1
|
Banjac K, Obradovic M, Zafirovic S, Essack M, Gluvic Z, Sunderic M, Nedic O, Isenovic ER. The involvement of Akt, mTOR, and S6K in the in vivo effect of IGF-1 on the regulation of rat cardiac Na +/K +-ATPase. Mol Biol Rep 2024; 51:517. [PMID: 38622478 DOI: 10.1007/s11033-024-09451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 μg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.
Collapse
Affiliation(s)
- Katarina Banjac
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia.
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zoran Gluvic
- Clinic of Internal Medicine, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Vukova 9, Belgrade, 11080, Serbia
| | - Milos Sunderic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, Belgrade, Serbia
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O.Box 522, Belgrade, 11000, Serbia
| |
Collapse
|
2
|
Markovic MA, Srikrishnaraj A, Tsang D, Brubaker PL. Requirement for the intestinal epithelial insulin-like growth factor-1 receptor in the intestinal responses to glucagon-like peptide-2 and dietary fat. FASEB J 2020; 34:6628-6640. [PMID: 32212202 DOI: 10.1096/fj.202000169r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances the enterocyte chylomicron production. However, GLP-2 is known to require the intestinal-epithelial insulin-like growth factor-1 receptor (IE-IGF-1R) for its other actions to increase intestinal growth and barrier function. The role of the IE-IGF-1R in enterocyte lipid handling was thus tested in the GLP-2 signaling pathway, as well as in response to a Western diet (WD). IE-IGF-1R knockout (KO) and control mice were treated for 11 days with h(GLY2 )GLP-2 or fed a WD for 18 weeks followed by a duodenal fat tolerance test with C14 -labeled triolein. Human Caco-2BBE cells were treated with an IGF-1R antagonist or signaling inhibitors to determine triglyceride-associated protein expression. The IE-IGF-1R was required for GLP-2-induced increases in CD36 and FATP-4 in chow-fed mice, and for expression in vitro; FATP-4 also required PI3K/Akt. Although WD-fed IE-IGF-1R KO mice demonstrated normal CD36 expression, the protein was incorrectly localized 2h post-duodenal fat administration. IE-IGF-1R KO also prevented the WD-induced increase in MTP and decrease in APOC3, increased jejunal mucosal C14 -fat accumulation, and elevated plasma triglyceride and C14 -fat levels. Collectively, these studies elucidate new roles for the IE-IGF-1R in enterocyte lipid handling, under basal conditions and in response to GLP-2 and WD-feeding.
Collapse
Affiliation(s)
| | | | - Derek Tsang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Markovic MA, Brubaker PL. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci Rep 2019; 9:13010. [PMID: 31506583 PMCID: PMC6737075 DOI: 10.1038/s41598-019-49510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Microvilli are tiny projections on the apical end of enterocytes, aiding in the digestion and absorption of nutrients. One of their key features is uniform length, but how this is regulated is poorly understood. Glucagon-like peptide-2 (GLP-2) has been shown to increase microvillus length but, the requirement of its downstream mediator, the intestinal epithelial insulin-like growth factor-1 receptor (IE-IGF-1R), and the microvillus proteins acted upon by GLP-2, remain unknown. Using IE-IGF-1R knockout (KO) mice, treated with either long-acting human (h) (GLY2)GLP-2 or vehicle for 11d, it was found that the h(GLY2)GLP-2-induced increase in microvillus length required the IE-IGF-1R. Furthermore, IE-IGF-1R KO alone resulted in a significant decrease in microvillus length. Examination of the brush border membrane proteome as well as of whole jejunal mucosa demonstrated that villin was increased with h(GLY2)GLP-2 treatment in an IE-IGF-1R-dependent manner. Under both basal conditions and with h(GLY2)GLP-2 treatment of the IE-IGF-1R KO mice, changes in villin, IRTKS-1, harmonin, β-actin, and myosin-1a did not explain the decrease in microvillus length, in either the brush border or jejunal mucosa of KO animals. Collectively, these studies define a new role for the IE-IGF-1R within the microvillus, in both the signaling cascade induced by GLP-2, as well as endogenously.
Collapse
Affiliation(s)
- Melanie A Markovic
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Lottig L, Bader S, Jimenez M, Diener M. Evidence for metabotropic function of epithelial nicotinic cholinergic receptors in rat colon. Br J Pharmacol 2019; 176:1328-1340. [PMID: 30807644 DOI: 10.1111/bph.14638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/03/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE ACh exerts its actions via nicotinic (nAChR) and muscarinic receptors. In the peripheral nervous system, ionotropic nAChR mediate responses in excitable cells. However, recent studies demonstrate the expression of nAChR in the colonic epithelium, which are coupled to an induction of Cl- secretion via activation of the Na+ -K+ -pump. EXPERIMENTAL APPROACH In order to find out whether these epithelial nAChR function as ionotropic receptors, intracellular microelectrode and imaging experiments were performed in isolated crypts from rat colon. Apically permeabilized epithelia were used to measure pump current across the basolateral membrane. KEY RESULTS Imaging experiments with the Na+ -sensitive dye SBFI revealed that nicotine induced a decrease in the cytosolic Na+ concentration concomitant with a fall in the cytosolic Ca2+ concentration in about 50% of the cells. as shown in fura-2 experiments. Nicotine hyperpolarized the membrane by 6.4 ± 2.1 mV. These observations contradict the assumption that epithelial nAChR function as ligand-gated non-selective cation channels. The decrease in the cytosolic Na+ concentration was strongly delayed, when the Na+ -K+ -pump was inhibited by scilliroside. Ussing chamber experiments revealed a strong dependence of the nicotine-induced pump current on the presence of Ca2+ , and chelation of cytosolic Ca2+ with BAPTA prevented the fall in the cytosolic Na+ concentration in SBFI-loaded crypts. Inhibition of PKC with GF 109203X or Goe 6983 significantly reduced the nicotine-induced pump current. CONCLUSIONS AND IMPLICATIONS These results suggest that epithelial nAChR activate the Na+ -K+ -pump via a PKC dependent on a sufficient cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- Lena Lottig
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra Bader
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology, Veterinary Faculty, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Bader S, Lottig L, Diener M. Stimulation of Na + -K + -pump currents by epithelial nicotinic receptors in rat colon. Br J Pharmacol 2017; 174:880-892. [PMID: 28239845 DOI: 10.1111/bph.13761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Acetylcholine-induced epithelial Cl- secretion is generally thought to be mediated by epithelial muscarinic receptors and nicotinic receptors on secretomotor neurons. However, recent data have shown expression of nicotinic receptors by intestinal epithelium and the stimulation of Cl- secretion by nicotine, in the presence of the neurotoxin, tetrodotoxin. Here, we aimed to identify the transporters activated by epithelial nicotinic receptors and to clarify their role in cholinergic regulation of intestinal ion transport. EXPERIMENTAL APPROACH Ussing chamber experiments were performed, using rat distal colon with intact epithelia. Epithelia were basolaterally depolarized to measure currents across the apical membrane. Apically permeabilized tissue was also used to measure currents across the basolateral membrane in the presence of tetrodotoxin. KEY RESULTS Nicotine had no effect on currents through Cl- channels in the apical membrane or on currents through K+ channels in the apical or the basolateral membrane. Instead, nicotine stimulated the Na+ -K+ -pump as indicated by Na+ -dependency and sensitivity of the nicotine-induced current across the basolateral membrane to cardiac steroids. Effects of nicotine were inhibited by nicotinic receptor antagonists such as hexamethonium and mimicked by dimethyl-4-phenylpiperazinium, a chemically different nicotinic agonist. Simultaneous stimulation of epithelial muscarinic and nicotinic receptors led to a strong potentiation of transepithelial Cl- secretion. CONCLUSIONS AND IMPLICATIONS These results suggest a novel concept for the cholinergic regulation of transepithelial ion transport by costimulation of muscarinic and nicotinic epithelial receptors and a unique role of nicotinic receptors controlling the activity of the Na+ -K+ -ATPase.
Collapse
Affiliation(s)
- Sandra Bader
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| | - Lena Lottig
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| | - Martin Diener
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| |
Collapse
|
6
|
Chen L, Tuo B, Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 2016; 8:nu8010043. [PMID: 26784222 PMCID: PMC4728656 DOI: 10.3390/nu8010043] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
7
|
Maturana-Teixeira S, Braga LEG, Carpi Santos R, Calaza KDC, Giestal-de-Araujo E, Leão-Ferreira LR. The (Na(+)/K (+))-ATPase activity in the developing rat retina: the role of insulin-like growth factor-I (IGF-I). Cell Mol Neurobiol 2015; 35:243-54. [PMID: 25274047 DOI: 10.1007/s10571-014-0119-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
In this work, the (Na(+)/K(+))-ATPase activity was evaluated during the early stages of the postnatal development of rat retina and showed an almost three-time increase from P0 to P14. Expression of the three catalytic subunit isoforms (α1, α2, and α3) of the (Na(+)/K(+))-ATPase was also evaluated by immunoblot in the same period, but no correlation to the catalytic activity increment was observed. On the other hand, immunolocalization of these three α-catalytic isoforms in the developing retina showed an age-related pattern. Involvement of IGF-I in the stimulation of the (Na(+)/K(+))-ATPase was investigated. Our results demonstrate that the exogenous IGF-I (10 ng/mL) stimulates enzyme activity at the age of P7 only. Incubation of retinas with 10 μM I-OMe-AG 538 (inhibitor of the IGF-I receptor) indicates that the basal (Na(+)/K(+))-ATPase activity is sustained by endogenous IGF-I in P7 animals. These data were corroborated by an age-dependent decrease in the immunodetection of endogenous IGF-I as well as in the phosphorylation level of its cognate receptor in rat retina homogenates. The signaling pathway involved in IGF-I-induced modulation of the (Na(+)/K(+))-ATPase was also investigated. Our data show that the inhibitory effects induced by I-OMe-AG 538 and the PI 3-kinase inhibitor Ly 294002 on the basal (Na(+)/K(+))-ATPase activity were non-cumulative. Furthermore, IGF-I induced phosphorylation of PKB in a Ly 294002-sensitive manner. Together, these data demonstrate that the PI 3-kinase/PKB signaling pathway is involved in the IGF-I-sustained basal (Na(+)/K(+))-ATPase activity during the first 7 days of the postnatal development of rat retina.
Collapse
Affiliation(s)
- Sheila Maturana-Teixeira
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio De Janeiro, CEP 24020-140, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Shen Z, Martens H, Schweigel-Röntgen M. Na+transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1in vitro. Exp Physiol 2012; 97:497-505. [DOI: 10.1113/expphysiol.2011.061580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Drozdowski L, Thomson ABR. Intestinal hormones and growth factors: effects on the small intestine. World J Gastroenterol 2009; 15:385-406. [PMID: 19152442 PMCID: PMC2653359 DOI: 10.3748/wjg.15.385] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In part I, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids.
Collapse
|
10
|
Etschmann B, Suplie A, Martens H. Change of ruminal sodium transport in sheep during dietary adaptation. Arch Anim Nutr 2009; 63:26-38. [PMID: 19271549 DOI: 10.1080/17450390802506885] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rumen adaptation plays an important role in the productive cycle of dairy cattle. In this study, the time course of functional rumen epithelium adaptation after a change from hay feeding (ad libitum) to a mixed hay/concentrate diet was monitored by measuring Na+ transport rates in Ussing chamber experiments. A total of 18 sheep were subjected to different periods of mixed hay/concentrate feeding ranging from 0 weeks (control; hay ad libitum) to 12 weeks (800 g hay plus 800 g concentrate per day in two equal portions). For each animal, the net absorption of sodium was measured following the mixed hay/concentrate feeding period. Net Na transport, Jnet, significantly rose from 2.15 +/- 0.43 (control) to 3.73 +/- 1.02 microeq x cm(-2) x h(-1) after one week of mixed hay/ concentrate diet, reached peak levels of 4.55 +/- 0.50 microEq x cm(-2) x h(-1) after four weeks and levelled out at 3.92 +/- 0.36 microeq x cm(-2) x h(-1) after 12 weeks of mixed feeding. Thus, 73% of functional adaptation occurred during the first week after diet change. This is in apparent contrast to findings that morphological adaptation takes approximately six weeks to reach peak levels. Hence, early functional adaptation to a mixed hay/concentrate diet is characterised by enhanced Na absorption rates per epithelial cell. Absorption rates are likely to be further enhanced by proliferative effects on the rumen epithelium (number and size of papillae) when concentrate diets are fed over longer periods of time. Early functional adaptation without surface area enlargement of the rumen epithelium appears to be the first step in coping with altered fermentation rates following diet change.
Collapse
Affiliation(s)
- Benjamin Etschmann
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
11
|
Musch MW, Lucioni A, Chang EB. Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol 2008; 295:G909-19. [PMID: 18801914 PMCID: PMC2584825 DOI: 10.1152/ajpgi.90312.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.
Collapse
Affiliation(s)
- Mark W. Musch
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Alvaro Lucioni
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Eugene B. Chang
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Commare CE, Tappenden KA. Development of the infant intestine: implications for nutrition support. Nutr Clin Pract 2007; 22:159-73. [PMID: 17374790 DOI: 10.1177/0115426507022002159] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of preterm births has continued to increase over the past 25 years, and therefore the optimal feeding of these infants is an important clinical concern. This review focuses on intestinal development and physiology, with a particular emphasis on developmentally immature functions of the preterm intestine and the resulting implications for nutrition therapies used to feed the preterm infant.
Collapse
Affiliation(s)
- Coryn E Commare
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
13
|
Yu LCH, Turner JR, Buret AG. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 2006; 312:3276-86. [PMID: 16860318 DOI: 10.1016/j.yexcr.2006.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 12/12/2022]
Abstract
Recent findings indicate that enhanced glucose uptake protects enterocytes from excessive apoptosis and barrier defects induced by LPS exposure. The aim of this study was to characterize the mechanisms responsible for increased sodium-dependent glucose cotransporter (SGLT)-1 activity in enterocytes challenged with LPS. SGLT-1-transfected Caco-2 cells were incubated with LPS in high glucose media. LPS increased SGLT-1 activity in dose- and time-dependent fashion, and is due to increased V(max) of the cotransporter. Elevated apical expression of SGLT-1 was also demonstrated. This LPS-induced effect was colchicine-inhibitable, suggesting microtubule-dependent translocation of SGLT-1 onto apical surface. Immunofluorescence staining showed expression of CD14 on the apical surface, but no TLR-4, on these cells. Neutralizing anti-CD14 decreased the LPS-induced upregulation of SGLT-1 activity, whereas anti-TLR-4 had no effect. Pharmacological studies indicated that signaling for LPS-mediated SGLT-1 glucose uptake depends on caspase-8 and -9 activation, but occurs independently of caspase-3. The findings describe a novel feedback mechanism within the apoptotic signaling pathway for SGLT-1-dependent cytoprotection. The observation suggests a new function for CD14 on enterocytes, involving the induction of the caspase-dependent SGLT-1 activity, which ultimately leads to cell rescue. The understanding of these signaling events may shed light on enterocytic cytoprotection and homeostasis mechanism upon pro-apoptotic challenges.
Collapse
Affiliation(s)
- Linda C H Yu
- Department of Biological Sciences, BI 117 Mucosal Inflammation Research Group, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada
| | | | | |
Collapse
|
14
|
Abstract
Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.
Collapse
Affiliation(s)
- Laurie A Drozdowski
- Division of Gastroenterology, Department of Medicine, University of Alberta, 5150 Dentistry Pharmacy Building, Edmonton, Alberta T6G 2N8, Canada.
| | | |
Collapse
|
15
|
Lane RH, Dvorak B, MacLennan NK, Dvorakova K, Halpern MD, Pham TD, Philipps AF. IGF alters jejunal glucose transporter expression and serum glucose levels in immature rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1450-60. [PMID: 12388463 DOI: 10.1152/ajpregu.00172.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Milk-borne insulin-like growth factors (IGFs) enhance nutrient absorption in the immature intestine, which is characterized by low levels of glucose oxidation. We therefore hypothesized that feeding a rat milk substitute (RMS) devoid of growth factors to rat pups would lower serum glucose levels relative to dam-fed control rats and that supplementation of RMS with physiological doses of either IGF-I or IGF-II would normalize serum glucose levels via increased jejunal glucose transporter 2 (GLUT2) and high-affinity Na(+)-glucose cotransporter (SGLT1) expression. We found lower serum glucose concentrations in RMS-fed pups; in contrast, serum glucose levels in the IGF-supplemented pups were similar to those of dam-fed controls. RT-PCR and laser scanning confocal microscopy similarly demonstrated that IGF supplementation increased expression of jejunal glucose transporters. Further experiments demonstrated that IGF supplementation altered mRNA levels of key mitochondrial enzymes without altering jejunal lactase activity. We conclude that IGF-I and IGF-II supplementation increases serum glucose levels in the immature rat pup fed artificial formula and alters gene expression of the jejunal glucose transporters.
Collapse
Affiliation(s)
- Robert H Lane
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Mattel Children's Hospital, Los Angeles, California 90095-1752, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Millar GA, Hardin JA, Johnson LR, Gall DG. The role of PI 3-kinase in EGF-stimulated jejunal glucose transport. Can J Physiol Pharmacol 2002; 80:77-84. [PMID: 11911228 DOI: 10.1139/y02-012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor (EGF) rapidly increases jejunal glucose transport. Signal transduction mechanisms mediating EGF-induced alterations in jejunal glucose transport remain to be determined. New Zealand White rabbit (1 kg) jejunal tissue was stripped and mounted in short-circuited Ussing chambers. The transport of tritiated 3-O-methylglucose was measured in the presence of the PKC agonist 1,2-dioctanoyl-sn-glycerol (1,2-DOG) or the inactive analog 1,3-dioctanoyl-sn-glycerol (1,3-DOG). Additional experiments examined the effect of the PKC inhibitor chelerythrine, the PLC inhibitor U73122, the MAPK inhibitor PD 98059, the G-protein inhibitor GDP-betaS, the PI 3-kinase inhibitor LY294002, or the microtubule inhibitor colchicine on EGF-induced jejunal glucose transport. Net jejunal 3-O-methylglucose absorption was significantly increased following specific activation of PKC. A PKC antagonist inhibited the EGF-induced increase in net 3-O-methylglucose transport, while PI 3-kinase inhibition completely blocked the EGF-induced transport increase. Inhibition of PLC, MAPK, G-proteins, and microtubules had no effect on EGF-stimulated increases in jejunal transport. We conclude that the effect of EGF on jejunal glucose transport is mediated at least in part by PKC and PI 3-kinase.
Collapse
Affiliation(s)
- Grant A Millar
- Gastrointestinal Research Group, Health Sciences Centre, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
17
|
Debnam ES, Grimble GK. Methods for assessing intestinal absorptive function in relation to enteral nutrition. Curr Opin Clin Nutr Metab Care 2001; 4:355-67. [PMID: 11568496 DOI: 10.1097/00075197-200109000-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of nasoenteral nutrition support can be limited by intestinal impairment. In particular, reduced absorptive area, mucosal atrophy and abnormal motility may reduce absorption of macronutrients and micronutrients, and diarrhoea remains a commonly encountered complication. We review how basic physiological techniques can be used to investigate such pathophysiology. Lumenal nutrients control mucosal growth, expression of mucosal transporters and regional gut motility. Cell biology techniques now complement classical intestinal perfusion methods in determining the 'safety factor' of excess absorptive capacity. The controversial role of the sodium-glucose linked transporter in dietary glucose assimilation is described in terms of its control, its true function and its role in uptake of other solutes. Techniques that involve brush-border membrane vesicles, Caco-2 cells, mucosal immunohistochemistry and gene expression probes are described. Together, these techniques describe a picture of an organ with remarkable ability to maintain digestive and absorptive function in response to a wide variety of nutritional intakes, often in the face of inflammatory illness.
Collapse
Affiliation(s)
- E S Debnam
- Department of Physiology, University College, London, UK.
| | | |
Collapse
|