1
|
Du J, Liu J, Wang X, Wang X, Ma Y, Zhang S, Li Z, Ma J, Liu J. The role of estrogen in the sex difference for the risk factors of heart failure with preserved ejection fraction. Biol Direct 2025; 20:28. [PMID: 40065410 PMCID: PMC11895175 DOI: 10.1186/s13062-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major subtype of heart failure, primarily characterized by a normal or mildly reduced left ventricular ejection fraction along with left ventricular diastolic dysfunction. Recent studies have shown that the prevalence of HFpEF is higher in women than that in men, particularly in postmenopausal women. Concurrently, it has been observed that the incidence of risk factors contributing to HFpEF (such as obesity, hypertension, diabetes, and atrial fibrillation) also notably increases post-menopause, affecting the incidence of HFpEF. This review aimed to examine the relationship between estrogen and risk factors associated with HFpEF, clarifying the underlying mechanisms through which estrogen affects these risk factors from epidemiological and pathophysiological perspectives. This review also provides a comprehensive understanding of the association between estrogen and the risk factors for HFpEF, thus helping explore potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Jun Du
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiaqi Liu
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Sipan Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
2
|
Li S, Li Q, Xiang H, Wang C, Zhu Q, Ruan D, Zhu YZ, Mao Y. H 2S Donor SPRC Ameliorates Cardiac Aging by Suppression of JMJD3, a Histone Demethylase. Antioxid Redox Signal 2025; 42:301-320. [PMID: 39212692 DOI: 10.1089/ars.2024.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results: In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases. Antioxid. Redox Signal. 42, 301-320.
Collapse
Affiliation(s)
- Sha Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qixiu Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenye Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Danping Ruan
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yicheng Mao
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Oyebola K, Ligali F, Owoloye A, Erinwusi B, Alo Y, Musa AZ, Aina O, Salako B. Machine Learning-Based Hyperglycemia Prediction: Enhancing Risk Assessment in a Cohort of Undiagnosed Individuals. JMIRX MED 2024; 5:e56993. [PMID: 39263921 PMCID: PMC11441453 DOI: 10.2196/56993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 09/13/2024]
Abstract
Background Noncommunicable diseases continue to pose a substantial health challenge globally, with hyperglycemia serving as a prominent indicator of diabetes. Objective This study employed machine learning algorithms to predict hyperglycemia in a cohort of individuals who were asymptomatic and unraveled crucial predictors contributing to early risk identification. Methods This dataset included an extensive array of clinical and demographic data obtained from 195 adults who were asymptomatic and residing in a suburban community in Nigeria. The study conducted a thorough comparison of multiple machine learning algorithms to ascertain the most effective model for predicting hyperglycemia. Moreover, we explored feature importance to pinpoint correlates of high blood glucose levels within the cohort. Results Elevated blood pressure and prehypertension were recorded in 8 (4.1%) and 18 (9.2%) of the 195 participants, respectively. A total of 41 (21%) participants presented with hypertension, of which 34 (83%) were female. However, sex adjustment showed that 34 of 118 (28.8%) female participants and 7 of 77 (9%) male participants had hypertension. Age-based analysis revealed an inverse relationship between normotension and age (r=-0.88; P=.02). Conversely, hypertension increased with age (r=0.53; P=.27), peaking between 50-59 years. Of the 195 participants, isolated systolic hypertension and isolated diastolic hypertension were recorded in 16 (8.2%) and 15 (7.7%) participants, respectively, with female participants recording a higher prevalence of isolated systolic hypertension (11/16, 69%) and male participants reporting a higher prevalence of isolated diastolic hypertension (11/15, 73%). Following class rebalancing, the random forest classifier gave the best performance (accuracy score 0.89; receiver operating characteristic-area under the curve score 0.89; F1-score 0.89) of the 26 model classifiers. The feature selection model identified uric acid and age as important variables associated with hyperglycemia. Conclusions The random forest classifier identified significant clinical correlates associated with hyperglycemia, offering valuable insights for the early detection of diabetes and informing the design and deployment of therapeutic interventions. However, to achieve a more comprehensive understanding of each feature's contribution to blood glucose levels, modeling additional relevant clinical features in larger datasets could be beneficial.
Collapse
Affiliation(s)
- Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Centre for Genomic Research in Biomedicine, Mountain Top University, Ibafo, Nigeria
| | - Funmilayo Ligali
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Centre for Genomic Research in Biomedicine, Mountain Top University, Ibafo, Nigeria
| | - Afolabi Owoloye
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Centre for Genomic Research in Biomedicine, Mountain Top University, Ibafo, Nigeria
| | - Blessing Erinwusi
- Centre for Genomic Research in Biomedicine, Mountain Top University, Ibafo, Nigeria
| | - Yetunde Alo
- Centre for Genomic Research in Biomedicine, Mountain Top University, Ibafo, Nigeria
| | | | | | | |
Collapse
|
4
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
5
|
Grigorian Shamagian L, Rogers RG, Luther K, Angert D, Echavez A, Liu W, Middleton R, Antes T, Valle J, Fourier M, Sanchez L, Jaghatspanyan E, Mariscal J, Zhang R, Marbán E. Rejuvenating effects of young extracellular vesicles in aged rats and in cellular models of human senescence. Sci Rep 2023; 13:12240. [PMID: 37507448 PMCID: PMC10382547 DOI: 10.1038/s41598-023-39370-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Rejuvenation of an old organism was achieved in heterochronic parabiosis experiments, implicating different soluble factors in this effect. Extracellular vesicles (EVs) are the secretory effectors of many cells, including cardiosphere-derived cells (CDCs) with demonstrated anti-senescent effect. 1. To determine the role of EVs (versus other blood fractions) on the rejuvenating effect of the young blood. 2. To evaluate the anti-aging properties of therapeutically administered EVs secreted by young-CDCs in an old organism. Neonatal blood fractioned in 4 components (whole blood, serum, EV-depleted serum and purified EVs) was used to treat old human cardiac stromal cells (CSPCs). CDCs were generated from neonatal rat hearts and the secreted CDC-EVs were purified. CDC-EVs were then tested in naturally-aged rats, using monthly injections over 4-months period. For validation in human samples, pediatric CDC-EVs were tested in aged human CSPCs and progeric fibroblasts. While the purified EVs reproduced the rejuvenating effects of the whole blood, CSPCs treated with EV-depleted serum exhibited the highest degree of senescence. Treatment with young CDC-EVs induce structural and functional improvements in the heart, lungs, skeletal muscle, and kidneys of old rats, while favorably modulating glucose metabolism and anti-senescence pathways. Lifespan was prolonged. EVs secreted by young CDCs exert broad-ranging anti-aging effects in aged rodents and in cellular models of human senescence. Our work not only identifies CDC-EVs as possible therapeutic candidates for a wide range of age-related pathologies, but also raises the question of whether EVs function as endogenous modulators of senescence.
Collapse
Affiliation(s)
- Lilian Grigorian Shamagian
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA.
- Servicio de Cardiología, Hospital Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, c/O'Donnell 48-50 (planta -1), 28009, Madrid, Spain.
- CIBERCV, ISCIII, Madrid, Spain.
| | - Russell G Rogers
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Kristin Luther
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - David Angert
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Antonio Echavez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Ryan Middleton
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Travis Antes
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Mario Fourier
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Liz Sanchez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eva Jaghatspanyan
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Javier Mariscal
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
6
|
Bencurova M, Lysikova T, Leskova Majdova K, Kaplan P, Racay P, Lehotsky J, Tatarkova Z. Age-Dependent Changes in Calcium Regulation after Myocardial Ischemia-Reperfusion Injury. Biomedicines 2023; 11:biomedicines11041193. [PMID: 37189811 DOI: 10.3390/biomedicines11041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
During aging, heart structure and function gradually deteriorate, which subsequently increases susceptibility to ischemia-reperfusion (IR). Maintenance of Ca2+ homeostasis is critical for cardiac contractility. We used Langendorff's model to monitor the susceptibility of aging (6-, 15-, and 24-month-old) hearts to IR, with a specific focus on Ca2+-handling proteins. IR, but not aging itself, triggered left ventricular changes when the maximum rate of pressure development decreased in 24-month-olds, and the maximum rate of relaxation was most affected in 6-month-old hearts. Aging caused a deprivation of Ca2+-ATPase (SERCA2a), Na+/Ca2+ exchanger, mitochondrial Ca2+ uniporter, and ryanodine receptor contents. IR-induced damage to ryanodine receptor stimulates Ca2+ leakage in 6-month-old hearts and elevated phospholamban (PLN)-to-SERCA2a ratio can slow down Ca2+ reuptake seen at 2-5 μM Ca2+. Total and monomeric PLN mirrored the response of overexpressed SERCA2a after IR in 24-month-old hearts, resulting in stable Ca2+-ATPase activity. Upregulated PLN accelerated inhibition of Ca2+-ATPase activity at low free Ca2+ in 15-month-old after IR, and reduced SERCA2a content subsequently impairs the Ca2+-sequestering capacity. In conclusion, our study suggests that aging is associated with a significant decrease in the abundance and function of Ca2+-handling proteins. However, the IR-induced damage was not increased during aging.
Collapse
Affiliation(s)
- Maria Bencurova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Durak A, Turan B. Liraglutide provides cardioprotection through the recovery of mitochondrial dysfunction and oxidative stress in aging hearts. J Physiol Biochem 2022:10.1007/s13105-022-00939-9. [PMID: 36515811 DOI: 10.1007/s13105-022-00939-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular dysfunction via the pleiotropic effects behind their receptor action. However, it is unknown whether they have a cardioprotective action in the hearts of the elderly. Therefore, we examined the effects of GLP-1R agonist liraglutide treatment (LG, 4 weeks) on the systemic parameters of aged rats (24-month-old) compared to those of adult rats (6-month-old) such as electrocardiograms (ECGs) and systolic and diastolic blood pressure (SBP and DBP). At the cellular level, the action potential (AP) parameters, ionic currents, and Ca2+ regulation were examined in freshly isolated ventricular cardiomyocytes. The LG treatment of aged rats significantly ameliorated the prolongation of QRS duration and increased both SBP and DBP together with recovery in plasma oxidant and antioxidant statuses. The prolonged AP durations and depolarized membrane potentials of the isolated cardiomyocytes from the aged rats were normalized via recoveries in K+ channel currents with LG treatment. The alterations in Ca2+ regulation including leaky-ryanodine receptors (RyR2) could be also ameliorated via recoveries in Na+/Ca2+ exchanger currents with this treatment. A direct LG treatment of isolated aged rat cardiomyocytes could recover the depolarized mitochondrial membrane potential, the increase in both reactive oxygen and nitrogen species (ROS and RNS), and the cytosolic Na+ level, although the Na+ channel currents were not affected by aging. Interestingly, LG treatment of aged rat cardiomyocytes provided a significant inhibition of activated sodium-glucose co-transporter-2 (SGLT2) and recoveries in the depressed insulin receptor substrate 1 (IRS1) and increased protein kinase G (PKG). The recovery in the ratio of phospho-endothelial nitric oxide (pNOS3) level to NOS3 protein level in LG-treated cardiomyocytes implies the involvement of LG-associated inhibition of oxidative stress-induced injury via IRS1-eNOS-PKG pathway in the aging heart. Overall, our data, for the first time, provide important information on the direct cardioprotective effects of GLP-1R agonism with LG in the hearts of aged rats through an examination of recoveries in mitochondrial dysfunction, and both levels of ROS and RNS in left ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Aysegul Durak
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Lokman Hekim University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
8
|
Mackert O, Wirth EK, Sun R, Winkler J, Liu A, Renko K, Kunz S, Spranger J, Brachs S. Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption. Mol Metab 2022; 64:101563. [PMID: 35944898 PMCID: PMC9418990 DOI: 10.1016/j.molmet.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.
Collapse
Affiliation(s)
- Olena Mackert
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Rongwan Sun
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Jennifer Winkler
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Aoxue Liu
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
9
|
Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol 2022; 19:250-264. [PMID: 34667279 DOI: 10.1038/s41569-021-00624-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. .,IHU LIRYC and Fondation Bordeaux, Université Bordeaux, Bordeaux, France.
| |
Collapse
|
10
|
Herbst A, Hoang A, Kim C, Aiken JM, McKenzie D, Goldwater DS, Wanagat J. Metformin Treatment in Old Rats and Effects on Mitochondrial Integrity. Rejuvenation Res 2021; 24:434-440. [PMID: 34779265 DOI: 10.1089/rej.2021.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metformin, a commonly used well-tolerated treatment for type 2 diabetes, is being deployed in clinical trials to ameliorate aging in older nondiabetic humans. Concerningly, some experiments in model organisms have suggested that metformin use at old ages shortens life span and is toxic to mitochondria. The demonstrated safety of metformin therapy in humans and the conflicting data from model organisms compelled us to test the hypothesis that metformin treatment would be toxic to older rats. To define an effective dose in 30-month-old hybrid rats, we evaluated two doses of metformin (0.1%, 0.75% of the diet) and treated the rats for 4 months. Body mass decreased at the 0.75% dose. Neither dose affected mortality between 30 and 34 months of age. We assessed mitochondrial integrity by measuring mitochondrial DNA (mtDNA) copy number and deletion mutation frequency, and mitochondrial respiration in skeletal muscle and the heart. In skeletal muscle, we observed no effect of metformin on quadriceps mass, mtDNA copy number, or deletion frequency. In the heart, metformin-treated rats had higher mtDNA copy number, lower cardiac mass, with no change in mtDNA deletion frequency. Metformin treatment resulted in lower mitochondrial complex I-dependent respiration in the heart. We found that, in old rats, metformin did not compromise mtDNA integrity, did not affect mortality, and may have cardiac benefits. These data provide some reassurance that a metformin intervention in aged mammals is not toxic at appropriate doses.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Deena S Goldwater
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
11
|
Kasanga EA, Little J, McInnis TR, Bugnariu N, Cunningham JT, Salvatore MF. Cardiovascular Metrics Associated With Prevention of Aging-Related Parkinsonian Signs Following Exercise Intervention in Sedentary Older Rats. Front Aging Neurosci 2021; 13:775355. [PMID: 34975456 PMCID: PMC8714671 DOI: 10.3389/fnagi.2021.775355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Joel Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Tamara R McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicoleta Bugnariu
- School of Health Sciences, University of the Pacific, Sacramento, CA, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
12
|
Boldt K, Joumaa V, MacDonald G, Rios JL, Herzog W. Cardiac ventricular muscle mechanical properties through the first year of life in Sprague-Dawley rats. Mech Ageing Dev 2020; 192:111359. [PMID: 32956701 DOI: 10.1016/j.mad.2020.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Advanced age has been shown to result in decreased compliance, shortening velocity, and calcium sensitivity of the heart muscle. Even though cardiac health has been studied extensively in elderly populations, relatively little is known about cardiac health and age for the first part of adulthood. The purpose of this study was to compare cardiac contractile properties across the first year of life in rats (between 17-53 weeks), corresponding to early to mid-adulthood. Hearts were harvested from rats aged 17-, 24-, 36-, and 53-weeks. Skinned cardiac trabecular fibre bundle testing was used to evaluate active and passive force properties, maximum shortening velocity, calcium sensitivity, and myosin heavy chain isoforms. Maximum active stress production was not different between age groups. Calcium sensitivity increased progressively, while shortening velocity remained unchanged after an increase from 17-and 24-weeks. Passive stiffness decreased between 17- and 24-weeks, but then increased progressively through to 53-weeks. Thus, many of the observed detrimental changes in systolic function (reduced shortening velocity and calcium sensitivity) associated with aging, do not seem to occur in early to mid-adulthood, while early signs of increased diastolic stiffness manifest within 53 weeks of age and may represent a first sign of decreasing heart function and health.
Collapse
Affiliation(s)
- Kevin Boldt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Graham MacDonald
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
13
|
Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res 2020; 222:41-55. [PMID: 32289256 PMCID: PMC7721117 DOI: 10.1016/j.trsl.2020.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. For these reasons, research groups and drug companies have identified fibrosis as a therapeutic target for which currently, there are essentially no effective options. Although a limited body of published studies are available, most literature indicates that in multiple organs, premenopausal women are protected from developing severe forms of fibrosis suggesting an important role for sex hormones in mitigating this process. Investigators have implemented relevant animal models of organ disease linked to fibrosis supporting in general, these observations. In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, California
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, California; VA San Diego Health Care, San Diego, California.
| |
Collapse
|
14
|
Dong M, Yang Z, Fang H, Xiang J, Xu C, Zhou Y, Wu Q, Liu J. Aging Attenuates Cardiac Contractility and Affects Therapeutic Consequences for Myocardial Infarction. Aging Dis 2020; 11:365-376. [PMID: 32257547 PMCID: PMC7069457 DOI: 10.14336/ad.2019.0522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac function of the human heart changes with age. The age-related change of systolic function is subtle under normal conditions, but abrupt under stress or in a pathogenesis state. Aging decreases the cardiac tolerance to stress and increases susceptibility to ischemia, which caused by aging-induced Ca2+ transient impairment and metabolic dysfunction. The changes of contractility proteins and the relative molecules are in a non-linear fashion. Specifically, the expression and activation of cMLCK increase first then fall during ischemia and reperfusion (I/R). This change is responsible for the nonmonotonic contractility alteration in I/R which the underlying mechanism is still unclear. Contractility recovery in I/R is also attenuated by age. The age-related change in cardiac contractility influences the therapeutic effect and intervention timepoint. For most cardiac ischemia therapies, the therapeutic result in the elderly is not identical to the young. Anti-aging treatment has the potential to prevent the development of ischemic injury and improves cardiac function. In this review we discuss the mechanism underlying the contractility changes in the aged heart and age-induced ischemic injury. The potential mechanism underlying the increased susceptibility to ischemic injury in advanced age is highlighted. Furthermore, we discuss the effect of age and the administration time for intervention in cardiac ischemia therapies.
Collapse
Affiliation(s)
- Ming Dong
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Ziyi Yang
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Hongcheng Fang
- Shenzhen Shajing Hospital, Affiliated of Guangzhou Medical University, Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Cong Xu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Yanqing Zhou
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Qianying Wu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| | - Jie Liu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Guangdong, China
| |
Collapse
|
15
|
Nakayama S, Koie H, Pai C, Ito-Fujishiro Y, Kanayama K, Sankai T, Yasutomi Y, Ageyama N. Echocardiographic evaluation of cardiac function in cynomolgus monkeys over a wide age range. Exp Anim 2020; 69:336-344. [PMID: 32173671 PMCID: PMC7445060 DOI: 10.1538/expanim.19-0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various cardiovascular diseases can be detected and diagnosed using echocardiography. The
demand for cardiovascular system research using nonhuman primates is increasing, but
echocardiographic references for nonhuman primates are limited. This report describes the
first comparison of echocardiographic reference values in 247 normal cynomolgus monkeys
(135 females, 112 males) over a wide age range. Echocardiography, electrocardiography,
blood pressure and chest X-ray images were acquired under immobilization with
intramuscular ketamine hydrochloride, then cardiac structure, function, and flow velocity
were assessed. Cardiac hormone levels were also tested. We found that cardiac structures
positively correlated with weight, that the size of these structures stabilized after
reaching maturity and that cardiac output increased according to heart size. In contrast,
fractional shortening of the left ventricle, ejection fraction and flow velocity showed no
significant correlations with weight or age, and age and E wave correlated negatively.
These findings appear sufficiently similar to those in humans to suggest that cynomolgus
monkeys can serve as a suitable model of human cardiac disease. Our data should also prove
useful for surveying cardiac dysfunction in monkeys.
Collapse
Affiliation(s)
- Shunya Nakayama
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Chungyu Pai
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yasuyo Ito-Fujishiro
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Kiichi Kanayama
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.,Mie University Graduate School of Medicine, Department of Molecular and Experimental Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| |
Collapse
|
16
|
Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn 2+ Levels with Re-Distribution of Zn 2+-Transporters in Aged Rat Cardiomyocytes. Int J Mol Sci 2019; 20:ijms20153783. [PMID: 31382470 PMCID: PMC6695787 DOI: 10.3390/ijms20153783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Aging is an important risk factor for cardiac dysfunction. Heart during aging exhibits a depressed mechanical activity, at least, through mitochondria-originated increases in ROS. Previously, we also have shown a close relationship between increased ROS and cellular intracellular free Zn2+ ([Zn2+]i) in cardiomyocytes under pathological conditions as well as the contribution of some re-expressed levels of Zn2+-transporters for redistribution of [Zn2+]i among suborganelles. Therefore, we first examined the cellular (total) [Zn2+] and then determined the protein expression levels of Zn2+-transporters in freshly isolated ventricular cardiomyocytes from 24-month rat heart compared to those of 6-month rats. The [Zn2+]i in the aged-cardiomyocytes was increased, at most, due to increased ZIP7 and ZnT8 with decreased levels of ZIP8 and ZnT7. To examine redistribution of the cellular [Zn2+]i among suborganelles, such as Sarco/endoplasmic reticulum, S(E)R, and mitochondria ([Zn2+]SER and [Zn2+]Mit), a cell model (with galactose) to mimic the aged-cell in rat ventricular cell line H9c2 was used and demonstrated that there were significant increases in [Zn2+]Mit with decreases in [Zn2+]SER. In addition, the re-distribution of these Zn2+-transporters were markedly changed in mitochondria (increases in ZnT7 and ZnT8 with no changes in ZIP7 and ZIP8) and S(E)R (increase in ZIP7 and decrease in ZnT7 with no changes in both ZIP8 and ZnT8) both of them isolated from freshly isolated ventricular cardiomyocytes from aged-rats. Furthermore, we demonstrated that cellular levels of ROS, both total and mitochondrial lysine acetylation (K-Acetylation), and protein-thiol oxidation were significantly high in aged-cardiomyocytes from 24-month old rats. Using a mitochondrial-targeting antioxidant, MitoTEMPO (1 µM, 5-h incubation), we provided an important data associated with the role of mitochondrial-ROS production in the [Zn2+]i-dyshomeostasis of the ventricular cardiomyocytes from 24-month old rats. Overall, our present data, for the first time, demonstrated that a direct mitochondria-targeting antioxidant treatment can be a new therapeutic strategy during aging in the heart through a well-controlled [Zn2+] distribution among cytosol and suborganelles with altered expression levels of the Zn2+-transporters.
Collapse
|
17
|
Abstract
The objective of the present study is to evaluate the effect of epigallocatechin gallate (EGCG) on aging-mediated cardiac hypertrophy, fibrosis, and apoptosis. The Wistar albino rats were divided into 4 groups (n = 18). Group I: young (3 months), group II: aged (24-26 months), group III: aged + EGCG (200 mg/kg for 30 days), and group IV: young + EGCG. At the end of 30 days, EGCG administration to the aged animals showed significant (P < 0.001) reduction of low-density lipoprotein, very low-density lipoprotein, triglyceride, total cholesterol with concomitant increase of high-density lipoprotein (P < 0.001) when compared with aged rats. Increased (P < 0.001) heart volume, weight with concomitant increase of left ventricular wall thickness, and reduced ventricular cavity were observed in aged rats supplemented with EGCG compared with aged animals. Histology and histomorphometry study of aged animals treated with EGCG showed marked increases in the diameter and volume of cardiomyocytes with concomitant reduction of numerical density when compared with aged animals. Reduced reactive oxygen species (P < 0.001) production with association of increased antioxidant defense system (P < 0.001) in aged hearts supplemented with EGCG when compared with aged animals. TUNEL staining and fibrosis showed a marked increase in apoptotic cell death (P < 0.001) and collagen deposition (P < 0.001) in aged animals treated with EGCG when compared with aged animals. Aged animals treated with EGCG showed a marked increase in protein expression of TGFβ, TNFα, and nuclear factor kappa B (NF-κB) and significant (P < 0.001) alteration in the gene expression of TGFβ, TNFα, NF-κB, α-SMA, and Nrf2 when compared with aged animals. Taken together, it is evident that EGCG may potentially inhibit aging-induced cardiac hypertrophy, fibrosis, and apoptosis, thereby preserving cardiac function. The proposed mechanism would be inhibition of reactive oxygen species-dependent activation of TGFβ1, TNFα, and NF-κB signaling pathway. Hence, the present study suggests that EGCG can be useful to fight against aging-induced cardiac hypertrophy, fibrosis, and apoptosis.
Collapse
|
18
|
Turan B. A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart. Biol Trace Elem Res 2019; 188:160-176. [PMID: 30091070 DOI: 10.1007/s12011-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
19
|
Bustamante M, Garate-Carrillo A, R Ito B, Garcia R, Carson N, Ceballos G, Ramirez-Sanchez I, Omens J, Villarreal F. Unmasking of oestrogen-dependent changes in left ventricular structure and function in aged female rats: a potential model for pre-heart failure with preserved ejection fraction. J Physiol 2019; 597:1805-1817. [PMID: 30681142 DOI: 10.1113/jp277479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is seen more frequently in older women; risk factors include age, hypertension and excess weight. No female animal models of early stage remodelling (pre-HFpEF) have examined the effects that the convergence of such factors have on cardiac structure and function. In this study, we demonstrate that ageing can lead to the development of mild chamber remodelling, diffuse fibrosis and loss of diastolic function. The loss of oestrogens further aggravates such changes by leading to a notable drop in cardiac output (while preserving normal ejection fraction) in the presence of diffuse fibrosis that is more predominant in endocardium and is accompanied by papillary fibrosis. Excess weight did not markedly aggravate such findings. This animal model recapitulates many of the features recognized in older, female HFpEF patients and thus, may serve to examine the effects of candidate therapeutic agents. ABSTRACT Two-thirds of patients with heart failure with preserved ejection fraction (HFpEF) are older women, and risk factors include hypertension and excess weight/obesity. Pathophysiological factors that drive early disease development (before heart failure ensues) remain obscure and female animal models are lacking. The study evaluated the intersecting roles of ageing, oestrogen depletion and excess weight on altering cardiac structure/function. Female, 18-month-old, Fischer F344 rats were divided into an aged group, aged + ovariectomy (OVX) and aged + ovariectomy + 10% fructose (OVF) in drinking water (n = 8-16/group) to induce weight gain. Left ventricular (LV) structure/function was monitored by echocardiography. At 22 months of age, animals were anaesthetized and catheter-based haemodynamics evaluated, followed by histological measures of chamber morphometry and collagen density. All aged animals developed hypertension. OVF animals increased body weight. Echocardiography only detected mild chamber remodelling with ageing while intraventricular pressure-volume loop analysis showed significant (P < 0.05) decreases vs. ageing in stroke volume (13% OVX and 15% for OVF), stroke work (34% and 52%) and cardiac output (29% and 27%), and increases in relaxation time (10% OVX) with preserved ejection fraction. Histology indicated papillary and interstitial fibrosis with ageing, which was higher in the endocardium of OVX and OVF groups. With ageing, ovariectomy leads to the loss of diastolic and global LV function while preserving ejection fraction. This model recapitulates many cardiovascular features present in HFpEF patients and may help understand the roles that ageing and oestrogen depletion play in early (pre-HFpEF) disease development.
Collapse
Affiliation(s)
- Moises Bustamante
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Bruce R Ito
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ricardo Garcia
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Bristol-Myers Squibb, New York, NY, USA
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Jeffrey Omens
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
20
|
Marques FZ, Chu PY, Ziemann M, Kaspi A, Kiriazis H, Du XJ, El-Osta A, Kaye DM. Age-Related Differential Structural and Transcriptomic Responses in the Hypertensive Heart. Front Physiol 2018; 9:817. [PMID: 30038575 PMCID: PMC6046461 DOI: 10.3389/fphys.2018.00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 01/20/2023] Open
Abstract
While aging is a critical risk factor for heart failure, it remains uncertain whether the aging heart responds differentially to a hypertensive stimuli. Here we investigated phenotypic and transcriptomic differences between the young and aging heart using a mineralocorticoid-excess model of hypertension. Ten-week (“young”) and 36-week (“aging”) mice underwent a unilateral uninephrectomy with deoxycorticosterone acetate (DOCA) pellet implantation (n = 6–8/group) and were followed for 6 weeks. Cardiac structure and function, blood pressure (BP) and the cardiac transcriptome were subsequently examined. Young and aging DOCA mice had high BP, increased cardiac mass, cardiac hypertrophy, and fibrosis. Left ventricular end-diastolic pressure increased in aging DOCA-treated mice in contrast to young DOCA mice. Interstitial and perivascular fibrosis occurred in response to DOCA, but perivascular fibrosis was greater in aging mice. Transcriptomic analysis showed that young mice had features of higher oxidative stress, likely due to activation of the respiratory electron transport chain. In contrast, aging mice showed up-regulation of collagen formation in association with activation of innate immunity together with markers of inflammation including cytokine and platelet signaling. In comparison to younger mice, aging mice demonstrated different phenotypic and molecular responses to hypertensive stress. These findings have potential implications for the pathogenesis of age-related forms of cardiovascular disease, particularly heart failure.
Collapse
Affiliation(s)
- Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Po-Yin Chu
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Monash University, Melbourne, VIC, Australia.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Heart Centre, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Chung E, Haizlip KM, Leinwand LA. Pregnancy late in rodent life has detrimental effects on the heart. Am J Physiol Heart Circ Physiol 2018; 315:H482-H491. [PMID: 29750565 DOI: 10.1152/ajpheart.00020.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During pregnancy, the heart undergoes significant and numerous changes, including hypertrophy, that are usually described as physiological and reversible. Two aspects of the cardiac response to pregnancy are relatively understudied: advanced maternal age and multiple pregnancies (multiparity). Repeated breeder (RB) mice that have undergone five to seven consecutive pregnancies were euthanized 21 days after the weaning of their last pups and compared with age-matched primiparous, one-time pregnant (O1P) mice. The ages of the older mouse groups were similar (12 ± 1 mo). Pregnancy at a later age resulted in reduced fertility (40%); resorption was 29%, maternal mortality was 10%, and mortality of the pups was 17%. Contractile function as indicated by percent fractional shortening was significantly decreased in O1P and RB groups compared with the old nonpregnant control (ONP) group. There was no pathological induction of the fetal program of gene expression, with the exception of β-myosin heavy chain mRNA, which was induced in O1P compared with ONP mice ( P < 0.05) but not in RB mice. MicroRNA-208a was significantly increased in O1P compared with ONP mice ( P < 0.05) but significantly decreased in RB compared with ONP mice ( P < 0.05). mRNA of genes regulating angiogenesis (i.e., vascular endothelial growth factor-A) were significantly downregulated, whereas proinflammatory genes [i.e., interleukin-6, chemokine (C-C motif) ligand 2, and Cd36] were significantly upregulated in O1P ( P < 0.05) but not in RB mice. Overall, our results suggest that rather than multiparity, pregnancy in advanced age is a much more stressful event in both pregnant dams and fetuses, as evidenced by increased mortality, lower fertility, downregulation of angiogenesis, upregulation of inflammation, and cardiac dysfunction. NEW & NOTEWORTHY Pregnancy in older mice significantly decreases cardiac function, although repeated breeder mice demonstrated increased wall hypertrophy and dilated chamber size compared with one-time pregnant mice. Interestingly, many of the molecular changes were altered in one-time pregnant mice but not in repeated breeder mice, which may contribute to adverse pregnancy outcomes in a first pregnancy at a later age.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Kaylan M Haizlip
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado , Boulder, Colorado
| |
Collapse
|
22
|
Oliveira-Junior SA, Martinez PF, Fan WYC, Nakatani BT, Pagan LU, Padovani CR, Cicogna AC, Okoshi MP, Okoshi K. Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget 2018; 8:26100-26105. [PMID: 28212534 PMCID: PMC5432241 DOI: 10.18632/oncotarget.15320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These relationships underwent validation by performing echocardiograms on additional rats (n = 43, BW: 300-600 g) and testing whether results were within confidence intervals of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) animals, respectively, within the 95% confidence intervals. CONCLUSIONS Increase in cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.
Collapse
Affiliation(s)
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - William Y C Fan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Bruno T Nakatani
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carlos R Padovani
- Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Antonio C Cicogna
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
23
|
Barton GP, de Lange WJ, Ralphe JC, Aiken J, Diffee G. Linking metabolic and contractile dysfunction in aged cardiac myocytes. Physiol Rep 2017; 5:5/20/e13485. [PMID: 29084842 PMCID: PMC5661240 DOI: 10.14814/phy2.13485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with declining cardiac contractile function as well as changes in metabolism and mitochondrial function. The relationship between age‐related changes in cardiac metabolism and declining cardiac contractile function has not been determined. In order to define the role energetics play in changes in contractile function, we measured mitochondrial NADH, [NADH]m, during continuous contractions of isolated left ventricular myocytes from young (Y) and old (O) FBN rats. Second, we explored the role of metabolic disruption with rotenone and increased workload with isoproterenol (ISO) had on age‐related changes in myocytes shortening. Single, intact myocytes were stimulated for 10 min of continuous contraction at either 2 Hz or 4 Hz while being perfused with Ringer's solution. Properties of shortening (peak shortening and rate of shortening) were measured at the onset (T0) and after 10 min (T10) of continuous contraction, and the decline in shortening over time (T10/T0) was determined. Although young and old myocytes had similar contractile function under resting conditions, old myocytes demonstrated decrements in [NADH]m during continuous stimulation, while young myocytes maintained constant [NADH]m over this time. In addition, old myocytes exhibited impaired contractile function to a workload (ISO) and metabolic (rotenone) stress compared to young myocytes. Taken together, these results demonstrated that old myocytes are susceptible to stress‐induced contractile dysfunction which may be related to altered cellular energetics.
Collapse
Affiliation(s)
- Gregory P Barton
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - John C Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Judd Aiken
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Diffee
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
24
|
Patel JR, Barton GP, Braun RK, Goss KN, Haraldsdottir K, Hopp A, Diffee G, Hacker TA, Moss RL, Eldridge MW. Altered Right Ventricular Mechanical Properties Are Afterload Dependent in a Rodent Model of Bronchopulmonary Dysplasia. Front Physiol 2017; 8:840. [PMID: 29118720 PMCID: PMC5660986 DOI: 10.3389/fphys.2017.00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/09/2017] [Indexed: 02/02/2023] Open
Abstract
Infants born premature are at increased risk for development of bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), and ultimately right ventricular (RV) dysfunction, which together carry a high risk of neonatal mortality. However, the role alveolar simplification and abnormal pulmonary microvascular development in BPD affects RV contractile properties is unknown. We used a rat model of BPD to examine the effect of hyperoxia-induced PH on RV contractile properties. We measured in vivo RV pressure as well as passive force, maximum Ca2+ activated force, calcium sensitivity of force (pCa50) and rate of force redevelopment (ktr) in RV skinned trabeculae isolated from hearts of 21-and 35-day old rats pre-exposed to 21% oxygen (normoxia) or 85% oxygen (hyperoxia) for 14 days after birth. Systolic and diastolic RV pressure were significantly higher at day 21 in hyperoxia exposed rats compared to normoxia control rats, but normalized by 35 days of age. Passive force, maximum Ca2+ activated force, and calcium sensitivity of force were elevated and cross-bridge cycling kinetics depressed in 21-day old hyperoxic trabeculae, whereas no differences between normoxic and hyperoxic trabeculae were seen at 35 days. Myofibrillar protein analysis revealed that 21-day old hyperoxic trabeculae had increased levels of beta-myosin heavy chain (β-MHC), atrial myosin light chain 1 (aMLC1; often referred to as essential light chain), and slow skeletal troponin I (ssTnI) compared to age matched normoxic trabeculae. On the other hand, 35-day old normoxic and hyperoxic trabeculae expressed similar level of α- and β-MHC, ventricular MLC1 and predominantly cTnI. These results suggest that neonatal exposure to hyperoxia increases RV afterload and affect both the steady state and dynamic contractile properties of the RV, likely as a result of hyperoxia-induced expression of β-MHC, delayed transition of slow skeletal TnI to cardiac TnI, and expression of atrial MLC1. These hyperoxia-induced changes in contractile properties are reversible and accompany the resolution of PH with further developmental age, underscoring the importance of reducing RV afterload to allow for normalization of RV function in both animal models and humans with BPD.
Collapse
Affiliation(s)
- Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory P Barton
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kara N Goss
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristin Haraldsdottir
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexandria Hopp
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gary Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
25
|
Goss KN, Kumari S, Tetri LH, Barton G, Braun RK, Hacker TA, Eldridge MW. Postnatal Hyperoxia Exposure Durably Impairs Right Ventricular Function and Mitochondrial Biogenesis. Am J Respir Cell Mol Biol 2017; 56:609-619. [PMID: 28129517 PMCID: PMC5449491 DOI: 10.1165/rcmb.2016-0256oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
Prematurity complicates 12% of births, and young adults with a history of prematurity are at risk to develop right ventricular (RV) hypertrophy and impairment. The long-term risk for pulmonary vascular disease, as well as mechanisms of RV dysfunction and ventricular-vascular uncoupling after prematurity, remain poorly defined. Using an established model of prematurity-related lung disease, pups from timed-pregnant Sprague Dawley rats were randomized to normoxia or hyperoxia (fraction of inspired oxygen, 0.85) exposure for the first 14 days of life. After aging to 1 year in standard conditions, rats underwent hemodynamic assessment followed by tissue harvest for biochemical and histological evaluation. Aged hyperoxia-exposed rats developed significantly greater RV hypertrophy, associated with a 40% increase in RV systolic pressures. Although cardiac index was similar, hyperoxia-exposed rats demonstrated a reduced RV ejection fraction and significant RV-pulmonary vascular uncoupling. Hyperoxia-exposed RV cardiomyocytes demonstrated evidence of mitochondrial dysregulation and mitochondrial DNA damage, suggesting potential mitochondrial dysfunction as a cause of RV dysfunction. Aged rats exposed to postnatal hyperoxia recapitulate many features of young adults born prematurely, including increased RV hypertrophy and decreased RV ejection fraction. Our data suggest that postnatal hyperoxia exposure results in mitochondrial dysregulation that persists into adulthood with eventual RV dysfunction. Further evaluation of long-term mitochondrial function is warranted in both animal models of premature lung disease and in human adults who were born preterm.
Collapse
MESH Headings
- Aging/pathology
- Animals
- Animals, Newborn
- Autophagy
- Body Weight
- DNA Damage
- DNA, Mitochondrial/metabolism
- Female
- Fibrosis
- Gene Expression Profiling
- Hemodynamics
- Hyperoxia/complications
- Hyperoxia/diagnostic imaging
- Hyperoxia/metabolism
- Hyperoxia/physiopathology
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size
- Organelle Biogenesis
- Rats, Sprague-Dawley
- Ventricular Function, Right
Collapse
Affiliation(s)
- Kara N. Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Rankin Laboratory of Pulmonary Medicine, and
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Rankin Laboratory of Pulmonary Medicine, and
| | - Laura H. Tetri
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Greg Barton
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Rudolf K. Braun
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| | - Timothy A. Hacker
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Marlowe W. Eldridge
- Division of Pediatric Critical Care, Department of Pediatrics
- Rankin Laboratory of Pulmonary Medicine, and
| |
Collapse
|
26
|
Ballmann C, Denney T, Beyers RJ, Quindry T, Romero M, Selsby JT, Quindry JC. Long-term dietary quercetin enrichment as a cardioprotective countermeasure in mdx mice. Exp Physiol 2017; 102:635-649. [PMID: 28192862 DOI: 10.1113/ep086091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain-dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn-/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn-/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin-fed mice. Duchenne muscular dystrophy causes a decline in cardiac health, resulting in premature mortality. As a potential countermeasure, quercetin is a polyphenol possessing inherent anti-inflammatory and antioxidant effects that activate proliferator-activated γ coactivator 1α (PGC-1α), increasing the abundance of mitochondrial biogenesis proteins. We investigated the extent to which lifelong 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in mdx mice. Dystrophic animals were fed a quercetin-enriched or control diet for 12 months, while control C57 mice were fed a control diet. Cardiac function was assessed via 7 T magnetic resonance imaging at 2, 10 and 14 months. At 14 months, hearts were harvested for histology and Western blotting. The results indicated an mdx strain-dependent decline in cardiac performance at 14 months and that dietary quercetin enrichment did not attenuate functional losses. In contrast, histological analyses provided evidence that quercetin feeding was associated with decreased fibronectin and indirect damage indices (Haematoxylin and Eosin) compared with untreated mdx mice. Dietary quercetin enrichment increased cardiac protein abundance of PGC-1α, cytochrome c, electron transport chain complexes I-V, citrate synthase, superoxide dismutase 2 and glutathione peroxidase (GPX) versus untreated mdx mice. The protein abundance of the inflammatory markers nuclear factor-κB, phosphorylated nuclear factor kappa beta (P-NFκB) and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (P-IKBα) was decreased by quercetin compared with untreated mdx mice, while preserving nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha( IKBα) compared with mdx mice. Furthermore, quercetin decreased transforming growth factor-β1, cyclooxygenase-2 (COX2) and macrophage-restricted F4/80 protein (F4/80) versus untreated mdx mice. The data suggest that long-term quercetin enrichment does not impact physiological parameters of cardiac function but improves indices of mitochondrial biogenesis and antioxidant enzymes, facilitates dystrophin-associated glycoprotein complex (DGC) assembly and decreases inflammation in dystrophic hearts.
Collapse
Affiliation(s)
| | - Thomas Denney
- MRI Research Center, Auburn University, Auburn, AL, USA
| | | | | | - Matthew Romero
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - John C Quindry
- School of Kinesiology, Auburn University, Auburn, AL, USA
| |
Collapse
|
27
|
Hepple RT. Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radic Biol Med 2016; 98:177-186. [PMID: 27033952 DOI: 10.1016/j.freeradbiomed.2016.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
Abstract
Both skeletal muscle and cardiac muscle are subject to marked structural and functional impairment with aging and these changes contribute to the reduced capacity for exercise as we age. Since mitochondria are involved in multiple aspects of cellular homeostasis including energetics, reactive oxygen species signaling, and regulation of intrinsic apoptotic pathways, defects in this organelle are frequently implicated in the deterioration of skeletal and cardiac muscle with aging. On this basis, the purpose of this review is to evaluate the evidence that aging causes dysfunction in mitochondria in striated muscle with a view towards drawing conclusions about the potential of these changes to contribute to the deterioration seen in striated muscle with aging. As will be shown, impairment in respiration and reactive oxygen species emission with aging are highly variable between studies and seem to be largely a consequence of physical inactivity. On the other hand, both skeletal and cardiac muscle mitochondria are more susceptible to permeability transition and this seems a likely cause of the increased recruitment of mitochondrial-mediated pathways of apoptosis seen in striated muscle. The review concludes by examining the role of degeneration of mitochondrial DNA versus impaired mitochondrial quality control mechanisms in the accumulation of mitochondria that are sensitized to permeability transition, whereby the latter mechanism is favored as the most likely cause.
Collapse
Affiliation(s)
- R T Hepple
- Department of Kinesiology, Centre for Translational Biology, McGill University Health Center, Canada; Meakins Christie Laboratories, Canada; Department of Medicine, McGill University, Canada
| |
Collapse
|
28
|
Conceição G, Heinonen I, Lourenço AP, Duncker DJ, Falcão-Pires I. Animal models of heart failure with preserved ejection fraction. Neth Heart J 2016; 24:275-86. [PMID: 26936157 PMCID: PMC4796054 DOI: 10.1007/s12471-016-0815-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) constitutes a clinical syndrome in which the diagnostic criteria of heart failure are not accompanied by gross disturbances of systolic function, as assessed by ejection fraction. In turn, under most circumstances, diastolic function is impaired. Although it now represents over 50 % of all patients with heart failure, the mechanisms of HFpEF remain understood, precluding effective therapy. Understanding the pathophysiology of HFpEF has been restricted by both limited access to human myocardial biopsies and by the lack of animal models that fully mimic human pathology. Animal models are valuable research tools to clarify subcellular and molecular mechanisms under conditions where the comorbidities and other confounding factors can be precisely controlled. Although most of the heart failure animal models currently available represent heart failure with reduced ejection fraction, several HFpEF animal models have been proposed. However, few of these fulfil all the features present in human disease. In this review we will provide an overview of the currently available models to study HFpEF from rodents to large animals as well as present advantages and disadvantages of these models.
Collapse
Affiliation(s)
- G Conceição
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - I Heinonen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Turku PET Centre, University of Turku, Turku, Finland
| | - A P Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Anesthesiology, Centro Hospitalar de São João, Porto, Portugal
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury. PLoS One 2015; 10:e0144733. [PMID: 26650753 PMCID: PMC4674091 DOI: 10.1371/journal.pone.0144733] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/23/2015] [Indexed: 12/04/2022] Open
Abstract
Background A large number of experimental studies using young adult subjects have shown that ginseng (Panax ginseng C.A. Meyer) protects against ischemia heart disease. However, ginseng has not been explored for its anti-I/R effect and mechanism of action in the aged myocardium. The present study was designed to evaluate the effects of the long-term consumption of ginseng extract on myocardial I/R in an in vivo rat model and explore the potential underlying mechanism. Methods and Results Young (6-mo-old) and intermediate-aged (18-mo-old) rats were gavaged with either standardized ginseng extract (RSE) at 80 mg/kg or vehicle for 90 days. The rats were sacrificed after LAD coronary artery ligation was performed to induce 30 min of ischemia, followed by 90 min of reperfusion. The myocardial infarct size was measured. Left ventricular function was evaluated using pressure-volume loops. The levels of survival, apoptotic and longevity protein expression were assessed through Western blot analysis. Myocardial pathology was detected through H&E or Masson’s trichrome staining. We observed higher infarct expansion with impairment in the LV functional parameters, such as LVSP and LVEDP, in aged rats compared with young rats. Enhanced Akt phosphorylation and eNOS expression in RSE-treated aged hearts were accompanied with reduced infarct size, improved cardiac performance, and inducted survival signals. In contrast, p-Erk and caspase 7 were significantly downregulated in aged rats, suggesting that cardiomyocyte apoptosis was suppressed after RSE treatment. RSE also inhibited caspase-3/7 activation and decreased Bax/Bcl-2 ratio. Consistent with the results of apoptosis, Sirt1 and Sirt3 were significantly increased in the RSE-treated aged heart compared with vehicle-treated I/R, suggesting that the anti-aging effect was correlated with the anti-apoptotic activity of RSE. Conclusion These findings suggest that the long-term consumption of ginseng extract reduced the susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury in rats. These effects might be mediated through the activation of Akt/eNOS, suppression of Erk/caspase 7 and upregulation of Sirt1 and Sirt3 in intermediate-aged rats.
Collapse
|
30
|
Babcock MC, Lefferts WK, Heffernan KS. Relation between exercise central haemodynamic response and resting cardiac structure and function in young healthy men. Clin Physiol Funct Imaging 2015; 37:372-378. [PMID: 26519349 DOI: 10.1111/cpf.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Left ventricular (LV) structure and function are predictors of cardiovascular (CV) morbidity and mortality and are related to resting peripheral haemodynamic load in older adults. The central haemodynamic response to exercise may reveal associations with LV structure and function not detected by traditional peripheral (brachial) measures in a younger population. PURPOSE To examine correlations between acute exercise-induced changes in central artery stiffness and wave reflections and measures of resting LV structure and function. METHODS Sixteen healthy men (age 26 ± 6 year; BMI 25·3 ± 2·7 kg m-2 ) had measures of central haemodynamic load measured before/after a 30-s Wingate anaerobic test (WAT). Common carotid artery stiffness and reflected wave intensity were assessed via wave intensity analysis as a regional pulse wave velocity (PWV) and negative area (NA), respectively. Resting LV structure (LV mass) and function [midwall fractional shortening (mFS)] were assessed using M-mode echocardiography in the parasternal short-axis view. RESULTS There was a significant association between mFS and WAT-mediated change in carotid systolic BP (r = -0·57, P = 0·011), logNA (r = -0·58, P = 0·009) and PWV (r = -0·44, P = 0·045). There were no significant associations between resting mFS and changes in brachial systolic BP (r = -0·26, P>0·05). There were no associations between resting LV mass and changes in any haemodynamic variable (P>0·05). CONCLUSION Exercise-induced increases in central haemodynamic load reveal associations with lower resting LV function in young healthy men undetected by traditional peripheral haemodynamics.
Collapse
Affiliation(s)
- Matthew C Babcock
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Wesley K Lefferts
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Kevin S Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
31
|
Feridooni HA, Dibb KM, Howlett SE. How cardiomyocyte excitation, calcium release and contraction become altered with age. J Mol Cell Cardiol 2015; 83:62-72. [PMID: 25498213 DOI: 10.1016/j.yjmcc.2014.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease is the main cause of death globally, accounting for over 17 million deaths each year. As the incidence of cardiovascular disease rises markedly with age, the overall risk of cardiovascular disease is expected to increase dramatically with the aging of the population such that by 2030 it could account for over 23 million deaths per year. It is therefore vitally important to understand how the heart remodels in response to normal aging for at least two reasons: i) to understand why the aged heart is increasingly susceptible to disease; and ii) since it may be possible to modify treatment of disease in older adults if the underlying substrate upon which the disease first develops is fully understood. It is well known that age modulates cardiac function at the level of the individual cardiomyocyte. Generally, in males, aging reduces cell shortening, which is associated with a decrease in the amplitude of the systolic Ca(2+) transient. This may arise due to a decrease in peak L-type Ca(2+) current. Sarcoplasmic reticulum (SR) Ca(2+) load appears to be maintained during normal aging but evidence suggests that SR function is disrupted, such that the rate of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-mediated Ca(2+) removal is reduced and the properties of SR Ca(2+) release in terms of Ca(2+) sparks are altered. Interestingly, Ca(2+) handling is modulated by age to a lesser degree in females. Here we review how cellular contraction is altered as a result of the aging process by considering expression levels and functional properties of key proteins involved in controlling intracellular Ca(2+). We consider how changes in both electrical properties and intracellular Ca(2+) handling may interact to modulate cardiomyocyte contraction. We also reflect on why cardiovascular risk may differ between the sexes by highlighting sex-specific variation in the age-associated remodeling process. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Hirad A Feridooni
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada.
| | - Katharine M Dibb
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada; Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
32
|
Fetal-adult cardiac transcriptome analysis in rats with contrasting left ventricular mass reveals new candidates for cardiac hypertrophy. PLoS One 2015; 10:e0116807. [PMID: 25646840 PMCID: PMC4315412 DOI: 10.1371/journal.pone.0116807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023] Open
Abstract
Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns.
Collapse
|
33
|
Wu JP, Hsieh CH, Ho TJ, Kuo WW, Yeh YL, Lin CC, Kuo CH, Huang CY. Secondhand smoke exposure toxicity accelerates age-related cardiac disease in old hamsters. BMC Cardiovasc Disord 2014; 14:195. [PMID: 25524239 PMCID: PMC4349676 DOI: 10.1186/1471-2261-14-195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Aging is associated with physiological or pathological left ventricular hypertrophy (LVH) cardiac changes. Secondhand smoke (SHS) exposure is associated with pathological LVH. The action mechanism in cardiac concentric hypertrophy from SHS exposure is understood, but the transition contributed from SHS exposure is not. To determine whether exposure to SHS has an impact on age-induced LVH we examined young and old hamsters that underwent SHS exposure in a chamber for 30 mins. Methods Morphological and histological studies were then conducted using hematoxylin and eosin (H&E) and Masson’s trichrome staining. Echocardiographic analysis was used to determine left ventricular wall thickness and function. LVH related protein expression levels were detected by western blot analysis. Results The results showed that both young and aged hamsters exposed to SHS exhibited increased heart weights and left ventricular weights, left ventricular posterior wall thickness and intraventricular septum systolic and diastolic pressure also increased. However, left ventricular function systolic and diastolic pressure deteriorated. H&E and Masson’s trichrome staining results showed LV papillary muscles were ruptured, resulting in lower cardiac function at the myocardial level. LV muscle fiber arrangement was disordered and collagen accumulation occurred. Concentric LVH related protein molecular markers increased only in young hamsters exposed to SHS. However, this declined with hamster age. By contrast, eccentric LVH related proteins increased in aging hamsters exposed the SHS. Pro-inflammatory proteins, IL-6, TNF-α, JAK1, STAT3, and SIRTI expression increased in aging hamsters exposed to SHS. Conclusions We suggest that SHS exposure induces a pro-inflammatory response that results in concentric transition to aging eccentric LVH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Morita N, Mandel WJ, Kobayashi Y, Karagueuzian HS. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 2014; 30:389-394. [PMID: 25642299 DOI: 10.1016/j.joa.2013.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Animal and emerging clinical studies have demonstrated that increased ventricular fibrosis in a setting of reduced repolarization reserve promotes early afterdepolarizations (EADs) and triggered activity that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF). Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative and metabolic stress-induced EADs to manifest as triggered activity causing VT/VF. The lack of such an arrhythmogenic effect by the same stressors in normal non-fibrotic hearts highlights the importance of fibrosis in the initiation of VT/VF. These findings suggest that antifibrotic therapy combined with therapy designed to increase ventricular repolarization reserve may act synergistically to reduce the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - William J Mandel
- Translational Arrhythmia Research Section, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
35
|
Horgan S, Watson C, Glezeva N, Baugh J. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction. J Card Fail 2014; 20:984-95. [PMID: 25225111 DOI: 10.1016/j.cardfail.2014.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Collapse
Affiliation(s)
- S Horgan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; Noninvasive Cardiovascular Imaging, Brigham and Women's Hospital, Boston, Massachusetts.
| | - C Watson
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - N Glezeva
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - J Baugh
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
36
|
Dutta D, Xu J, Dirain MLS, Leeuwenburgh C. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radic Biol Med 2014; 74:252-62. [PMID: 24975655 PMCID: PMC4146714 DOI: 10.1016/j.freeradbiomed.2014.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
The multiple beneficial effects of calorie restriction (CR) on several organs, including the heart, are widely known. Recently, the plant polyphenol resveratrol has been shown to possess several beneficial effects similar to those of CR. Among the host of effects on cardiac muscle, a cellular self-eating process called autophagy has been shown to be induced by both CR and resveratrol. Autophagy is vital in removing dysfunctional organelles and damaged proteins from the cell, thereby maintaining cellular quality control. In this study, we explored whether short-term moderate CR (20%), either alone or in combination with resveratrol, can induce autophagy in the hearts of 26-month-old Fischer 344 × Brown Norway rats. Autophagy stimulation was investigated by measuring the protein expression levels of the autophagy proteins beclin-1, Atg5, and p62 and the LC3-II/LC3-I ratio. We found that 20% CR or resveratrol alone for 6 weeks could not induce autophagy, but 20% CR in combination with 50 mg/kg/day resveratrol resulted in an induction of autophagy in the hearts of 26-month-old rats. Although oxidative stress has been proposed to be an inducer of autophagy, treatment with the chemotherapeutic drug doxorubicin was unable to stimulate autophagy. The enhanced autophagy due to CR + resveratrol was associated with protection from doxorubicin-induced damage, as measured by cardiac apoptotic levels and serum creatine kinase and lactate dehydrogenase activity. We propose that a combinatorial approach of low-dose CR and resveratrol has the potential to be used therapeutically to induce autophagy and provides protection against doxorubicin-mediated toxicity.
Collapse
Affiliation(s)
| | - Jinze Xu
- Department of Aging and Geriatric Research, Institute on Aging, and University of Florida, Gainesville, FL 32610, USA
| | - Marvin L S Dirain
- Department of Aging and Geriatric Research, Institute on Aging, and University of Florida, Gainesville, FL 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, and University of Florida, Gainesville, FL 32610, USA; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
37
|
Fannin J, Rice KM, Thulluri S, Dornon L, Arvapalli RK, Wehner P, Blough ER. Age-associated alterations of cardiac structure and function in the female F344xBN rat heart. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9684. [PMID: 25062714 PMCID: PMC4150897 DOI: 10.1007/s11357-014-9684-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
The Fischer 344/NNiaHSD × Brown Norway/BiNia F1 (F344xBN) rat model exhibits an increased life span and fewer age-associated pathologies compared to commonly used Fischer 344 (F344). How aging may affect cardiac structure and function in these animals, has to our knowledge, not been investigated. Echocardiography was performed on female F344xBN rats at 6, 26, and 30 months of age using a Phillips 5500 Echocardiography system. Before sacrifice, electrocardiograms were measured in the female F344xBN in order to determine heart rhythm interval changes. Aging was associated with an increase in heart to body weight ratio, cardiomyocyte cross-sectional area, posterior wall thickening, and left ventricle chamber dilatation. Aging was associated with slight evidence of diastolic dysfunction. Alterations in heart rhythm intervals were associated with alterations in the spatial distribution of connexin 43. The incidence of arrhythmias was not different with age; however, valvular dysfunction was increased. These data suggest that aging in the female F344xBN rat heart is associated with changes in cardiac structure as well as function. Further investigation regarding other parameters of cardiac biochemistry and function is needed to better understand the normal compensated cardiovascular aging process in the female F344xBN.
Collapse
Affiliation(s)
- Jacqueline Fannin
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Kevin M. Rice
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Srininvas Thulluri
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Lucy Dornon
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Ravi Kumar Arvapalli
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Paulette Wehner
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Eric R. Blough
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Pharmaceutical Science Research, School of Pharmacy, Marshall University, Huntington, WV USA
| |
Collapse
|
38
|
Celik M, Yalcinkaya E, Yuksel UC, Gokoglan Y, Bugan B, Kabul HK, Barcin C. The effect of age on right ventricular diastolic function in healthy subjects undergoing treadmill exercise test. Echocardiography 2014; 32:436-42. [PMID: 25041471 DOI: 10.1111/echo.12676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE There is an increasing interest for the value of right ventricle (RV) in predicting exercise tolerance and prognosis in cardiovascular disease. However, there is relatively few data evaluating the effect of age on RV diastolic filling velocities during rest or exercise in healthy subjects. METHODS A total of 54 healthy subjects were enrolled in this study. Patients were divided into 2 groups according to their age: Group 1 (≤45-years-old) and Group 2 (>45-years-old). A treadmill exercise test was performed using modified Bruce protocol. Conventional pulsed-wave Doppler and tissue Doppler velocities were obtained both at rest and immediately after the end of exercise, respectively. RESULTS In the overall analysis, tricuspid flow Doppler analysis showed a significant increase in A-wave velocity, less marked rise in E-wave velocity, decreased E/A ratio and decreased E-wave deceleration time (EDT) with exercise. Tissue Doppler analysis revealed increased Aa velocity, decreased in Ea/Aa ratio and IVRT. No significant change was observed in Ea velocity and E/Ea ratio with exercise. Although diastolic velocities changed significantly with exercise, systolic velocities did not. Cardiac response to exercise differed slightly in the older subjects compared to younger ones. The older subjects were more likely to have a reduced mean rate of RV filling for the second half of diastole from baseline to peak exercise. CONCLUSION To distinguish normal physiological changes due to aging from those of pathologic conditions may provide benefits while evaluating patients with known or suspected cardiovascular disease.
Collapse
Affiliation(s)
- Murat Celik
- Department of Cardiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
39
|
Piell KM, Qipshidze Kelm N, Caroway MP, Aman M, Cole MP. Nitrite treatment rescues cardiac dysfunction in aged mice treated with conjugated linoleic acid. Free Radic Biol Med 2014; 72:66-75. [PMID: 24721151 PMCID: PMC4108078 DOI: 10.1016/j.freeradbiomed.2014.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/11/2014] [Accepted: 03/29/2014] [Indexed: 11/21/2022]
Abstract
Conjugated linoleic acid (cLA) is a commercially available weight-loss supplement that is not currently regulated by the U.S. FDA. Numerous studies suggest that cLA mediates protection against diseases including cancer, diabetes, atherosclerosis, immune function, and obesity. Based upon these reports, it was hypothesized that supplementation with cLA would improve heart function in aged wild-type (WT) mice. At 10 months of age, mice were treated with cLA, nitrite, or the combination of the two. Echocardiograms revealed that cardiac function was decreased in aged compared to young WT mice, as determined by percentage of fractional shortening. Also, contrary to the hypothesis, mice that received cLA (6-week treatment) had significantly worse cardiac function compared to controls. This effect was attenuated when mice were cotreated with cLA and nitrite. Taken together, these results suggest that cLA-mediated cardiac injury can be circumvented by nitrite supplementation in a murine model of aging.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Megan P Caroway
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Masarath Aman
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
40
|
Esterhammer R, Klug G, Wolf C, Mayr A, Reinstadler S, Feistritzer HJ, Metzler B, Schocke MFH. Cardiac high-energy phosphate metabolism alters with age as studied in 196 healthy males with the help of 31-phosphorus 2-dimensional chemical shift imaging. PLoS One 2014; 9:e97368. [PMID: 24940736 PMCID: PMC4062408 DOI: 10.1371/journal.pone.0097368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/18/2014] [Indexed: 11/26/2022] Open
Abstract
Recently published studies have elucidated alterations of mitochondrial oxidative metabolism during ageing. The intention of the present study was to evaluate the impact of ageing on cardiac high-energy phosphate metabolism and cardiac function in healthy humans. 31-phosphorus 2-dimensional chemical shift imaging (31P 2D CSI) and echocardiography were performed in 196 healthy male volunteers divided into groups of 20 to 40 years (I, n = 43), 40 to 60 years (II, n = 123) and >60 years (III, n = 27) of age. Left ventricular PCr/β-ATP ratio, myocardial mass (MM), ejection fraction and E/A ratio were assessed. Mean PCr/β-ATP ratios were significantly different among the three groups of volunteers (I, 2.10±0.37; II, 1.77±0.37; III, 1.45±0.28; all p<0.001). PCr/β-ATP ratios were inversely related to age (r2 = −0.25; p<0.001) with a decrease from 2.65 by 0.02 per year of ageing. PCr/β-ATP ratios further correlated with MM (r = −0.371; p<0.001) and E/A ratios (r = 0.213; p<0.02). Moreover, E/A ratios (r = −0.502, p<0.001), MM (r = 0.304, p<0.001), glucose-levels (r = 0.157, p<0.05) and systolic blood pressure (r = 0.224, p<0.005) showed significant correlations with age. The ejection fraction did not significantly differ between the groups. This study shows that cardiac PCr/β-ATP ratios decrease moderately with age indicating an impairment of mitochondrial oxidative metabolism due to age. Furthermore, MM increases, and E/A ratio decreases with age. Both correlate with left-ventricular PCr/β-ATP ratios. The findings of the present study confirm numerous experimental studies showing an impairment of cardiac mitochondrial function with age.
Collapse
Affiliation(s)
- Regina Esterhammer
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Klug
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Wolf
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Radiology, District Hospital Reutte, Ehenbichl, Austria
| | - Agnes Mayr
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Reinstadler
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Hans-Josef Feistritzer
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Metzler
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
41
|
Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol 2014; 50:9-18. [DOI: 10.1016/j.exger.2013.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/12/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
|
42
|
Grabowski K, Koplin G, Aliu B, Schulte L, Schulz A, Kreutz R. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats. Physiol Genomics 2013; 45:827-33. [PMID: 23901062 DOI: 10.1152/physiolgenomics.00067.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.
Collapse
Affiliation(s)
- Katja Grabowski
- Department of Clinical Pharmacology and Toxicology, CharitéCentrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Barsony J, Manigrasso MB, Xu Q, Tam H, Verbalis JG. Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. AGE (DORDRECHT, NETHERLANDS) 2013; 35:271-88. [PMID: 22218780 PMCID: PMC3592950 DOI: 10.1007/s11357-011-9347-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 05/27/2023]
Abstract
The syndrome of inappropriate antidiuretic hormone secretion (SIADH) is frequently responsible for chronic hyponatremia in the elderly due to age-related disruption of the inhibitory component of brain osmoregulatory mechanisms. Recent research has indicated that chronic hyponatremia is associated with gait disturbances, increased falls, and bone fragility in humans, and we have found that chronic hyponatremia causes increased bone resorption and reduced bone mineral density in young rats. In this study, we used a model of SIADH to study multi-organ consequences of chronic hyponatremia in aged rats. Sustained hyponatremia for 18 weeks caused progressive reduction of bone mineral density by DXA and decreased bone ash calcium, phosphate and sodium contents at the tibia and lumbar vertebrae. Administration of 10-fold higher vitamin D during the last 8 weeks of the study compensated for the reduction in bone formation and halted bone loss. Hyponatremic rats developed hypogonadism, as indicated by slightly lower serum testosterone and higher serum FSH and LH concentrations, markedly decreased testicular weight, and abnormal testicular histology. Aged hyponatremic rats also manifested decreased body fat, skeletal muscle sarcopenia by densitometry, and cardiomyopathy manifested as increased heart weight and perivascular and interstitial fibrosis by histology. These findings are consistent with recent results in cultured osteoclastic cells, indicating that low extracellular sodium concentrations increased oxidative stress, thereby potentially exacerbating multiple manifestations of senescence. Future prospective studies in patients with SIADH may indicate whether these multi-organ age-related comorbidities may potentially contribute to the observed increased incidence of fractures and mortality in this population.
Collapse
Affiliation(s)
- Julia Barsony
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007 USA
| | - Michaele B. Manigrasso
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007 USA
| | - Qin Xu
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007 USA
| | - Helen Tam
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007 USA
| | - Joseph G. Verbalis
- Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007 USA
| |
Collapse
|
44
|
Picard M, Wright KJ, Ritchie D, Thomas MM, Hepple RT. Mitochondrial function in permeabilized cardiomyocytes is largely preserved in the senescent rat myocardium. PLoS One 2012; 7:e43003. [PMID: 22912774 PMCID: PMC3415432 DOI: 10.1371/journal.pone.0043003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
The aging heart is characterized by a progressive decline in contractile function and diastolic relaxation. Amongst the factors implicated in these changes is a progressive replacement fibrosis secondary to cardiomyocyte death, oxidative damage, and energetic deficit, each of which may be secondary to impaired mitochondrial function. Here, we performed an in-depth examination of mitochondrial function in saponin-permeabilized cardiomyocyte bundles, a preparation where all mitochondria are represented and their structure intact, from young adult (YA) and senescent (SEN) rats (n = 8 per group). When accounting for increased fibrosis (+19%, P<0.01) and proportional decrease in citrate synthase activity in the SEN myocardium (-23%, P<0.05), mitochondrial respiration and reactive oxygen species (H(2)O(2)) emission across a range of energized states was similar between age groups. Accordingly, the abundance of electron transport chain proteins was also unchanged. Likewise, except for CuZnSOD (-37%, P<0.05), the activity of antioxidant enzymes was unaltered with aging. Although time to mitochondrial permeability transition pore (mPTP) opening was decreased (-25%, P<0.05) in the SEN heart, suggesting sensitization to apoptotic stimuli, this was not associated with a difference in apoptotic index measured by ELISA. Collectively, our results suggest that the function of existing cardiac ventricular mitochondria is relatively preserved in SEN rat heart when measured in permeabilized cells.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kathryn J. Wright
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darmyn Ritchie
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Melissa M. Thomas
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Russell T. Hepple
- Department of Kinesiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Groban L, Lindsey S, Wang H, Lin MS, Kassik KA, Machado FSM, Carter CS. Differential effects of late-life initiation of low-dose enalapril and losartan on diastolic function in senescent Fischer 344 x Brown Norway male rats. AGE (DORDRECHT, NETHERLANDS) 2012; 34:831-43. [PMID: 21720770 PMCID: PMC3682061 DOI: 10.1007/s11357-011-9283-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/14/2011] [Indexed: 05/14/2023]
Abstract
No proven pharmacological therapies to delay or reverse age-related diastolic dysfunction exist. We hypothesized that late-life low-dose (non-blood-pressure-lowering) angiotensin-converting enzyme inhibition vs. angiotensin II receptor blockade would be equally efficacious at mitigating diastolic dysfunction in the senescent Fischer 344 × Brown Norway rat. Enalapril (10 mg/kg/day; n = 9) initiated at 24 months of age and continued for 6 months, increased myocardial relaxation (e'), reduced Doppler-derived indices of filling pressure (E/e'), favorably lowered the ratio of phospholamban-SERCA2 and reduced oxidative stress markers, Rac1 and nitrotyrosine, in aged hearts. Treatment with losartan (15 mg/kg/day; n = 9) similarly mitigated signs of cardiac oxidative stress, but impairments in diastolic function persisted when compared with untreated rats (n = 7). Our findings favor the idea that the lusitropic benefit of low-dose angiotensin-converting enzyme inhibitor initiated late in life may be related to an antioxidant-mediated modulation of SERCA2, resulting in improved relaxation rather than via overt effects on cardiac structure or blood pressure.
Collapse
Affiliation(s)
- Leanne Groban
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Sarah Lindsey
- />Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Hao Wang
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Marina S. Lin
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Kimberly A. Kassik
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Frederico S. M. Machado
- />Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais Brazil
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, 210 E. Mowry Road, P.O. Box 112610, Gainesville, FL 32611 USA
| |
Collapse
|
46
|
Bapat A, Nguyen TP, Lee JH, Sovari AA, Fishbein MC, Weiss JN, Karagueuzian HS. Enhanced sensitivity of aged fibrotic hearts to angiotensin II- and hypokalemia-induced early afterdepolarization-mediated ventricular arrhythmias. Am J Physiol Heart Circ Physiol 2012; 302:H2331-40. [PMID: 22467308 DOI: 10.1152/ajpheart.00094.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Unlike young hearts, aged hearts are highly susceptible to early afterdepolarization (EAD)-mediated ventricular fibrillation (VF). This differential may result from age-related structural remodeling (fibrosis) or electrical remodeling of ventricular myocytes or both. We used optical mapping and microelectrode recordings in Langendorff-perfused hearts and patch-clamp recordings in isolated ventricular myocytes from aged (24-26 mo) and young (3-4 mo) rats to assess susceptibility to EADs and VF during either oxidative stress with ANG II (2 μM) or ionic stress with hypokalemia (2.7 mM). ANG II caused EAD-mediated VF in 16 of 19 aged hearts (83%) after 32 ± 7 min but in 0 of 9 young hearts (0%). ANG II-mediated VF was suppressed with KN-93 (Ca(2+)/calmodulin-dependent kinase inhibitor) and the reducing agent N-acetylcysteine. Hypokalemia caused EAD-mediated VF in 11 of 11 aged hearts (100%) after 7.4 ± 0.4 min. In 14 young hearts, however, VF did not occur in 6 hearts (43%) or was delayed in onset (31 ± 22 min, P < 0.05) in 8 hearts (57%). In patch-clamped myocytes, ANG II and hypokalemia (n = 6) induced EADs and triggered activity in both age groups (P = not significant) at a cycle length of >0.5 s. When myocytes of either age group were coupled to a virtual fibroblast using the dynamic patch-clamp technique, EADs arose in both groups at a cycle length of <0.5 s. Aged ventricles had significantly greater fibrosis and reduced connexin43 gap junction density compared with young hearts. The lack of differential age-related sensitivity at the single cell level in EAD susceptibility indicates that increased ventricular fibrosis in the aged heart plays a key role in increasing vulnerability to VF induced by oxidative and ionic stress.
Collapse
Affiliation(s)
- Aneesh Bapat
- Translational Arrhythmia Research Section, University of California-Los Angeles Cardiovascular Research Laboratory, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Chung E, Diffee GM. Effect of aging on power output properties in rat skinned cardiac myocytes. J Gerontol A Biol Sci Med Sci 2011; 66:1267-73. [PMID: 21896503 PMCID: PMC3210961 DOI: 10.1093/gerona/glr150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/26/2011] [Indexed: 11/12/2022] Open
Abstract
Aging is generally associated with a decline in several indices of cardiac function. The cellular mechanisms for this decline are not completely understood. The ability of the myocardium to perform external work (power output) is a critical aspect of ventricular function. The purpose of this study was to determine the effect of aging on loaded shortening and power output properties. We measured force-velocity properties in permeabilized (skinned) myocytes from the hearts of 9-, 24-, and 33-month-old male Fisher 344 × Brown Norway F1 hybrid rats (F344BN) during loaded contractions using a force-clamp technique. Power output was calculated by multiplying force and shortening velocity values. We found that peak power output normalized to maximal force was significantly decreased by 18% and 31% in myocytes from 24- and 33-month-old group, respectively, compared with 9-month group (p < .05). These results suggest that aging is associated with a significant decrease in the ability of the myocardium to do work.
Collapse
Affiliation(s)
- Eunhee Chung
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin—Madison
- Present address: Molecular, Cellular, and Developmental Biology, University of Colorado—Boulder, Boulder, Colorado
| | - Gary M. Diffee
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin—Madison
| |
Collapse
|
48
|
Castello L, Maina M, Testa G, Cavallini G, Biasi F, Donati A, Leonarduzzi G, Bergamini E, Poli G, Chiarpotto E. Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mech Ageing Dev 2011; 132:305-14. [PMID: 21741396 DOI: 10.1016/j.mad.2011.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022]
Abstract
The age-related increased impedance in large arteries overloads the senescent heart, and the myocardial phenotype is hypertrophic. Together with qualitative changes observed in the senile heart, this can be responsible for impaired diastolic function. A restricted diet providing adequate nutrient intake, e.g. alternate-day fasting (ADF), has been shown to extend life-span and decrease incidence and progression of age-associated diseases in laboratory rodents, and to ameliorate some metabolic markers of aging in rhesus monkeys and humans. This study reports an age-related increase of some biological and morphological hypertrophy markers in the rat heart, together with increased plasma BNP, a well known marker of heart failure. The tissue modifications might likely be related to hyper-activation of two of the signaling pathways associated with myocardial pathological hypertrophy: ERK1/2 and PI3Kγ. Increased ERK1/2 activation might be in part related to the disturbance of STAT3, with a consequent decrease of SOCS3. In this context, the down-modulation of ERK1/2 and PI3Kγ signaling, together with the restoration of STAT3 activity and SOCS3 content, both observed with ADF, might help to reduce pathological hypertrophy stimuli and to rescue an important cardioprotective pathway, possibly opening new preventive and therapeutic perspectives in age-related heart failure.
Collapse
Affiliation(s)
- Laura Castello
- Pediatric Hospital Regina Margherita-S. Anna, Pediatric Oncohematology, Stem Cell Transplant and Cellular Therapy Centre, P.zza Polonia 94, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liles JT, Ida KK, Joly KM, Chapo J, Plato CF. Age exacerbates chronic catecholamine-induced impairments in contractile reserve in the rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R491-9. [PMID: 21593430 DOI: 10.1152/ajpregu.00756.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contractile reserve decreases with advancing age and chronic isoproterenol (ISO) administration is a well-characterized model of cardiac hypertrophy known to impair cardiovascular function. This study evaluated whether nonsenescent, mature adult rats are more susceptible to detrimental effects of chronic ISO administration than younger adult rats. Rats received daily injections of ISO (0.1 mg/kg sc) or vehicle for 3 wk. ISO induced a greater impairment in contractile reserve [maximum of left ventricular pressure development (Δ+dP/dt(max))] in mature adult ISO-treated (MA-ISO) than in young adult ISO-treated rats (YA-ISO) in response to infusions of mechanistically distinct inotropes (digoxin, milrinone; 20-200 μl·kg(-1)·min(-1)), while basal and agonist-induced changes in heart rate and systolic arterial pressure (SAP) were not different across groups. ISO decreased expression of the calcium handling protein, sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a, in MA-ISO compared with YA, YA-ISO, and MA rats. Chronic ISO also induced greater increases in cardiac hypertrophy [left ventricular (LV) index: 33 ± 3 vs. 22 ± 5%] and caspase-3 activity (34 vs. 5%) in MA-ISO relative to YA-ISO rats. Moreover, β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF) mRNA expression was significantly elevated in MA-ISO. These results demonstrate that adult rats develop greater impairments in systolic performance than younger rats when exposed to chronic catecholamine excess. Reduced contractile reserve may result from calcium dysregulation, increased caspase-3 activity, or increased β-MHC and ANF expression. Although several studies report age-related declines in systolic performance in older and senescent animals, the present study demonstrates that catecholamine excess induces reductions in systolic performance significantly earlier in life.
Collapse
Affiliation(s)
- John T Liles
- Gilead Sciences, Inc., 1651 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
50
|
Cruz-Jentoft AJ, Triana FC, Gómez-Cabrera MC, López-Soto A, Masanés F, Martín PM, Rexach JAS, Hidalgo DR, Salvà A, Viña J, Formiga F. [The emergent role of sarcopenia: Preliminary Report of the Observatory of Sarcopenia of the Spanish Society of Geriatrics and Gerontology]. Rev Esp Geriatr Gerontol 2011; 46:100-110. [PMID: 21216498 DOI: 10.1016/j.regg.2010.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
Sarcopenia is a common and prominent geriatric syndrome, of major interest for daily clinical practice of professionals working with older people. The number of affected individuals and its relation with disability, frailty, many chronic diseases, lifestyle and adverse outcomes are extremely relevant for geriatric care. Moreover, biological changes that lead to the loss of muscle mass and strength are intrinsically related to the mechanisms of aging. It is not therefore surprising that research in this field is growing exponentially in recent years, and sarcopenia has been placed in recent years in the forefront of research in geriatric medicine and gerontology. The Spanish Society of Geriatrics and Gerontology has recently created an Observatory of Sarcopenia, which aims to promote educational and research activities in this field. The first activity of the Observatory has been to offer the Spanish speaking scientific community a review of the current status of sarcopenia, that may allow unifying concepts and fostering interest in this promising field of geriatrics.
Collapse
|