1
|
Qiao Y, Sun Z, Tan C, Lai J, Sun X, Chen J. Intracameral Injection of AAV-DJ.COMP-ANG1 Reduces the IOP of Mice by Reshaping the Trabecular Outflow Pathway. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36520455 PMCID: PMC9769031 DOI: 10.1167/iovs.63.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The angiopoietin-1 (ANG1)-TIE signaling pathway orchestrates the development and maintenance of the Schlemm's canal (SC). In this study, we investigated the impact of adeno-associated virus (AAV)-mediated gene therapy with cartilage oligomeric matrix protein-ANG1 (COMP-ANG1) on trabecular outflow pathway. Methods Different serotypes of AAVs were compared for transduction specificity and efficiency in the anterior segment. The selected AAVs encoding COMP-ANG1 or ZsGreen1 (control) were delivered into the anterior chambers of wild-type C57BL/6J mice. The IOP and ocular surface were monitored regularly. Ocular perfusion was performed to measure the outflow facility and label flow patterns of the trabecular drainage pathway. Structural features of SC as well as limbal, retinal, and skin vessels were visualized by immunostaining. Ultrastructural changes in the SC and trabecular meshwork were observed under transmission electron microscopy. Results AAV-DJ could effectively infect the anterior segment. Intracameral injection of AAV-DJ.COMP-ANG1 lowered IOP in wild-type C57BL/6J mice. No signs of inflammation or angiogenesis were noticed. Four weeks after AAV injection, the conventional outflow facility and effective filtration area were increased significantly (P = 0.005 and P = 0.04, respectively). Consistently, the area of the SC was enlarged (P < 0.001) with increased density of giant vacuoles in the inner wall (P = 0.006). In addition, the SC endothelia lay on a more discontinuous basement membrane (P = 0.046) and a more porous juxtacanalicular tissue (P = 0.005) in the COMP-ANG1 group. Conclusions Intracamerally injected AAV-DJ.COMP-ANG1 offers a significant IOP-lowering effect by remodeling the trabecular outflow pathway of mouse eyes.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester, School of Medicine and Dentistry, Rochester, New York, New York, United States
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
2
|
Gifre-Renom L, Jones EAV. Vessel Enlargement in Development and Pathophysiology. Front Physiol 2021; 12:639645. [PMID: 33716786 PMCID: PMC7947306 DOI: 10.3389/fphys.2021.639645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
From developmental stages until adulthood, the circulatory system remodels in response to changes in blood flow in order to maintain vascular homeostasis. Remodeling processes can be driven by de novo formation of vessels or angiogenesis, and by the restructuration of already existing vessels, such as vessel enlargement and regression. Notably, vessel enlargement can occur as fast as in few hours in response to changes in flow and pressure. The high plasticity and responsiveness of blood vessels rely on endothelial cells. Changes within the bloodstream, such as increasing shear stress in a narrowing vessel or lowering blood flow in redundant vessels, are sensed by endothelial cells and activate downstream signaling cascades, promoting behavioral changes in the involved cells. This way, endothelial cells can reorganize themselves to restore normal circulation levels within the vessel. However, the dysregulation of such processes can entail severe pathological circumstances with disturbances affecting diverse organs, such as human hereditary telangiectasias. There are different pathways through which endothelial cells react to promote vessel enlargement and mechanisms may differ depending on whether remodeling occurs in the adult or in developmental models. Understanding the molecular mechanisms involved in the fast-adapting processes governing vessel enlargement can open the door to a new set of therapeutical approaches to be applied in occlusive vascular diseases. Therefore, we have outlined here the latest advances in the study of vessel enlargement in physiology and pathology, with a special insight in the pathways involved in its regulation.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc Res 2020; 132:104058. [PMID: 32798552 DOI: 10.1016/j.mvr.2020.104058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The coronary collateral circulation is a rich anastomotic network of primitive vessels which have the ability to augment in size and function through the process of arteriogenesis. In this review, we evaluate the current understandings of the molecular and cellular mechanisms by which this process occurs, specifically focussing on elevated fluid shear stress (FSS), inflammation, the redox state and gene expression along with the integrative, parallel and simultaneous process by which this occurs. The initiating step of arteriogenesis occurs following occlusion of an epicardial coronary artery, with an increase in FSS detected by mechanoreceptors within the endothelium. This must occur within a 'redox window' where an equilibrium of oxidative and reductive factors are present. These factors initially result in an inflammatory milieu, mediated by neutrophils as well as lymphocytes, with resultant activation of a number of downstream molecular pathways resulting in increased expression of proteins involved in monocyte attraction and adherence; namely vascular cell adhesion molecule 1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1) and transforming growth factor beta (TGF-β). Once monocytes and other inflammatory cells adhere to the endothelium they enter the extracellular matrix and differentiate into macrophages in an effort to create a favourable environment for vessel growth and development. Activated macrophages secrete inflammatory cytokines such as tumour necrosis factor-α (TNF-α), growth factors such as fibroblast growth factor-2 (FGF-2) and matrix metalloproteinases. Finally, vascular smooth muscle cells proliferate and switch to a contractile phenotype, resulting in an increased diameter and functionality of the collateral vessel, thereby allowing improved perfusion of the distal myocardium subtended by the occluded vessel. This simultaneously reduces FSS within the collateral vessel, inhibiting further vessel growth.
Collapse
|
4
|
Brain arterial dilatation and the risk of Alzheimer's disease. Alzheimers Dement 2019; 15:666-674. [PMID: 30827874 DOI: 10.1016/j.jalz.2018.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 12/11/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We tested the hypothesis that brain arterial dilatation increases the risk of Alzheimer's dementia (AD). METHODS We studied dementia-free participants in the Washington Heights-Inwood Columbia Aging Project who had a brain MRI and post-MRI dementia adjudication. We measured the axial T2-proton density diameters of the intracranial carotids and basilar diameters and used Cox models to obtain AD hazard ratios and 95% intervals. RESULTS Of 953 participants (mean age 77 ± 7 y, women 64%, 71% nonwhite) followed on average for 3 ± 3 years, 76 (8%) developed AD. In a model adjusted for demographics, vascular risks, apolipoprotein E (APOE)-ε4, and white matter hyperintensities, larger carotid diameters increased the risk of AD, defined categorically as ≥ 90th percentile (HR 4.34, 1.70-11.11) or continuously (HR 1.44 per SD, 1.07-1.94). DISCUSSION Understanding the pathophysiology of the association between AD and brain arterial dilatation may reveal new clues to the vascular contributions to AD.
Collapse
|
5
|
Martinez L, Duque JC, Tabbara M, Paez A, Selman G, Hernandez DR, Sundberg CA, Tey JCS, Shiu YT, Cheung AK, Allon M, Velazquez OC, Salman LH, Vazquez-Padron RI. Fibrotic Venous Remodeling and Nonmaturation of Arteriovenous Fistulas. J Am Soc Nephrol 2018; 29:1030-1040. [PMID: 29295872 DOI: 10.1681/asn.2017050559] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023] Open
Abstract
The frequency of primary failure in arteriovenous fistulas (AVFs) remains unacceptably high. This lack of improvement is due in part to a poor understanding of the pathobiology underlying AVF nonmaturation. This observational study quantified the progression of three vascular features, medial fibrosis, intimal hyperplasia (IH), and collagen fiber organization, during early AVF remodeling and evaluated the associations thereof with AVF nonmaturation. We obtained venous samples from patients undergoing two-stage upper-arm AVF surgeries at a single center, including intraoperative veins at the first-stage access creation surgery and AVFs at the second-stage transposition procedure. Paired venous samples from both stages were used to evaluate change in these vascular features after anastomosis. Anatomic nonmaturation (AVF diameter never ≥6 mm) occurred in 39 of 161 (24%) patients. Neither preexisting fibrosis nor IH predicted AVF outcomes. Postoperative medial fibrosis associated with nonmaturation (odds ratio [OR], 1.55; 95% confidence interval [95% CI], 1.05 to 2.30; P=0.03, per 10% absolute increase in fibrosis), whereas postoperative IH only associated with failure in those individuals with medial fibrosis over the population's median value (OR, 2.63; 95% CI, 1.07 to 6.46; P=0.04, per increase of 1 in the intima/media ratio). Analysis of postoperative medial collagen organization revealed that circumferential alignment of fibers around the lumen associated with AVF nonmaturation (OR, 1.38; 95% CI, 1.03 to 1.84; P=0.03, per 10° increase in angle). This study demonstrates that excessive fibrotic remodeling of the vein after AVF creation is an important risk factor for nonmaturation and that high medial fibrosis determines the stenotic potential of IH.
Collapse
Affiliation(s)
| | - Juan C Duque
- Division of Nephrology and Hypertension, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Angela Paez
- DeWitt Daughtry Family Department of Surgery and
| | - Guillermo Selman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | | | - Chad A Sundberg
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | | | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Alfred K Cheung
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah.,Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Loay H Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, New York
| | | |
Collapse
|
6
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Hazell GGJ, Peachey AMG, Teasdale JE, Sala-Newby GB, Angelini GD, Newby AC, White SJ. PI16 is a shear stress and inflammation-regulated inhibitor of MMP2. Sci Rep 2016; 6:39553. [PMID: 27996045 PMCID: PMC5171773 DOI: 10.1038/srep39553] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Raised endothelial shear stress is protective against atherosclerosis but such protection may be lost at sites of inflammation. We found that four splice variants of the peptidase inhibitor 16 (PI16) mRNA are among the most highly shear stress regulated transcripts in human coronary artery endothelial cells (HCAECs), in vitro but that expression is reduced by inflammatory mediators TNFα and IL-1β. Immunohistochemistry demonstrated that PI16 is expressed in human coronary endothelium and in a subset of neointimal cells and medial smooth muscle cells. Adenovirus-mediated PI16 overexpression inhibits HCAEC migration and secreted matrix metalloproteinase (MMP) activity. Moreover, PI16 inhibits MMP2 in part by binding an exposed peptide loop above the active site. Our results imply that, at high endothelial shear stress, PI16 contributes to inhibition of protease activity; protection that can be reversed during inflammation.
Collapse
Affiliation(s)
- Georgina G J Hazell
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Alasdair M G Peachey
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Jack E Teasdale
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Gianni D Angelini
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Stephen J White
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Manchester M1 5GD, UK
| |
Collapse
|
8
|
Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 2016; 3:257-67. [PMID: 27482467 PMCID: PMC4966293 DOI: 10.1093/rb/rbw021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Shisui Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Xiang Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Yiming Zheng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Kang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Wanqian Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Hans Gregersen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China; Taiji Group Co, Ltd, Chongqing, 401147, China
| |
Collapse
|
9
|
Mandel ER, Dunford EC, Trifonova A, Abdifarkosh G, Teich T, Riddell MC, Haas TL. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS One 2016; 11:e0166899. [PMID: 27861620 PMCID: PMC5115834 DOI: 10.1371/journal.pone.0166899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 01/11/2023] Open
Abstract
Glucocorticoids (GC) elicit skeletal muscle capillary rarefaction, which can subsequently impair blood distribution and muscle function; however, the mechanisms have not been established. We hypothesized that CORT would inhibit endothelial cell survival signals but that treatment with the alpha-1 adrenergic receptor inhibitor prazosin, which leads to angiogenesis in skeletal muscle of healthy rats, would reverse these effects and induce angiogenesis within the skeletal muscle of corticosterone (CORT)-treated rats. Male Sprague Dawley rats were implanted subcutaneously with CORT pellets (400 mg/rat), with or without concurrent prazosin treatment (50mg/L in drinking water), for 1 or 2 weeks. Skeletal muscle capillary rarefaction, as indicated by a significant reduction in capillary-to-fiber ratio (C:F), occurred after 2 weeks of CORT treatment. Concurrent prazosin administration prevented this capillary rarefaction in CORT-treated animals but did not induce angiogenesis or arteriogenesis as was observed with prazosin treatment in control rats. CORT treatment reduced the mRNA level of Angiopoietin-1 (Ang-1), which was partially offset in the muscles of rats that received 2 weeks of co-treatment with prazosin. In 2W CORT animals, prazosin treatment elicited a significant increase in vascular endothelial growth factor-A (VEGF-A) mRNA and protein. Conversely prazosin did not rescue CORT-induced reductions in transforming growth factor beta-1 (TGFβ1 and matrix metalloproteinase-2 (MMP-2) mRNA. To determine if CORT impaired shear stress dependent signaling, cultured rat skeletal muscle endothelial cells were pre-treated with CORT (600nM) for 48 hours, then exposed to 15 dynes/cm2 shear stress or maintained with no flow. CORT blunted the shear stress-induced increase in pSer473 Akt, while pThr308 Akt, ERK1/2 and p38 phosphorylation and nitric oxide (NO) production were unaffected. This study demonstrates that GC-mediated capillary rarefaction is associated with a reduction in Ang-1 mRNA within the skeletal muscle microenvironment and that concurrent prazosin treatment effectively increases VEGF-A levels and prevents capillary loss.
Collapse
Affiliation(s)
- Erin R. Mandel
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
| | - Emily C. Dunford
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
| | | | - Ghoncheh Abdifarkosh
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
| | - Tara L. Haas
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Canada
- * E-mail:
| |
Collapse
|
10
|
Gutierrez J, Menshawy K, Goldman J, Dwork AJ, Elkind MSV, Marshall RS, Morgello S. Metalloproteinases and Brain Arterial Remodeling Among Individuals With and Those Without HIV Infection. J Infect Dis 2016; 214:1329-1335. [PMID: 27549585 DOI: 10.1093/infdis/jiw385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study tests the hypothesis that increased elastolytic activity is associated differentially with dolichoectasia in individuals with and those without human immunodeficiency virus (HIV) infection. METHODS Large arteries from 84 autopsied brains from HIV-positive individuals and 78 autopsied brains from HIV-negative individuals were stained for metalloproteinase 2 (MMP-2), MMP-3, MMP-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, CD68, and caspase 3. Average pixel intensity was automatically obtained and categorized as high, moderate, or low. Dolichoectasia was defined as a lumen to wall ratio ≥95th percentile. RESULTS High MMP-9 staining alone (P = .001) or coexistent with low TIMP-2 staining was associated with dolichoectasia only in HIV-negative individuals (P = <.001). In HIV-positive individuals, MMP-9 was associated with dolichoectasia only when coexpressed with caspase 3 (P = .01). Thinning of the media was associated with CD68 staining (P = <.001) in HIV-negative individuals, while caspase 3 was associated with a thinner media only in HIV-positive individuals (P = .01). Media thickness modified the association between lumen to wall ratio and MMP expression. CONCLUSIONS A role for MMP/TIMP balance in dolichoectasia appears more prominent in HIV-negative individuals, while apoptosis, mediated by caspase 3, is the most important determinant of media thinning in HIV-infected individuals. Furthermore, apoptosis and media thickness appear to mediate the effects of MMP in the HIV-infected population.
Collapse
Affiliation(s)
| | - Khaled Menshawy
- Alexandria Faculty of Medicine, Alexandria University, Egypt
| | - James Goldman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons
| | - Andrew J Dwork
- Department of Pathology and Cell Biology, College of Physicians and Surgeons
- Department of Psychiatry, Columbia University Medical Center
| | - Mitchell S V Elkind
- Department of Neurology
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | | | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Mandel ER, Uchida C, Nwadozi E, Makki A, Haas TL. Tissue Inhibitor of Metalloproteinase 1 Influences Vascular Adaptations to Chronic Alterations in Blood Flow. J Cell Physiol 2016; 232:831-841. [PMID: 27430487 DOI: 10.1002/jcp.25491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
Abstract
Remodeling of the skeletal muscle microvasculature involves the coordinated actions of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitor of metalloproteinases (TIMPs). We hypothesized that the loss of TIMP1 would enhance both ischemia and flow-induced vascular remodeling by increasing MMP activity. TIMP1 deficient (Timp1-/- ) and wild-type (WT) C57BL/6 mice underwent unilateral femoral artery (FA) ligation or were treated with prazosin, an alpha-1 adrenergic receptor antagonist, in order to investigate vascular remodeling to altered flow. Under basal conditions, Timp1-/- mice had reduced microvascular content as compared to WT mice. Furthermore, vascular remodeling was impaired in Timp1-/- mice. Timp1-/- mice displayed reduced blood flow recovery in response to FA ligation and no arteriogenic response to prazosin treatment. Timp1-/- mice failed to undergo angiogenesis in response to ischemia or prazosin, despite maintaining the capacity to increase VEGF-A and eNOS mRNA. Vascular permeability was increased in muscles of Timp1-/- mice in response to both prazosin treatment and FA ligation, but this was not accompanied by greater MMP activity. This study highlights a previously undescribed integral role for TIMP1 in both vascular network maturation and adaptations to ischemia or alterations in flow. J. Cell. Physiol. 232: 831-841, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin R Mandel
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Cassandra Uchida
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Emmanuel Nwadozi
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Armin Makki
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Fey T, Schubert KM, Schneider H, Fein E, Kleinert E, Pohl U, Dendorfer A. Impaired endothelial shear stress induces podosome assembly
via
VEGF up‐regulation. FASEB J 2016; 30:2755-66. [DOI: 10.1096/fj.201500091r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Theres Fey
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Kai Michael Schubert
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Holger Schneider
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Evelyn Fein
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Eike Kleinert
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ulrich Pohl
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Centre for Cardiovascular Research (DZHK)‐Munich Heart AllianceMunichGermany
- Munich Cluster for Systems NeurologyMunichGermany
| | - Andreas Dendorfer
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Centre for Cardiovascular Research (DZHK)‐Munich Heart AllianceMunichGermany
| |
Collapse
|
13
|
MISÁRKOVÁ E, BEHULIAK M, BENCZE M, ZICHA J. Excitation-Contraction Coupling and Excitation-Transcription Coupling in Blood Vessels: Their Possible Interactions in Hypertensive Vascular Remodeling. Physiol Res 2016; 65:173-91. [DOI: 10.33549/physiolres.933317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltage-dependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltage-dependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype.
Collapse
Affiliation(s)
| | | | | | - J. ZICHA
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
15
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
16
|
Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 2014; 35:8002-14. [DOI: 10.1016/j.biomaterials.2014.05.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
|
17
|
Rooke TW, Felty CL. A different way to look at varicose veins. J Vasc Surg Venous Lymphat Disord 2014; 2:207-11. [PMID: 26993192 DOI: 10.1016/j.jvsv.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The development of varicose veins is commonly attributed to vessel wall degeneration. The idea that varicose veins occur because of pathological processes, however, is challenged by certain observations. For example, their high prevalence (50% or greater) in many populations makes it statistically "normal" to have varicose veins; their well-established genetic predisposition raises the possibility that this high prevalence reflects a survival benefit. One way to explain this apparent contradiction is to theorize that varicose veins are produced by the same mechanism(s) that lead to the growth and remodeling of other types of blood vessels. If so, being "good" at forming varicose veins may also predispose to being "good" at forming various types of collateral blood vessels when necessary. METHODS A selected literature review was conducted. Works chosen for review included those suggesting that: the process of varicose vein formation may share the same basic mechanisms as the formation of collateral veins, arteries, and lymphatic vessels; and clinical outcomes may be different between subjects with and without varicose veins. RESULTS Evidence suggests that subjects who are "good" at forming varicose veins may also be "good" at forming various types of collateral vessels, and they may have better overall survival (with less cardiovascular morbidity) than those without varicose veins. CONCLUSIONS Varicose veins may be "the price we pay" for an enhanced ability to form collateral vessels when necessary.
Collapse
Affiliation(s)
- Thom W Rooke
- Department of Vascular Medicine, Mayo Clinic, Rochester, Minn.
| | - Cindy L Felty
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minn
| |
Collapse
|
18
|
Meisner JK, Annex BH, Price RJ. Despite normal arteriogenic and angiogenic responses, hind limb perfusion recovery and necrotic and fibroadipose tissue clearance are impaired in matrix metalloproteinase 9-deficient mice. J Vasc Surg 2014; 61:1583-94.e1-10. [PMID: 24582703 DOI: 10.1016/j.jvs.2014.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The relative contributions of arteriogenesis, angiogenesis, and ischemic muscle tissue composition toward reperfusion after arterial occlusion are largely unknown. Differential loss of bone marrow-derived cell (BMC) matrix metalloproteinase 9 (MMP9), which has been implicated in all of these processes, was used to assess the relative contributions of these processes during limb reperfusion. METHODS We compared collateral growth (arteriogenesis), capillary growth (angiogenesis), and ischemic muscle tissue composition after femoral artery ligation in FVB/NJ mice that had been reconstituted with bone marrow from wild-type or MMP9(-/-) mice. RESULTS Laser Doppler perfusion imaging confirmed decreased reperfusion capacity in mice with BMC-specific loss of MMP9; however, collateral arteriogenesis was not affected. Furthermore, when accounting for the fact that muscle tissue composition changes markedly with ischemia (ie, necrotic, fibroadipose, and regenerating tissue regions are present), angiogenesis was also unaffected. Instead, BMC-specific loss of MMP9 caused an increase in the proportion of necrotic and fibroadipose tissue, which showed the strongest correlation with poor perfusion recovery. Similarly, the reciprocal loss of MMP9 from non-BMCs showed similar deficits in perfusion and tissue composition without affecting arteriogenesis. CONCLUSIONS By concurrently analyzing arteriogenesis, angiogenesis, and ischemic tissue composition, we determined that the loss of BMC-derived or non-BMC-derived MMP9 impairs necrotic and fibroadipose tissue clearance after femoral artery ligation, despite normal arteriogenic and angiogenic vascular growth. These findings imply that therapeutic revascularization strategies for treating peripheral arterial disease may benefit from additionally targeting necrotic tissue clearance or skeletal muscle regeneration, or both.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va
| | - Brian H Annex
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va.
| |
Collapse
|
19
|
Scott JA, Klutho PJ, El Accaoui R, Nguyen E, Venema AN, Xie L, Jiang S, Dibbern M, Scroggins S, Prasad AM, Luczak ED, Davis MK, Li W, Guan X, Backs J, Schlueter AJ, Weiss RM, Miller FJ, Anderson ME, Grumbach IM. The multifunctional Ca²⁺/calmodulin-dependent kinase IIδ (CaMKIIδ) regulates arteriogenesis in a mouse model of flow-mediated remodeling. PLoS One 2013; 8:e71550. [PMID: 23951185 PMCID: PMC3738514 DOI: 10.1371/journal.pone.0071550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Objective Sustained hemodynamic stress mediated by high blood flow promotes arteriogenesis, the outward remodeling of existing arteries. Here, we examined whether Ca2+/calmodulin-dependent kinase II (CaMKII) regulates arteriogenesis. Methods and Results Ligation of the left common carotid led to an increase in vessel diameter and perimeter of internal and external elastic lamina in the contralateral, right common carotid. Deletion of CaMKIIδ (CaMKIIδ−/−) abolished this outward remodeling. Carotid ligation increased CaMKII expression and was associated with oxidative activation of CaMKII in the adventitia and endothelium. Remodeling was abrogated in a knock-in model in which oxidative activation of CaMKII is abolished. Early after ligation, matrix metalloproteinase 9 (MMP9) was robustly expressed in the adventitia of right carotid arteries of WT but not CaMKIIδ−/− mice. MMP9 mainly colocalized with adventitial macrophages. In contrast, we did not observe an effect of CaMKIIδ deficiency on other proposed mediators of arteriogenesis such as expression of adhesion molecules or smooth muscle proliferation. Transplantation of WT bone marrow into CaMKIIδ−/− mice normalized flow-mediated remodeling. Conclusion CaMKIIδ is activated by oxidation under high blood flow conditions and is required for flow-mediated remodeling through a mechanism that includes increased MMP9 expression in bone marrow-derived cells invading the arterial wall.
Collapse
Affiliation(s)
- Jason A. Scott
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | - Paula J. Klutho
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramzi El Accaoui
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Nguyen
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ashlee N. Venema
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Litao Xie
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | - Shuxia Jiang
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Megan Dibbern
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sabrina Scroggins
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anand M. Prasad
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elisabeth D. Luczak
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Melissa K. Davis
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Weiwei Li
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Xiaoqun Guan
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Johannes Backs
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Annette J. Schlueter
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert M. Weiss
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Francis J. Miller
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
| | - Mark E. Anderson
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Isabella M. Grumbach
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
20
|
Unthank JL, McClintick JN, Labarrere CA, Li L, Distasi MR, Miller SJ. Molecular basis for impaired collateral artery growth in the spontaneously hypertensive rat: insight from microarray analysis. Physiol Rep 2013; 1:e0005. [PMID: 24303120 PMCID: PMC3831906 DOI: 10.1002/phy2.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/08/2023] Open
Abstract
Analysis of global gene expression in mesenteric control and collateral arteries was used to investigate potential molecules, pathways, and mechanisms responsible for impaired collateral growth in the Spontaneously Hypertensive Rat (SHR). A fundamental difference was observed in overall gene expression pattern in SHR versus Wistar Kyoto (WKY) collaterals; only 6% of genes altered in collaterals were similar between rat strains. Ingenuity® Pathway Analysis (IPA) identified major differences between WKY and SHR in networks and biological functions related to cell growth and proliferation and gene expression. In SHR control arteries, several mechano-sensitive and redox-dependent transcription regulators were downregulated including JUN (-5.2×, P = 0.02), EGR1 (-4.1×, P = 0.01), and NFĸB1 (-1.95×, P = 0.04). Predicted binding sites for NFĸB and AP-1 were present in genes altered in WKY but not SHR collaterals. Immunostaining showed increased NFĸB nuclear translocation in collateral arteries of WKY and apocynin-treated SHR, but not in untreated SHR. siRNA for the p65 subunit suppressed collateral growth in WKY, confirming a functional role of NFkB. Canonical pathways identified by IPA in WKY but not SHR included nitric oxide and renin-angiotensin system signaling. The angiotensin type 1 receptor (AGTR1) exhibited upregulation in WKY collaterals, but downregulation in SHR; pharmacological blockade of AGTR1 with losartan prevented collateral luminal expansion in WKY. Together, these results suggest that collateral growth impairment results from an abnormality in a fundamental regulatory mechanism that occurs at a level between signal transduction and gene transcription and implicate redox-dependent modulation of mechano-sensitive transcription factors such as NFĸB as a potential mechanism.
Collapse
Affiliation(s)
- Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine Indianapolis, Indiana, 46202 ; Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, Indiana, 46202 ; Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine Indianapolis, Indiana, 46202
| | | | | | | | | | | |
Collapse
|
21
|
Franck G, Dai J, Fifre A, Ngo S, Justine C, Michineau S, Allaire E, Gervais M. Reestablishment of the Endothelial Lining by Endothelial Cell Therapy Stabilizes Experimental Abdominal Aortic Aneurysms. Circulation 2013; 127:1877-87. [DOI: 10.1161/circulationaha.113.001677] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Loss of the endothelium and its replacement by a thick thrombus are structural features of human abdominal aortic aneurysms (AAAs). In AAAs, the relationship between aortic diameter expansion, the presence of thrombus, and the lack of endothelial cells (ECs) remains unexplored. We hypothesized that reendothelialization by cell therapy would modulate aortic wall destruction and ultimately stabilize AAAs. We evaluated the impact of local seeding of rat aortic ECs or peripheral blood–derived outgrowth ECs on AAA evolution.
Methods and Results—
Rat aortic ECs (n=30) or serum-free medium (controls; n=29) were seeded endovascularly immediately (day 0) or 14 days after surgery in the rat xenograft model. Rat aortic EC seeding prevented AAA formation and stabilized formed AAAs at 28 days (diameter increase at day 0+28, 51±6% versus 83±6%; day 14+28, −1±4% versus 22±6% in rat aortic ECs and controls, respectively;
P
<0.01). This stabilizing effect was associated with the reestablishment of the endothelial lining, the suspension of proteolysis, and the reconstitution of new aortic wall rich in smooth muscle cells and extracellular matrix. Transplanted rat aortic ECs did not participate directly in aortic wall repair but exerted their healing properties through paracrine mechanisms involving the upregulation of endothelium-derived stabilizing factors and the recruitment of resident vascular cells. In rats, the transplantation of outgrowth ECs (n=7) significantly reduced by 30% the progression of AAAs and restored the abluminal endothelium at 28 days compared with controls (n=9).
Conclusion—
Our study demonstrates the potential of restoring the endothelial lining to control AAA dynamics and designates ECs as an efficient therapy to stop AAA expansion.
Collapse
Affiliation(s)
- Grégory Franck
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Jianping Dai
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Alexandre Fifre
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Saravuth Ngo
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Claire Justine
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Stéphanie Michineau
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Eric Allaire
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| | - Marianne Gervais
- From CNRS EAC 7054, Centre de Recherches Chirurgicales Dominique Chopin, Faculty of Medicine, Paris-Est Créteil University, Créteil, France
| |
Collapse
|
22
|
Abstract
Arteriosclerotic vascular disease is the most common cause of death and a major cause of disability in the developed world. Adverse outcomes of arteriosclerotic vascular disease are related to consequences of tissue ischemia and necrosis affecting the heart, brain, limbs, and other organs. Collateral artery growth or arteriogenesis occurs naturally and can help restore perfusion to ischemic tissues. Understanding the mechanisms of collateral artery growth may provide therapeutic options for patients with ischemic vascular disease. In this review, we examine the evidence for a role of monocytes and macrophages in collateral arteriogenesis.
Collapse
Affiliation(s)
- Erik Fung
- Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical CenterLebanon, NH, USA
| | - Armin Helisch
- Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical CenterLebanon, NH, USA
| |
Collapse
|
23
|
Schmid-Schönbein GW. An emerging role of degrading proteinases in hypertension and the metabolic syndrome: autodigestion and receptor cleavage. Curr Hypertens Rep 2012; 14:88-96. [PMID: 22081429 DOI: 10.1007/s11906-011-0240-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the major challenges for hypertension research is to identify the mechanisms that cause the comorbidities encountered in many hypertensive patients, as seen in the metabolic syndrome. An emerging body of evidence suggests that human and experimental hypertensives may exhibit uncontrolled activity of proteinases, including the family of matrix metalloproteinases, recognized for their ability to restructure the extracellular matrix proteins and to play a role in hypertrophy. We propose a new hypothesis that provides a molecular framework for the comorbidities of hypertension, diabetes, capillary rarefaction, immune suppression, and other cell and organ dysfunctions due to early and uncontrolled extracellular receptor cleavage by active proteinases. The proteinase and signaling activity in hypertensives requires further detailed analysis of the proteinase expression, the mechanisms causing proenzyme activation, and identification of the proteinase substrate. This work may open the opportunity for reassessment of old interventions and development of new interventions to manage hypertension and its comorbidities.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093-0412, USA.
| |
Collapse
|
24
|
Dodd T, Jadhav R, Wiggins L, Stewart J, Smith E, Russell JC, Rocic P. MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. J Mol Cell Cardiol 2011; 51:1015-25. [PMID: 21884701 DOI: 10.1016/j.yjmcc.2011.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/19/2022]
Abstract
Transient, repetitive ischemia (RI) stimulates coronary collateral growth (CCG) in normal, healthy (SD) rats, which requires p38 MAPK activation. In contrast, RI does not induce CCG in the metabolic syndrome (JCR) rats, which is associated with lack of p38 MAPK activation. The functional consequences of p38 MAPK activation in CCG remain unknown. Theoretically, effective collateral growth would require extracellular matrix remodeling; however, direct assessment as well as identification of proteases responsible for this degradation are lacking. In this study, we investigated the role of p38 MAPK in the regulation of matrix metalloproteinases 2 and 9 (MMPs 2 and 9) and their requirement for CCG in SD vs. JCR rats. The rats underwent the RI protocol (8 LAD occlusions, 40s each, every 20min, in 8h cycles for 0, 3, 6, or 9days). MMP expression was measured in the ischemic, collateral-dependent zone (CZ) and the normal zone (NZ) by Western blot, and MMP activity by zymography. Expression and activation of MMP 2 and 9 were significantly increased (~3.5 fold) on day 3 of RI in the CZ of SD rats. In vivo p38 MAPK inhibition completely blocked RI-induced MMP 2 and 9 expression and activation. MMP activation correlated with increased degradation of components of the basement membrane and the vascular elastic laminae: elastin (~3 fold), laminin (~3 fold) and type IV collagen (~2 fold). This was blocked by MMP 2 and 9 inhibition, which also abolished RI-induced CCG. In contrast, in JCR rats, RI did not induce expression or activation of MMP 2 or 9 and there was no associated degradation of elastin, laminin or type IV collagen. In conclusion, MMP 2 and 9 activation is essential for CCG and is mediated, in part, by p38 MAPK. Furthermore, compromised CCG in the metabolic syndrome may be partially due to the lack of p38 MAPK-dependent activation of MMP 2 and 9 and resultant decreased extracellular matrix degradation.
Collapse
Affiliation(s)
- Tracy Dodd
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hale SA, Weger L, Mandala M, Osol G. Reduced NO signaling during pregnancy attenuates outward uterine artery remodeling by altering MMP expression and collagen and elastin deposition. Am J Physiol Heart Circ Physiol 2011; 301:H1266-75. [PMID: 21856919 DOI: 10.1152/ajpheart.00519.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings indicate that endothelial nitric oxide (NO) plays a key role in uterine artery outward circumferential remodeling during pregnancy. Although the underlying mechanisms are not known, they likely involve matrix metalloproteinases (MMPs). The goal of this study was to examine the linkage among NO inhibition, expansive remodeling, and MMP expression within the uterine vascular wall. Adult female rats were treated with N(G)-nitro-L-arginine methyl ester [L-NAME (LPLN)] beginning on day 10 of pregnancy and until death at day 20 and compared with age-matched controls [late pregnant (LP)]. Mean arterial pressure of LPLN rats was significantly higher than controls. LPLN fetal and placental weights were significantly reduced compared with controls. Main uterine arteries (mUA) were collected to determine dimensional properties (lumen area and wall thickness), collagen and elastin content, and levels of endothelial nitric oxide synthase (eNOS) and MMP expression. Circumferential remodeling was attenuated, as evidenced by significantly smaller lumen diameters. eNOS RNA and protein were significantly (>90%) decreased in the LPLN mUA compared with LP. Collagen and elastin contents were significantly increased in LPLN rats by ∼10 and 25%, respectively, compared with LP (P < 0.05). Both MMP-2 and tissue inhibitors of metalloproteinase-2 as assessed by immunofluorescence were lower in the endothelium (reduction of 60%) and adventitia (reduction of 50%) of LPLN compared with LP mUA. Membrane bound MMP-1 (MT1-MMP) as assessed by immunoblot was significantly decreased in LPLN. These data suggest a novel contribution of MMPs to gestational uterine vascular remodeling and substantiate the linkage between NO signaling and gestational remodeling of the uterine circulation via altered MMP, TIMP-2, and MT1-MMP expression and activity.
Collapse
Affiliation(s)
- Sarah A Hale
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
26
|
Roan JN, Yeh CY, Chiu WC, Lee CH, Chang SW, Jiangshieh YF, Tsai YC, Lam CF. Functional Dilatation and Medial Remodeling of the Renal Artery in Response to Chronic Increased Blood Flow. Kidney Blood Press Res 2011; 34:447-56. [DOI: 10.1159/000329096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/29/2011] [Indexed: 11/19/2022] Open
|
27
|
Huibers M, De Jonge N, Van Kuik J, Koning ESD, Van Wichen D, Dullens H, Schipper M, De Weger R. Intimal fibrosis in human cardiac allograft vasculopathy. Transpl Immunol 2011; 25:124-32. [PMID: 21782945 DOI: 10.1016/j.trim.2011.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/06/2011] [Indexed: 11/30/2022]
Abstract
Human Cardiac Allograft Vasculopathy (CAV) is one of the major complications for patients after heart transplantation. It is characterized by a concentric luminal narrowing due to (neo) intimal expansion in the coronary arteries of donor hearts after heart transplantation. In this process fibrosis plays an important role. Aim of this study is to analyze the factors and cells involved in this fibrotic process. Coronary arteries from five heart transplantation patients and three controls were obtained at autopsy. Quantitative real-time PCR was performed on mRNA obtained from various arterial layers isolated by laser micro dissection. Positive gene expression was confirmed by immunohistochemistry and/or in situ hybridisation. The strongest mRNA expression of fibrotic factors (predominantly pro-fibrotic) was found in the neo-intima. Especially, connective tissue growth factor expression was higher in the CAV vessels than in the controls. The lymphocyte activity of interferon gamma was only detected in CAV vessels. Furthermore as shown by in situ hybridisation, the lymphocytes producing interferon gamma also expressed transforming growth factor beta. Anti-fibrotic factors, such as bone morphogenic protein 4, were only expressed in CD3(-)/CD68(-) stromal cells. Macrophages present in the CAV and control vessels showed to be of the M2 type and did not produce any fibrotic factor(s). In conclusion, T-cells producing both interferon gamma and transforming growth factor beta, may play an important role in the fibrotic process in CAV vessels by upregulation of connective tissue growth factor production.
Collapse
Affiliation(s)
- Manon Huibers
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zeng S, Zhou X, Tu Y, Yao M, Han ZQ, Gao F, Li YM. Long-Term MMP Inhibition by Doxycycline Exerts Divergent Effect on Ventricular Extracellular Matrix Deposition and Systolic Performance in Stroke-Prone Spontaneously Hypertensive Rats. Clin Exp Hypertens 2011; 33:316-24. [DOI: 10.3109/10641963.2010.549262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Martinez-Lemus LA, Zhao G, Galiñanes EL, Boone M. Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases. Am J Physiol Heart Circ Physiol 2011; 300:H2005-15. [PMID: 21460197 DOI: 10.1152/ajpheart.01066.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inward eutrophic remodeling is the most prevalent structural change of resistance arteries in hypertension. Sympathetic and angiotensin (ANG)-induced vasoconstriction has been associated with hypertension and with the production of matrix metalloproteinases (MMPs) and ROS. Therefore, we hypothesize that prolonged exposure to norepinephrine (NE) and ANG II induces arteriolar inward remodeling dependent on the activation of MMPs and the production of ROS. This hypothesis was tested on rat cremaster arterioles that were isolated, cannulated, pressurized, and exposed to either NE (10(-5.5) mol/l) + ANG II (10(-7) mol/l) or vehicle (control) for 4 h. The prolonged exposure to NE + ANG II induced inward remodeling, as evidenced by the reduced maximal arteriolar passive diameter observed after versus before exposure to the vasoconstrictor agonists. NE + ANG II also increased the arteriolar expression and activity of MMP-2 and the production of ROS as determined, respectively, by real-time RT-PCR, gel and in situ zymography, and the use of ROS-sensitive dyes with multiphoton microscopy. Inhibition of MMP activation (with GM-6001) or ROS production (with apocynin or tempol) prevented the NE + ANG II-induced inward remodeling. Inhibition of ROS production prevented the activation of MMPs and the remodeling process, whereas inhibition of MMP activation did not affect ROS production. These results indicate that prolonged stimulation of resistance arterioles with NE + ANG II induces a ROS-dependent activation of MMPs necessary for the development of arteriolar inward remodeling. These mechanisms may contribute to the structural narrowing of resistance vessels in hypertension.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center , Univ. of Missouri-Columbia, 134 Research Park Dr., Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
30
|
|
31
|
Tan ML, Choong PFM, Dass CR. Direct anti-metastatic efficacy by the DNA enzyme Dz13 and downregulated MMP-2, MMP-9 and MT1-MMP in tumours. Cancer Cell Int 2010; 10:9. [PMID: 20334687 PMCID: PMC2861053 DOI: 10.1186/1475-2867-10-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
The DNA enzyme Dz13, targeted against the oncogene c-Jun, is capable of inhibiting various model tumours in mice albeit in ectopic models of neoplasia. In previous studies using orthotopic models of disease, the inhibitory effects of Dz13 on secondary growth was a direct result of growth inhibition at the primary lesion site. Thus, the direct and genuine effects on metastasis were not gauged. In this study, Dz13 was able to inhibit both locoregional and distal metastasis of tumour cells in mice, in studies where the primary tumours were unaffected due to the late and clinically-mimicking nature of treatment commencement. In addition, the effect of Dz13 against tumours has now been extended to encompass breast and prostate cancer. Dz13 upregulated the matrix metalloproteinase (MMP)-2 and MMP-9, and decreased expression of MT1-MMP (MMP-14) in cultured tumour cells. However, in sections of ectopic tumours treated with Dz13, both MMP-2 and MMP-9 were downregulated. Thus, not only is Dz13 able to inhibit tumour growth at the primary site, but also able to decrease the ability of neoplastic cells to metastasise. These findings further highlight the growing potential of Dz13 as an antineoplastic agent.
Collapse
Affiliation(s)
- Mei Lin Tan
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | | | | |
Collapse
|
32
|
Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis. Nitric Oxide 2010; 22:304-15. [PMID: 20188204 DOI: 10.1016/j.niox.2010.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 11/23/2022]
Abstract
This study aims to investigate the role of shear stress in cellular remodeling and angiogenesis with relation to nitric oxide (NO). We observed a 2-fold increase in endothelial cell (EC) migration in relation to actin re-arrangements under 15 dyne/cm(2) shear stress. Blocking NO production inhibited the migration and ring formation of ECs by 6-fold and 5-fold, respectively under shear stress. eNOS-siRNA knockdown technique also ascertained a 3-fold reduction in shear stress mediated ring formation. In ovo artery ligation model with a half and complete flow block for 30 min showed a reduction of angiogenesis by 50% and 70%, respectively. External stimulation with NO donor showed a 2-fold recovery in angiogenesis under both half and complete flow block conditions. NO intensity clustering studies by using Diaminofluorescein diacetate (DAF-2DA) probed endothelial monolayer depicted pattern-changes in NO distribution and cluster formation of ECs under shear stress. Immunofluorescence and live cell studies revealed an altered sub-cellular localization pattern of eNOS and phospho-eNOS under shear stress. In conclusion, shear-induced angiogenesis is mediated by nitric oxide dependent EC migration.
Collapse
|
33
|
Lamon BD, Summers BD, Gotto AM, Hajjar DP. Pitavastatin suppresses mitogen activated protein kinase-mediated Erg-1 induction in human vascular smooth muscle cells. Eur J Pharmacol 2009; 606:72-6. [PMID: 19374880 DOI: 10.1016/j.ejphar.2008.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/27/2008] [Accepted: 12/18/2008] [Indexed: 01/22/2023]
Abstract
Statins have been demonstrated to elicit a broad range of cellular events resulting in an attenuation of the inflammatory response and enhanced protection to the components of the vessel wall. The present study was designed to examine the effect of pitavastatin on pathways associated with the proinflammatory gene, early growth response (Egr)-1, in human vascular smooth muscle cells. Pretreatment with pitavastatin resulted in a dose-dependent reduction in Egr-1 protein and suppressed Egr-1 mRNA expression in response to phorbol 12-myristate 13-acetate (PMA). A reduction in Egr-1 expression reduced the activation of NGFI-A binding protein (NAB)-2, an Egr-1-dependent gene. Furthermore, these events appeared to be dependent on the ability of pitavastatin to attenuate signaling cascades associated with extracellular regulated kinase (ERK) 1/2, but not p38 and c-Jun N-terminal kinase (JNK).
Collapse
Affiliation(s)
- Brian D Lamon
- Department of Pathology and Laboratory Medicine, Center of Vascular Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1-15. [PMID: 18456796 DOI: 10.1152/ajplung.90200.2008] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms involved in the genesis of chronic obstructive pulmonary disease (COPD) are poorly defined. This area is complicated and difficult to model because COPD consists of four separate anatomic lesions (emphysema, small airway remodeling, pulmonary hypertension, and chronic bronchitis) and a functional lesion, acute exacerbation; moreover, the disease in humans develops over decades. This review discusses the various animal models that have been used to attempt to recreate human COPD and the advantages and disadvantages of each. None of the models reproduces the exact changes seen in humans, but cigarette smoke-induced disease appears to come the closest, and genetically modified animals also, in some instances, shed light on processes that appear to play a role.
Collapse
Affiliation(s)
- Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
36
|
Sheridan KM, Ferguson MJ, Distasi MR, Witzmann FA, Dalsing MC, Miller SJ, Unthank JL. Impact of genetic background and aging on mesenteric collateral growth capacity in Fischer 344, Brown Norway, and Fischer 344 x Brown Norway hybrid rats. Am J Physiol Heart Circ Physiol 2007; 293:H3498-505. [PMID: 17906115 PMCID: PMC2859438 DOI: 10.1152/ajpheart.00040.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Available studies indicate that both genetic background and aging influence collateral growth capacity, but it is not known how their combination affects collateral growth. We evaluated collateral growth induced by ileal artery ligation in Fischer 344 (F344), Brown Norway (BN), and the first generation hybrid of F344 x BN (F1) rats available for aging research from the National Institute on Aging. Collateral growth was determined by paired diameter measurements in anesthetized rats immediately and 7 days postligation. In 3-mo-old rats, significant collateral growth occurred only in BN (35% +/- 11%, P < 0.001). The endothelial cell number in arterial cross sections was also determined, since this precedes shear-mediated luminal expansion. When compared with the same animal controls, the intimal cell number was increased only in BN rats (92% +/- 21%, P < 0.001). The increase in intimal cell number and the degree of collateral luminal expansion in BN rats was not affected by age from 3 to 24 mo. Immunohistochemical studies demonstrated that intimal cell proliferation was much greater in the collaterals of BN than of F1 rats. The remarkable difference between these three strains of rats used in aging research and the lack of an age-related impairment in the BN rats are novel observations. These rat strains mimic clinical observations of interindividual variation in collateral growth capacity and the impact of age on arteriogenesis and should be useful models to investigate the molecular mechanisms responsible for such differences.
Collapse
Affiliation(s)
- Kevin M Sheridan
- Department of Surgery, Indiana University School of Medicine, University Medical Center, 1001 W. 10th Street, Indianapolis, IN 46202-2879, USA
| | | | | | | | | | | | | |
Collapse
|