong Chen
- Department of MedicineFarncombe Family Digestive Health Research Institute, McMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
14
|
Zhou P, Wang X, Sun M, Yan S. Effects of natural products on functional constipation: analysis of active ingredient and mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2083-2103. [PMID: 37870581 DOI: 10.1007/s00210-023-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Constipation is a prevalent clinical ailment of the gastrointestinal system, yet its pathogenesis remains ambiguous. Despite the availability of numerous treatment modalities, they are insufficient in resolving the issue for patients. This work conducted a comprehensive review of the existing literature pertaining to the utilization of natural products for the treatment of constipation, with a focus on the efficacy of natural products in treating constipation, and to provide a comprehensive summary of their underlying mechanisms of action. Upon conducting a thorough review of the extant literature, we found that natural products can effectively treat constipation as modern synthetic drugs and compounded drugs with acetylcholinesterase (AChE) effects, rich in fiber and mucus, and the effects of increasing the tension of the ileum and gastrointestinal tract muscle, mediating signaling pathways, cytokine, excitability of the smooth muscle of the gastrointestinal tract, and regulating the homeostasis of intestinal flora. However, there is a wide variety of natural products, and there are still relatively few studies; the composition of natural products is complex, and the mechanism of action of natural products cannot be clarified. In the future, we need to further improve the detailed mechanism of natural products for the treatment of constipation.
Collapse
Affiliation(s)
- Pengfei Zhou
- Department of Anorectal Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Wang
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Mingming Sun
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuai Yan
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
15
|
Jeong JJ, Jin YJ, Ganesan R, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Sharma SP, Jang YJ, Min U, Lim JH, Na KM, Choi J, Han SH, Ham YL, Lee DY, Kim BY, Suk KT. Multistrain Probiotics Alleviate Diarrhea by Modulating Microbiome-Derived Metabolites and Serotonin Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10232-4. [PMID: 38467925 DOI: 10.1007/s12602-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea
| | - You Jin Jang
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Kyeong Min Na
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea
| | - Sang Hak Han
- Department of Pathology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College Jecheon, Jecheon, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Korea.
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea.
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon, Korea.
| |
Collapse
|
16
|
Ivashkin VT, Fomin VV, Tkacheva ON, Medvedev OS, Poluektova EA, Abdulganieva DI, Abdulkhakov SR, Alexeeva OP, Alekseenko SA, Andreev DN, Baranovsky AY, Zharkova MS, Zolnikova OY, Ivashkin KV, Kliaritskaia IL, Korochanskaya NV, Mammaev SN, Maslennikov RV, Myazin RG, Perekalina MV, Povtoreyko AV, Ulyanin AI, Fadeeva MV, Khlynov IB, Tsukanov VV, Shifrin OS. Small Intestinal Bacterial Overgrowth in Various Specialties of Medical Practice (Literature Review and Expert Council Resolution). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:14-34. [DOI: 10.22416/1382-4376-2024-954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Aim: to discuss current views on the clinical significance, diagnostic opportunities, and therapeutic approaches in the treatment of small intestinal bacterial overgrowth (SIBO) as an important component in the gut microbiota function assessment, to assess the awareness of physicians and the opportunities in the diagnosis and treatment of this disease in patients in the Federal districts of the Russian Federation, as well as to present the proceedings of the Expert Council held on December 16, 2023 in Moscow.Key points. SIBO is a common syndrome often associated with irritable bowel syndrome, liver cirrhosis, asthma, and congestive heart failure, being also a predictor of early death in the elderly. Today, in many regions of the Russian Federation, there are limitations for instrumental diagnosis of this disease — lack of awareness among doctors, unavailability of gas analyzers for diagnosing SIBO, lack of information about the need to diagnose SIBO in the standards of compulsory health insurance. Rifaximin is the first-line treatment due to the highest therapeutic efficacy. One of the ways to increase the efficacy of SIBO treatment is to include strain-specific probiotics in the treatment regimen. Saccharomyces boulardii CNCM I-745 is thought to be the most studied, promising probiotic. The review also presents statistical data on the issues in the diagnosis and treatment of SIBO in the regions of the Russian Federation.Conclusion. Optimization of approaches to the diagnosis and treatment of SIBO, the development of domestic gas analyzers, increasing the awareness of physicians in all regions of the Russian Federation, as well as the development and optimization of clinical recommendations appear to be necessary measures to increase the effectiveness of medical care, the duration and quality of life of the Russian population. These goals can be achieved within the framework of Federal programs under the supervision of specialized reference centers of the Ministry of Health of the Russian Federation.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V. V. Fomin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology names after Academician E.I. Chazov
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - S. R. Abdulkhakov
- Kazan State Medical University; Kazan (Volga Region) Federal University
| | | | | | | | | | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - R. V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. V. Fadeeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Scientific Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
17
|
Chai T, Shen J, Sheng Y, Huang Y, Liang W, Zhang Z, Zhao R, Shang H, Cheng W, Zhang H, Chen X, Huang X, Zhang Y, Liu J, Yang H, Wang L, Pan S, Chen Y, Han L, Qiu Q, Gao A, Wei H, Fang X. Effects of flora deficiency on the structure and function of the large intestine. iScience 2024; 27:108941. [PMID: 38333708 PMCID: PMC10850757 DOI: 10.1016/j.isci.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The significant anatomical changes in large intestine of germ-free (GF) mice provide excellent material for understanding microbe-host crosstalk. We observed significant differences of GF mice in anatomical and physiological involving in enlarged cecum, thinned mucosal layer and enriched water in cecal content. Furthermore, integration analysis of multi-omics data revealed the associations between the structure of large intestinal mesenchymal cells and the thinning of the mucosal layer. Increased Aqp8 expression in GF mice may contribute to enhanced water secretion or altered hydrodynamics in the cecum. In addition, the proportion of epithelial cells, nutrient absorption capacity, immune function and the metabolome of cecum contents of large intestine were also significantly altered. Together, this is the first systematic study of the transcriptome and metabolome of the cecum and colon of GF mice, and these findings contribute to our understanding of the intricate interactions between microbes and the large intestine.
Collapse
Affiliation(s)
- Tailiang Chai
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | - Yifei Sheng
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | | | - Zhao Zhang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Ruizhen Zhao
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Haitao Shang
- Sun Yat-sen University First Affiliated Hospital, Precision Medicine Institute, Guangzhou, Guangdong, China
| | - Wei Cheng
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, Hubei, China
| | - Hang Zhang
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, Hubei, China
| | - Xueting Chen
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Xiang Huang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
| | - Yin Zhang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | | | | | | | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd. (KMHD), Shenzhen, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Wei
- Sun Yat-sen University First Affiliated Hospital, Precision Medicine Institute, Guangzhou, Guangdong, China
| | - Xiaodong Fang
- BGI, Shenzhen, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
19
|
Scheithauer TPM, Montijn RC, Mieremet A. Gut microbe-host interactions in post-COVID syndrome: a debilitating or restorative partnership? Gut Microbes 2024; 16:2402544. [PMID: 39287023 PMCID: PMC11409505 DOI: 10.1080/19490976.2024.2402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Post-COVID syndrome (PCS) patients have reported a wide range of symptoms, including fatigue, shortness of breath, and diarrhea. Particularly, the presence of gastrointestinal symptoms has led to the hypothesis that the gut microbiome is involved in the development and severity of PCS. The objective of this review is to provide an overview of the role of the gut microbiome in PCS by describing the microbial composition and microbial metabolites in COVID-19 and PCS. Moreover, host-microbe interactions via the microbiota-gut-brain (MGB) and the microbiota-gut-lung (MGL) axes are described. Furthermore, we explore the potential of therapeutically targeting the gut microbiome to support the recovery of PCS by reviewing preclinical model systems and clinical studies. Overall, current studies provide evidence that the gut microbiota is affected in PCS; however, diversity in symptoms and highly individual microbiota compositions suggest the need for personalized medicine. Gut-targeted therapies, including treatments with pre- and probiotics, have the potential to improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Roy C Montijn
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arnout Mieremet
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
20
|
Huang K, Duan J, Wang R, Ying H, Feng Q, Zhu B, Yang C, Yang L. Landscape of gut microbiota and metabolites and their interaction in comorbid heart failure and depressive symptoms: a random forest analysis study. mSystems 2023; 8:e0051523. [PMID: 37882579 PMCID: PMC10734515 DOI: 10.1128/msystems.00515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE There is increasing evidence that alterations in gut microbial composition and function are associated with cardiovascular or psychiatric disease. Therefore, it is meaningful to investigate the taxonomic and functional characterization of the microbiota in HF patients who also have depressive symptoms. In this cross-sectional study, Cloacibacillus and alpha-tocopherol were determined as new diagnostic markers. Furthermore, intestinal microecosystem disorders are closely linked to depressive symptoms in HF patients, providing a new reference viewpoint for understanding the gut-heart/brain axis.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qinwen Feng
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
21
|
Prowse KL, Law H, Raez-Villanueva S, Markovic F, Wang M, Borojevic R, Parsons SP, Vincent AD, Holloway AC, Ratcliffe EM. Effects of in utero exposure to fluoxetine on the gastrointestinal tract of rat offspring. Am J Physiol Gastrointest Liver Physiol 2023; 325:G528-G538. [PMID: 37724979 DOI: 10.1152/ajpgi.00223.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) has been shown to disrupt the development of serotonergic signaling pathways in the brain and enteric nervous system. Serotonin (5-hydroxytryptamine; 5-HT) signaling is critical for gastrointestinal homeostasis; changes in 5-HT expression and regulation have been associated with gastrointestinal diseases of motility and inflammation. We tested the hypothesis that perinatal exposure to the SSRI fluoxetine can influence the development of the gastrointestinal tract in exposed offspring. Female nulliparous Wistar rats were given fluoxetine (10 mg/kg) or vehicle control from 2 wk before mating until weaning; small and large intestines of female and male offspring were collected at postnatal days 1, 21 (P1, P21, respectively), and 6 mo of age. In histological preparations, the proportion of serotonergic neurons significantly increased in the colons of both female and male fluoxetine-exposed compared with control offspring at P21, a time point that signifies maximal exposure to fluoxetine. At 6 mo of age, male but not female fluoxetine-exposed offspring had a significant increase in circulating 5-HT, with a significant decrease in transcripts encoding the 5-HT2A receptor and monoamine oxidase as compared with control offspring. Measurement of spatiotemporal mapping of contractile activity of the small and large intestine at 6 mo of age revealed no changes in motility in the small bowel of fluoxetine-exposed offspring but revealed a significant increase in the frequency of colonic contractions in the female fluoxetine-exposed compared with control animals. Susceptibility to inflammation was examined at 6 mo using the dextran sulfate sodium model of acute colitis. In utero exposure to fluoxetine was not found to exacerbate colitis severity. These findings suggest that fluoxetine exposure during fetal and early postnatal development can lead to changes in serotonergic neurons at the peak of exposure with sex-specific changes in 5-HT signaling and colonic motility in adulthood.NEW & NOTEWORTHY There is increasing recognition of the relevance of in utero and early postnatal exposures in the developmental programming of the gastrointestinal tract. Perinatal exposure to selective serotonin reuptake inhibitors and antidepressant medications is of particular relevance as they are commonly prescribed during pregnancy, and serotonergic pathways play key roles during gastrointestinal development and in postnatal homeostasis. Here, we provide a comprehensive evaluation of clinically relevant outcomes of gastrointestinal motility and susceptibility to colitis in fluoxetine-exposed offspring and highlight changes in colonic serotonergic neurons at the peak of perinatal fluoxetine exposure with sex-dependent changes in serotonin signaling and colonic motility in adulthood.
Collapse
Affiliation(s)
- Katherine L Prowse
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Harriet Law
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | | | - Filip Markovic
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Megan Wang
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Rajka Borojevic
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sean P Parsons
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alexander D Vincent
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Elyanne M Ratcliffe
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Toft PB, Yashiro H, Erion DM, Gillum MP, Bäckhed F, Arora T. Microbial dietary protein metabolism regulates GLP-1 mediated intestinal transit. FASEB J 2023; 37:e23201. [PMID: 37732618 DOI: 10.1096/fj.202300982r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Depletion of gut microbiota is associated with inefficient energy extraction and reduced production of short-chain fatty acids from dietary fibers, which regulates colonic proglucagon (Gcg) expression and small intestinal transit in mice. However, the mechanism by which the gut microbiota influences dietary protein metabolism and its corresponding effect on the host physiology is poorly understood. Enteropeptidase inhibitors block host protein digestion and reduce body weight gain in diet-induced obese rats and mice, and therefore they constitute a new class of drugs for targeting metabolic diseases. Enteroendocrine cells (EECs) are dispersed throughout the gut and possess the ability to sense dietary proteins and protein-derived metabolites. Despite this, it remains unclear if enteropeptidase inhibition affects EECs function. In this study, we fed conventional and antibiotic treated mice a western style diet (WSD) supplemented with an enteropeptidase inhibitor (WSD-ETPi), analyzed the expression of gut hormones along the length of the intestine, and measured small intestinal transit under different conditions. The ETPi-supplemented diet promoted higher Gcg expression in the colon and increased circulating Glucagon like peptide-1 (GLP-1) levels, but only in the microbiota-depleted mice. The increase in GLP-1 levels resulted in slower small intestinal transit, which was subsequently reversed by administration of GLP-1 receptor antagonist. Interestingly, small intestinal transit was normalized when an amino acid-derived microbial metabolite, p-cresol, was supplemented along with WSD-ETPi diet, primarily attributed to the reduction of colonic Gcg expression. Collectively, our data suggest that microbial dietary protein metabolism plays an important role in host physiology by regulating GLP-1-mediated intestinal transit.
Collapse
Affiliation(s)
- Pernille Baumann Toft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiroaki Yashiro
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Massachusetts, Cambridge, USA
| | - Derek M Erion
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Massachusetts, Cambridge, USA
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Yan XY, Yao JP, Li YQ, Xiao XJ, Yang WQ, Chen SJ, Tang TC, Yang YQ, Qu L, Hou YJ, Chen M, Li Y. Effects of acupuncture on gut microbiota and short-chain fatty acids in patients with functional constipation: a randomized placebo-controlled trial. Front Pharmacol 2023; 14:1223742. [PMID: 37719865 PMCID: PMC10502303 DOI: 10.3389/fphar.2023.1223742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023] Open
Abstract
Objective: To comprehensively evaluate the effect of acupuncture on gut microbiota, identify specific microbes closely related to the clinical efficacy of acupuncture, and explored the role of short-chain fatty acids (SCFAs). Methods: A randomized placebo-controlled trial was conducted with 80 FC patients and 28 healthy controls (HCs). FC patients randomly received 16 acupuncture (n = 40) or sham acupuncture (n = 40) sessions over 4 weeks; HCs received no treatment. The change in the proportion of patients with mean weekly complete spontaneous bowel movements (CSBMs) was considered as the primary outcome measure. Moreover, the composition and the predictive metabolic function of the gut microbiota from feceal samples were analyzed by 16S rRNA gene sequencing, while feceal SCFAs were identified via gas chromatography-mass spectrometry (GC-MS). Results: Compared to sham acupuncture, acupuncture significantly increased the proportion of CSBM responders, and improved spontaneous bowel movements (SBMs), straining, stool consistency, and quality of life. Moreover, Sequencing of 16S rRNA genes revealed that acupuncture improved β-diversity and restored the composition of gut microbiota. Specifically, the abundance of beneficial bacteria such as g_Lactobacillus increased while that of pathogenic bacteria such as g_Pseudomonas decreased after acupuncture, which were significantly correlated with alleviated symptoms. Moreover, ten microbes including g_Coprobacter, g_Lactobacillus, and g_Eubacterium_coprostanoligenes_group might be considered acupuncture-specific microbes, and formed a stable interaction network. Additionally, GC-MS analysis indicated that acupuncture increased the content of butyrate acid in the gut, which was positively correlated with an increase in defecation frequency and a decrease in acupuncture-related pathogens. Finally, acupuncture specific-microbes including g_Coprobacter, g_Lactobacillus, g_Pseudomonas, g_Eubacterium_coprostanoligenes_group, g_Erysipelotrichaceae_UCG.003, g_Prevotellaceae_UCG.001, and g_Rolstonia could accurately predict the clinical efficacy of acupuncture (AUC = 0.918). Conclusion: Acupuncture could effectively improve clinical symptoms in FC patients, and was associated with gut microbiota reshaping and increased butyrate acid levels. Moreover, key microbial genera such as g_Coprobacter and g_Lactobacillus was predictive of acupuncture efficacy in treating FC. Future studies are required to validate the causal relationship between key microbial genera and acupuncture clinical efficacy, and should explore further metabolic pathways for designing personalized treatment strategies. Clinical Trial Registration: http://www.chictr.org.cn, Identifier: ChiCTR2100048831.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Jun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wan-Qing Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Jue Chen
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tai-Chun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Qing Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu Qu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Jun Hou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Tough IR, Lund ML, Patel BA, Schwartz TW, Cox HM. Paracrine relationship between incretin hormones and endogenous 5-hydroxytryptamine in the small and large intestine. Neurogastroenterol Motil 2023; 35:e14589. [PMID: 37010838 PMCID: PMC10909488 DOI: 10.1111/nmo.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays. METHODS Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured. KEY RESULTS We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit. CONCLUSIONS & INFERENCES We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.
Collapse
Affiliation(s)
- Iain R. Tough
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| | - Mari L. Lund
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
- Present address:
Chr. Hansen A/S, Human Health ResearchHoersholmDK‐2970Denmark
| | - Bhavik A. Patel
- Centre for Stress and Age‐Related Diseases, School of Applied SciencesUniversity of BrightonBrightonUK
| | - Thue W. Schwartz
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Helen M. Cox
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| |
Collapse
|
26
|
Salvi PS, Shaughnessy MP, Sumigray KD, Cowles RA. Antibiotic-induced microbial depletion enhances murine small intestinal epithelial growth in a serotonin-dependent manner. Am J Physiol Gastrointest Liver Physiol 2023; 325:G80-G91. [PMID: 37158470 DOI: 10.1152/ajpgi.00113.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 05/10/2023]
Abstract
Regulation of small intestinal epithelial growth by endogenous and environmental factors is critical for intestinal homeostasis and recovery from insults. Depletion of the intestinal microbiome increases epithelial proliferation in small intestinal crypts, similar to the effects observed in animal models of serotonin potentiation. Based on prior evidence that the microbiome modulates serotonin activity, we hypothesized that microbial depletion-induced epithelial proliferation is dependent on host serotonin activity. A mouse model of antibiotic-induced microbial depletion (AIMD) was employed. Serotonin potentiation was achieved through either genetic knockout of the serotonin transporter (SERT) or pharmacological SERT inhibition, and inhibition of serotonin synthesis was achieved with para-chlorophenylalanine. AIMD and serotonin potentiation increased intestinal villus height and crypt proliferation in an additive manner, but the epithelial proliferation observed after AIMD was blocked in the absence of endogenous serotonin. Using Lgr5-EGFP-reporter mice, we evaluated intestinal stem cell (ISC) quantity and proliferation. AIMD increased the number of ISCs per crypt and ISC proliferation compared with controls, and changes in ISC number and proliferation were dependent on the presence of host serotonin. Furthermore, Western blotting demonstrated that AIMD reduced epithelial SERT protein expression compared with controls. In conclusion, host serotonin activity is necessary for microbial depletion-associated changes in villus height and ISC proliferation in crypts, and microbial depletion produces a functional serotonin-potentiated state through reduced SERT protein expression. These findings provide an understanding of how changes to the microbiome contribute to intestinal pathology and can be applied therapeutically.NEW & NOTEWORTHY Antibiotic-induced microbial depletion of the murine small intestine results in a state of potentiated serotonin activity through reduced epithelial expression of the serotonin transporter. Specifically, serotonin-dependent mechanisms lead to increased intestinal surface area and intestinal stem cell proliferation. Furthermore, the absence of endogenous serotonin leads to blunting of small intestinal villi, suggesting that serotonin signaling is required for epithelial homeostasis.
Collapse
Affiliation(s)
- Pooja S Salvi
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew P Shaughnessy
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kaelyn D Sumigray
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Robert A Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
27
|
Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00042-0. [PMID: 37331860 DOI: 10.1016/j.joim.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Abnormalities in the gut microbiota and intestinal short-chain fatty acid (SCFA) levels are implicated in the pathogenesis of functional constipation (FC). Electro-acupuncture (EA) has been shown to improve constipation-related symptoms and rebalance the gut microbiota. However, it is currently unknown whether the gut microbiota is a key mechanistic target for EA or how EA promotes gut motility by regulating the gut microbiota and SCFAs. Therefore, we assessed the effects of EA in FC mice and pseudo-germfree (PGF) mice to address these questions. METHODS Forty female Kunming mice were randomly separated into a normal control group (n = 8), an FC group (n = 8), an FC + EA group (n = 8), a PGF group (n = 8) and a PGF + EA group (n = 8). The FC group and FC + EA group were treated with diphenoxylate to establish the FC model; the PGF group and PGF + EA group were given an antibiotic cocktail to initiate the PGF model. After maintaining the model for 14 d, mice in the FC + EA and PGF + EA groups received EA stimulation at the ST25 and ST37 acupoints, once a day, 5 times per week, for 2 weeks. Fecal parameters and intestinal transit rate were calculated to assess the efficacy of EA on constipation and gastrointestinal motility. Colonic contents were used to quantify gut microbial diversity using 16S rRNA sequencing, and measure SCFA concentrations using gas chromatography-mass spectrometry. RESULTS EA significantly shortened the first black stool defecation time (P < 0.05) and increased the intestinal transit rate (P < 0.01), and fecal pellet number (P < 0.05), wet weight (P < 0.05) and water content (P < 0.01) over 8 h, compared with the FC group, showing that EA promoted gut motility and alleviated constipation. However, EA treatment did not reverse slow-transit colonic motility in PGF mice (P > 0.05), demonstrating that the gut microbiota may play a mechanistic role in the EA treatment of constipation. In addition, EA treatment restored the Firmicutes to Bacteroidetes ratio and significantly increased butyric acid generation in FC mice (P < 0.05), most likely due to the upregulation of Staphylococcaceae microorganisms (P < 0.01). CONCLUSION EA-mediated resolution of constipation occurs through rebalancing the gut microbiota and promoting butyric acid generation. Please cite this article as: Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ming-Min Xu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ying Chen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Wei Zhang
- Office of Educational Administration, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ying Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
28
|
Cuciniello R, Di Meo F, Filosa S, Crispi S, Bergamo P. The Antioxidant Effect of Dietary Bioactives Arises from the Interplay between the Physiology of the Host and the Gut Microbiota: Involvement of Short-Chain Fatty Acids. Antioxidants (Basel) 2023; 12:antiox12051073. [PMID: 37237938 DOI: 10.3390/antiox12051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.
Collapse
Affiliation(s)
- Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| | - Paolo Bergamo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| |
Collapse
|
29
|
Tian P, Zou R, Wang L, Chen Y, Qian X, Zhao J, Zhang H, Qian L, Wang Q, Wang G, Chen W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res 2023; 45:117-125. [PMID: 35618633 PMCID: PMC10006521 DOI: 10.1016/j.jare.2022.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a leading global psychiatric disease. MDD is highly comorbid with gastrointestinal abnormalities, such as gut motility dysfunction. An effective strategy to manage depression and its accompanying gastrointestinal symptoms is warranted. OBJECTIVES Three probiotic strains (Bifidobacterium breve CCFM1025, Bifidobacterium longum CCFM687, and Pediococcus acidilactici CCFM6432) had previously been validated in mice to possess antidepressant-like potential. This study investigated the potential psychotropic effects of a combined three-strain probiotic intervention for human MDD patients. The mechanism of action was further investigated in the stress-induced depression mice model. METHODS MDD patients were given a freeze-dried, mixed probiotic formula for four weeks. The patients' psychometric and gastrointestinal conditions were evaluated using clinical rating scales before and after treatment. Their gut microbiome was also analysed using 16S rRNA gene amplicon sequencing. The mechanisms underlying the beneficial probiotic effects were determined using a chronic stress-induced depressive mouse model. RESULTS Multi-probiotics significantly reduced depression scores, and to a greater extent than the placebo (based on the Hamilton Depression Rating, Montgomery-Asberg Depression Rating, and Brief Psychiatric Rating Scales). Multi-probiotics also significantly improved the patients' gastrointestinal functions (based on self-evaluation using the Gastrointestinal Symptom Rating Scale). Serotonergic system modification was demonstrated as the key mechanism behind the probiotics' benefits for the brain and the gut. CONCLUSION Our findings suggest a novel and promising treatment to manage MDD and accompanying gut motility problems, and provide options for treating other gut-brain axis-related disorders.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Long Qian
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Qun Wang
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet 2023; 48:100488. [PMID: 36737277 DOI: 10.1016/j.dmpk.2022.100488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Food ingestion affects the oral absorption of many drugs in humans. In this review article, we summarize the physiological factors in the gastrointestinal (GI) tract that affect the in vivo performance of orally administered solid dosage forms in fasted and fed states in humans. In particular, we discuss the effects of food ingestion on fluid characteristics (pH, bile concentration, and volume) in the stomach and small intestine, GI transit of water and dosage forms, and microbiota. Additionally, case examples of food effects on GI physiology and subsequent changes in oral drug absorption are provided. Furthermore, the effects of food, especially fruit juices (e.g., grapefruit, orange, apple) and green tea, on transporter-mediated permeation and enzyme-catalyzed metabolism of drugs in intestinal epithelial cells are also summarized comprehensively.
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka, 425-0072, Japan; School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
31
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
32
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
33
|
van Deuren T, Smolders L, Hartog A, Bouwman FG, Holst JJ, Venema K, Blaak EE, Canfora EE. Butyrate and hexanoate-enriched triglycerides increase postprandrial systemic butyrate and hexanoate in men with overweight/obesity: A double-blind placebo-controlled randomized crossover trial. Front Nutr 2023; 9:1066950. [PMID: 36687671 PMCID: PMC9846253 DOI: 10.3389/fnut.2022.1066950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background Short chain fatty acids (SCFA) are increasingly recognized for their potential ability to alleviate obesity-associated chronic low-grade inflammation and disturbed energy homeostasis. Evidence suggests that an increase in circulating SCFA might be necessary to induce beneficial alterations in energy metabolism. Objective To compare the bioaccessibility of two different SCFA-enriched triglycerides: Akovita SCT (butyrate and hexanoate esterified with long chain fatty acids) and tributyrin/caproin (solely butyrate and hexanoate) and investigate whether the SCFA from orally administrated Akovita SCT reach the circulation and affect postprandial metabolism in men with overweight/obesity. Methods The site, speed, and amount of SCFA release from Akovita SCT and tributyrin/caproin were assessed in a validated In vitro Model of the stomach and small intestine (TIM-1). Subsequently, a double-blind placebo-controlled randomized crossover study was conducted at Maastricht University with fourteen men with overweight/obesity (BMI 25-35 kg/m2) of which twelve men finished all testdays and were included for analysis. The participants received a liquid high fat mixed meal test containing either a low (650 mg), medium (1,325 mg), or high dose (2,000 mg) of Akovita SCT or a placebo (sunflower oil) in randomized order. Blood was sampled at baseline and after ingestion for 6 h for the primary outcome plasma butyrate and hexanoate concentration. Secondary outcomes included hydrogen breath, appetite, gastrointestinal complaints, circulating glucagon-like peptide 1, free fatty acids, glucose, triglycerides, insulin, and cytokines concentrations. Results In TIM-1, tributyrin/caproin was rapidly cleaved in the gastric compartment whereas the release of SCFA from Akovita SCT occurred predominantly in the small intestine. In vivo, all doses were well-tolerated. The medium dose increased (P < 0.05) and the high dose tended to increase (P < 0.10) postprandial circulating butyrate and both doses increased circulating hexanoate (P < 0.05) compared to placebo. Nevertheless, Akovita SCT supplementation did not affect any secondary outcomes compared to placebo. Conclusion Esterifying SCFA-enriched triglycerides with long chain fatty acids delayed SCFA release from the glycerol backbone. Akovita SCT increased postprandial circulating butyrate and hexanoate without changing metabolic parameters in men with overweight/obesity. Future randomized clinical trials should investigate whether long-term Akovita SCT supplementation can aid in the treatment or prevention of metabolic disorders. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT04662411.
Collapse
Affiliation(s)
- Thirza van Deuren
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Lotte Smolders
- AAK, Department of Biotechnology and Nutrition, AAK Netherlands BV, Zaandijk, Netherlands
| | - Anita Hartog
- AAK, Department of Biotechnology and Nutrition, AAK Netherlands BV, Zaandijk, Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emanuel E. Canfora
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands,*Correspondence: Emanuel E. Canfora ✉
| |
Collapse
|
34
|
Everett BA, Tran P, Prindle A. Toward manipulating serotonin signaling via the microbiota-gut-brain axis. Curr Opin Biotechnol 2022; 78:102826. [PMID: 36332346 DOI: 10.1016/j.copbio.2022.102826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
It is now well established in humans that there is a bidirectional pathway of communication between the central and enteric nervous systems in which members of the microbiome participate. This microbiota-gut-brain axis (MGBA) is crucial for normal development and physiology, and its dysregulation has been implicated in a range of neurological and intestinal disorders. Investigations into the mechanistic underpinnings of the MGBA have identified serotonin as a molecule of particular interest. In this review, we highlight recent advances toward understanding the role of endogenous serotonin in microbial communities, how microbial communities bidirectionally interact with host serotonin, and potential future engineering opportunities to leverage these novel mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Wang M, Cha R, Hao W, Du R, Zhang P, Hu Y, Jiang X. Nanocrystalline Cellulose Cures Constipation via Gut Microbiota Metabolism. ACS NANO 2022; 16:16481-16496. [PMID: 36129390 DOI: 10.1021/acsnano.2c05809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constipation can seriously affect the quality of life and increase the risk of colorectal cancer. The present strategies for constipation therapy have adverse effects, such as causing irreversible intestinal damage and affecting the absorption of nutrients. Nanocrystalline cellulose (NCC), which is from natural plants, has good biocompatibility and high safety. Herein, we used NCC to treat constipation assessed by the black stool, intestinal tissue sections, and serum biomarkers. We studied the effect of NCC on gut microbiota and discussed the correlation of gut microbiota and metabolites. We evaluated the long-term biosafety of NCC. NCC could effectively treat constipation through gut microbiota metabolism, which required a small dosage and did not affect the organs and intestines. NCC could be used as an alternative to medications and dietary fiber for constipation therapy.
Collapse
Affiliation(s)
- Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, People's Republic of China
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
36
|
Schneider KM, Kim J, Bahnsen K, Heuckeroth RO, Thaiss CA. Environmental perception and control of gastrointestinal immunity by the enteric nervous system. Trends Mol Med 2022; 28:989-1005. [PMID: 36208986 DOI: 10.1016/j.molmed.2022.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/25/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) forms a versatile sensory system along the gastrointestinal tract that interacts with most cell types in the bowel. Herein, we portray host-environment interactions at the intestinal mucosal surface through the lens of the enteric nervous system. We describe local cellular interactions as well as long-range circuits between the enteric, central, and peripheral nervous systems. Additionally, we discuss recently discovered mechanisms by which enteric neurons and glia respond to biotic and abiotic environmental changes and how they regulate intestinal immunity and inflammation. The enteric nervous system emerges as an integrative sensory system with manifold immunoregulatory functions under both homeostatic and pathophysiological conditions.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Microbiology Department, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Jihee Kim
- Microbiology Department, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Klaas Bahnsen
- Microbiology Department, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
37
|
Gut microbiota: a new avenue to reveal pathological mechanisms of constipation. Appl Microbiol Biotechnol 2022; 106:6899-6913. [PMID: 36190540 DOI: 10.1007/s00253-022-12197-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.
Collapse
|
38
|
Legan TB, Lavoie B, Mawe GM. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol Motil 2022; 34:e14346. [PMID: 35246905 PMCID: PMC9441471 DOI: 10.1111/nmo.14346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Mounting evidence highlights the pivotal role of enteric microbes as a dynamic interface with the host. Indeed, the gut microbiota, located in the lumen of the gastrointestinal (GI) tract, influence many essential physiological processes that are evident in both healthy and pathological states. A key signaling molecule throughout the body is serotonin (5-hydroxytryptamine; 5-HT), which acts in the GI tract to regulate numerous gut functions including intestinal motility and secretion. The gut microbiota can modulate host 5-HT systems both directly and indirectly. Direct actions of gut microbes, evidenced by studies using germ-free animals or antibiotic administration, alter the expression of key 5-HT-related genes to promote 5-HT biosynthesis. Indirectly, the gut microbiota produce numerous microbial metabolites, whose actions can influence host serotonergic systems in a variety of ways. This review summarizes the current knowledge regarding mechanisms by which gut bacteria act to regulate host 5-HT and 5-HT-mediated gut functions, as well as implications for 5-HT in the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Theresa B Legan
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
39
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
40
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
42
|
New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:55-69. [PMID: 36587146 DOI: 10.1007/978-3-031-05843-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Propulsive gastrointestinal (GI) motility is critical for digestive physiology and host defense. GI motility is finely regulated by the intramural reflex pathways of the enteric nervous system (ENS). The ENS is in turn regulated by luminal factors: diet and the gut microbiota. The gut microbiota is a vast ecosystem of commensal bacteria, fungi, viruses, and other microbes. The gut microbiota not only regulates the motor programs of the ENS but also is critical for the normal structure and function of the ENS. In this chapter, we highlight recent research that has shed light on the microbial mechanisms of interaction with the ENS involved in the control of motility. Toll-like receptor signaling mechanisms have been shown to maintain the structural integrity of the ENS and the neurochemical phenotypes of enteric neurons, in part through the production of trophic factors including glia-derived neurotrophic factor. Microbiota-derived short-chain fatty acids and/or single-stranded RNA regulates the synthesis of serotonin in enterochromaffin cells, which are involved in the initiation of enteric reflexes, among other functions. Further evidence suggests a crucial role for microbial modulation of serotonin in maintaining the integrity of the ENS through enteric neurogenesis. Understanding the microbial pathways of enteric neural control sheds new light on digestive health and provides novel treatment strategies for GI motility disorders.
Collapse
|
43
|
Kobek-Kjeldager C, Schönherz AA, Canibe N, Pedersen LJ. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
45
|
Sun C, Chen L, Yang H, Sun H, Xie Z, Zhao B, Jiang X, Qin B, Shen Z. Involvement of Gut Microbiota in the Development of Psoriasis Vulgaris. Front Nutr 2021; 8:761978. [PMID: 34881280 PMCID: PMC8646027 DOI: 10.3389/fnut.2021.761978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives: Psoriasis is a common chronic recurrent dermatitis. Accumulating observations show gut microbiota dysbiosis in psoriasis. We intend to further investigate the relationship between intestinal microbiota and psoriasis development. Design: We first performed an epidemiological investigation on differences of gastrointestinal discomfort symptoms between patients with psoriasis and general population. Then variation of gut microbiota in patients with psoriasis (un)treated with acitretin plus narrow-band ultraviolet B (NB-UVB) was analyzed by 16S rRNA sequencing. We last compared recovery status and vital cytokines (lesion and intestine) of mouse psoriasiform models, which were transplanted with fecal microbiota from patients with psoriasis or healthy controls. Results: (1) About 85.5% of patients with psoriasis vs. 58.1% of healthy controls presented with at least one gastrointestinal symptom. The prevalence of investigated symptoms (e.g., abdominal distension and constipation) were significantly higher in patients, compared with controls (p < 0.05). Passing flatus and constipation were significantly correlated with psoriasis (p < 0.05 in both cases). (2) The abundance of Ruminococcaceae family, Coprococcus_1 genus, and Blautia genus were decreased with psoriasis improvement (p < 0.05, respectively), which had been demonstrated significantly increased in psoriasis. (3) Mice receiving psoriatic microbes transplantation showed delayed recovery of psoriasiform dermatitis and less reduction of interleukin (IL)-17A than those receiving healthy microbiota or blank control (p < 0.05 and p < 0.01, respectively). Conclusion: Multiple evidence we provided here preliminarily demonstrates the involvement of gut microbiota in the different degree of psoriasis activity. The strategy based on overall microbial communities is expected to be a promising supplementary for long-term management of psoriasis.
Collapse
Affiliation(s)
- Chaonan Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hongjiang Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhen Xie
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Bei Zhao
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xuemei Jiang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Bi Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Acupuncture & Moxibustion Research Institute, Sichuan Academy of Traditional Chinese Medicine, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Zhu Shen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
46
|
Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis. Front Cell Infect Microbiol 2021; 11:752708. [PMID: 34869062 PMCID: PMC8637199 DOI: 10.3389/fcimb.2021.752708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a polymicrobial infectious disease characterized by alveolar bone loss. Systemic diseases or local infections, such as diabetes, postmenopausal osteoporosis, obesity, and inflammatory bowel disease, promote the development and progression of periodontitis. Accumulating evidences have revealed the pivotal effects of gut microbiota on bone health via gut-alveolar-bone axis. Gut pathogens or metabolites may translocate to distant alveolar bone via circulation and regulate bone homeostasis. In addition, gut pathogens can induce aberrant gut immune responses and subsequent homing of immunocytes to distant organs, contributing to pathological bone loss. Gut microbial translocation also enhances systemic inflammation and induces trained myelopoiesis in the bone marrow, which potentially aggravates periodontitis. Furthermore, gut microbiota possibly affects bone health via regulating the production of hormone or hormone-like substances. In this review, we discussed the links between gut microbiota and periodontitis, with a particular focus on the underlying mechanisms of gut-bone axis by which systemic diseases or local infections contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xiaoyue Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Zheng Y, Jiang X, Gao Y, Yuan L, Wang X, Wu S, Xia Y, Yao L, Yan J, Liu L, Wei Y, Song Z, Yu L, Chen Y. Microbial Profiles of Patients With Antipsychotic-Related Constipation Treated With Electroacupuncture. Front Med (Lausanne) 2021; 8:737713. [PMID: 34722577 PMCID: PMC8551555 DOI: 10.3389/fmed.2021.737713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic-related constipation (APRC) is one of the most common side effects of taking antipsychotic medication. APRC can seriously impact patient quality of life and is potentially fatal, though the efficacy of current APRC treatments is low for most patients. In this study, we conducted a controlled, pilot randomized, sham-electroacupuncture (SEA) study to assess the efficacy of electroacupuncture (EA) in patients with APRC. We used 16S rRNA gene sequencing to assess the microbial profiles of these patients and analyze how EA treatments affected their bacteria. Methods: We treated 133 APRC patients with randomly assigned EA treatments or SEA treatments for 4 consecutive weeks, fully evaluating the patients 8 weeks after treatment. The participants, outcome assessors, and statistics were all blind to the EA and SEA treatments. Outcomes assessed included changes in spontaneous bowel movements (SBMs) and the frequency of rescue measures. We detected assessed the microbial diversity of stool specimens both before and after EA treatment using 16S rRNA gene sequencing. Results: Both EA and SEA treatments reduced the need for constipation rescue measures and did not have serious side effects. EA treatments were better than SEA treatments at increasing SBMs and reducing rescue measures. The diversity of gut microbiota changed after EA treatment. LEfSe analysis indicated changes in the genus (belonging to phylum Proteobacteria) of gut microbiota in patients following EA treatment. Conclusions: This study found that EA treatment is effective and safe for patients with APRC, and could be associated with changes in their microbial profiles. Further study, with larger sample sizes, is needed to explore the efficacy of EA intervention as a clinical treatment for APRC. Trial Registration: ChiCTR, ChiCTR-ONC-17010842, http://www.chictr.org.cn/showproj.aspx?proj=18420.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumin Jiang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yacen Gao
- Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lexin Yuan
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaotong Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lanying Liu
- Department of Psychosomatics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingdong Wei
- Medical Administration Division, Shenyang Anning Hospital, Shenyang, China
| | - Zhiqiang Song
- The Third People's Hospital of Qinghai Province, Xining, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
48
|
Ye L, Rawls JF. Microbial influences on gut development and gut-brain communication. Development 2021; 148:dev194936. [PMID: 34758081 PMCID: PMC8627602 DOI: 10.1242/dev.194936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.
Collapse
|
49
|
Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. MICROBIOME 2021; 9:210. [PMID: 34702353 PMCID: PMC8549243 DOI: 10.1186/s40168-021-01165-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood. Using a mouse model of antibiotic (Abx)-induced bacterial depletion, we sought to determine the molecular mechanisms of microbial regulation of intestinal function and the integrity of the ENS. Spontaneous reconstitution of the Abx-depleted microbiota was used to assess the plasticity of structure and function of the GI tract and ENS. Microbiota-dependent molecular mechanisms of ENS neuronal survival and neurogenesis were also assessed. RESULTS Adult male and female Abx-treated mice exhibited alterations in GI structure and function, including a longer small intestine, slower transit time, increased carbachol-stimulated ion secretion, and increased intestinal permeability. These alterations were accompanied by the loss of enteric neurons in the ileum and proximal colon in both submucosal and myenteric plexuses. A reduction in the number of enteric glia was only observed in the ileal myenteric plexus. Recovery of the microbiota restored intestinal function and stimulated enteric neurogenesis leading to increases in the number of enteric glia and neurons. Lipopolysaccharide (LPS) supplementation enhanced neuronal survival alongside bacterial depletion, but had no effect on neuronal recovery once the Abx-induced neuronal loss was established. In contrast, short-chain fatty acids (SCFA) were able to restore neuronal numbers after Abx-induced neuronal loss, demonstrating that SCFA stimulate enteric neurogenesis in vivo. CONCLUSIONS Our results demonstrate a role for the gut microbiota in regulating the structure and function of the GI tract in a sex-independent manner. Moreover, the microbiota is essential for the maintenance of ENS integrity, by regulating enteric neuronal survival and promoting neurogenesis. Molecular determinants of the microbiota, LPS and SCFA, regulate enteric neuronal survival, while SCFA also stimulates neurogenesis. Our data reveal new insights into the role of the gut microbiota that could lead to therapeutic developments for the treatment of enteric neuropathies. Video abstract.
Collapse
Affiliation(s)
- Fernando A. Vicentini
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Laurie E. Wallace
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Crystal Woods
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Jean-Baptiste Cavin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Amanda R. Flockton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045 USA
- Neurogastroenterology and Motility Program, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045 USA
| | - Simon A. Hirota
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
50
|
Xie T, Jin F, Jia X, Mao H, Xu Y, Zhang S. High cellulose diet promotes intestinal motility through regulating intestinal immune homeostasis and serotonin biosynthesis. Biol Chem 2021; 403:279-292. [PMID: 34536342 DOI: 10.1515/hsz-2021-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Fa Jin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Xiaokun Jia
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Hengxu Mao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Yuting Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| |
Collapse
|