1
|
Ferraretti G, Abondio P, Alberti M, Dezi A, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Peluzzi D, Sarno S, Sazzini M. Archaic introgression contributed to shape the adaptive modulation of angiogenesis and cardiovascular traits in human high-altitude populations from the Himalayas. eLife 2024; 12:RP89815. [PMID: 39513938 PMCID: PMC11548878 DOI: 10.7554/elife.89815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of BolognaBolognaItaly
| | - Marta Alberti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Agnese Dezi
- Department of Emergency and Organ Transplantation, University of Bari Aldo MoroBari Aldo MoroItaly
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | | | | | | | - Luca Natali
- Explora Nunaat International, Montorio al VomanoTeramoItaly
- Italian Institute of Human PaleontologyRomeItaly
| | - Angela Corcelli
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo MoroBariItaly
| | | | - Davide Peluzzi
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of BolognaBolognaItaly
| |
Collapse
|
2
|
Panza GS, Soltesz AE, Zhao F, Fritz NE, Delgado AD, Sutor TW. Intermittent hypoxia and motor learning: new information and new questions. J Physiol 2024. [PMID: 39470714 DOI: 10.1113/jp287594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Affiliation(s)
- Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Alexandra E Soltesz
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Nora E Fritz
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Health Care Sciences, Program of Physical Therapy, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Andrew D Delgado
- Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tommy W Sutor
- Center for Breathing Research and Therapeutics and Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Ryou MG, Burton S. Intermittent hypoxic training - derived exosomes in stroke rehabilitation. Front Integr Neurosci 2024; 18:1475234. [PMID: 39323911 PMCID: PMC11422222 DOI: 10.3389/fnint.2024.1475234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Ischemic stroke is the fourth leading cause of adult disability in the US, and it is a huge social burden all over the world. However, the efficient treatment of ischemic stroke is not available. An apparent reason for failing to find or develop an intervention for ischemic stroke is contributed to the tight blood-brain barrier (BBB). The unique characteristics of exosomes that can traverse BBB have been highlighted among researchers investigating interventions for ischemic stroke conditions. Additionally, intermittent hypoxic training has been considered a potential intervention in the treatment or rehabilitation process of ischemic stroke patients. In this mini-review, we are going to review the possibility of applying exosomes produced by a subject who does intermittent hypoxic conditioning in a treatment program for ischemic stroke.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Science, Tarleton State University, Fort Worth, TX, United States
| | - Summer Burton
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Science, Tarleton State University, Fort Worth, TX, United States
| |
Collapse
|
4
|
Snyder CA, Dwyer KD, Coulombe KLK. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int J Mol Sci 2024; 25:9627. [PMID: 39273573 PMCID: PMC11395605 DOI: 10.3390/ijms25179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Caroline A Snyder
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kiera D Dwyer
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L K Coulombe
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
6
|
Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis 2024; 85:63-73. [PMID: 38061613 DOI: 10.1016/j.pcad.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marco Fresa
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefano Lanzi
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
7
|
Cohen O, Sánchez-de-la-Torre M, Al-Taie Z, Khan S, Kundel V, Kovacic JC, Gracia-Lavedan E, De Batlle J, Nadkarni G, Barbé F, Suárez-Fariñas M, Shah NA. Heterogeneous Effects of Continuous Positive Airway Pressure in Non-Sleepy Obstructive Sleep Apnea on Cardiovascular Disease Outcomes: Post Hoc Machine Learning Analysis of the ISAACC Trial (ECSACT Study). Ann Am Thorac Soc 2024; 21:1074-1084. [PMID: 38358332 PMCID: PMC11284324 DOI: 10.1513/annalsats.202309-799oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
Rationale: Randomized controlled trials of continuous positive airway pressure (CPAP) therapy for cardiovascular disease (CVD) prevention among patients with obstructive sleep apnea (OSA) have been largely neutral. However, given that OSA is a heterogeneous disease, there may be unidentified subgroups demonstrating differential treatment effects. Objectives: We sought to apply a novel data-drive approach to identify nonsleepy OSA subgroups with heterogeneous effects of CPAP on CVD outcomes within the Impact of Sleep Apnea Syndrome in the Evolution of Acute Coronary Syndrome (ISAACC) study. Methods: Participants were randomly partitioned into two datasets. One for training (70%) our machine-learning model and a second (30%) for validation of significant findings. Model-based recursive partitioning was applied to identify subgroups with heterogeneous treatment effects. Survival analysis was conducted to compare treatment (CPAP vs. usual care [UC]) outcomes within subgroups. Results: A total of 1,224 nonsleepy OSA participants were included. Of 55 features entered into our model, only two appeared in the final model (i.e., average OSA event duration and hypercholesterolemia). Among participants at or below the model-derived average event duration threshold (19.5 s), CPAP was protective for a composite of CVD events (training hazard ratio [HR], 0.46; P = 0.002). For those with longer event duration (>19.5 s), an additional split occurred by hypercholesterolemia status. Among participants with longer event duration and hypercholesterolemia, CPAP resulted in more CVD events compared with UC (training HR, 2.24; P = 0.011). The point estimate for this harmful signal was also replicated in the testing dataset (HR, 1.83; P = 0.118). Conclusions: We discovered subgroups of nonsleepy OSA participants within the ISAACC study with heterogeneous effects of CPAP. Among the training dataset, those with longer OSA event duration and hypercholesterolemia had nearly 2.5 times more CVD events with CPAP compared with UC, whereas those with shorter OSA event duration had roughly half the rate of CVD events if randomized to CPAP.
Collapse
Affiliation(s)
- Oren Cohen
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Manuel Sánchez-de-la-Torre
- Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Zainab Al-Taie
- Center for Biostatistics, Department of Population Health Science and Policy
| | - Samira Khan
- Division of Pulmonary, Critical Care, and Sleep Medicine
| | | | - Jason C. Kovacic
- Cardiovascular Research Institute, and
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia; and
| | - Esther Gracia-Lavedan
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Jordi De Batlle
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | - Girish Nadkarni
- Division of Data Driven and Digital Medicine (D3M), Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| | | | - Neomi A. Shah
- Division of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
8
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Zha S, Liu X, Chen H, Hao Y, Zhang J, Zhang Q, Hu K. A randomized controlled crossover trial of acute intermittent and continuous hypoxia exposure in mild-moderate obstructive sleep apnea: A feasibility study. J Sleep Res 2024; 33:e14014. [PMID: 37592825 DOI: 10.1111/jsr.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
In a prospective, randomized, controlled crossover study, we explored the effects of acute intermittent hypoxia and acute continuous hypoxia on patients with mild-moderate obstructive sleep apnea. Over three single-night sessions, subjects were alternately exposed to normoxia, acute continuous hypoxia and acute intermittent hypoxia before sleep. The apnea-hypopnea index and oxygen desaturation index were used to diagnose obstructive sleep apnea and evaluate efficacy. A responder was defined as a participant with a ≥ 50% reduction in apnea-hypopnea index between normoxia and hypoxia exposure. Sixteen participants with mild-moderate obstructive sleep apnea completed the study. Compared with normoxia, the mean apnea-hypopnea index decreased by 8.9 events per hr (95% confidence interval, 4.2-13.6, p = 0.001) with acute intermittent hypoxia and by 4.1 events per hr (95% confidence interval, 0.5-8.8, p = 0.082) with acute continuous hypoxia, equating to a mean decrease in apnea-hypopnea index of 4.8 events per hr (95% confidence interval, 0.1-9.5, p = 0.046) with acute intermittent hypoxia compared with acute continuous hypoxia. Compared with normoxia, the mean oxygen desaturation index decreased by 9.8 events per hr (95% confidence interval, 4.4-15.1, p = 0.001) with acute intermittent hypoxia but did not significantly decrease with acute continuous hypoxia; the mean oxygen desaturation index decreased by 7.2 events per hr (95% confidence interval, 1.8-12.6, p = 0.010) with acute intermittent hypoxia compared with acute continuous hypoxia. Of the 16 participants, 11 responded to acute intermittent hypoxia and four responded to acute continuous hypoxia (p = 0.032), of whom eight of 11 cases and all four cases had oxygen desaturation indexes <5 events per hr, respectively (p = 0.273). All participants tolerated acute intermittent hypoxia and there were no obvious adverse events during acute intermittent hypoxia exposure. In conclusion, acute intermittent hypoxia exposure improved apnea-hypopnea index and oxygen desaturation index in patients with mild-moderate obstructive sleep apnea, suggesting that further prospective validation of intermittent hypoxia exposure in patients with obstructive sleep apnea is needed to establish its clinical feasibility as a therapeutic modality.
Collapse
Affiliation(s)
- Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueying Hao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Lin Y, Yan J, Guo X, Lin H, Ruan C, Dai Y, Wang S, Cao Y, Xiang Q, Yang M, Liu W, Chen L. Effects of Exercise Training Under Hypoxia Versus Normoxia on Cognitive Function in Clinical and Non-Clinical Populations: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2024; 105:975-987. [PMID: 37660776 DOI: 10.1016/j.apmr.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE To compare the effects of exercise training under hypoxia versus normoxia on cognitive function in clinical and non-clinical populations. DATA SOURCES From inception to June 13th, 2022, a systematic search was performed on PubMed, Web of Science, Embase, Scopus, and Cochrane Central Register of Controlled Trials. STUDY SELECTION Randomized controlled trials comparing the effects of exercise under hypoxic vs normoxic on cognition in clinical and non-clinical populations were included. The systematic search generated 14,894 relevant studies, of which 12 were finally included. DATA EXTRACTION Two reviewers independently extracted data from included studies. Results were expressed as standardized mean difference (SMD). Each included study was assessed using the Cochrane Risk of Bias 1.0 (RoB1.0) tool. Finally, the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system was used to rate the certainty of evidence for each outcome. DATA SYNTHESIS Overall, 12 studies with a total of 338 participants met the inclusion criteria. The pooled results suggested that hypoxia exercise had a small but not statistically significant positive effect on overall cognitive function (SMD=0.064, 95% confidence interval (CI): -0.156-0.284, P=.567, very low-certainty evidence), when compared with normoxic exercise. Regarding the domain-specific cognitive functions, there was a medium and significant positive effect on memory (SMD=0.594, 95% CI: 0.068 to 1.120, P=.027, very low-certainty evidence), while effects on visuospatial function (SMD=0.490, 95% CI: -0.030 to 1.010, P=.065, very low-certainty evidence), attention (SMD=0.037, 95% CI: -0.340 to 0.414, P=.847, very low-certainty evidence), executive function (SMD=0.096, 95% CI: -0.268 to 0.460, P=.605, very low-certainty evidence), and processing speed (SMD=-0.145, 95% CI: -0.528 to 0.239, P=.459, very low-certainty evidence) were not statistically significant. CONCLUSIONS The current pooled results revealed that hypoxic exercise was related to improved cognitive performance. Nevertheless, exercise under hypoxia did not have a significant advantage in cognitive promotion when compared with exercise under normoxia.
Collapse
Affiliation(s)
- Yanting Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoqin Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chendong Ruan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yajun Cao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Qing Xiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lidian Chen
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
11
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Ndzie Noah ML, Mprah R, Wowui PI, Adekunle AO, Adu-Amankwaah J, Tan R, Gong Z, Li T, Fu L, Machuki JO, Zhang S, Sun H. CD73/adenosine axis exerts cardioprotection against hypobaric hypoxia-induced metabolic shift and myocarditis in a sex-dependent manner. Cell Commun Signal 2024; 22:166. [PMID: 38454449 PMCID: PMC10918954 DOI: 10.1186/s12964-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Clinical and experimental studies have shown that the myocardial inflammatory response during pathological events varies between males and females. However, the cellular and molecular mechanisms of these sex differences remain elusive. CD73/adenosine axis has been linked to anti-inflammatory responses, but its sex-specific cardioprotective role is unclear. The present study aimed to investigate whether the CD73/adenosine axis elicits sex-dependent cardioprotection during metabolic changes and myocarditis induced by hypobaric hypoxia. METHODS For 7 days, male and female mice received daily injections of the CD73 inhibitor adenosine 5'- (α, β-methylene) diphosphate (APCP) 10 mg/kg/day while they were kept under normobaric normoxic and hypobaric hypoxic conditions. We evaluated the effects of hypobaric hypoxia on the CD73/adenosine axis, myocardial hypertrophy, and cardiac electrical activity and function. In addition, metabolic homeostasis and immunoregulation were investigated to clarify the sex-dependent cardioprotection of the CD73/adenosine axis. RESULTS Hypobaric hypoxia-induced cardiac dysfunction and adverse remodeling were more pronounced in male mice. Also, male mice had hyperactivity of the CD73/adenosine axis, which aggravated myocarditis and metabolic shift compared to female mice. In addition, CD73 inhibition triggered prostatic acid phosphatase ectonucleotidase enzymatic activity to sustain adenosine overproduction in male mice but not in female mice. Moreover, dual inhibition prostatic acid phosphatase and CD73 enzymatic activities in male mice moderated adenosine content, alleviating glycolytic shift and proinflammatory response. CONCLUSION The CD73/adenosine axis confers a sex-dependent cardioprotection. In addition, extracellular adenosine production in the hearts of male mice is influenced by prostatic acid phosphatase and tissue nonspecific alkaline phosphatase.
Collapse
Affiliation(s)
- Marie Louise Ndzie Noah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Prosperl Ivette Wowui
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | | | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | | | - Shijie Zhang
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
13
|
Yalaz C, Bridges E, Alham NK, Zois CE, Chen J, Bensaad K, Miar A, Pires E, Muschel RJ, McCullagh JSO, Harris AL. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab 2024; 12:5. [PMID: 38350962 PMCID: PMC10863171 DOI: 10.1186/s40170-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.
Collapse
Affiliation(s)
- Ceren Yalaz
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nasullah K Alham
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jianzhou Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Karim Bensaad
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Miar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
14
|
Zhang G, Yang G, Zhou Y, Cao Z, Yin M, Ma L, Fan M, Zhao YQ, Zhu L. Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure. Pflugers Arch 2024; 476:197-210. [PMID: 37994929 DOI: 10.1007/s00424-023-02885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Yanzhao Zhou
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | | | - Ming Yin
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Lin Ma
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Fan
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Qi Zhao
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Lingling Zhu
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Richalet JP, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 2024; 21:75-88. [PMID: 37783743 DOI: 10.1038/s41569-023-00924-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.
Collapse
Affiliation(s)
- Jean-Paul Richalet
- Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
| | - Eric Hermand
- Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois, Université Lille, CHU Lille, Dunkirk, France
| | | |
Collapse
|
16
|
Raberin A, Burtscher J, Burtscher M, Millet GP. Hypoxia and the Aging Cardiovascular System. Aging Dis 2023; 14:2051-2070. [PMID: 37199587 PMCID: PMC10676797 DOI: 10.14336/ad.2023.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Older individuals represent a growing population, in industrialized countries, particularly those with cardiovascular diseases, which remain the leading cause of death in western societies. Aging constitutes one of the largest risks for cardiovascular diseases. On the other hand, oxygen consumption is the foundation of cardiorespiratory fitness, which in turn is linearly related to mortality, quality of life and numerous morbidities. Therefore, hypoxia is a stressor that induces beneficial or harmful adaptations, depending on the dose. While severe hypoxia can exert detrimental effects, such as high-altitude illnesses, moderate and controlled oxygen exposure can potentially be used therapeutically. It can improve numerous pathological conditions, including vascular abnormalities, and potentially slows down the progression of various age-related disorders. Hypoxia can exert beneficial effects on inflammation, oxidative stress, mitochondrial functions, and cell survival, which are all increased with age and have been discussed as main promotors of aging. This narrative review discusses specificities of the aging cardiovascular system in hypoxia. It draws upon an extensive literature search on the effects of hypoxia/altitude interventions (acute, prolonged, or intermittent exposure) on the cardiovascular system in older individuals (over 50 years old). Special attention is directed toward the use of hypoxia exposure to improve cardiovascular health in older individuals.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int J Med Sci 2023; 20:1551-1561. [PMID: 37859700 PMCID: PMC10583178 DOI: 10.7150/ijms.86622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Severe hypoxia can induce a range of systemic disorders; however, surprising resilience can be obtained through sublethal adaptation to hypoxia, a process termed as hypoxic conditioning. A particular form of this strategy, known as intermittent hypoxia conditioning hormesis, alternates exposure to hypoxic and normoxic conditions, facilitating adaptation to reduced oxygen availability. This technique, originally employed in sports and high-altitude medicine, has shown promise in multiple pathologies when applied with calibrated mild to moderate hypoxia and appropriate hypoxic cycles. Recent studies have extensively investigated the protective role of intermittent hypoxia conditioning and its underlying mechanisms using animal models, demonstrating its potential in organ protection. This involves a range of processes such as reduction of oxidative stress, inflammation, and apoptosis, along with enhancement of hypoxic gene expression, among others. Given that intermittent hypoxia conditioning fosters beneficial physiological responses across multiple organs and systems, this review presents a comprehensive analysis of existing studies on intermittent hypoxia and its potential advantages in various organs. It aims to draw attention to the possibility of clinically applying intermittent hypoxia conditioning as a multi-organ protective strategy. This review comprehensively discusses the protective effects of intermittent hypoxia across multiple systems, outlines potential procedures for implementing intermittent hypoxia, and provides a brief overview of the potential protective mechanisms of intermittent hypoxia.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Jiang Y, Ping J, Lu H, Zhang H, Liu M, Li Y, Zhou G. Associations between high-altitude adaptation and risk of cardiovascular diseases: a bidirectional Mendelian randomization study. Mol Genet Genomics 2023; 298:1007-1021. [PMID: 37233799 DOI: 10.1007/s00438-023-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
High-altitude adaptation (HAA) was reported to be significantly associated with reduced risks for multiple cardiovascular diseases (CVDs). However, the causality and direction of the associations are largely uncharacterized. We aimed to examine the potential causal relationships between HAA and six types of CVD, including coronary artery disease (CAD), cerebral aneurysm, ischemic stroke, peripheral artery disease, arrhythmia and atrial fibrillation. We obtained the summary data from largest available genome-wide association study of HAA and six types of CVD. Two-sample bidirectional Mendelian randomization (MR) analyses were performed to infer the causality between them. In the sensitivity analyses, MR-Egger regression analyses and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global analyses were used to assess the pleiotropic effects; Cochran's Q tests were used to test the heterogeneity by inverse variance-weighted (IVW) and MR-Egger methods; and the leave-one-out analyses were used to examine whether some single nucleotide polymorphisms (SNPs) could influence the results independently. The MR main analyses showed that the genetically instrumented HAA was significantly causally associated with the reduced risks of CAD (odds ratio [OR] = 0.029; 95% confidence interval [CI] = 0.004-0.234; P = 8.64 × 10-4). In contrast, there was no statistically significant relationship between CVDs and HAA. Our findings provide evidence for the causal effects of HAA on the reduced risks of CAD. However, there is no causality of CVDs on HAA. These findings might be helpful in developing the prevention and intervention strategies for CAD.
Collapse
Affiliation(s)
- Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China
| | - Jie Ping
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao Lu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Haoxiang Zhang
- The No. 954 Hospital of PLA, Shannan City, 856100, People's Republic of China
| | - Mengyu Liu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yuanfeng Li
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Gangqiao Zhou
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China.
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
20
|
Zhu Q, Duan H, Liu Z, Li Y, Zhang Y, Shen L, Huang Y. The incidence and risk factors of perioperative cardiac complications in noncardiac major surgery in high-altitude areas: A prospective trial in Tibet autonomous region, China. Front Cardiovasc Med 2023; 10:1158711. [PMID: 37077733 PMCID: PMC10106712 DOI: 10.3389/fcvm.2023.1158711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundThe risk of perioperative cardiac complications (PCCs) in patients living in high-altitude areas may increase with more adverse clinical outcomes due to the special geographical environment, which has not yet been studied. We aimed to determine the incidence and analyze risk factors for PCCs in adult patients undergoing major noncardiac surgery in the Tibet Autonomous Region.MethodsThis prospective cohort study enrolled resident patients from high-altitude areas receiving major noncardiac surgery in Tibet Autonomous Region People's Hospital in China. Perioperative clinical data were collected, and the patients were followed up until 30 days after surgery. The primary outcome was PCCs during the operation and within 30 days after the surgery. Logistic regression was used to build the prediction models for PCCs. A receiver operating characteristic (ROC) curve was used to evaluate the discrimination. A prognostic nomogram was constructed to generate a numerical probability of PCCs for patients undergoing noncardiac surgery in high-altitude areas.ResultsAmong the 196 patients living in high-altitude areas involved in this study, 33 (16.8%) suffered PCCs perioperatively and within 30 days after surgery. Eight clinical factors were identified in the prediction model, including older age (P = 0.028), extremely high altitude above 4,000 m (P = 0.442), preoperative metabolic equivalent (MET) < 4 (P = 0.153), history of angina within 6 months (P = 0.037), history of great vascular disease (P = 0.073), increased preoperative high sensitivity C-reactive protein (hs-CRP) (P = 0.072), intraoperative hypoxemia (P = 0.025) and operation time >3 h (P = 0.043). The area under the curve (AUC) was 0.766 (95% confidence interval: 0.785–0.697). The score calculated from the prognostic nomogram predicted the risk of PCCs in high-altitude areas.ConclusionThe incidence of PCCs in resident patients living in high-altitude areas who underwent noncardiac surgery was high, and the risk factors included older age, high altitude above 4,000 m, preoperative MET < 4, history of angina within 6 months, history of great vascular disease, increased preoperative hs-CRP, intraoperative hypoxemia, and operation time >3 h. The prognostic nomogram of this study could help to assess the PCCs for patients in high-attitude areas undergoing noncardiac surgery.Clinical Trial RegistrationClinicalTrials.gov ID: NCT04819698.
Collapse
Affiliation(s)
- Qianmei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanyu Duan
- Department of Anesthesiology, Tibet Autonomous Region People’s Hospital, Lhasa, China
| | - Zijia Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence: Zijia Liu Labaciren
| | - Yi Li
- Department of Anesthesiology, Tibet Autonomous Region People’s Hospital, Lhasa, China
| | - Yuelun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Shahzad F, Tang L, Vashisth T. Unraveling the mystery of canopy dieback caused by citrus disease Huanglongbing and its link to hypoxia stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1119530. [PMID: 37139109 PMCID: PMC10149946 DOI: 10.3389/fpls.2023.1119530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/15/2023] [Indexed: 05/05/2023]
Abstract
Devastating citrus disease Huanglongbing (HLB) is without existing cures. Herein, we present results demonstrating the possible mechanisms (hypoxia stress) behind HLB-triggered shoot dieback by comparing the transcriptomes, hormone profiles, and key enzyme activities in buds of severely and mildly symptomatic 'Hamlin' sweet orange (Citrus sinensis). Within six months (October - May) in field conditions, severe trees had 23% bud dieback, greater than mild trees (11%), with a concomitant reduction in canopy density. In February, differentially expressed genes (DEGs) associated with responses to osmotic stress, low oxygen levels, and cell death were upregulated, with those for photosynthesis and cell cycle downregulated in severe versus mild trees. For severe trees, not only were the key markers for hypoxia, including anaerobic fermentation, reactive oxygen species (ROS) production, and lipid oxidation, transcriptionally upregulated, but also alcohol dehydrogenase activity was significantly greater compared to mild trees, indicating a link between bud dieback and hypoxia. Tricarboxylic acid cycle revival, given the upregulation of glutamate dehydrogenase and alanine aminotransferase DEGs, suggests that ROS may also be generated during hypoxia-reoxygenation. Greater (hormonal) ratios of abscisic acid to cytokinins and jasmonates and upregulated DEGs encoding NADPH oxidases in severe versus mild trees indicate additional ROS production under limited oxygen availability due to stomata closure. Altogether, our results provided evidence that as HLB progresses, excessive ROS produced in response to hypoxia and during hypoxia-reoxygenation likely intensify the oxidative stress in buds leading to cell death, contributing to marked bud and shoot dieback and decline of the severely symptomatic sweet orange trees.
Collapse
Affiliation(s)
- Faisal Shahzad
- Horticultural Sciences Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Lisa Tang
- Horticultural Sciences Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Tripti Vashisth
- Horticultural Sciences Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- *Correspondence: Tripti Vashisth,
| |
Collapse
|
22
|
Naryzhnaya NV, Sementsov AS, Maslov LN, Derkachev IA. The Role of NO Synthase in the Infarct-Limiting Effect of Urgent and Chronic Adaptation to Normobaric Hypoxia. Bull Exp Biol Med 2023; 174:304-307. [PMID: 36723734 DOI: 10.1007/s10517-023-05696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 02/02/2023]
Abstract
We studied the role of NO synthase in the infarct-limiting effect of short-term (SNH) and chronic continuous normobaric hypoxia (CNH). In male Wistar rats, SNH (6 sessions of 10-min hypoxia 8% O2 and 10-min reoxygenation) or CNH (12% O2 for 21 days) was modeled. In 30 min after SNH or 24 h after CNH, the rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The following drugs were administered to rats: non-selective NO synthase inhibitor L-NAME (10 mg/kg), inhibitor of inducible NO synthase S-methylthiourea (3 mg/kg), and inhibitor of neuronal NO-synthase 7-nitroindazole (50 mg/kg). NO donor diethylenetriamine was administered intravenously in a dose 2 mg/kg. It was found that L-NAME and S-methylthiourea abolished the infarct-limiting effect of SNH and CNH. Diethylenetriamine increased cardiac tolerance to ischemia/reperfusion. It is believed that inducible NO synthase plays an important role in the cardioprotective effect of normobaric hypoxia.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - A S Sementsov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - I A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
23
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
24
|
Mancardi D, Ottolenghi S, Attanasio U, Tocchetti CG, Paroni R, Pagliaro P, Samaja M. Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxid Redox Signal 2022; 37:972-989. [PMID: 35412859 DOI: 10.1089/ars.2021.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Oxygen levels are key regulators of virtually every living mammalian cell, under both physiological and pathological conditions. Starting from embryonic and fetal development, through the growth, onset, and progression of diseases, oxygen is a subtle, although pivotal, mediator of key processes such as differentiation, proliferation, autophagy, necrosis, and apoptosis. Hypoxia-driven modifications of cellular physiology are investigated in depth or for their clinical and translational relevance, especially in the ischemic scenario. Recent Advances: The mild or severe lack of oxygen is, undoubtedly, related to cell death, although abundant evidence points at oscillating oxygen levels, instead of permanent low pO2, as the most detrimental factor. Different cell types can consume oxygen at different rates and, most interestingly, some cells can shift from low to high consumption according to the metabolic demand. Hence, we can assume that, in the intracellular compartment, oxygen tension varies from low to high levels depending on both supply and consumption. Critical Issues: The positive balance between supply and consumption leads to a pro-oxidative environment, with some cell types facing hypoxia/hyperoxia cycles, whereas some others are under fairly constant oxygen tension. Future Directions: Within this frame, the alterations of oxygen levels (dysoxia) are critical in two paradigmatic organs, the heart and brain, under physiological and pathological conditions and the interactions of oxygen with other physiologically relevant gases, such as nitric oxide, can alternatively contribute to the worsening or protection of ischemic organs. Further, the effects of dysoxia are of pivotal importance for iron metabolism. Antioxid. Redox Signal. 37, 972-989.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Sara Ottolenghi
- Department of Health Sciences, University of Milano, Milan, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Umberto Attanasio
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michele Samaja
- Department of Health Sciences, University of Milano, Milan, Italy
- MAGI GROUP, San Felice del Benaco, Italy
| |
Collapse
|
25
|
Bughin F, Kovacsik H, Jaussent I, Solecki K, Aguilhon S, Vanoverschelde J, Zarqane H, Mercier J, Gouzi F, Roubille F, Dauvilliers Y. Impact of Obstructive Sleep Apnea Syndrome on Ventricular Remodeling after Acute Myocardial Infarction: A Proof-of-Concept Study. J Clin Med 2022; 11:jcm11216341. [PMID: 36362568 PMCID: PMC9656926 DOI: 10.3390/jcm11216341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Obstructive sleep apnea syndrome (OSA) is common in patients with acute myocardial infarction (AMI). Whether OSA impacts on the ventricular remodeling post-AMI remains unclear. We compared cardiac ventricular remodeling in patients assessed by cardiac magnetic resonance (CMR) imaging at baseline and six months after AMI based on the presence and severity of OSA. Methods: This prospective study included 47 patients with moderate to severe AMI. They all underwent CMR at inclusion and at six months after an AMI, and a polysomnography was performed three weeks after AMI. Left and right ventricular remodeling parameters were compared between patients based on the AHI, AHI in REM and NREM sleep, oxygen desaturation index, and daytime sleepiness. Results: Of the 47 patients, 49% had moderate or severe OSA with an AHI ≥ 15/h. No differences were observed between these patients and those with an AHI < 15/h for left ventricular end-diastolic and end-systolic volumes at six months. No association was found for left and right ventricular remodeling parameters at six months or for the difference between baseline and six months with polysomnographic parameters of OSA severity, nor with daytime sleepiness. Conclusions: Although with a limited sample size, our proof-of-concept study does not report an association between OSA and ventricular remodeling in patients with AMI. These results highlight the complexity of the relationships between OSA and post-AMI morbi-mortality.
Collapse
Affiliation(s)
- François Bughin
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHU, 34090 Montpellier, France
- Pneumology Department, Clinique du Millénaire, 34000 Montpellier, France
| | - Hélène Kovacsik
- Department of Interventional and Cardiovascular Imaging, CHU, 34090 Montpellier, France
| | - Isabelle Jaussent
- Institute for Neurosciences of Montpellier INM, University of Montpellier, INSERM, 34000 Montpellier, France
| | - Kamila Solecki
- Cardiology Department, Clinique Beausoleil, 34070 Montpellier, France
| | - Sylvain Aguilhon
- Cardiology Department, INI-CRT, CHU de Montpellier, PhyMedExp, Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | | | - Hamid Zarqane
- Department of Interventional and Cardiovascular Imaging, CHU, 34090 Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHU, 34090 Montpellier, France
| | - Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHU, 34090 Montpellier, France
| | - François Roubille
- Cardiology Department, INI-CRT, CHU de Montpellier, PhyMedExp, Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Yves Dauvilliers
- Unité du Sommeil, Centre National de Référence pour la Narcolepsie, CHU Montpellier, Hôpital Gui-de-Chauliac, Service de Neurologie, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
26
|
Cetin-Atalay R, Meliton AY, Sun KA, Glass ME, Woods PS, Peng YJ, Fang Y, Hamanaka RB, Prabhakar NR, Mutlu GM. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep 2022; 12:17167. [PMID: 36229484 PMCID: PMC9561121 DOI: 10.1038/s41598-022-21614-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Mariel E. Glass
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Parker S. Woods
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Ying-Jie Peng
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Yun Fang
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Robert B. Hamanaka
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Nanduri R. Prabhakar
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Gökhan M. Mutlu
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| |
Collapse
|
27
|
Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:70. [PMID: 35639211 PMCID: PMC9156652 DOI: 10.1186/s40798-022-00450-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intermittent hypoxia applied at rest or in combination with exercise promotes multiple beneficial adaptations with regard to performance and health in humans. It was hypothesized that replacing normoxia by moderate hyperoxia can increase the adaptive response to the intermittent hypoxic stimulus. OBJECTIVE Our objective was to systematically review the current state of the literature on the effects of chronic intermittent hypoxia-hyperoxia (IHH) on performance- and health-related outcomes in humans. METHODS PubMed, Web of Science™, Scopus, and Cochrane Library databases were searched in accordance with PRISMA guidelines (January 2000 to September 2021) using the following inclusion criteria: (1) original research articles involving humans, (2) investigation of the chronic effect of IHH, (3) inclusion of a control group being not exposed to IHH, and (4) articles published in peer-reviewed journals written in English. RESULTS Of 1085 articles initially found, eight studies were included. IHH was solely performed at rest in different populations including geriatric patients (n = 1), older patients with cardiovascular (n = 3) and metabolic disease (n = 2) or cognitive impairment (n = 1), and young athletes with overtraining syndrome (n = 1). The included studies confirmed the beneficial effects of chronic exposure to IHH, showing improvements in exercise tolerance, peak oxygen uptake, and global cognitive functions, as well as lowered blood glucose levels. A trend was discernible that chronic exposure to IHH can trigger a reduction in systolic and diastolic blood pressure. The evidence of whether IHH exerts beneficial effects on blood lipid levels and haematological parameters is currently inconclusive. A meta-analysis was not possible because the reviewed studies had a considerable heterogeneity concerning the investigated populations and outcome parameters. CONCLUSION Based on the published literature, it can be suggested that chronic exposure to IHH might be a promising non-pharmacological intervention strategy for improving peak oxygen consumption, exercise tolerance, and cognitive performance as well as reducing blood glucose levels, and systolic and diastolic blood pressure in older patients with cardiovascular and metabolic diseases or cognitive impairment. However, further randomized controlled trials with adequate sample sizes are needed to confirm and extend the evidence. This systematic review was registered on the international prospective register of systematic reviews (PROSPERO-ID: CRD42021281248) ( https://www.crd.york.ac.uk/prospero/ ).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Disease, Movement, Faculty of Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| |
Collapse
|
28
|
González-Candia A, Candia AA, Paz A, Mobarec F, Urbina-Varela R, del Campo A, Herrera EA, Castillo RL. Cardioprotective Antioxidant and Anti-Inflammatory Mechanisms Induced by Intermittent Hypobaric Hypoxia. Antioxidants (Basel) 2022; 11:antiox11061043. [PMID: 35739940 PMCID: PMC9220055 DOI: 10.3390/antiox11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1β, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.
Collapse
Affiliation(s)
| | - Alejandro A. Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
- Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago 7500922, Chile
| | - Adolfo Paz
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
| | - Fuad Mobarec
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
| | - Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.U.-V.); (A.d.C.)
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.U.-V.); (A.d.C.)
| | - Emilio A. Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile; (A.A.C.); (A.P.); (F.M.)
- International Center for Andean Studies (INCAS), University of Chile, Putre 1070000, Chile
- Correspondence: (E.A.H.); or (R.L.C.); Tel.: +56-982-337-566 (R.L.C.)
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
- Correspondence: (E.A.H.); or (R.L.C.); Tel.: +56-982-337-566 (R.L.C.)
| |
Collapse
|
29
|
Hypoxia and hemorheological properties in older individuals. Ageing Res Rev 2022; 79:101650. [PMID: 35597435 DOI: 10.1016/j.arr.2022.101650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia is caused by insufficient oxygen availability for the organism leading to reduced oxygen delivery to tissues and cells. It has been regarded as a severe threat to human health and it is indeed implicated in pathophysiological mechanisms involved in the development and progression of many diseases. Nevertheless, the potential of controlled hypoxia interventions (i.e. hypoxia conditioning) for improving cardio-vascular health is gaining increased attention. However, blood rheology is often a forgotten factor for vascular health while aging and hypoxia exposure are both suspected to alter hemorheological properties. These changes in blood rheology may influence the benefits-risks balance of hypoxia exposure in older individuals. The benefits of hypoxia exposure for vascular health are mainly reported for healthy populations and the combined impact of aging and hypoxia on blood rheology could therefore be deleterious in older individuals. This review discusses evidence of hypoxia-related and aging-related changes in blood viscosity and its determinants. It draws upon an extensive literature search on the effects of hypoxia/altitude and aging on blood rheology. Aging increases blood viscosity mainly through a rise in plasma viscosity, red blood cell (RBC) aggregation and a decrease in RBC deformability. Hypoxia also causes an increase in RBC aggregation and plasma viscosity. In addition, hypoxia exposure may increase hematocrit and modulate RBC deformability, depending on the hypoxic dose, i.e, beneficial effect of intermittent hypoxia with moderate dose vs deleterious effect of chronic continuous or intermittent hypoxia or if the hypoxic dose is too high. Special attention is directed toward the risks vs. benefits of hemorheological changes during hypoxia exposure in older individuals, and its clinical relevance for vascular disorders.
Collapse
|
30
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Fu F. The Significance of NO-Synthase, Reactive Oxygen Species, Kinases and KATP-Channels in the Development of the Infarct-Limiting Effect of Adaptation to Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Affiliation(s)
- Danny J. Eckert
- Adelaide Institute for Sleep HealthFlinders UniversityBedford Park, South Australia, Australia
| | - Scott A. Sands
- Division of Sleep MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
32
|
López-Padilla D, Terán-Tinedo J, Cerezo-Lajas A, García LR, Ojeda-Castillejo E, López-Martín S, Diaz-Cambriles T, Virseda SG, Melgar BA, Pizarro AC, Alcocer HL, Troncoso-Acevedo MF, García TG, Yeste PL, Cano-Pumarega I, García-Sánchez A, Arcos BA, García EZ, Rodríguez PL, Iturricastillo G, Lores Gutiérrez V, Alonso CR, Ortola MV, López-Riolobos C, García-Prieto F, Abad-Fernández A, Baena EM. Moderate obstructive sleep apnea and cardiovascular outcomes in older adults: a propensity score-matched multicenter study (CPAGE-MODE study). J Clin Sleep Med 2022; 18:553-561. [PMID: 34534075 PMCID: PMC8804996 DOI: 10.5664/jcsm.9656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) has been associated with cardiovascular events (CVEs), although recent randomized controlled trials have not demonstrated that long-term continuous positive airway pressure (CPAP) prevents CVEs. Our objective was to determine the effect of CPAP on older adults with moderate OSA regarding CVE reduction. METHODS An observational and multicenter study of a cohort of older adults (> 70 years of age) diagnosed with moderate OSA (apnea-hypopnea index 15.0-29.9 events/h) was conducted. Two groups were formed: (1) CPAP treatment and (2) standard of care. The primary endpoint was CVE occurrence after OSA diagnosis. Association with CPAP treatment was assessed by propensity score matching and inverse weighting probability. Secondary endpoints were incidence of CVE separately and time to first CVE. RESULTS A total of 614 patients were included. After matching, 236 older adults (111 men, mean age 75.9 ± 4.7 years) with a follow-up of 47 months (interquartile range: 29.6-64.0 months) were considered for primary and secondary endpoint evaluations. Forty-one patients presented at least 1 CVE (17.4%): 20 were in the standard-of-care group (16.9%) and 21 were in the CPAP group (17.8%), with a relative risk of 1.05 (95% confidence interval [CI], 0.60-1.83; P = .43) for CPAP treatment. Inverse probability weighting of the initial 614 patients determined an adjusted relative risk of 1.24 (95% CI, 0.79-1.96; P = .35) for CPAP treatment. No statistical differences were found in secondary endpoint analyses. CONCLUSIONS CPAP should not be prescribed to reduce CVE probability in older adults with moderate OSA. CITATION López-Padilla D, Terán-Tinedo J, Cerezo-Lajas A, et al. Moderate obstructive sleep apnea and cardiovascular outcomes in older adults: a propensity score-matched multicenter study (CPAGE-MODE study). J Clin Sleep Med. 2022;18(2):553-561.
Collapse
Affiliation(s)
- Daniel López-Padilla
- Respiratory Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón
| | - José Terán-Tinedo
- Respiratory Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón
- Universidad Complutense de Madrid, Madrid, Spain
| | - Alicia Cerezo-Lajas
- Respiratory Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Ramírez García
- Respiratory Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Soledad López-Martín
- Respiratory Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Begoña Arias Melgar
- Sleep Unit, Respiratory Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Candel Pizarro
- Sleep Unit, Respiratory Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Héctor Lozano Alcocer
- Sleep Unit, Respiratory Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Teresa Gómez García
- Respiratory Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Pablo López Yeste
- Respiratory Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Irene Cano-Pumarega
- Sleep Unit, Respiratory Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
- CIBERES
| | - Aldara García-Sánchez
- Sleep Unit, Respiratory Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Beatriz Arias Arcos
- Respiratory Department, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | - Eva Mañas Baena
- Sleep Unit, Respiratory Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| |
Collapse
|
33
|
欧 伟, 梁 羽, 卿 羽, 邓 艳, 吴 畏, 李 涛. [The Effect of Short-Term Intermittent Hypoxia Exposure on Mouse Myocardial Oxidative Stress and Cardiac Function]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:98-104. [PMID: 35048607 PMCID: PMC10408848 DOI: 10.12182/20220160103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the effect of short-term intermittent hypoxia (IH) on the structure and function of mouse myocardium. METHODS Thirty male C57BL6/J mice were randomly assigned to two groups, a control (Con) group and an IH group exposed to hypoxic treatment at atmospheric pressure. The IH group received 10% oxygen pretreatment for 8 hours per day on 14 consecutive days, while the Con group was exposed to normoxia environment and all the other treatment the group received were identical to those given to the IH group, The body mass of the mice was monitored daily during the treatment. The exercise tolerance and the cardiac function of isolated heart were assessed at the end of IH exposure. Additionally, analysis was conducted regarding myocardial enzymology, histology, and other indicators relevant to oxidative stress, including protein carbonylation and lipid peroxidation. RESULTS There was no significant difference in the exercise tolerance between the two groups. Nevertheless, IH mice showed enhanced cardiac function during isolated heart perfusion ( P<0.05). As compared to the control group, prominent alterations of myocardial structure were detected by transmission electron microscopy of the IH heart, accompanied by elevated creatine kinase-MB levels ( P<0.05). The levels of myocardial reactive oxygen species, protein carbonylation and lipid peroxidation were all significantly upregulated in the IH group as compared to the control group ( P<0.05). CONCLUSION IH exposure induced myocardial oxidative stress damage and myofibrillar structural alteration in mice, but did not impair the exercise tolerance of the mice or the contractile function of the isolated heart.
Collapse
Affiliation(s)
- 伟 欧
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 南充市中心医院 麻醉科 (南充 637000)Department of Anesthesiology, Nanchong Central Hospital, Nanchong 637000, China
- 四川大学华西医院 麻醉与危重急救研究室 (成都 610041)Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 羽 梁
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 南充市中心医院 麻醉科 (南充 637000)Department of Anesthesiology, Nanchong Central Hospital, Nanchong 637000, China
| | - 羽 卿
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 艳 邓
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 南充市中心医院 麻醉科 (南充 637000)Department of Anesthesiology, Nanchong Central Hospital, Nanchong 637000, China
| | - 畏 吴
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 涛 李
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- 南充市中心医院 麻醉科 (南充 637000)Department of Anesthesiology, Nanchong Central Hospital, Nanchong 637000, China
| |
Collapse
|
34
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
35
|
Zhang J, Chen C, Li F, Gao G, Fu J, Niu H, Yu K, Wang L, Guo R, Wan Y, Ma Z, Zhang Q, Mu L, Liu J, Yang J, Wang L. Different Changing Patterns of Three NOS-NO System Activities after Ischemia-Reperfusion in Rabbit with AMI. Cell Biochem Biophys 2021; 79:857-862. [PMID: 34125429 DOI: 10.1007/s12013-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
NOS-NO system activity is closely correlated with ischemia-reperfusion injury (IRI) and NOS subtypes were suggested to play different roles in IRI. In this work, the activity of serum NOS, NO levels, and ischemic necrosis after reperfusion in rabbit with AMI at different time was studied. We also explored the NOS-NO system activity changes and its correlation with myocardial ischemia and necrosis. It shows that after reperfusion in rabbits with AMI, NO-NOS system activities present different changes at each time point due to inactivation of NO and iNOS activation, and different experimental animals, ischemia-reperfusion degree, and length of time will also lead to different research results. Therefore, it is necessary to conduct dynamic observation on animals from different species at multi-temporal point under the state of NOS-NO system activities, and simultaneously detect inflammatory factor, MDA, and SOD indexes. Therefore, it is a must to conduct relevant drug research studies to make NOS-NO system activities maintain the level in favor of ideal myocardial ischemia reperfusion.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China.
| | - Chao Chen
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Fengpeng Li
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Guangren Gao
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Jinguo Fu
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Heping Niu
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Kai Yu
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Lei Wang
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Run Guo
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Yanfang Wan
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Zhanfeng Ma
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Qianyu Zhang
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Liping Mu
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Jing Liu
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Jing Yang
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Linlin Wang
- Department of Cardiology, CangZhou Central Hospital, CangZhou, Hebei, China
| |
Collapse
|
36
|
Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations. Eur J Appl Physiol 2021; 122:395-407. [PMID: 34750724 DOI: 10.1007/s00421-021-04837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE This single-blind, repeated measures study evaluated adaptive and maladaptive responses to continuous and intermittent hypoxic patterns in young adults. METHODS Changes in haematological profile, stress and cardiac damage were measured in ten healthy young participants during three phases: (1) breathing normoxic air (baseline); (2) breathing normoxic air via a mask (Sham-controls); (3) breathing intermittent hypoxia (IH) via a mask, mean peripheral oxygen saturation (SpO2) of 85% ~ 70 min of hypoxia. After a 5-month washout period, participants repeated this three-phase protocol with phase, (4) consisting of continuous hypoxia (CH), mean SpO2 = 85%, ~ 70 min of hypoxia. Measures of the red blood cell count (RBCc), haemoglobin concentration ([Hb]), haematocrit (Hct), percentage of reticulocytes (% Retics), secretory immunoglobulin A (S-IgA), cortisol, cardiac troponin T (cTnT) and the erythropoietic stimulation index (calculated OFF-score) were compared across treatments. RESULTS Despite identical hypoxic durations at the same fixed SpO2, no significant effects were observed in either CH or Sham-CH control, compared to baseline. While IH and Sham-IH controls demonstrated significant increases in: RBCc; [Hb]; Hct; and the erythropoietic stimulation index. Notably, the % Retics decreased significantly in response to IH (-31.9%) or Sham-IH control (-23.6%), highlighting the importance of including Sham-controls. No difference was observed in S-IgA, cortisol or cTnT. CONCLUSION The IH but not CH pattern significantly increased key adaptive haematological responses, without maladaptive increases in S-IgA, cortisol or cTnT, indicating that the IH hypoxic pattern would be the best method to boost haematological profiles prior to ascent to altitude.
Collapse
|
37
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
38
|
León J, Castillo MC, Gayubas B. The hypoxia-reoxygenation stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5841-5856. [PMID: 33367851 PMCID: PMC8355755 DOI: 10.1093/jxb/eraa591] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Plants are very plastic in adapting growth and development to changing adverse environmental conditions. This feature will be essential for plants to survive climate changes characterized by extreme temperatures and rainfall. Although plants require molecular oxygen (O2) to live, they can overcome transient low-O2 conditions (hypoxia) until return to standard 21% O2 atmospheric conditions (normoxia). After heavy rainfall, submerged plants in flooded lands undergo transient hypoxia until water recedes and normoxia is recovered. The accumulated information on the physiological and molecular events occurring during the hypoxia phase contrasts with the limited knowledge on the reoxygenation process after hypoxia, which has often been overlooked in many studies in plants. Phenotypic alterations during recovery are due to potentiated oxidative stress generated by simultaneous reoxygenation and reillumination leading to cell damage. Besides processes such as N-degron proteolytic pathway-mediated O2 sensing, or mitochondria-driven metabolic alterations, other molecular events controlling gene expression have been recently proposed as key regulators of hypoxia and reoxygenation. RNA regulatory functions, chromatin remodeling, protein synthesis, and post-translational modifications must all be studied in depth in the coming years to improve our knowledge on hypoxia-reoxygenation transition in plants, a topic with relevance in agricultural biotechnology in the context of global climate change.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
39
|
Yi-Dan H, Ying-Xin Z, Shi-Wei Y, Yu-Jie Z. High-Energy Phosphates and Ischemic Heart Disease: From Bench to Bedside. Front Cardiovasc Med 2021; 8:675608. [PMID: 34395552 PMCID: PMC8355518 DOI: 10.3389/fcvm.2021.675608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
The purpose of this review is to bridge the gap between clinical and basic research through providing a comprehensive and concise description of the cellular and molecular aspects of cardioprotective mechanisms and a critical evaluation of the clinical evidence of high-energy phosphates (HEPs) in ischemic heart disease (IHD). According to the well-documented physiological, pathophysiological and pharmacological properties of HEPs, exogenous creatine phosphate (CrP) may be considered as an ideal metabolic regulator. It plays cardioprotection roles from upstream to downstream of myocardial ischemia through multiple complex mechanisms, including but not limited to replenishment of cellular energy. Although exogenous CrP administration has not been shown to improve long-term survival, the beneficial effects on multiple secondary but important outcomes and short-term survival are concordant with its pathophysiological and pharmacological effects. There is urgent need for high-quality multicentre RCTs to confirm long-term survival improvement in the future.
Collapse
Affiliation(s)
- Hao Yi-Dan
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhao Ying-Xin
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Shi-Wei
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Yu-Jie
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Hong H, Hosomichi J, Maeda H, Ishida Y, Usumi-Fujita R, Yoshida KI, Ono T. Selective β2-Adrenoceptor Blockade Rescues Mandibular Growth Retardation in Adolescent Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2021; 12:676270. [PMID: 34220541 PMCID: PMC8247478 DOI: 10.3389/fphys.2021.676270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Activation of the sympathoadrenal system is associated with sleep apnea-related symptoms and metabolic dysfunction induced by chronic intermittent hypoxia (IH). IH can induce hormonal imbalances and growth retardation of the craniofacial bones. However, the relationship between IH and β2-adrenergic receptor signaling in the context of skeletal growth regulation is unclear. This study aimed to investigate the role of β2-adrenergic receptors in IH-induced mandibular growth retardation and bone metabolic alterations. Male 7-week-old Sprague–Dawley rats were subjected to IH for 3 weeks. IH conditions were established using original customized hypoxic chambers; IH was induced at a rate of 20 cycles per hour (oxygen levels changed from 4 to 21% in one cycle) for 8 h per day during the 12 h “lights on” period. The rats received intraperitoneal administration of a β2-adrenergic antagonist (butoxamine) or saline. To exclude dietary effects on general growth, the normoxic rats with saline, normoxic rats with butoxamine, and IH rats with butoxamine were subjected to food restriction to match the body weight gains between IH and other three groups. Body weight, heart rate, blood pressure, and plasma concentrations of leptin, serotonin, and growth hormone were measured. Bone growth and metabolism were evaluated using radiography, microcomputed tomography, and immunohistochemical staining. Plasma leptin levels were significantly increased, whereas that of serotonin and growth hormone were significantly decreased following IH exposure. Leptin levels recovered following butoxamine administration. Butoxamine rescued IH-induced mandibular growth retardation, with alterations in bone mineral density at the condylar head of the mandible. Immunohistochemical analysis revealed significantly lower expression levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the condylar head of IH-exposed rats. Conversely, recovery of RANKL expression was observed in IH-exposed rats administered with butoxamine. Collectively, our findings suggest that the activation of β2-adrenergic receptors and leptin signaling during growth may be involved in IH-induced skeletal growth retardation of the mandible, which may be mediated by concomitant changes in RANKL expression at the growing condyle.
Collapse
Affiliation(s)
- Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan.,Department of Stomatology, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
41
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
42
|
Burtscher J, Millet GP, Burtscher M. Does living at moderate altitudes in Austria affect mortality rates of various causes? An ecological study. BMJ Open 2021; 11:e048520. [PMID: 34083346 PMCID: PMC8183194 DOI: 10.1136/bmjopen-2020-048520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The effects of altitude residence on ageing, longevity and mortality are poorly understood. While adaptations to chronic exposure to altitude may exert beneficial effects on cardiovascular risk factors and some types of cancer, an elevated risk to die from chronic respiratory diseases has been reported. Moreover, high-altitude residence may be correlated with increased depression and suicide rates. The present study tested the hypothesis that living at moderate altitudes (up to 2000 m) is associated with reduced mortality from all causes. SETTING AND PARTICIPANTS We used a dataset comprising all deaths (n=467 834) across 10 years of a country (Austria) characterised by varying levels of altitudes up to 2000 m. MAIN OUTCOME MEASURES Total number of deaths, age-standardised mortality rates (ASMRs) per 100 000 population, cause-specific ASMRs. RESULTS ASMRs for residents living in higher (>1000 m) versus lower (<251 m) altitude regions (with agriculture employment below 3%) were 485.8 versus 597.0 (rate ratio and 95% CI 0.81 (0.72 to 0.92); p<0.001) for men and 284.6 versus 365.5 (0.78; 0.66 to 0.91); p=0.002) for women. Higher levels of agriculture employment did not influence mortality rates. Diseases of the circulatory system and cancers were main contributors to lower mortality rates at higher altitude. Residence at higher altitude did not negatively affect mortality rates from any other diseases. We highlight gender effects and-beside environmental factors-also discuss socioeconomic factors that may be responsible for conflicting results with data from other populations. CONCLUSIONS Living at moderate altitude (1000-2000 m) elicits beneficial effects on all-cause mortality for both sexes, primarily due to lower ASMRs from circulatory diseases and cancer. The presented analysis on cause-specific ASMRs over a 10-year period among the entire population of an alpine country will contribute to a better understanding on the effects of altitude-related mortality.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sports Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Cai M, Chen X, Shan J, Yang R, Guo Q, Bi X, Xu P, Shi X, Chu L, Wang L. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol 2021; 12:643619. [PMID: 33995053 PMCID: PMC8120309 DOI: 10.3389/fphar.2021.643619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly infectious respiratory virus, which can proliferate by invading the ACE2 receptor of host cells. Clinical studies have found that the virus can cause dyspnea, pneumonia and other cardiopulmonary system damage. In severe cases, it can lead to respiratory failure and even death. Although there are currently no effective drugs or vaccines for the prevention and treatment of COVID-19, the patient’s prognosis recovery can be effectively improved by ameliorating the dysfunction of the respiratory system, cardiovascular systems, and immune function. Intermittent hypoxic preconditioning (IHP) as a new non-drug treatment has been applied in the clinical and rehabilitative practice for treating chronic obstructive pulmonary disease (COPD), diabetes, coronary heart disease, heart failure, hypertension, and other diseases. Many clinical studies have confirmed that IHP can improve the cardiopulmonary function of patients and increase the cardiorespiratory fitness and the tolerance of tissues and organs to ischemia. This article introduces the physiological and biochemical functions of IHP and proposes the potential application plan of IHP for the rehabilitation of patients with COVID-19, so as to provide a better prognosis for patients and speed up the recovery of the disease. The aim of this narrative review is to propose possible causes and pathophysiology of COVID-19 based on the mechanisms of the oxidative stress, inflammation, and immune response, and to provide a new, safe and efficacious strategy for the better rehabilitation from COVID-19.
Collapse
Affiliation(s)
- Ming Cai
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jieling Shan
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ping Xu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Lixi Chu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Sunshine Rehabilitation Center, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
44
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
45
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
46
|
Gao J, Feng W, Lv W, Liu W, Fu C. HIF-1/AKT Signaling-Activated PFKFB2 Alleviates Cardiac Dysfunction and Cardiomyocyte Apoptosis in Response to Hypoxia. Int Heart J 2021; 62:350-358. [PMID: 33678793 DOI: 10.1536/ihj.20-315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is the most prevalent disease with severe mortality, and hypoxia-induced cardiac injury and cardiomyocyte apoptosis are the significant and harmful consequences of this disease. The cross talk between hypoxia signaling and glycolysis energy flux plays a critical role in modulating MI-related heart disorder. However, the underlying mechanism remains unclear. Here, we aimed to explore the effect of a key glycolytic enzyme of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) on cardiac dysfunction and apoptosis in response to hypoxia. Our data demonstrated that the mRNA and protein expression of PFKFB2 were significantly elevated in the MI mice. The MI treatment promoted the activation of PFKFB2 in vivo, as presented by the remarkably increased phosphorylation levels of PFKFB2. PFKFB2 depletion enhanced MI-induced cardiac dysfunction and cardiomyocyte apoptosis in the MI mouse model. Moreover, hypoxia treatment dramatically upregulated the expression and activation of PFKFB2 in a time-dependent manner in cardiomyocytes. Hypoxia-stimulated PFKFB2 relieved hypoxia-induced cardiomyocyte apoptosis in vitro. PFKFB2 activated the fructose-2, 6-bisphosphate (Fru-2, 6-p2) /PFK/anaerobic adenosine triphosphate (ATP) glycolysis energy flux in response to hypoxia in cardiomyocytes. Mechanically, hypoxia-activated PFKFB2 by stimulating the hypoxia-inducible factor 1 (HIF-1) /ATK signaling. Thus, we conclude that HIF-1/AKT axis-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia. Our finding presents a new insight into the mechanism by which HIF-1/AKT/PFKFB2 signaling modulates MI-related heart disorder under the hypoxia condition, providing potential therapeutic targets and strategy for hypoxia-related myocardial injury.
Collapse
Affiliation(s)
- Juanyu Gao
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wenjing Feng
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wei Lv
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wenhui Liu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Caihua Fu
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
47
|
Incognito AV, Millar PJ, Pyle WG. Remote ischemic conditioning for acute respiratory distress syndrome in COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L331-L338. [PMID: 33404365 PMCID: PMC7938644 DOI: 10.1152/ajplung.00223.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome and subsequent respiratory failure remains the leading cause of death (>80%) in patients severely impacted by COVID-19. The lack of clinically effective therapies for COVID-19 calls for the consideration of novel adjunct therapeutic approaches. Though novel antiviral treatments and vaccination hold promise in control and prevention of early disease, it is noteworthy that in severe cases of COVID-19, addressing "run-away" inflammatory cascades are likely more relevant for improvement of clinical outcomes. Viral loads may decrease in severe, end-stage coronavirus cases, but a systemically damaging cytokine storm persists and mediates multiple organ injury. Remote ischemic conditioning (RIC) of the limbs has shown potential in recent years to protect the lungs and other organs against pathological conditions similar to that observed in COVID-19. We review the efficacy of RIC in protecting the lungs against acute injury and current points of consideration. The beneficial effects of RIC on lung injury along with other related cardiovascular complications are discussed, as are the limitations presented by sex and aging. This adjunct therapy is highly feasible, noninvasive, and proven to be safe in clinical conditions. If proven effective in clinical trials for acute respiratory distress syndrome and COVID-19, application in the clinical setting could be immediately implemented to improve outcomes.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto, Ontario, Canada
| | - W Glen Pyle
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,IMPART Team Canada Investigator Network, Dalhousie Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| |
Collapse
|
48
|
Zapater A, Sánchez-de-la-Torre M, Benítez ID, Targa A, Bertran S, Torres G, Aldomà A, De Batlle J, Abad J, Duran-Cantolla J, Cabriada-Nuño V, Mediano O, Masdeu MJ, Muñoz C, Masa JF, De la Peña M, Mayos M, Coloma R, Montserrat JM, Chiner E, Mínguez O, Pascual L, Cortijo A, Martínez D, Dalmases M, McEvoy RD, Barbé F, Sánchez-de-la-Torre A, Abad L, Muñoz A, Zamora E, Vicente I, Inglés S, Egea C, Marcos J, Fernández A, Amibilia C, Urrutia A, Castro S, Serrano L, Florés M, Galera E, Mas A, Martínez M, Arbonés M, Ortega S, Martín A, Román-Sánchez JM, Valiente-Diaz MI, Viejo-Ayuso ME, Rodríguez-García C, Vigil L, Ramírez E, Piñar M, Martínez E, Ordax E, Barriuso B, Corral J, Gómez de Terreros Caro FJ, Barceló A, Giménez P, Carrera M, Fortuna AM, Peñacoba P, Martínez García AJ, García Castillo S, Navas L, Garmendia O, Sancho J, Perelló S, Rubinós G. The Effect of Sleep Apnea on Cardiovascular Events in Different Acute Coronary Syndrome Phenotypes. Am J Respir Crit Care Med 2020; 202:1698-1706. [DOI: 10.1164/rccm.202004-1127oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrea Zapater
- Grupo de Medicina de Precisión en Enfermedades Crónicas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Sánchez-de-la-Torre
- Grupo de Medicina de Precisión en Enfermedades Crónicas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ivan David Benítez
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Adriano Targa
- Investigación Traslacional en Medicina Respiratoria, and
| | - Sandra Bertran
- Investigación Traslacional en Medicina Respiratoria, and
| | - Gerard Torres
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Albina Aldomà
- Departamento de Cardiología, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi De Batlle
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jorge Abad
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Neumología, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Joaquín Duran-Cantolla
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Servicio de Investigación Organización Sanitaria Integrada (OSI), Hospital Universitario Araba, Instituto de Investigación Sanitaria (ISS) Bioaraba, Vitoria, Spain
| | | | - Olga Mediano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Neumología, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - María José Masdeu
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Neumología y Sueño, Hospital Universitari Parc Taulí, Institut Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carmen Muñoz
- Departamento de Neumología, Hospital Universitario de Burgos, Burgos, Spain
| | - Juan Fernando Masa
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Neumología, Hospital San Pedro Alcántara, Cáceres, Spain
| | - Mónica De la Peña
- Análisis Clínico y Servicios Respiratorios, Hospital Universitari Son Espases, Institut de Investigació Sanitaria de Palma (IdisPa), Palma de Mallorca, Spain
| | - Mercè Mayos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidad del Sueño, Departamento de Medicina Respiratoria, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramon Coloma
- Departamento de Neumología, Hospital General Universitario de Albacete, Spain
| | - Josep María Montserrat
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Neumología, Hospital Clinic, Barcelona, Spain
| | - Eusebi Chiner
- Departamento de Neumología, Hospital Universitari Sant Joan d’Alacant, Alicante, Spain and
| | - Olga Mínguez
- Investigación Traslacional en Medicina Respiratoria, and
| | - Lydia Pascual
- Investigación Traslacional en Medicina Respiratoria, and
| | | | | | - Mireia Dalmases
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - R. Doug McEvoy
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ferran Barbé
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Alicia Sánchez-de-la-Torre
- Investigación Traslacional en Medicina Respiratoria, and
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jiang Q, Li H, Huang X, Yu L, Lueck S, Hu S. Postnatal exposure to hypobaric hypoxia and its impact on inflammation and injury indexes after a cardiac valve procedure. Interact Cardiovasc Thorac Surg 2020; 31:789-795. [PMID: 33118008 DOI: 10.1093/icvts/ivaa188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES There is accumulating evidence that hypobaric hypoxia adaptation confers cardiac protection. We investigated whether postnatal exposure to a high-altitude hypoxia environment results in less inflammation injury and better clinical indexes after a cardiac valve procedure. METHODS A total of 326 consecutively eligible patients undergoing mitral valve surgery from May 2013 through May 2019 in Sichuan Provincial People's Hospital were retrospectively included and stratified by the altitude of residence: the northwest Sichuan plateau residents (altitude 3000-4000 m, group A, n = 101) and the Sichuan basin residents (altitude <1000 m, group B, n = 225). The primary end point indexes included myocardial injury and inflammatory response indexes, which were assessed by measurements of the levels of cardiac troponin I and high-sensitivity C-reactive protein and of the neutrophil-lymphocyte ratio, in addition to lactate levels. Secondary end point outcomes were ventilation time, chest tube drainage volume and length of stay in the intensive care unit and the hospital. RESULTS No differences in baseline data except for haemoglobin concentration were observed between the 2 groups. The serum levels of high-sensitivity C-reactive protein, cardiac troponin I and lactate and the neutrophil-lymphocyte ratio at each time point within 24 h postoperatively were lower in group A than in group B, respectively. The ventilation time was 9 ± 5 and 11 ± 7 h in group A and in group B, respectively (P = 0.004). The chest tube drainage volume was 647 ± 231 and 715 ± 164 ml in group A and in group B, respectively (P = 0.003). CONCLUSIONS Compared with the low-altitude residents, high-altitude patients exposed to postnatal hypoxia experienced less severe inflammatory reactions, less ischaemic injury and favourable postoperative recovery when undergoing a primary mitral valve procedure.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Hanyu Li
- Department of Operating Room, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Xiyu Huang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Lu Yu
- Department of Respiratory, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Sabrina Lueck
- Department of Cardiothoracic Surgery, Muenster University Hospital, Muenster, Germany
| | - Shengshou Hu
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses 2020; 146:110398. [PMID: 33246695 DOI: 10.1016/j.mehy.2020.110398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that regulates gene expressions in response to decreased oxygen levels in the tissue, or hypoxia. HIF-1 exerts protective effects against hypoxia by mediating mitochondrial metabolism and consequently reducing oxidative stress. Recently, increased levels of oxidative stress and abnormal energy metabolism in the brain have been suggested to play essential roles in the pathogenesis of depression. Given that HIF-1 activates creatine metabolism and increases phosphocreatine levels in the intestinal epithelial cells, we assume that HIF-1 may induce similar processes in the brain. Elevated phosphocreatine levels in the brain, as measured by magnetic resonance spectroscopy, were associated with better treatment response to the antidepressants in individuals with depression. In addition, oral creatine supplements, which led to increased phosphocreatine levels in the brain, also enhanced the effects of antidepressants in individuals with depression. As such, we hypothesized that increasing the HIF-1, which potentially facilitates creatine metabolism in the brain, might be a new therapeutic target in depression. With this regard, we suggested that interventions to elevate the HIF-1 levels in the brain, including the intermittent hypoxia conditioning and hyperbaric oxygen therapy, might be considered as new additional treatments for depression.
Collapse
Affiliation(s)
- Ilhyang Kang
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, South Korea.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|