1
|
Lautt WW. Hepatalin: the missing link in prediabetes, obesity, and type 2 diabetes. Can J Physiol Pharmacol 2023; 101:117-135. [PMID: 36716439 DOI: 10.1139/cjpp-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatalin is a hormone secreted by the liver in response to pulses of insulin after a mixed nutrient meal, but only if the liver receives two permissive synergistic feeding signals from the stomach. Hepatalin stimulates glucose uptake and storage as glycogen in skeletal muscle, heart, and kidney but not liver, intestines, or adipocytes. Insulin acts primarily on liver and fat. Reduced hepatalin action results in postprandial hyperglycemia, compensatory elevation of insulin secretion, and a resultant shift in partitioning of nutrient energy storage from glycogen in muscle, to fat. Chronic hepatalin suppression leads to a predictable chronology of dysfunctions, first diagnosable as Absence of Meal-induced Insulin Sensitization (AMIS) which progresses to prediabetes, adiposity, and type 2 diabetes. The focus on nutrient partitioning and the role of hepatalin allows AMIS to be diagnosed, prevented, and treated, including through the use of lifestyle interventions.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Center 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
2
|
Lovat NEJ, Legare DJ, Lautt WW. An animal model of gestational obesity and prediabetes: HISS-dependent insulin resistance induced by a high-sucrose diet in Sprague Dawley rats. Can J Physiol Pharmacol 2021; 99:599-608. [PMID: 33064960 DOI: 10.1139/cjpp-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study developed an animal model of gestational obesity and prediabetes in Sprague Dawley rats using 35% sucrose supplementation (SS). Postprandially, insulin stimulates glucose uptake and nutrient partitioning via insulin-dependent action as well as hepatic insulin sensitizing substance (HISS) - dependent action. HISS is glycogenic in heart, kidney, and skeletal muscle (contrasting insulin's lipogenic actions in liver and adipose tissue) and is responsible for the vasodilatory action of insulin. Postprandial insulin sensitivity was quantified using the rapid insulin sensitivity test (RIST). Animals at 15-day gestation and virgin animals received SS for 8 weeks (with a 2-week recovery), 10 weeks, or 22 weeks. SS in pregnant and virgin rats eliminated HISS-dependent glucose uptake, resulting in compensatory hyperinsulinemia and resultant hypertriglyceridemia and obesity. In groups with SS for 8 weeks followed by a 2-week recovery, there was spontaneous partial recovery of HISS-dependent glucose uptake in virgins and complete recovery in pregnancy. The 10-week SS resulted in complete absence of HISS-dependent glucose uptake and produced a model of gestational obesity and prediabetes. The 22-week SS did not produce hyperglycemia or worsen hyperinsulinemia but did increase hypertriglyceridemia above 10-week SS. This substantiates the use of 10-week SS as a model of gestational obesity and (or) prediabetes, allowing further studies into treatments of gestational obesity and insulin resistance.
Collapse
Affiliation(s)
- Nicole E J Lovat
- Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Centre, 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
| | - Dallas J Legare
- SciMar Ltd., 119 Main Street South, Dauphin, MB R7N 1K4, Canada
| | - W Wayne Lautt
- Max Rady Faculty of Health Sciences, University of Manitoba, 260 Brodie Centre, 727 McDermot Avenue, Winnipeg, MB R3E 3P5, Canada
- SciMar Ltd., 119 Main Street South, Dauphin, MB R7N 1K4, Canada
| |
Collapse
|
3
|
Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci 2020; 44:189-202. [PMID: 33229051 DOI: 10.1016/j.tins.2020.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in animal models of obesity and diabetes. Together, these studies highlight the importance of peripheral nerves as a new therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Balbo SL, Ribeiro RA, Mendes MC, Lubaczeuski C, Maller ACPA, Carneiro EM, Bonfleur ML. Vagotomy diminishes obesity in cafeteria rats by decreasing cholinergic potentiation of insulin release. J Physiol Biochem 2016; 72:625-633. [PMID: 27351887 DOI: 10.1007/s13105-016-0501-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
Herein, we investigated whether subdiaphragmatic vagotomy has benefits on obesity, body glucose homeostasis, and insulin secretion in cafeteria (CAF)-obese rats. Wistar rats were fed a standard or CAF diet for 12 weeks. Subsequently, CAF rats were randomly submitted to truncal vagotomy (CAF Vag) or sham operation (CAF Sham). CAF Sham rats were hyperphagic, obese, and presented metabolic disturbances, including hyperinsulinemia, glucose intolerance, insulin resistance, hyperglycemia, and hypertriglyceridemia. Twelve weeks after vagotomy, CAF Vag rats presented reductions in body weight and perigonadal fat stores. Vagotomy did not modify glucose tolerance but normalized fed glycemia, insulinemia, and insulin sensitivity. Isolated islets from CAF Sham rats secreted more insulin in response to the cholinergic agent, carbachol, and when intracellular cyclic adenine monophosphate (cAMP) is enhanced by forskolin or 3-isobutyl-1-methylxanthine. Vagotomy decreased glucose-induced insulin release due to a reduction in the cholinergic action on β-cells. This effect also normalized islet secretion in response to cAMP. Therefore, vagotomy in rats fed on a CAF-style diet effectively decreases adiposity and restores insulin sensitivity. These effects were mainly associated with the lack of cholinergic action on the endocrine pancreas, which decreases insulinemia and may gradually reduce fat storage and improve insulin sensitivity.
Collapse
Affiliation(s)
- Sandra Lucinei Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, UNIOESTE, Cascavel, PR, 858119-110, Brazil
| | | | - Mariana Carla Mendes
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, UNIOESTE, Cascavel, PR, 858119-110, Brazil
| | - Camila Lubaczeuski
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, UNIOESTE, Cascavel, PR, 858119-110, Brazil
| | - Ana Claudia Paiva Alegre Maller
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, UNIOESTE, Cascavel, PR, 858119-110, Brazil
| | - Everardo Magalhães Carneiro
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, SP, Brazil
| | - Maria Lúcia Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, UNIOESTE, Cascavel, PR, 858119-110, Brazil.
| |
Collapse
|
5
|
Postprandial insulin action relies on meal composition and hepatic parasympathetics: dependency on glucose and amino acids: Meal, parasympathetics & insulin action. J Nutr Biochem 2015; 27:70-8. [PMID: 26410344 DOI: 10.1016/j.jnutbio.2015.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022]
Abstract
Insulin sensitivity (IS) increases following a meal. Meal composition affects postprandial glucose disposal but still remains unclear which nutrients and mechanisms are involved. We hypothesized that gut-absorbed glucose and amino acids stimulate hepatic parasympathetic nerves, potentiating insulin action. Male Sprague-Dawley rats were 24 h fasted and anesthetized. Two series of experiments were performed. (A) IS was assessed before and after liquid test meal administration (10 ml.kg(-1), intraenteric): glucose + amino acids + lipids (GAL, n=6); glucose (n=5); amino acids (n=5); lipids (n=3); glucose + amino acids (GA, n=9); amino acids + lipids (n=3); and glucose + lipids (n=4). (B) Separately, fasted animals were submitted to hepatic parasympathetic denervation (DEN); IS was assessed before and after GAL (n=4) or GA administration (n=4). (A) Both GAL and GA induced significant insulin sensitization. GAL increased IS from 97.9±6.2 mg glucose/kg bw (fasting) to 225.4±18.3 mg glucose/kg bw (P<0.001; 143.6±26.0% potentiation of IS); GA increased IS from 109.0±6.6 to 240.4±18.0 mg glucose/kg bw (P<0.001; 123.1±13.4% potentiation). None of the other meals potentiated IS. (B) GAL and GA did not induce a significant insulin sensitization in DEN animal. To achieve maximal insulin sensitization following a meal, it is required that gut-absorbed glucose and amino acids trigger a vagal reflex that involves hepatic parasympathetic nerves.
Collapse
|
6
|
Lautt WW, Ming Z, Legare DJ, Chowdhury KK, Hatch GM, Wang HH. Fatty Liver and Fatty Heart—Where do They Stand in the AMIS Syndrome? Healthcare (Basel) 2015; 3:666-82. [PMID: 27417789 PMCID: PMC4939563 DOI: 10.3390/healthcare3030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022] Open
Abstract
Meal-induced insulin sensitization (MIS) refers to the augmented glucose uptake response to insulin following a meal. Absence of MIS (AMIS) causes significant decrease in post-meal glucose disposal leading to postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress, and a cluster of progressive metabolic, vascular, and cardiac dysfunctions referred to as the AMIS syndrome. We tested the hypothesis that fat accumulation in the liver and heart is part of the AMIS syndrome. Questions examined in the study: (1) Is prediabetic fat accumulation in the heart and liver a component of the AMIS syndrome? (2) Is fatty liver a cause or consequence of peripheral insulin resistance? (3) Is early cardiac dysfunction in the AMIS syndrome attributable to fat accumulation in the heart? and (4) Can the synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamin E, and vitamin C), known to benefit MIS, affect cardiac and hepatic triglyceride levels? Four animal models of AMIS were used in aged male Sprague-Dawley rats (52 weeks ± sucrose ± SAMEC), compared with young controls (nine weeks). Fat accumulation in the heart was not significant and therefore cannot account for the early cardiac dysfunction. Hepatic triglycerides increased only in the most severe AMIS model but the small changes correlated with the much more rapidly developing peripheral adiposity. Systemic adiposity represents an early stage, whereas accumulation of cardiac and hepatic triglycerides represents a late stage of the prediabetic AMIS syndrome. Fat accumulation in the liver is a consequence, not a cause, of AMIS. SAMEC protected against the sucrose effects on whole body adiposity and hepatic lipid accumulation.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Zhi Ming
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Dallas J Legare
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Kawshik K Chowdhury
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | - Hui Helen Wang
- Department of Pharmacology and Therapeutics, College of Medicine, Faculty of Health Sciences, University of Manitoba, A224-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
7
|
Patarrão RS, Lautt WW, Macedo MP. Acute glucagon induces postprandial peripheral insulin resistance. PLoS One 2015; 10:e0127221. [PMID: 25961284 PMCID: PMC4427479 DOI: 10.1371/journal.pone.0127221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.
Collapse
Affiliation(s)
- Rita S. Patarrão
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M. Paula Macedo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- APDP-ERC Portuguese Diabetes AssociationEducationand Research Center, Rua do Salitre, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
8
|
Lubaczeuski C, Balbo SL, Ribeiro RA, Vettorazzi JF, Santos-Silva JC, Carneiro EM, Bonfleur ML. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats. ACTA ACUST UNITED AC 2015; 48:447-57. [PMID: 25714886 PMCID: PMC4445669 DOI: 10.1590/1414-431x20144340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 01/11/2023]
Abstract
The parasympathetic nervous system is important for β-cell secretion and mass
regulation. Here, we characterized involvement of the vagus nerve in pancreatic
β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old
monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg
body weight) or saline [control (CTL) group] during the first 5 days of life. At 30
days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups)
or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats
presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia.
Their pancreatic islets hypersecreted insulin in response to glucose but did not
increase insulin release upon carbachol (Cch) stimulus, despite a higher
intracellular Ca2+ mobilization. Furthermore, while the pancreas weight
was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed.
However, in the MSG pancreas, increases of 51% and 55% were observed in the total
islet and β-cell area/pancreas section, respectively. Also, the β-cell number per
β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy
prevented obesity, reducing 25% of body fat stores and ameliorated glucose
homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin
secretion in response to 11.1 mM glucose and presented normalization of Cch-induced
Ca2+ mobilization and insulin release. All morphometric parameters were
similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in
MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy.
Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic
morphofunction in Mvag rats.
Collapse
Affiliation(s)
- C Lubaczeuski
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - S L Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| | - R A Ribeiro
- Universidade Federal do Rio de Janeiro, Macaé, RJ, Brasil
| | - J F Vettorazzi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J C Santos-Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - E M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M L Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brasil
| |
Collapse
|
9
|
Obesity as an Early Symptom of the AMIS Syndrome. J Clin Med 2014; 3:1178-98. [PMID: 26237598 PMCID: PMC4470177 DOI: 10.3390/jcm3041178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022] Open
Abstract
We review evidence that the AMIS (Absence of Meal-induced Insulin Sensitization) syndrome describes a paradigm fundamental to development of obesity. The hypoglycemic response to a pulse of insulin is doubled after a meal as a result of Hepatic Insulin Sensitizing Substance (HISS), released from the liver to act selectively on muscle, heart and kidney. In the absence of HISS action, the hypoglycemic response to insulin is the same as in the fasted state, and only half of what it should be. Postprandial hyperglycemia ensues, with compensatory hyperinsulinemia, resultant hyperlipidemia and elevated free radical stress. Storage of nutrient energy shifts from glycogen in muscle to fat. Chronic AMIS results in adiposity, occurs with age, is accelerated with sucrose supplement, and prevented by a synergistic antioxidant. Exercise reverses AMIS, as do pharmaceuticals that mimic the "feeding signals". The AMIS syndrome develops as a sequence of pathologies based on the consequences of absence of HISS action, including adiposity as the earliest symptom. Cardiac dysfunction, hypertension, hypercholesterolemia, and fatty liver are related to lack of HISS action. The AMIS syndrome hypothesis is mechanistic-based and accounts for the major pathologies associated with prediabetes, obesity, diabetes and metabolic syndrome. AMIS can be diagnosed, prevented and treated.
Collapse
|
10
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
11
|
Macedo MP, Lima IS, Gaspar JM, Afonso RA, Patarrão RS, Kim YB, Ribeiro RT. Risk of postprandial insulin resistance: the liver/vagus rapport. Rev Endocr Metab Disord 2014; 15:67-77. [PMID: 24174131 PMCID: PMC4000159 DOI: 10.1007/s11154-013-9281-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one's feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism.
Collapse
Affiliation(s)
- Maria Paula Macedo
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa (UNL), 1169-056, Lisboa, Portugal,
| | | | | | | | | | | | | |
Collapse
|
12
|
Patarrão RS, Wayne Lautt W, Paula Macedo M. Assessment of methods and indexes of insulin sensitivity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.rpedm.2013.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Chowdhury KK, Legare DJ, Lautt WW. Interaction of antioxidants and exercise on insulin sensitivity in healthy and prediabetic rats. Can J Physiol Pharmacol 2013; 91:570-7. [PMID: 23826718 DOI: 10.1139/cjpp-2012-0425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Meal-induced insulin sensitization (MIS) describes the augmented postprandial response to insulin through action of the hepatic insulin sensitizing substance (HISS). HISS-action is impaired in insulin resistance associated with aging and type 2 diabetes, but could be preserved by the antioxidant cocktail SAMEC, along with voluntary exercise. In this study, we tested whether antioxidant supplementation during voluntary training would interact with the effects of exercise on HISS-mediated glucose uptake in healthy and prediabetic rats. The 7-day voluntary running-wheel training was used as an exercise intervention. SAMEC supplementation was provided only during the 7-day training session. The rapid insulin sensitivity test (RIST) was conducted to determine insulin- and HISS-dependent glucose uptake in 14-week-old healthy rats, and sucrose-induced insulin-resistant rats, with or without exercise in the presence or absence of SAMEC supplementation. The postprandial insulin sensitivity was increased by exercise, primarily through enhancement of the HISS-dependent glucose uptake, which remained unaffected by SAMEC. SAMEC supplementation did not either harm or add benefit to the positive effects of exercise on insulin sensitivity in healthy or prediabetic rats. While SAMEC alone was a demonstrated preventive against the progressive loss of HISS action in previous studies, short-term supplementation in this study did not reverse the established disease state.
Collapse
Affiliation(s)
- Kawshik K Chowdhury
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210 - 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | | | | |
Collapse
|
14
|
Bruinstroop E, la Fleur SE, Ackermans MT, Foppen E, Wortel J, Kooijman S, Berbée JFP, Rensen PCN, Fliers E, Kalsbeek A. The autonomic nervous system regulates postprandial hepatic lipid metabolism. Am J Physiol Endocrinol Metab 2013; 304:E1089-96. [PMID: 23531617 DOI: 10.1152/ajpendo.00614.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver is a key organ in controlling glucose and lipid metabolism during feeding and fasting. In addition to hormones and nutrients, inputs from the autonomic nervous system are also involved in fine-tuning hepatic metabolic regulation. Previously, we have shown in rats that during fasting an intact sympathetic innervation of the liver is essential to maintain the secretion of triglycerides by the liver. In the current study, we hypothesized that in the postprandial condition the parasympathetic input to the liver inhibits hepatic VLDL-TG secretion. To test our hypothesis, we determined the effect of selective surgical hepatic denervations on triglyceride metabolism after a meal in male Wistar rats. We report that postprandial plasma triglyceride concentrations were significantly elevated in parasympathetically denervated rats compared with control rats (P = 0.008), and VLDL-TG production tended to be increased (P = 0.066). Sympathetically denervated rats also showed a small rise in postprandial triglyceride concentrations (P = 0.045). On the other hand, in rats fed on a six-meals-a-day schedule for several weeks, a parasympathetic denervation resulted in >70% higher plasma triglycerides during the day (P = 0.001), whereas a sympathetic denervation had no effect. Our results show that abolishing the parasympathetic input to the liver results in increased plasma triglyceride levels during postprandial conditions.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Natali A, Ribeiro R, Baldi S, Tulipani A, Rossi M, Venturi E, Mari A, Macedo MP, Ferrannini E. Systemic inhibition of nitric oxide synthesis in non-diabetic individuals produces a significant deterioration in glucose tolerance by increasing insulin clearance and inhibiting insulin secretion. Diabetologia 2013; 56:1183-91. [PMID: 23370528 DOI: 10.1007/s00125-013-2836-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS Endogenous NO inhibits insulin release in isolated beta cells and insulin-degrading enzyme activity in hepatocytes, while NO release from endothelial cells has been suggested to enhance insulin action. We assessed the overall effect of systemic inhibition of endogenous NO synthesis on glucose homeostasis in humans. METHODS Twenty-four non-diabetic volunteers underwent two hyperglycaemic (+7 mmol/l) clamps with either saline or L-NG-nitroarginine methyl ester (L-NAME, at rates of 2.5, 5, 10 and 20 μg min⁻¹ kg⁻¹) infusion. Another five volunteers underwent an OGTT with either saline or L-NAME (20 μg min⁻¹ kg⁻¹) infusion. Blood pressure and heart rate were measured to monitor NO blockade; during the OGTT, endothelial function was assessed by peripheral arterial tonometry and insulin secretion by C-peptide deconvolution and insulin secretion modelling. RESULTS Compared with saline, L-NAME at the highest dose raised mean blood pressure (+20 ± 2 mmHg), depressed heart rate (-12 ± 2 bpm) and increased insulin clearance (+50%). First-phase insulin secretion was impaired, but insulin sensitivity (M/I index) was unchanged. During the OGTT, L-NAME raised 2 h plasma glucose by 1.8 mmol/l (p < 0.01), doubled insulin clearance and impaired beta cell glucose sensitivity while depressing endothelial function. CONCLUSIONS/INTERPRETATION In humans, systemic NO blockade titrated to increase blood pressure and induce endothelial dysfunction does not affect insulin action but significantly impairs glucose tolerance by increasing plasma insulin clearance and depressing insulin secretion, namely first-phase and beta cell glucose sensitivity.
Collapse
Affiliation(s)
- A Natali
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 67, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chowdhury KK, Legare DJ, Lautt WW. Lifestyle impact on meal-induced insulin sensitization in health and prediabetes: A focus on diet, antioxidants, and exercise interventions. Can J Physiol Pharmacol 2013; 91:91-100. [DOI: 10.1139/cjpp-2012-0228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The augmented whole-body glucose uptake response to insulin during the postprandial state is described as meal-induced insulin sensitization (MIS). MIS occurs when the presence of food in the upper gastrointestinal tract activates 2 feeding signals (activation of hepatic parasympathetic nerves and elevation of hepatic glutathione level), and causes insulin to release hepatic insulin sensitizing substance (HISS), which stimulates glucose uptake in skeletal muscle, heart, and kidneys. HISS action results in nutrient storage, primarily as glycogen. Impairment of HISS release results in the absence of meal-induced insulin sensitization (AMIS), which causes postprandial hyperglycemia and hyperinsulinemia, and chronically leads to the progression to a cluster of metabolic, vascular, and cardiac dysfunctions, which we refer to as components of the AMIS syndrome. Manipulation of the MIS process in health and in disease, by pharmacological and nonpharmacological interventions, is outlined in this review. High fat or sugar supplemented diet reduces MIS; exercise elevates MIS; and antioxidants protect MIS against reductions associated with diet and age.
Collapse
Affiliation(s)
- Kawshik K. Chowdhury
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210 – 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | - Dallas J. Legare
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210 – 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210 – 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
17
|
Afonso RA, Fernandes AB, Santos C, Ligeiro D, Ribeiro RT, Lima IS, Patarrao RS, Videira PA, Caldeira J, Macedo MP. Postprandial insulin resistance in Zucker diabetic fatty rats is associated with parasympathetic-nitric oxide axis deficiencies. J Neuroendocrinol 2012; 24:1346-55. [PMID: 22672343 DOI: 10.1111/j.1365-2826.2012.02341.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Zucker diabetic fatty (ZDF) rat is an obesity and type 2 diabetes model. Progression to diabetes is well characterised in ZDF rats, but only in the fasted state. We evaluated the mechanisms underlying postprandial insulin resistance in young ZDF rats. We tested the hypothesis that the overall postprandial action of insulin is affected in ZDF rats as a result of impairment of the hepatic parasympathetic-nitric oxide (PSN-NO) axis and/or glutathione (GSH), resulting in decreased indirect (PSN-NO axis) and direct actions of insulin. Nine-week-old male ZDF rats and lean Zucker rats (LZR, controls) were used. The action of insulin was assessed in the fed state before and after parasympathetic antagonism atropine. Basal hepatic NO and GSH were measured, as well as NO synthase (NOS) and γ-glutamyl-cysteine synthethase (GCS) activity and expression. ZDF rats presented postprandial hyperglycaemia (ZDF, 201.4 ± 12.9 mg/dl; LZR, 107.7 ± 4.3 mg/dl), but not insulinopaenia (ZDF, 5.9 ± 0.8 ng/ml; LZR, 1.5 ± 0.3 ng/ml). Total postprandial insulin resistance was observed (ZDF, 78.6 ± 7.5 mg glucose/kg; LZR, 289.2 ± 24.7 mg glucose/kg), with a decrease in both the direct action of insulin (ZDF, 54.8 ± 7.0 mg glucose/kg; LZR, 173.3 ± 20.5 mg glucose/kg) and the PSN-NO axis (ZDF, 24.5 ± 3.9 mg glucose/kg; LZR, 115.9 ± 19.4 mg glucose/kg). Hepatic NO (ZDF, 117.2 ± 11.4 μmol/g tissue; LZR, 164.6 ± 4.9 μmol/g tissue) and GSH (ZDF, 4.9 ± 0.3 μmol/g; LZR, 5.9 ± 0.2 μmol/g) were also compromised as a result of decreased NOS and GCS activity, respectively. These results suggest a compromise of the mechanism responsible for potentiating insulin action after a meal in ZDF rats. We show that defective PSN-NO axis and GSH synthesis, together with an impaired direct action of insulin, appears to contribute to postprandial insulin resistance in this model.
Collapse
Affiliation(s)
- R A Afonso
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Exercise enhancement of hepatic insulin-sensitising substance-mediated glucose uptake in diet-induced prediabetic rats. Br J Nutr 2012; 109:844-52. [DOI: 10.1017/s0007114512002267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sensitisation of insulin action in response to a meal (i.e. meal-induced insulin sensitisation, MIS) represents one of the major means of increased glucose disposal in peripheral tissues during the postprandial state. MIS occurs when the release of hepatic insulin-sensitising substance (HISS) stimulates skeletal muscle glucose uptake. Our previous study had demonstrated that the HISS pathway is impaired in age-associated insulin resistance, and in the rats which were part of that study, voluntary exercise improved the response to insulin by restoring HISS action. The present study tests the hypothesis that voluntary exercise would reverse insulin resistance in diet-induced models of insulin resistance, and that the benefits are attributed through the improvement in HISS action. In this study, two experimental diets, a high-fat diet (for 4 weeks) and 35 % sucrose solution (for 9 and 16 weeks), were used to induce insulin resistance in rats. These rats were assigned to the exercise/no-exercise intervention. The effect of 7 d voluntary running-wheel exercise was determined by measuring insulin- and HISS action in the exercised rats and comparing them with the non-exercised controls. Voluntary exercise reversed insulin resistance, caused by dietary manipulation, through restoration of the HISS action. The direct insulin action was not changed by either diet or exercise. The metabolic improvements and reduced adiposity correlated with the extent of reversal of HISS action induced by exercise. Exercise improves insulin sensitivity in diet-induced insulin resistance primarily by restoration of HISS-mediated glucose uptake.
Collapse
|
19
|
Patarrão RS, Lautt WW, Afonso RA, Ribeiro RT, Fernandes AB, Boavida JM, Macedo MP. Postprandial but not fasting insulin resistance is an early identifier of dysmetabolism in overweight subjects. Can J Physiol Pharmacol 2012; 90:923-31. [DOI: 10.1139/y2012-086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The dynamic response to insulin is highly potentiated after meal ingestion, and this meal-induced insulin sensitization (MIS) in healthy subjects is dependent on cholinergic mechanisms. The main objective of this study was to test the hypothesis that the reduced response to insulin observed in moderately overweight subjects, in comparison with control lean subjects, is due to MIS impairment and not to a reduction in the direct hypoglycemic action of insulin. Both lean and overweight male subjects were recruited. Insulin sensitivity (IS) was assessed by the rapid insulin sensitivity test (RIST) performed after a 24 h fast, as well as after a standardized meal. Fasting glucose disposal was similar between lean and overweight subjects. Following the meal, glucose disposal increased more extensively in lean than overweight subjects. The insulin profiles, in both fasted and fed states, were superimposable, suggesting that the absence of a factor other than insulin is responsible for the decreased postprandial insulin sensitivity observed in overweight subjects. Our data suggest that in overweight subjects, MIS contribution is decreased, which is responsible for the postprandial impaired IS observed and is suggested to be the cause, not effect, of mild adiposity.
Collapse
Affiliation(s)
- Rita S. Patarrão
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT6, Canada
| | - Ricardo A. Afonso
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Rogério T. Ribeiro
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- APDP-ERC Portuguese Diabetes Association Education and Research Center, Rua do Salitre, 118-120, 1250-203 Lisbon, Portugal
| | - Ana B. Fernandes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - José M. Boavida
- APDP-ERC Portuguese Diabetes Association Education and Research Center, Rua do Salitre, 118-120, 1250-203 Lisbon, Portugal
| | - M. Paula Macedo
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- APDP-ERC Portuguese Diabetes Association Education and Research Center, Rua do Salitre, 118-120, 1250-203 Lisbon, Portugal
| |
Collapse
|
20
|
Fernandes AB, Guarino MP, Macedo MP. Understanding the in-vivo relevance of S-nitrosothiols in insulin action. Can J Physiol Pharmacol 2012; 90:887-94. [PMID: 22694074 DOI: 10.1139/y2012-090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulin sensitivity is maximal in the postprandial state, decreasing with a fasting period through a mechanism that is dependent on the integrity of the hepatic parasympathetic nerves/nitric oxide (NO) production and increased hepatic glutathione (GSH) levels. GSH and NO react to form S-nitrosoglutathione (GSNO), an S-nitrosothiol (RSNO) for which the in-vivo effects are still being determined. The goal of this study was to test the hypothesis that in-vivo administration of RSNOs, GSNO, or S-nitroso-N-acetylpenicillamine (SNAP) increases insulin sensitivity in fasted or fed-denervated animals, but not in fed animals, where full postprandial insulin sensitivity is achieved. Fasted, fed, or fed-denervated male Wistar rats were used as models for different insulin sensitivity conditions. The rapid insulin sensitivity test (RIST) was used to measure insulin-stimulated glucose disposal before and after drug administration (GSNO, SNAP, or 3-morpholinosydnonimine (SIN-1), intravenous (i.v.) or to the portal vein (i.p.v.)). Fast insulin sensitivity was not altered by administration of SIN-1 (neither i.v. nor i.p.v.). Intravenous infusion of RSNOs in fasted and fed hepatic denervated rats increased insulin sensitivity by 126.35% ± 35.43% and 82.7% ± 12.8%, respectively. In fed animals, RSNOs decreased insulin sensitivity indicating a negative feedback mechanism. These results suggest that RSNOs incremental effect on insulin sensitivity represent a promising therapeutical tool in insulin resistance states.
Collapse
Affiliation(s)
- Ana B Fernandes
- CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, Portugal
| | | | | |
Collapse
|
21
|
Sodium intake is associated with parasympathetic tone and metabolic parameters in mild hypertension. Am J Hypertens 2012; 25:620-4. [PMID: 22357414 DOI: 10.1038/ajh.2012.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Although the impairment of parasympathetic cardiac control was described in hypertensives submitted to a high salt diet, the impact of this autonomic abnormality on metabolic and inflammation markers in patients with mild hypertension has not been explored. METHODS Four hundred and ninety mild essential hypertensive patients (144 ± 9/94 ± 9 mm Hg, 49.5 ± 13.9 years, 67.9 % male) were studied. Dietary sodium intake was estimated by measuring 24-h urinary sodium excretion (UNa), and the patients were classified according to UNa levels as follows: low (<50 mEq/l), medium (50-99 mEq/l), and high UNa (≥100 mEq/l). Parasympathetic tone was evaluated by assessing heart rate recovery (HRR) after an exercise stress test. HRR, plasma lipids, glucose metabolism, and inflammatory biomarkers were compared across UNa groups. RESULTS HRR and high-density lipoprotein (HDL)-cholesterol were progressively lower, and insulin (INS), homeostasis model assessment of insulin resistance (HOMAir), ultrasensitive-C-reactive protein (usCRP) were progressively higher across increasing UNa groups. In the low and medium UNa groups, HDL-cholesterol was higher and CRP was lower than that in high UNa (P < 0.01 and P < 0.05, respectively) (Dunnett post-hoc test). In the low UNa group, triglycerides (TGs), INS, and HOMAir were lower than that in high UNa (P < 0.05). Multiple linear regression analysis showed that UNa, HOMAir, and heart rate (HR) were negatively associated with HRR (P < 0.0001, P < 0.0001, and P = 0.001, respectively). CONCLUSIONS In the essential hypertensive patients studied high sodium intake is associated with parasympathetic inhibition, lipid disturbances, and inflammation. Studies designed to assess causality between sodium intake and metabolic and autonomic status are needed to evaluate the relevance of controlling sodium intake, especially in hypertensive patients.
Collapse
|
22
|
Fernandes AB, Patarrão RS, Videira PA, Macedo MP. Understanding postprandial glucose clearance by peripheral organs: the role of the hepatic parasympathetic system. J Neuroendocrinol 2011; 23:1288-95. [PMID: 21933289 DOI: 10.1111/j.1365-2826.2011.02226.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hepatic parasympathetic system is one of the major contributors for preserving insulin sensitivity in the postprandial state. Postprandial hepatic vagal control of whole-body glucose clearance and its effect on specific organs remains unknown. Our hypothesis is that, in the postprandial state, the hepatic parasympathetic nerves (HPN) are responsible for a considerable part of extra-hepatic tissue glucose clearance. Two groups of 9-week-old Sprague-Dawley rats were studied, comparing sham-operated versus hepatic parasympathetic denervated animals. Insulin sensitivity was evaluated in the postprandial state by the rapid insulin sensitivity test (RIST). [(3) H]2-deoxy-d-glucose was administered during the RIST. Plasma glucose rate of the disappearance and clearance by skeletal muscle, adipose tissue, liver, pancreas, heart and kidney of this radioisotope was measured. The postprandial denervated group showed a decrease insulin sensitivity of 41.4 ± 5.2%. This group of animals showed a decrease in the rate of plasma [(3) H]2-deoxy-d-glucose disappearance and skeletal muscle, heart and kidney glucose clearance by 45%, 35% and 67%, respectively. These studies show that the major contributor of postprandial whole-body glucose clearance was skeletal muscle; in the range 69-38%, depending on HPN integrity. The results obtained in the present study indicate that HPN are crucial for postprandial action of insulin through a mechanism that is essential for maintenance of skeletal muscle, heart and kidney glucose clearance. These results suggest that hepatic parasympathetic dysfunction could lie at the genesis of type 2 diabetes complications, namely insulin resistance, nephropathy and cardiomyopathy.
Collapse
Affiliation(s)
- A B Fernandes
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
23
|
Lautt WW, Schafer J, Macedo MP, Legare DJ. Bethanechol and N-acetylcysteine mimic feeding signals and reverse insulin resistance in fasted and sucrose-induced diabetic rats. Can J Physiol Pharmacol 2011; 89:135-42. [PMID: 21326345 DOI: 10.1139/y11-001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Meal-induced insulin sensitization (MIS) is explained by the HISS (hepatic insulin sensitizing substance) hypothesis. In the presence of two "feeding signals," a pulse of insulin results in the release of HISS from the liver. HISS acts selectively on skeletal muscle and doubles the response to insulin. HISS is not released in the fasted state or in the sucrose-supplemented diabetes model. We tested the hypothesis that provision of both feeding signals allows insulin to cause HISS release in both the normal fasted and the diabetic model. The dynamic response to insulin (50 mU/kg over 5 min) was quantified using the rapid insulin sensitivity test (RIST). Gastric injection of a liquid test meal or i.v. administration of N-acetylcysteine in 24 h fasted rats raised hepatic glutathione to a similar degree (by 46%-47%). Hepatic denervation in fed rats eliminated the parasympathetic signal and eliminated MIS, and bethanechol completely restored MIS. Both compounds administered together allowed insulin to stimulate HISS release in 24 h fasted rats and in a diabetic model (9-week, 35% liquid sucrose supplement). Neither was effective alone. Both "feeding signals" are necessary and sufficient for insulin to stimulate HISS release.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
24
|
Ming Z, Legare DJ, Lautt WW. Absence of meal-induced insulin sensitization (AMIS) in aging rats is associated with cardiac dysfunction that is protected by antioxidants. J Appl Physiol (1985) 2011; 111:704-14. [PMID: 21617079 DOI: 10.1152/japplphysiol.00057.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that progressive development of absence of meal-induced insulin sensitization (AMIS) leads to postprandial hyperglycemia, compensatory hyperinsulinemia, resultant hyperlipidemia, increased oxidative stress, and obesity, progressing to syndrome X in aging rats. The present study tested the hypothesis that progressive development of AMIS in aging rats further resulted in deterioration in cardiac performance. Anesthetized male Sprague-Dawley rats were tested at 9, 26, and 52 wk to determine their dynamic response to insulin and cardiac function. Dynamic insulin sensitivity was determined before and after atropine to quantitate hepatic insulin sensitizing substance (HISS)-dependent and -independent insulin action. Cardiac performance was evaluated using a Millar pressure-volume conductance catheter system. AMIS developed with age, as demonstrated by significant decrease in HISS-dependent insulin action, and this syndrome was increased by sucrose supplementation and inhibited by the antioxidant treatment. Associated with progressive development of AMIS, aging rats showed impaired cardiac performance, including the reduction in cardiac index, heart rate, dP/dt(max), dP/dt(min), ejection fraction and decreased slope of left ventricular end-systolic pressure-volume relationship, and increased relaxation time constant of left ventricular pressure as well as increased left ventricular end-diastolic pressure. Total peripheral vascular resistance also increased with age. Sucrose supplementation and antioxidant treatment, respectively, potentiated and attenuated cardiac dysfunction associated with age. In addition, poor cardiac performance correlated closely with the development of AMIS. These results indicate that AMIS is the first metabolic defect that leads to homeostatic disturbances and dysfunctions, including cardiovascular diseases.
Collapse
Affiliation(s)
- Zhi Ming
- Dept. of Pharmacology and Therapeutics, Faculty of Medicine, Univ. of Manitoba, Winnipeg, MB R3E0T6, Canada
| | | | | |
Collapse
|
25
|
Lautt WW, Ming Z, Legare DJ. Attenuation of age- and sucrose-induced insulin resistance and syndrome X by a synergistic antioxidant cocktail: the AMIS syndrome and HISS hypothesis. Can J Physiol Pharmacol 2011; 88:313-23. [PMID: 20393596 DOI: 10.1139/y09-130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Absence of meal-induced insulin sensitization (AMIS) results in a predictable progression of dysfunctions, including postprandial hyperglycemia, compensatory hyperinsulinemia, resultant hyperlipidemia, increased oxidative stress, and obesity, progressing to syndrome X and diabetes. To one year of age, rats show a slow development of AMIS, but this can be potentiated by addition of a low-dose sucrose supplement to the diet. Provision of a synergistic antioxidant cocktail consisting of S-adenosylmethionine, vitamin E, and vitamin C (Samec) attenuates the rate and extent of development of AMIS in both normal aging animals and in aging animals on the sucrose diet. Adiposity, assessed from weighed regional fat masses and from bioelectrical impedance to estimate whole-body adiposity, correlated strongly with AMIS (r2 = 0.7-0.8). Rats given the sucrose supplement had accelerated AMIS and developed fasting hyperinsulinemia and postprandial hyperglycemia, hyperlipidemia, hyperinsulinemia, and adiposity. Samec completely compensated for the negative impact of this sucrose supplement and attenuated development of the associated dysfunctions. AMIS is explained by the HISS (hepatic insulin-sensitizing substance) hypothesis, which is outlined in the paper.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| | | | | |
Collapse
|
26
|
Ming Z, Lautt WW. HISS, not insulin, causes vasodilation in response to administered insulin. J Appl Physiol (1985) 2011; 110:60-8. [DOI: 10.1152/japplphysiol.00714.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Meal-induced sensitization to the dynamic actions of insulin results from the peripheral actions of a hormone released by the liver (hepatic insulin sensitizing substance or HISS). Absence of meal-induced insulin sensitization results in the pathologies associated with cardiometabolic risk. Using three protocols that have previously demonstrated HISS metabolic action, we tested the hypothesis that HISS accounts for the vasodilation that has been associated with insulin. The dynamic metabolic actions of insulin and HISS were determined using a euglycemic clamp in response to a bolus of 100 mU/kg insulin in pentobarbital-anesthetized Sprague-Dawley rats. Hindlimb blood flow was measured with an ultrasound flow probe on the aorta above the bifurcation of the iliac arteries. Fed rats showed tightly coupled metabolic and vascular responses, which were completed by 35 min after insulin administration. Blocking HISS release, with the use of atropine or hepatic surgical denervation, eliminated the HISS-dependent metabolic and vascular responses to insulin administration. Physiological suppression of HISS release occurs with fasting. In 24-h fasted rats, HISS metabolic and vascular actions were absent, and atropine had no effect on either action. Fed rats with liver denervation did not release HISS, but intraportal venous infusion of acetylcholine, to mimic the permissive parasympathetic nerve signal, restored the ability of insulin to cause HISS release and restored both the metabolic and vascular actions. These studies report vascular actions of HISS for the first time and demonstrate that HISS, not insulin action, results in the peripheral vasodilation generally attributed to insulin.
Collapse
Affiliation(s)
- Zhi Ming
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| |
Collapse
|
27
|
High-fat diet results in postprandial insulin resistance that involves parasympathetic dysfunction. Br J Nutr 2010; 104:1450-9. [DOI: 10.1017/s0007114510002400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Different diets have distinct impacts on glucose homoeostasis, for which insulin sensitivity (IS) after a meal (postprandial IS) is highly relevant. Postprandial IS depends upon hepatic parasympathetic activation and glutathione content elevation. We tested the hypothesis that postprandial IS is compromised in high-fat diet (HFD)-induced obesity. Sprague–Dawley rats were fed a standard diet (STD, n 10), 1-week HFD (n 9) or 4-week HFD (n 8). IS was tested in postprandial state using the rapid IS test (RIST) before and after the blockade of the parasympathetic nerves (atropine, 1 mg/kg); parasympathetic-dependent IS was obtained from the difference between control and post-atropine RIST. Fasting IS was also assessed in the STD-fed rats (n 4) and 4-week HFD-fed rats (n 3) using the RIST. Whole-body fat and regional fat pads were heavier in the 1-week HFD-fed rats (79·8 (se 7·9) and 23·7 (se 1·0) g, respectively) or 4-week HFD-fed rats (106·5 (se 6·1) and 30·1 (se 1·4) g, respectively) than in the STD-fed rats (32·5 (se 3·7) and 13·7 (se 1·0) g, respectively; P < 0·001). Fasted-state IS was similar between the groups studied. Postprandial IS was higher in the STD-fed rats (185·8 (se 5·6) mg glucose/kg body weight (bw)) than in both the 1-week HFD-fed rats (108·8 (se 2·9) mg glucose/kg bw; P < 0·001) and 4-week HFD-fed rats (69·3 (se 2·6) mg glucose/kg bw; P < 0·001). Parasympathetic-dependent IS was impaired in both HFD-fed groups (STD, 108·9 (se 3·9) mg glucose/kg bw; 1-week HFD, 38·6 (se 4·2) mg glucose/kg bw; 4-week HFD, 5·4 (se 1·7) mg glucose/kg bw; P < 0·001). Total (postprandial) and parasympathetic-dependent IS correlated negatively with whole-body fat (R2 0·81 and 0·87) and regional adiposity (R2 0·85 and 0·79). In conclusion, fat accumulation induced by HFD is associated with postprandial insulin resistance, but not with fasting insulin resistance. HFD-associated postprandial insulin resistance is largely mediated by impairment of parasympathetic-dependent insulin action, which correlates with adiposity.
Collapse
|
28
|
Schafer J, Legare DJ, Lautt WW. Acetylcholinesterase antagonist potentiated insulin action in fed but not fasted state. J Pharmacol Exp Ther 2010; 333:621-8. [PMID: 20133391 DOI: 10.1124/jpet.109.164509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glucose disposal effect of insulin is doubled in response to a meal. This meal-induced insulin sensitization results from insulin acting on the liver, in the presence of a permissive hepatic parasympathetic feeding signal and elevated hepatic glutathione (GSH), to release hepatic insulin-sensitizing substance (HISS), a hormone that acts selectively on skeletal muscle to stimulate insulin-mediated glucose uptake. Blockade of the parasympathetic feeding signal to the liver, either through surgical denervation or atropine-mediated antagonism of hepatic muscarinic receptors, eliminates the HISS response, resulting in HISS-dependent insulin resistance (HDIR) and decreasing the response to insulin by approximately 55% in the fed state. Insulin action in Sprague-Dawley rats, as determined with a rapidly sampled, transient euglycemic clamp in response to insulin (50 mU/kg), is decreased in a dose-dependent manner by atropine. In this study, we have used the ED75 atropine-induced model of HDIR. After a submaximal dose of atropine, potentiation of the remaining parasympathetic effect with the acetylcholinesterase antagonist neostigmine significantly restored postprandial insulin sensitization in a dose-dependent manner with peak effect at 0.1 microg/kg/min. Neostigmine reversed the insulin resistance induced by partial fasting and partial muscarinic inhibition (hepatic GSH levels are at fed levels), but not that induced by surgical hepatic denervation (GSH normal, no nerve signal) or 24-h fasting (low GSH). No potentiation of the response to insulin by neostigmine occurred in normal, fed rats. The data suggest the use of either direct or indirectly acting cholinergic agonists for the treatment of impaired postprandial insulin sensitization.
Collapse
Affiliation(s)
- Joshua Schafer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
29
|
Ming Z, Legare DJ, Lautt WW. Obesity, syndrome X, and diabetes: the role of HISS-dependent insulin resistance altered by sucrose, an antioxidant cocktail, and ageThis article is one of a selection of papers published in a special issue celebrating the 125th anniversary of the Faculty of Medicine at the University of Manitoba. Can J Physiol Pharmacol 2009; 87:873-82. [DOI: 10.1139/y09-079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Absence of meal-induced insulin sensitization (AMIS) results in a predictable progression of dysfunctions, including postprandial hyperglycemia, compensatory hyperinsulinemia, resultant hyperlipidemia, increased oxidative stress, and obesity, progressing to syndrome X and diabetes. To test the ‘AMIS syndrome’ hypothesis we used 3 known means of producing graded and progressive changes in meal-induced insulin sensitization in rats. We used an aging model (9, 26, and 52 weeks), associated with a slow development of AMIS; a low-dose sucrose supplement model to accelerate the development of AMIS; and an antioxidant cocktail (S-adenosylmethionine, vitamin E, and vitamin C) to protect against the effect of the sucrose on meal-induced insulin sensitization. Adiposity was assessed from weighed regional fat masses and bioelectrical impedance. AMIS developed with age, was increased by sucrose supplementation, and was inhibited by the antioxidant cocktail. AMIS correlated with postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, and with adiposity (r2 = 0.7–0.8) regardless of age or nutrient status. The range of degrees of AMIS, established over time with these models, afforded the tool with which to test the AMIS syndrome and further the argument that AMIS is the first metabolic defect that cumulatively leads to a predictable series of homeostatic disturbances and dysfunctions, including obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Zhi Ming
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | - Dallas J. Legare
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
30
|
Patarrão RS, Lautt WW, Afonso RA, Ribeiro RT, Guarino MP, Fernandes AB, Boavida JM, Macedo MP. Meal-induced insulin sensitization and its parasympathetic regulation in humans. Can J Physiol Pharmacol 2009; 86:880-8. [PMID: 19088809 DOI: 10.1139/y08-080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animal studies, the whole-body glucose disposal effect of insulin is low in the fasted state or after atropine infusion, but doubles after a meal, consistent with the hepatic insulin-sensitizing substance (HISS) hypothesis. We tested how a standardized test meal and atropine affected the dynamic response to insulin in humans. Insulin sensitivity was assessed in healthy male subjects (aged 28.9 +/- 1.9 years, body mass index 23.3 +/- 0.8 kg.m-2) by using the rapid insulin sensitivity test (RIST), which is a transient euglycemic clamp. After a 24-hour fasting period, dynamic insulin sensitivity was assessed and then repeated 100 min after the test meal. In a second protocol, the volunteers were fed the standardized test meal and intravenous atropine (0.5 mg) or saline (control group) was administered 50 min before insulin sensitivity assessment. Insulin sensitivity increased in the fed state (232.1% +/- 46.3%, n = 7) in comparison with the 24-hour fasted state. In the atropine protocol, the drug partially blocked (56.5% +/- 11.6%, n = 6) insulin sensitivity. In humans, feeding resulted in increased insulin sensitivity. The low dose of atropine in humans lead to a partial HISS-dependent decrease in insulin sensitivity. Meal-induced insulin sensitization occured in humans by a similar mechanism as that reported in other species. The sensitization process was regulated by a cholinergic 'feeding signal.'
Collapse
Affiliation(s)
- Rita S Patarrão
- Department of Physiology, Faculty of Medical Sciences, New University of Lisbon, Campo Martires da Patria 130, Lisbon 1169-056, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peitl B, Döbrönte R, Németh J, Pankucsi C, Sári R, Varga A, Szilvássy Z. Meal-induced enhancement in insulin sensitivity is not triggered by hyperinsulinemia in rats. Metabolism 2009; 58:328-32. [PMID: 19217447 DOI: 10.1016/j.metabol.2008.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Several reports confirmed the phenomenon of postprandial increase in whole-body insulin sensitivity. Although the initial step of this process is unknown, the pivotal role of postprandial hyperinsulinemia has strongly been suggested. The aim of the present study was to determine whether hyperinsulinemia per se induces insulin sensitization in healthy male Wistar rats. Rapid insulin sensitivity test (RIST) were performed in fasted, anesthetized rats before and during stable hyperinsulinemia achieved by hyperinsulinemic euglycemic glucose clamping (HEGC) with insulin infused either through the jugular vein (systemic HEGC) or into the portal circulation (portal HEGC) at a rate of 3 mU/(kg min). Insulin sensitivity expressed by the rapid insulin sensitivity (RIST) index (in milligrams per kilogram) was characterized by the total amount of glucose needed to maintain prestudy blood glucose level succeeding an intravenous bolus infusion of 50 mU/kg insulin over 5 minutes. In fasted animals, the RIST index was 37.4 +/- 3.1 mg/kg. When hyperinsulinemia mimicking the postprandial state was achieved by systemic HEGC, the RIST index (39.7 +/- 10.6 mg/kg) showed no significant changes as compared with the pre-HEGC values. Hyperinsulinemia achieved by portal insulin infusion also failed to modify the RIST index (35.7 +/- 4.3 mg/kg). The results demonstrate that acute hyperinsulinemia, no matter how induced, does not yield any sensitization to the hypoglycemic effect of insulin.
Collapse
Affiliation(s)
- Barna Peitl
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | | | | | | | | | |
Collapse
|
32
|
Caperuto LC, Anhê GF, Cambiaghi TD, Akamine EH, do Carmo Buonfiglio D, Cipolla-Neto J, Curi R, Bordin S. Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology 2008; 149:6326-35. [PMID: 18703636 DOI: 10.1210/en.2008-0655] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein 9 (BMP-9), a member of the TGF-beta superfamily predominantly expressed in nonparenchymal liver cells, has been demonstrated to improve glucose homeostasis in diabetic mice. Along with this therapeutic effect, BMP-9 was proposed as a candidate for the hepatic insulin-sensitizing substance (HISS). Whether BMP-9 plays a physiological role in glucose homeostasis is still unknown. In the present study, we show that BMP-9 expression and processing is severely reduced in the liver of insulin-resistant rats. BMP-9 expression and processing was directly stimulated by in situ exposition of the liver to the combination of glucose and insulin and oral glucose in overnight fasted rats. Additionally, prolonged fasting (72 h) abrogated refeeding-induced BMP-9 expression and processing. Previous exposition to dexamethasone, a known inductor of insulin resistance, reduced BMP-9 processing stimulated by the combination of insulin and glucose. Finally, we show that neutralization of BMP-9 with an anti-BMP-9 antibody induces glucose intolerance and insulin resistance in 12-h fasted rats. Collectively, the present results demonstrate that BMP-9 plays an important role in the control of glucose homeostasis of the normal rat. Additionally, BMP-9 is expressed and processed in an HISS-like fashion, which is impaired in the presence of insulin resistance. BMP-9 regulation according to the feeding status and the presence of diabetogenic factors reinforces the hypothesis that BMP-9 might exert the role of HISS in glucose homeostasis physiology.
Collapse
Affiliation(s)
- Luciana Chagas Caperuto
- Department of Biological Sciences, Federal University of São Paulo, 04023-900 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ribeiro RT, Afonso RA, Guarino MP, Macedo MP. Loss of postprandial insulin sensitization during aging. J Gerontol A Biol Sci Med Sci 2008; 63:560-5. [PMID: 18559629 DOI: 10.1093/gerona/63.6.560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With aging, there is a decrease in parasympathetic nervous activity. Since the hepatic parasympathetic nerves (HPNs) are essential to the disposal of nutrients, through the hepatic insulin sensitizing substance (HISS), we tested the hypothesis that aging leads to a lowering of postprandial glucose disposal by a decrease of the HISS-dependent component of insulin action. Insulin sensitivity was quantified in fed or fasted, male and female Wistar rats (from 6 to 52 weeks), using a euglycemic clamp. The HISS-dependent component was quantified by administration of the muscarinic antagonist atropine. Total insulin action decreased gradually up to 52 weeks of age: The HISS-independent component of insulin action decreased until 9 weeks of age and remained unchanged thereafter; the HISS-dependent component decreased from 9 weeks of age throughout aging. The continuous decrease of HISS action, uncovered by blocking the HPN, is the key phenomenon for the gradual decrease of insulin sensitivity with aging.
Collapse
Affiliation(s)
- Rogério Tavares Ribeiro
- Department of Physiology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria, 130, 1169-056 Lisbon, Portugal.
| | | | | | | |
Collapse
|
34
|
Lautt WW, Ming Z, Macedo MP, Legare DJ. HISS-dependent insulin resistance (HDIR) in aged rats is associated with adiposity, progresses to syndrome X, and is attenuated by a unique antioxidant cocktail. Exp Gerontol 2008; 43:790-800. [PMID: 18538970 DOI: 10.1016/j.exger.2008.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/27/2008] [Accepted: 04/22/2008] [Indexed: 11/28/2022]
Abstract
The hypotheses were: HISS-dependent insulin resistance (HDIR) accounts for insulin resistance that occurs with aging; HDIR is the initiating metabolic defect that leads progressively to type 2 diabetes and the metabolic syndrome; a synergistic antioxidant cocktail in chow confers protection against HDIR, subsequent symptoms of diabetes, and the metabolic syndrome. Male Sprague Dawley rats were tested at 9, 26, and 52 weeks to determine their dynamic response to insulin, the HISS (hepatic insulin sensitizing substance)-dependent component of insulin action, and the HISS-independent (direct) insulin action using a dynamic insulin sensitivity test. In young rats, the HISS component accounted for 52.3+/-2.1% of the response to a bolus of insulin (50mU/kg) which decreased to 29.8+/-3.4% at 6 months and 17.0+/-2.7% at 12 months. HISS action correlated negatively with whole body adiposity and all regional fat depots (r(2) = 0.67-0.87). The antioxidants (vitamin C, vitamin E, and S-adenosylmethionine) conferred protection of HISS action, fat mass at all sites, blood pressure, postprandial insulin and glucose. Data are consistent with the hypotheses. Early detection and therapy directed towards treatment of HDIR offers a novel therapeutic target.
Collapse
Affiliation(s)
- W Wayne Lautt
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Man., Canada R3E 0T6.
| | | | | | | |
Collapse
|
35
|
Berntson GG, Norman GJ, Hawkley LC, Cacioppo JT. Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology 2008; 45:643-52. [PMID: 18282204 DOI: 10.1111/j.1469-8986.2008.00652.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of autonomic balance views autonomic states along a bipolar continuum from sympathetic (S) to parasympathetic (P) dominance, whereas regulatory capacity models emphasize overall autonomic flexibility as a marker of the capacity for regulation. These two concepts were evaluated for their utility in characterizing patterns of autonomic control. Measures of P (high frequency heart rate variability, HF) and S (preejection period, PEP) cardiac control were obtained. A measure of cardiac autonomic balance (CAB) was derived as the difference in the normalized P index minus the S index, and a measure of cardiac autonomic regulation (CAR) was derived as the normalized P index plus the S index. Results reveal that CAR, but not CAB, was a significant predictor of the prior occurrence of a myocardial infarction, net of demographic and other variables, whereas CAB, but not CAR, was a significant predictor of concurrent diabetes.
Collapse
Affiliation(s)
- Gary G Berntson
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
36
|
Ikeda H, Yong Q, Kurose T, Todo T, Mizunoya W, Fushiki T, Seino Y, Yamada Y. Clock gene defect disrupts light-dependency of autonomic nerve activity. Biochem Biophys Res Commun 2007; 364:457-63. [PMID: 17964540 DOI: 10.1016/j.bbrc.2007.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/04/2007] [Indexed: 12/12/2022]
Abstract
The discovery of clock genes revealed the major molecular components responsible for circadian time-keeping in mammals, but the mechanism by which autonomic nervous system may control circadian rhythm and its relationship to metabolism is unclear. As the Cry1 and Cry2 genes are indispensable for molecular core oscillator function, we investigated autonomic nervous system activity and metabolism in Cry1-/-Cry2-/- mice. The mice were kept in a light-dark cycle, and showed normal circadian locomotor activities including feeding. However, the circadian rhythmicity of oxygen consumption, heart rate, and body temperature were abolished, suggesting hypermetabolism in these mice. Cry1-/-Cry2-/- mice also showed impaired glucose tolerance due to decreased insulin secretion. These results indicate that sympathetic neural activity in Cry1-/-Cry2-/- mice is elevated, reducing adiposity and impairing insulin secretion and suggest that dysregulation of the autonomic nervous system may induce metabolic disorders.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fukaya M, Mizuno A, Arai H, Muto K, Uebanso T, Matsuo K, Yamamoto H, Taketani Y, Doi T, Takeda E. Mechanism of rapid-phase insulin response to elevation of portal glucose concentration. Am J Physiol Endocrinol Metab 2007; 293:E515-22. [PMID: 17473051 DOI: 10.1152/ajpendo.00536.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatoportal region is important for glucose sensing; however, the relationship between the hepatoportal glucose-sensing system and the postprandial rapid phase of the insulin response has been unclear. We examined whether a rapid-phase insulin response to low amounts of intraportal glucose infusion would occur, compared that with the response to intrajugular glucose infusion in conscious rats, and assessed whether this sensing system was associated with autonomic nerve activity. The increases in plasma glucose concentration did not differ between the two infusions at 3 min, but the rapid-phase insulin response was detected only in the intraportal infusion. A sharp and rapid insulin response was observed at 3 min after intraportal infusion of a small amount of glucose but not after intrajugular infusion. Furthermore, this insulin response was also induced by intraportal fructose infusion but not by nonmetabolizable sugars. The rapid-phase insulin response at 3 min during intraportal infusion did not differ between rats that had undergone hepatic vagotomy or chemical sympathectomy with 6-hydroxydopamine compared with control rats, but this response disappeared in rats that had undergone chemical vagotomy with atropine. We conclude that the elevation of glucose concentration in the hepatoportal region induced afferent signals from undetectable sensors and that these signals stimulate pancreas to induce the rapid-phase insulin response via cholinergic nerve action.
Collapse
Affiliation(s)
- Makiko Fukaya
- Department of Clinical Nutrition, University of Tokushima School of Medicine, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ribeiro RT, Afonso RA, Macedo MP. Hepatic parasympathetic role in insulin resistance on an animal model of hypertension. Metabolism 2007; 56:227-33. [PMID: 17224337 DOI: 10.1016/j.metabol.2006.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
The hepatic insulin sensitizing substance (HISS) pathway, which includes the hepatic parasympathetic nerves and hepatic nitric oxide (HNO), has been shown to be crucial to the action of insulin on glucose metabolism. Insulin resistance in essential hypertension has been related to parasympathetic dysfunction; thus, we tested the hypothesis that the HISS pathway is impaired in spontaneously hypertensive rats (SHR) when compared with their normotensive controls, Wistar (WIS) and Wistar Kyoto (WKY) rats. A modified euglycemic clamp quantified insulin sensitivity. Differentiation of the HISS-dependent and HISS-independent components of insulin action was achieved by administration of a muscarinic receptor antagonist (atropine, 3 mg/kg) or of a nitric oxide synthase inhibitor (N(g)-methyl-arginine, 0.73 mg/kg). Both SHR and WKY had lower postprandial total insulin action when compared with WIS (209.1 +/- 13.6 for WKY and 217.8 +/- 19.8 for SHR vs 296.1 +/- 16.9 mg glucose/kg body weight for WIS, P < .05). Furthermore, we observed that this is due to a decrease of the HISS-dependent component of insulin action (154.8 +/- 16.4 for WIS vs 87.1 +/- 14.5 for WKY and 55.9 +/- 15.6 mg glucose/kg body weight for SHR; P < .05 and P < .001, respectively; data concerning the atropine protocol). Blockade of HISS action by inhibition of hepatic nitric oxide synthase with N(g)-methyl-arginine showed similar results to those obtained with atropine, suggesting that they indeed act through the same pathway. In conclusion, our results support our hypothesis that impairment of the HISS pathway is responsible for the development of insulin resistance between WIS and SHR.
Collapse
Affiliation(s)
- R T Ribeiro
- Department of Physiology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | | | | |
Collapse
|
39
|
Seredycz LI, Ming Z, Lautt WW. Acute hemorrhage causes hepatic insulin sensitizing substance (HISS)-dependent insulin resistance. Can J Physiol Pharmacol 2007; 84:1145-51. [PMID: 17218979 DOI: 10.1139/y06-064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic insulin sensitizing substance (HISS) has been shown to account for 55% of the action of insulin in the fed state. HISS blockade leads to HISS-dependent insulin resistance (HDIR). The objective of this study was to test the hypothesis that insulin resistance produced by hemorrhage was HDIR. Insulin sensitivity was measured using the rapid insulin sensitivity test (RIST), which can identify HISS-dependent and independent components. Hemorrhage was performed in anesthetized rats by removing blood to reduce mean arterial pressure to 50 mmHg. Subsequent to blood removal, a RIST was performed. The results show that hemorrhage caused complete HDIR as subsequent administration of atropine failed to further reduce insulin sensitivity. However, the post-hemorrhage RIST was reduced by 34% and not the anticipated 55%. The lesser reduction of the RIST index by hemorrhage was related to reduced apparent volume of distribution and clearance of insulin, since occlusion of the superior mesenteric artery, which caused a similar decrease in portal venous flow as did hemorrhage, resulted in a similar degree of reduction of insulin clearance. The response to administered insulin was confounded by the impact of reduced hepatic blood flow on insulin metabolism that resulted in an increase in the HISS independent (direct) action of injected insulin against a background of complete HDIR. HDIR represents a useful hormonal response to assure a hyperglycemic response to hemorrhage.
Collapse
Affiliation(s)
- Larissa I Seredycz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | | | | |
Collapse
|
40
|
Guarino MP, Macedo MP. Co-administration of glutathione and nitric oxide enhances insulin sensitivity in Wistar rats. Br J Pharmacol 2007; 147:959-65. [PMID: 16491098 PMCID: PMC1760719 DOI: 10.1038/sj.bjp.0706691] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The liver modulates insulin sensitivity through a prandial-dependent mechanism that requires activation of the hepatic parasympathetic nerves, hepatic nitric oxide (NO) and hepatic glutathione (GSH). We tested the hypothesis that co-administration of GSH and NO to the liver enhances insulin sensitivity in a GSH and NO dose-dependent manner. 24 h fasted Wistar rats were used. Hepatic GSH was supplemented by administration of glutathione monoethylester (GSH-E; 0.1/0.25/0.5/1/2 mmol kg(-1)) and 3-morpholinosidnonimine (SIN-1; 5/10 mg kg(-1)) was used as a NO donor. The drugs were administered either systemically (i.v.) or intraportally (i.p.v.). Insulin sensitivity was assessed using a transient euglycemic clamp. Neither GSH-E nor SIN-1 increased insulin sensitivity when administered alone, both i.v. and i.p.v. Moreover, changes in insulin sensitivity were not observed when GSH-E was administered i.v. followed by either i.v. or i.p.v. SIN-1 at any of the doses tested. However, i.p.v. administration of GSH-E followed by i.p.v. SIN-1 10 mg kg(-1) significantly increased insulin sensitivity in a GSH-E dose-dependent manner: 26.1+/-9.4% after 0.1 mmol kg(-1) GSH-E; 44.6+/-7.9% after 0.25 mmol kg(-1) GSH-E; 59.4+/-15.1% after 0.5 mmol kg(-1) GSH-E; 138.9+/-12.7% after 1 mmol kg(-1) GSH-E and 117.3+/-29.2% after a dose of 2 mmol kg(-1) (n = 23, P<0.005). Our results confirm that insulin sensitivity is enhanced in a dose-dependent manner by co-administration of NO and GSH donors to the liver.
Collapse
Affiliation(s)
- Maria P Guarino
- Department of Pathophysiology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- Department of Physiology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - M Paula Macedo
- Department of Physiology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- Portuguese Diabetes Association, Rua do Salitre, 118, 1250-203 Lisbon, Portugal
- Author for correspondence:
| |
Collapse
|
41
|
Kreier F, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM. “Diabetes of the elderly” and type 2 diabetes in younger patients: Possible role of the biological clock. Exp Gerontol 2007; 42:22-7. [PMID: 17049784 DOI: 10.1016/j.exger.2006.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/02/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
The increased prevalence of type 2 diabetes in the aged has been recognized for a long time. Within the last decades, a growing number of younger subjects and even children are prone to develop type 2 diabetes. In both groups, aged and young, the biological clock, located in the suprachiasmatic nucleus of the hypothalamus (SCN) is malfunctioning as evidenced by disturbed sleep cycles and altered circadian rhythms. While elderly patients have an impaired function of the SCN due to the degeneration of neurons, we propose that in younger subjects the clock loses its "feeling" for internal and external rhythms caused by the modern lifestyle. Sleeping late and less coupled with constant metabolic excess alter both internal and external environmental stimuli to the brain. In response to these alterations, the rhythm of the biological clock is disrupted which may lead to the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Felix Kreier
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Ting JW, Lautt WW. The effect of acute, chronic, and prenatal ethanol exposure on insulin sensitivity. Pharmacol Ther 2006; 111:346-73. [PMID: 16310255 DOI: 10.1016/j.pharmthera.2005.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 10/10/2005] [Indexed: 01/03/2023]
Abstract
Ethanol has been considered as a lifestyle factor that may influence the risk of type 2 diabetes mellitus. In healthy adults, acute ethanol consumption results in insulin resistance. Acute ethanol consumption causes insulin resistance selectively in skeletal muscle by an indirect mechanism. Possible mediators include triglycerides (TGs), catecholamines, acetaldehyde, alterations in insulin binding, and hepatic insulin sensitizing substance (HISS). Recent studies in rats showed that acute administration of ethanol causes insulin resistance in a dose-dependent manner that is secondary to the blockade of insulin-induced HISS release. Chronic ethanol consumption may improve insulin sensitivity, but the results from the randomized controlled trials are mixed. Differences in ethanol dose, consumption period, and abstention period may account for the discrepant results. Epidemiological studies have suggested that the relationship between ethanol and insulin sensitivity is either an inverted U-shape or a positive linear relationship. Future randomized controlled trials should consider the dose of ethanol and the duration of ethanol consumption and abstention in the experimental design. Chronic prenatal and postnatal (nursing) ethanol exposure results in insulin resistance that is secondary to the absence of HISS release/action with the HISS-independent insulin action and insulin-like growth factor-1 (IGF-1)-mediated glucose disposal action remaining unimpaired. The impaired HISS release may be related to a reduction in hepatic glutathione (GSH) levels. The effect of chronic ethanol consumption on HISS has not been evaluated.
Collapse
Affiliation(s)
- Justin W Ting
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A210-753 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | | |
Collapse
|
43
|
Sadri P, Reid MAG, Afonso RA, Schafer J, Legare DJ, Paula Macedo M, Wayne Lautt W. Meal-induced insulin sensitization in conscious and anaesthetized rat models comparing liquid mixed meal with glucose and sucrose. Br J Nutr 2006; 95:288-95. [PMID: 16469144 DOI: 10.1079/bjn20051644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have recently shown that meal-induced insulin sensitization (MIS) occurs after feeding and decreases progressively to insignificance after 24 h of fasting and is caused by action of a hepatic insulin sensitizing substance (HISS). In order to carry out quantitative studies of MIS, some standardized meal intake is required. Our objective was to establish animal models to be tested in both the conscious and anaesthetized state using intragastric injection of liquid meals in order to quantify MIS. Insulin sensitivity was assessed before and 90 min after the meal using the rapid insulin sensitivity test (RIST) which is a transient euglycaemic clamp. Rats tested in the conscious state were instrumented under anaesthesia 6-9 d prior to testing with catheters in the carotid artery, jugular vein and stomach. Meals, injected into the stomach, consisted of a liquid mixed meal, sucrose, glucose or water. The glucose sequestration in response to insulin increased by 90 % and 61 % following the liquid mixed meal (10 ml/kg) in conscious and anaesthetized rats, respectively. Glucose, sucrose and water did not effectively activate MIS. MIS was completely reversed in the conscious model by atropine and completely prevented from developing in the anaesthetized model that had previously undergone hepatic denervation. Gastric administration of a liquid mixed meal but not glucose or sucrose is capable of activating MIS for purposes of mechanistic studies and quantification of the MIS process. The feeding signal is mediated by the hepatic parasympathetic nerves.
Collapse
Affiliation(s)
- Parissa Sadri
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Manitoba, A210 - 753 McDermot Avenue, Winnipeg, Manitoba, Canada, R3E 0T6
| | | | | | | | | | | | | |
Collapse
|
44
|
Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 147:1140-7. [PMID: 16339209 DOI: 10.1210/en.2005-0667] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamus uses hormones and the autonomic nervous system to balance energy fluxes in the body. Here we show that the autonomic nervous system has a distinct organization in different body compartments. The same neurons control intraabdominal organs (intraabdominal fat, liver, and pancreas), whereas sc adipose tissue located outside the abdominal compartment receives input from another set of autonomic neurons. This differentiation persists up to preautonomic neurons in the hypothalamus, including the biological clock, that have a distinct organization depending on the body compartment they command. Moreover, we demonstrate a neuronal feedback from adipose tissue that reaches the brainstem. We propose that this compartment-specific organization offers a neuroanatomical perspective for the regional malfunction of organs in type 2 diabetes, where increased insulin secretion by the pancreas and disturbed glucose metabolism in the liver coincide with an augmented metabolic activity of visceral compared with sc adipose tissue.
Collapse
Affiliation(s)
- Felix Kreier
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Szilvássy J, Sziklai I, Sári R, Németh J, Peitl B, Porszasz R, Lonovics J, Szilvássy Z. Neurogenic insulin resistance in guinea-pigs with cisplatin-induced neuropathy. Eur J Pharmacol 2006; 531:217-25. [PMID: 16438961 DOI: 10.1016/j.ejphar.2005.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/29/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
The aim of the present work was to study whether neurotoxicity produced by cisplatin modified tissue insulin sensitivity in guinea-pigs. One week after selective sensory denervation of the anterior hepatic plexus by means of perineurial 2% capsaicin treatment, hyperinsulinaemic euglycaemic glucose clamp were performed to estimate insulin sensitivity in male guinea-pigs. The guinea-pigs underwent regional sensory denervation of the anterior hepatic plexus exhibited insulin resistance, whereas systemic capsaicin desensitization increased insulin sensitivity. Intraportal administration of L-nitro-arginine methyl ester (L-NAME decreased, whereas capsaicin increased insulin sensitivity. Neither atropine nor acetylcholine produced any significant effect. In animals with preceding regional capsaicin desensitization, none of the pharmacological maneuvers modified the resulting insulin resistant state. Cisplatin pretreatment induced sensory neuropathy and decreased insulin sensitivity. Insulin sensitivity did not change after either regional or systemic capsaicin desensitization in the cisplatin-treated animals. CGRP(8-37), a nonselective calcitonin gene-related peptide (CGRP) antagonist (50 microg/kg i.v.), significantly increased insulin sensitivity in normal animals but only a tendency to insulin sensitization was seen after cisplatin treatment. Cisplatin treatment, similar to regional capsaicin desensitization of the anterior hepatic plexus, produced a significant decrease in insulin-stimulated uptake of 2-deoxy-D [L-14C] glucose in cardiac and gastrocnemius muscle with no effect on percentage suppression of endogenous glucose production by hyperinsulinaemia. We conclude that the majority of cisplatin-induced insulin resistance is related to functional deterioration of the hepatic insulin sensitizing substance (HISS) mechanism.
Collapse
Affiliation(s)
- Judit Szilvássy
- Department of Oto-rhino-laryngology, Medical University of Debrecen H-4032 Nagyerdei krt. 98. Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lévesque M, Santuré M, Pitre M, Nadeau A, Bachelard H. Cholinergic involvement in vascular and glucoregulatory actions of insulin in rats. Diabetes 2006; 55:398-404. [PMID: 16443773 DOI: 10.2337/diabetes.55.02.06.db05-0684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was designed to test the glucose metabolic and vasodilator actions of insulin in rats and its relation to cholinergic system-dependent mechanisms. The first group of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and regional blood flows. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp technique carried out in the absence or presence of atropine. The second group of rats was used to determine the cholinergic contribution to in vivo insulin-mediated glucose utilization in individual muscles. Glucose uptake was examined by using [(3)H]2-deoxy-D-glucose. Muscarinic cholinergic blockade was found to significantly (P = 0.002) reduce insulin sensitivity and to completely abrogate the renal (P = 0.008) and hindquarter (P = 0.02) vasodilator responses to euglycemic infusion of insulin. A significant reduction in insulin-stimulated in vivo glucose uptake was also noted in soleus (P = 0.006), quadriceps (P = 0.03), gastrocnemius (P = 0.02), and extensor digitorum longus (EDL) (P = 0.001) muscles, when insulin was infused at a rate of 4 mU . kg(-1) . min(-1), whereas at the rate of 16 mU . kg(-1) . min(-1), a significant reduction in glucose uptake was only observed in EDL (P = 0.03) and quadriceps (P = 0.01) muscles. Together, these results demonstrate a potential role for cholinergic involvement with physiological insulin actions in glucose clearance and blood flow regulation in rats.
Collapse
Affiliation(s)
- Martin Lévesque
- Lipid Research Unit, Centre Hospitalier de l'Université Laval (CHUL) Research Center, Centre Hospitalier Universitaire de Québec (CHUQ), Ste-Foy, Canada
| | | | | | | | | |
Collapse
|
47
|
Seredycz LI, Lautt WW. Hemorrhage results in hepatic insulin-sensitizing substance-dependent insulin resistance mediated by somatostatin in rats. Neuroendocrinology 2006; 84:94-102. [PMID: 17202832 DOI: 10.1159/000097484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/20/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Acute hemorrhage results in hyperglycemia regulated in a redundant manner by adrenal catecholamines and hepatic sympathetic nerves. In addition, insulin secretion is suppressed and insulin resistance is accounted for completely by elimination of the hepatic insulin-sensitizing substance (HISS) component of insulin action. Blockade of HISS action secondary to blood loss leads to a state known as HISS-dependent insulin resistance (HDIR) which results in a decrease in the glucose disposal action of insulin by 33 +/- 3%. METHODS This paper describes nine studies that have explored the neuroendocrine control of HDIR that is produced in response to the stress of blood loss. The rapid insulin sensitivity test (RIST), a transient euglycemic clamp, was used to measure insulin sensitivity. To test the role of the adrenergic system, alpha- and beta-adrenergic receptor antagonists, phentolamine and propranolol, were tested for the ability to block HDIR produced by hemorrhage. RESULTS Neither intervention was effective (32 +/- 6 and 36 +/- 3%, respectively). Exogenous somatostatin was shown to produce HDIR that could be blocked by the somatostatin receptor antagonist, cyclosomatostatin. Cyclosomatostatin completely blocked the development of HDIR that occurred following hemorrhage (RIST index 214 +/- 9 control, 218 +/- 9 mg glucose/kg body weight after cyclosomatostatin plus hemorrhage). CONCLUSIONS The adrenergic system is not involved in producing HDIR in response to hemorrhage. Somatostatin appears to be the hormonal regulator of this response and it is suggested that the somatostatin derives from a neural origin within the liver.
Collapse
Affiliation(s)
- Larissa I Seredycz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
48
|
Abstract
Patients with chronic hepatitis C virus (HCV) infection have a significantly increased prevalence of type 2 diabetes mellitus compared to controls or HBV-infected patients. Moreover, the incidence rate of post-liver transplantation diabetes mellitus (PTDM) also appears to be higher among patients with HCV infection. PTDM is often associated with direct viral infection, autoimmune disorders, and immunosuppressive regimen. Activation of tumor necrosis factor-α may be the link between HCV infection and diabetes. In this article, we reviewed the epidemiologic association between HCV infection and PTDM, highlighting the most recent pathophysiologic insights into the mechanisms underlying this association.
Collapse
Affiliation(s)
- Yun Ma
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| | | |
Collapse
|
49
|
Lautt WW. Insulin sensitivity in skeletal muscle regulated by a hepatic hormone, HISS. ACTA ACUST UNITED AC 2005; 30:304-12. [PMID: 16129895 DOI: 10.1139/h05-123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The current state of the HISS (hepatic insulin sensitizing substance) hypothesis is briefly outlined. In the postmeal absorptive state, 50-60% of the glucose storage action of insulin is accounted for by the actions of HISS released from the liver and acting on skeletal muscle. Hepatic parasympathetic nerves permissively regulate the ability of a pulse of insulin to release HISS, thereby potentiating the impact of insulin in the fed state. HISS release in response to insulin decreases progressively with fasting to create a physiological state of HISS-dependent insulin resistance. HISS release is regulated by parasympathetic nerves via muscarinic receptors and nitric oxide, and insulin resistance of skeletal muscle produced by hepatic denervation is reversed by intraportal but not intravenous acetylcholine or a nitric oxide donor. It is suggested that HISS-dependent insulin resistance occurs in animal models including sucrose-fed rats, spontaneously hypertensive rats, chronic liver disease, fetal alcohol effect in the adult offspring, and type 2 diabetes.
Collapse
Affiliation(s)
- W Wayne Lautt
- Dept. of Pharmacology & Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Ave., Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Peitl B, Döbrönte R, Németh J, Mezey G, Kovács P, Paragh G, Szilvássy Z. The prandial insulin sensitivity-modifying effect of vagal stimulation in rats. Metabolism 2005; 54:579-83. [PMID: 15877286 DOI: 10.1016/j.metabol.2004.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of left cervical vagal nerve stimulation was studied on insulin sensitivity to test the proposed permissive insulin-sensitizing role of hepatic vagal parasympathetic efferent pathways in fasted and fed anesthetized rats. In fed animals, electrical stimulation (square impulses: 25 V, 5 Hz, 0.5 milliseconds over 15 minutes) of the vagal nerve induced hyperglycemia and an increase in plasma insulin immunoreactivity. Atropine (1.0 mg/kg intravenously) induced insulin resistance estimated by rapid insulin sensitivity testing. This was amplified when the vagal nerve was stimulated. The insulin-resistant state developed by fasting was not modified by either treatment with atropine or electrical stimulation. We conclude that both parasympathetic cholinergic and noncholinergic vagal efferents modulate postprandial neurogenic insulin sensitivity adjustments.
Collapse
Affiliation(s)
- Barna Peitl
- Experimental and Clinical Pharmacology Consortium, University of Debrecen, H-4032 Debrecen, Germany.
| | | | | | | | | | | | | |
Collapse
|