1
|
Kruithof BPT, Mousavi Gourabi B, van de Merbel AF, DeRuiter MC, Goumans MJ. A New Ex Vivo Model to Study Cardiac Fibrosis in Whole Mouse Hearts. JACC Basic Transl Sci 2024; 9:1005-1022. [PMID: 39297130 PMCID: PMC11405901 DOI: 10.1016/j.jacbts.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 09/21/2024]
Abstract
Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts. The extent of fibrosis was flow rate dependent, and pharmacological inhibition of the transforming growth factor beta signaling pathway prevented fibrosis. Therefore, in this powerful system, the cellular and molecular mechanisms underlying cardiac fibrosis can be studied. In addition, new targets can be tested on organ level for their ability to inhibit fibrosis.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Nejati S, Mongeau L. In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity. ACS Biomater Sci Eng 2024; 10:3909-3922. [PMID: 38783819 DOI: 10.1021/acsbiomaterials.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tissue regeneration is intricately influenced by the dynamic interplay between the physical attributes of tissue engineering scaffolds and the resulting biological responses. A tunable microporous hydrogel system was engineered using gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), with polyethylene glycol (PEG) serving as a porogen. Through systematic variation of PEGDA molecular weights, hydrogels with varying mechanical and architectural properties were obtained. The objective of the present study was to elucidate the impact of substrate mechanics and architecture on the immunological and reparative activities of vocal fold tissues. Mechanical characterization of the hydrogels was performed using tensile strength measurements and rheometry. Their morphological properties were investigated using scanning electron microscopy (SEM) and confocal microscopy. A series of biological assays were conducted. Cellular morphology, differentiation, and collagen synthesis of human vocal fold fibroblasts (hVFFs) were evaluated using immunostaining. Fibroblast proliferation was studied using the WST-1 assay, and cell migration was investigated via the Boyden chamber assay. Macrophage polarization and secretions were also examined using immunostaining and ELISA. The results revealed that increasing the molecular weight of PEGDA from 700 Da to 10,000 Da resulted in decreased hydrogel stiffness, from 62.6 to 8.8 kPa, and increased pore dimensions from approximately 64.9 to 137.4 μm. Biological evaluations revealed that hydrogels with a higher stiffness promoted fibroblast proliferation and spreading, albeit with an increased propensity for fibrosis, as indicated by a surge in myofibroblast differentiation and collagen synthesis. In contrast, hydrogels with greater molecular weights had a softer matrix with expanded pores, enhancing cellular migration and promoting an M2 macrophage phenotype conducive to tissue healing. The findings show that the hydrogels formulated with a PEGDA molecular weight of 6000 Da are best among the hydrogels considered for vocal fold repair. The microporous hydrogels could be tuned to serve in other tissue engineering applications.
Collapse
Affiliation(s)
- Sara Nejati
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| |
Collapse
|
3
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
4
|
Dufeys C, Bodart J, Bertrand L, Beauloye C, Horman S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H655-H669. [PMID: 38241009 DOI: 10.1152/ajpheart.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Visone R, Paoletti C, Cordiale A, Nicoletti L, Divieto C, Rasponi M, Chiono V, Occhetta P. In Vitro Mechanical Stimulation to Reproduce the Pathological Hallmarks of Human Cardiac Fibrosis on a Beating Chip and Predict The Efficacy of Drugs and Advanced Therapies. Adv Healthc Mater 2024; 13:e2301481. [PMID: 37941521 PMCID: PMC11468947 DOI: 10.1002/adhm.202301481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Cardiac fibrosis is one of the main causes of heart failure, significantly contributing to mortality. The discovery and development of effective therapies able to heal fibrotic pathological symptoms thus remain of paramount importance. Micro-physiological systems (MPS) are recently introduced as promising platforms able to accelerate this finding. Here a 3D in vitro model of human cardiac fibrosis, named uScar, is developed by imposing a cyclic mechanical stimulation to human atrial cardiac fibroblasts (AHCFs) cultured in a 3D beating heart-on-chip and exploited to screen drugs and advanced therapeutics. The sole provision of a cyclic 10% uniaxial strain at 1 Hz to the microtissues is sufficient to trigger fibrotic traits, inducing a consistent fibroblast-to-myofibroblast transition and an enhanced expression and production of extracellular matrix (ECM) proteins. Standard of care anti-fibrotic drugs (i.e., Pirfenidone and Tranilast) are confirmed to be efficient in preventing the onset of fibrotic traits in uScar. Conversely, the mechanical stimulation applied to the microtissues limit the ability of a miRNA therapy to directly reprogram fibroblasts into cardiomyocytes (CMs), despite its proved efficacy in 2D models. Such results demonstrate the importance of incorporating in vivo-like stimulations to generate more representative 3D in vitro models able to predict the efficacy of therapies in patients.
Collapse
Affiliation(s)
- Roberta Visone
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Camilla Paoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Alessandro Cordiale
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| | - Letizia Nicoletti
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca MetrologicaDivision of Advanced Materials and Life SciencesTurin10135Italy
| | - Marco Rasponi
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurin10129Italy
- Centro 3R (Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research)Pisa56122Italy
| | - Paola Occhetta
- BiomimX SrlMilan20157Italy
- Department of ElectronicsInformatics and BioengineeringPolitecnico di MilanoMilan20133Italy
| |
Collapse
|
6
|
Southern BD, Li H, Mao H, Crish JF, Grove LM, Scheraga RG, Mansoor S, Reinhardt A, Abraham S, Deshpande G, Loui A, Ivanov AI, Rosenfeld SS, Bresnick AR, Olman MA. A novel mechanoeffector role of fibroblast S100A4 in myofibroblast transdifferentiation and fibrosis. J Biol Chem 2024; 300:105530. [PMID: 38072048 PMCID: PMC10789633 DOI: 10.1016/j.jbc.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Brian D Southern
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongxia Mao
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - James F Crish
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lisa M Grove
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel G Scheraga
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sanaa Mansoor
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amanda Reinhardt
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susamma Abraham
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Lerner Research Institute Imaging Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alicia Loui
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrei I Ivanov
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven S Rosenfeld
- Division of Hematology/Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mitchell A Olman
- Lerner Research Institute Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Nicolini G, Balzan S, Forini F. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options. Life Sci 2023; 321:121575. [PMID: 36933828 DOI: 10.1016/j.lfs.2023.121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-β dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.
Collapse
Affiliation(s)
| | - Silvana Balzan
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
8
|
Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J Ginseng Res 2023; 47:218-227. [PMID: 36926602 PMCID: PMC10014187 DOI: 10.1016/j.jgr.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background Myocardial fibrosis (MF) is an advanced pathological manifestation of many cardiovascular diseases, which can induce heart failure and malignant arrhythmias. However, the current treatment of MF lacks specific drugs. Ginsenoside Re has anti-MF effect in rat, but its mechanism is still not clear. Therefore, we investigated the anti-MF effect of ginsenoside Re by constructing mouse acute myocardial infarction (AMI) model and AngⅡ induced cardiac fibroblasts (CFs) model. Methods The anti-MF effect of miR-489 was investigated by transfection of miR-489 mimic and inhibitor in CFs. Effect of ginsenoside Re on MF and its related mechanisms were investigated by ultrasonographic, ELISA, histopathologic staining, transwell test, immunofluorescence, Western blot and qPCR in the mouse model of AMI and the AngⅡ-induced CFs model. Results MiR-489 decreased the expression of α-SMA, collagenⅠ, collagen Ⅲ and myd88, and inhibited the phosphorylation of NF-κB p65 in normal CFs and CFs treated with AngⅡ. Ginsenoside Re could improve cardiac function, inhibit collagen deposition and CFs migration, promote the transcription of miR-489, and reduce the expression of myd88 and the phosphorylation of NF-κB p65. Conclusion MiR-489 can effectively inhibit the pathological process of MF, and the mechanism is at least partly related to the regulation of myd88/NF-κB pathway. Ginsenoside Re can ameliorate AMI and AngⅡ induced MF, and the mechanism is at least partially related to the regulation of miR-489/myd88/NF-κB signaling pathway. Therefore, miR-489 may be a potential target of anti-MF and ginsenoside Re may be an effective drug for the treatment of MF.
Collapse
|
9
|
Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci 2022; 23:ijms232214129. [PMID: 36430607 PMCID: PMC9697219 DOI: 10.3390/ijms232214129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, interest in non-coding RNAs as important physiological regulators has grown significantly. Their participation in the pathophysiology of cardiovascular diseases is extremely important. Circular RNA (circRNA) has been shown to be important in the development of heart failure. CircRNA is a closed circular structure of non-coding RNA fragments. They are formed in the nucleus, from where they are transported to the cytoplasm in a still unclear mechanism. They are mainly located in the cytoplasm or contained in exosomes. CircRNA expression varies according to the type of tissue. In the brain, almost 12% of genes produce circRNA, while in the heart it is only 9%. Recent studies indicate a key role of circRNA in cardiomyocyte hypertrophy, fibrosis, autophagy and apoptosis. CircRNAs act mainly by interacting with miRNAs through a "sponge effect" mechanism. The involvement of circRNA in the development of heart failure leads to the suggestion that they may be promising biomarkers and useful targets in the treatment of cardiovascular diseases. In this review, we will provide a brief introduction to circRNA and up-to-date understanding of their role in the mechanisms leading to the development of heart failure.
Collapse
|
10
|
Liu H, Fan P, Jin F, Huang G, Guo X, Xu F. Dynamic and static biomechanical traits of cardiac fibrosis. Front Bioeng Biotechnol 2022; 10:1042030. [PMID: 36394025 PMCID: PMC9659743 DOI: 10.3389/fbioe.2022.1042030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac fibrosis is a common pathology in cardiovascular diseases which are reported as the leading cause of death globally. In recent decades, accumulating evidence has shown that the biomechanical traits of fibrosis play important roles in cardiac fibrosis initiation, progression and treatment. In this review, we summarize the four main distinct biomechanical traits (i.e., stretch, fluid shear stress, ECM microarchitecture, and ECM stiffness) and categorize them into two different types (i.e., static and dynamic), mainly consulting the unique characteristic of the heart. Moreover, we also provide a comprehensive overview of the effect of different biomechanical traits on cardiac fibrosis, their transduction mechanisms, and in-vitro engineered models targeting biomechanical traits that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate cardiac fibrosis.
Collapse
Affiliation(s)
- Han Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Pengbei Fan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Fanli Jin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xiaogang Guo
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
12
|
Habibi H, Suzuki A, Hayashi K, Salimi H, Hori Y, Orita K, Yabu A, Terai H, Nakamura H. Expression and function of fibroblast growth factor 1 in the hypertrophied ligamentum flavum of lumbar spinal stenosis. J Orthop Sci 2022; 27:299-307. [PMID: 33637374 DOI: 10.1016/j.jos.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis is one of the main pathologies caused by hypertrophy of the ligamentum flavum (LF), which leads to lumbar spinal stenosis (LSS). The fibroblast growth factor (FGF) family is a key mediator of fibrosis. However, acidic fibroblast growth factor (FGF-1) expression and function are not well understood in LF. This study sought to evaluate FGF-1 expression in the hypertrophied and non-hypertrophied human LF, and to investigate its function using primary human LF cell cultures. METHODS We obtained hypertrophied lumbar LF from LSS patients and non-hypertrophied lumbar LF from control patients during surgery. Immunohistochemistry and qPCR were performed to evaluate FGF-1 expression in LF tissue. The function of FGF-1 and transforming growth factor beta 1 (TGF-β1) was also investigated using primary LF cell culture. The effects on cell morphology and cell proliferation were examined using a crystal violet staining assay and MTT assay, respectively. Immunocytochemistry, western blotting, and qPCR were performed to evaluate the effect of FGF-1 on TGF-β1-induced myofibroblast differentiation and fibrosis. RESULTS Immunohistochemistry and qPCR showed higher FGF-1 expression in hypertrophied LF compared to control LF. Crystal violet staining and MTT assay revealed that FGF-1 decreases LF cell size and inhibits their proliferation in a dose-dependent manner, whereas TGF-β1 increases cell size and promotes proliferation. Immunocytochemistry and western blotting further demonstrated that TGF-β1 increases, while FGF-1 decreases, α-SMA expression in LF cells. Moreover, FGF-1 also caused downregulation of collagen type 1 and type 3 expression in LF cells. CONCLUSION FGF-1 is highly upregulated in the LF of LSS patients. Meanwhile, in vitro, FGF-1 exhibits antagonistic effects to TGF-β1 by inhibiting cell proliferation and decreasing LF cell size as well as the expression of fibrosis markers. These results suggest that FGF-1 has an anti-fibrotic role in the pathophysiology of LF hypertrophy.
Collapse
Affiliation(s)
- Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
14
|
Liu Z, Cai M, Zhang X, Yu X, Wang S, Wan X, Wang ZL, Li L. Cell-Traction-Triggered On-Demand Electrical Stimulation for Neuron-Like Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106317. [PMID: 34655105 DOI: 10.1002/adma.202106317] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Electromechanical interaction of cells and extracellular matrix are ubiquitous in biological systems. Understanding the fundamentals of this interaction and feedback is critical to design next-generation electroactive tissue engineering scaffold. Herein, based on elaborately modulating the dynamic mechanical forces in cell microenvironment, the design of a smart piezoelectric scaffold with suitable stiffness analogous to that of collagen for on-demand electrical stimulation is reported. Specifically, it generated a piezoelectric potential, namely a piezopotential, to stimulate stem cell differentiation with cell traction as a loop feedback signal, thereby avoiding the unfavorable effect of early electrical stimulation on cell spreading and adhesion. This is the first time to adapt to the dynamic microenvironment of cells and meet the electrical stimulation of cells in different states by a constant scaffold, diminishing the cumbersomeness of inducing material transformation or trigging by an external stimulus. This in situ on-demand electrical stimulation based on cell-traction-mediated piezopotential paves the way for smart scaffolds design and future bioelectronic therapies.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaodi Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xin Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Li C, Peng Z, Zhou Y, Su Y, Bu P, Meng X, Li B, Xu Y. Comprehensive analysis of pathological changes in hip joint capsule of patients with developmental dysplasia of the hip. Bone Joint Res 2021; 10:558-570. [PMID: 34465146 PMCID: PMC8479563 DOI: 10.1302/2046-3758.109.bjr-2020-0421.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. Methods High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology. Results More than 1,000 genes were differentially expressed in hip joint capsules between healthy controls and DDH. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that extracellular matrix (ECM) modifications, muscle system processes, and cell proliferation were markedly influenced by the differentially expressed genes. Expression of Collagen Type I Alpha 1 Chain (COL1A1), COL3A1, matrix metalloproteinase-1 (MMP1), MMP3, MMP9, and MMP13 was downregulated in DDH, with the loss of collagen fibres in the joint capsule. Expression of transforming growth factor beta 1 (TGF-β1) was downregulated, while that of TGF-β2, Mothers against decapentaplegic homolog 3 (SMAD3), and WNT11 were upregulated in DDH, and alpha smooth muscle actin (αSMA), a key myofibroblast marker, showed marginal increase. In vitro studies showed that fibroblast proliferation was suppressed in DDH, which was associated with cell cycle arrest in G0/G1 and G2/M phases. Cell cycle regulators including Cyclin B1 (CCNB1), Cyclin E2 (CCNE2), Cyclin A2 (CCNA2), Cyclin-dependent kinase 1 (CDK1), E2F1, cell division cycle 6 (CDC6), and CDC7 were downregulated in DDH. Conclusion DDH is associated with the loss of collagen fibres and fibroblasts, which may cause loose joint capsule formation. However, the degree of differentiation of fibroblasts to myofibroblasts needs further study. Cite this article: Bone Joint Res 2021;10(9):558–570.
Collapse
Affiliation(s)
- Chuan Li
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China.,Kunming Medical University, Kunming, China
| | - Zhi Peng
- Kunming Medical University, Kunming, China
| | - You Zhou
- Orthopaedic Department, Children's Hospital of Kunming Medical University, Kunming, China
| | - Yongyue Su
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Pengfei Bu
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Xuhan Meng
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Bo Li
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yongqing Xu
- Orthopaedic Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
16
|
Ploeg MC, Munts C, Prinzen FW, Turner NA, van Bilsen M, van Nieuwenhoven FA. Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts. Cells 2021; 10:cells10071745. [PMID: 34359915 PMCID: PMC8303625 DOI: 10.3390/cells10071745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023] Open
Abstract
In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of Nppb, as well as induction of genes related to myofibroblast differentiation. Moreover, BNP protein secretion was upregulated 5.3-fold in stretched cardiac fibroblasts. Recombinant BNP inhibited TGFβ1-induced Acta2 expression. Nppb expression was >20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts.
Collapse
Affiliation(s)
- Meike C. Ploeg
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
- Correspondence:
| |
Collapse
|
17
|
Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25:2764-2775. [PMID: 33576189 PMCID: PMC7957273 DOI: 10.1111/jcmm.16350] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the commonest arrhythmia, shows associations with various disease conditions. Mounting evidence indicates that atrial fibrosis is an important part of the arrhythmogenic substrate, with an essential function in the generation of conduction abnormalities that underlie the transition from paroxysmal to persistent AF, which in turn contributes to AF perpetuation. Left atrial (LA) fibrosis is considered a possible major factor and predictor in AF treatment. The present review provides insights into LA fibrosis’ association with AF. The information is focused on clinical aspects and mechanisms, clinical evaluating methods that evaluate fibrosis changes and examining possible options for the prevention of atrial fibrosis.
Collapse
Affiliation(s)
- Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Bracco Gartner TCL, Stein JM, Muylaert DEP, Bouten CVC, Doevendans PA, Khademhosseini A, Suyker WJL, Sluijter JPG, Hjortnaes J. Advanced In Vitro Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Eng Part C Methods 2021; 27:100-114. [PMID: 33407000 DOI: 10.1089/ten.tec.2020.0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In heart failure, cardiac fibrosis is the result of an adverse remodeling process. Collagen is continuously synthesized in the myocardium in an ongoing attempt of the heart to repair itself. The resulting collagen depositions act counterproductively, causing diastolic dysfunction and disturbing electrical conduction. Efforts to treat cardiac fibrosis specifically have not been successful and the molecular etiology is only partially understood. The differentiation of quiescent cardiac fibroblasts to extracellular matrix-depositing myofibroblasts is a hallmark of cardiac fibrosis and a key aspect of the adverse remodeling process. This conversion is induced by a complex interplay of biochemical signals and mechanical stimuli. Tissue-engineered 3D models to study cardiac fibroblast behavior in vitro indicate that cyclic strain can activate a myofibroblast phenotype. This raises the question how fibroblast quiescence is maintained in the healthy myocardium, despite continuous stimulation of ultimately profibrotic mechanotransductive pathways. In this review, we will discuss the convergence of biochemical and mechanical differentiation signals of myofibroblasts, and hypothesize how these affect this paradoxical quiescence. Impact statement Mechanotransduction pathways of cardiac fibroblasts seem to ultimately be profibrotic in nature, but in healthy human myocardium, cardiac fibroblasts remain quiescent, despite continuous mechanical stimulation. We propose three hypotheses that could explain this paradoxical state of affairs. Furthermore, we provide suggestions for future research, which should lead to a better understanding of fibroblast quiescence and activation, and ultimately to new strategies for the prevention and treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Thomas C L Bracco Gartner
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dimitri E P Muylaert
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlijn V C Bouten
- Division of Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Pieter A Doevendans
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands.,Central Military Hospital, Utrecht, the Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Radiology, Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
| | - Willem J L Suyker
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| |
Collapse
|
20
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PSH, Senyo SE. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater 2020; 113:380-392. [PMID: 32590172 PMCID: PMC7428869 DOI: 10.1016/j.actbio.2020.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
The transient period of regeneration potential in the postnatal heart suggests molecular changes with maturation influence the cardiac response to damage. We have previously demonstrated that injury and exercise can stimulate cardiomyocyte proliferation in the adult heart suggesting a sensitivity to exogenous signals. Here, we consider whether exogenous fetal ECM and mechanically unloading interstitial matrix can drive regeneration after myocardial infarction (MI) surgery in low-regenerative hearts of day5 mice. Compared to controls, exogenous fetal ECM increases cardiac function and lowers fibrosis at 3 weeks post-injury and this effect can be augmented by softening heart tissue. In vitro experiments support a mechano-sensitivity to exogenous ECM signaling. We tested potential mechanisms and observed that fetal ECM increases nuclear YAP localization which could be enhanced by pharmacological stabilization of the cytoskeleton. Blocking YAP expression lowered fetal ECM effects though not completely. Lastly we observed mechanically unloading heart interstitial matrix increased agrin expression, an extracellular node in the YAP signaling pathway. Collectively, these data support a combined effect of exogenous factors and mechanical activity in altering agrin expression, cytoskeletal remodeling, and YAP signaling in driving cardiomyocyte cell cycle activity and regeneration in postnatal non-regenerative mice. STATEMENT OF SIGNIFICANCE: With the purpose of developing regenerative strategies, we investigate the influence of the local niche on the cardiac injury response. We conclude tissue stiffness, as anticipated in aging or disease, impairs regenerative therapeutics. Most novel, mechanical unloading facilitates enhanced cardiac regeneration only after cells are pushed into a permissive state by fetal biomolecules. Specifically, mechanical unloading appears to increase extracellular agrin expression that amplifies fetal-stimulation of nuclear YAP signaling which correlates with observed increases of cell cycle activity in cardiomyocytes. The results further suggest the cytoskeleton is critical to this interaction between mechanical unloading and independently actived YAP signaling. Using animal models, tissue explants, and cells, this work indicates that local mechanical stimuli can augment proliferating-permissive cardiomyocytes in the natural cardiac niche.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Subhadip Senapati
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Akinola Akinbote
- Department of Macromolecular Science & Engineering, Case Western Reserve University, United States
| | - Bhargavee Gnanasambandam
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Niu L, Jia Y, Wu M, Liu H, Feng Y, Hu Y, Zhang X, Gao D, Xu F, Huang G. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT 1 R. J Cell Physiol 2020; 235:8345-8357. [PMID: 32239716 DOI: 10.1002/jcp.29678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a common pathway leading to heart failure and involves continued activation of cardiac fibroblasts (CFs) into myofibroblasts during myocardium damage, causing excessive deposition of the extracellular matrix (ECM) and thus increases matrix stiffness. Increasing evidence has shown that stiffened matrix plays an important role in promoting CF activation and cardiac fibrosis, and several signaling factors mediating CF mechanotransduction have been identified. However, the key molecules that perceive matrix stiffness to regulate CF activation remain to be further explored. Here, we detected significantly increased expression and nuclear localization of Yes-associated protein (YAP) in native fibrotic cardiac tissues. By using mechanically regulated in vitro cell culture models, we found that a stiff matrix-induced high expression and nuclear localization of YAP in CFs, accompanied by enhanced cell activation. We also demonstrated that YAP knockdown decreased fibrogenic response of CFs and that YAP overexpression promoted CF activation, indicating that YAP plays an important role in mediating matrix stiffness-induced CF activation. Further mechanistic studies revealed that the YAP pathway is an important signaling branch downstream of angiotensin II type 1 receptor in CF mechanotransduction. The findings help elucidate the mechanism of fibrotic mechanotransduction and may contribute to the development of new approaches for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lele Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Mian Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Han Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Richards DJ, Li Y, Kerr CM, Yao J, Beeson GC, Coyle RC, Chen X, Jia J, Damon B, Wilson R, Starr Hazard E, Hardiman G, Menick DR, Beeson CC, Yao H, Ye T, Mei Y. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 2020; 4:446-462. [PMID: 32284552 PMCID: PMC7422941 DOI: 10.1038/s41551-020-0539-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Environmental factors are the largest contributors to cardiovascular disease. Here we show that cardiac organoids that incorporate an oxygen-diffusion gradient and that are stimulated with the neurotransmitter noradrenaline model the structure of the human heart after myocardial infarction (by mimicking the infarcted, border and remote zones), and recapitulate hallmarks of myocardial infarction (in particular, pathological metabolic shifts, fibrosis and calcium handling) at the transcriptomic, structural and functional levels. We also show that the organoids can model hypoxia-enhanced doxorubicin cardiotoxicity. Human organoids that model diseases with non-genetic pathological factors could help with drug screening and development.
Collapse
Affiliation(s)
- Dylan J Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA, USA
| | - Yang Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Charles M Kerr
- Molecular Cell Biology and Pathology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Jenny Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Xun Chen
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Brooke Damon
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Robert Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Donald R Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hai Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Tong Ye
- Bioengineering Department, Clemson University, Clemson, SC, USA.
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
Xu M, Xie F, Tang X, Wang T, Wang S. Insights into the role of circular RNA in macrophage activation and fibrosis disease. Pharmacol Res 2020; 156:104777. [PMID: 32244027 DOI: 10.1016/j.phrs.2020.104777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs which form a covalent bond structure without a 5' cap or a 3' polyadenylated tail, which is deleted through back-splicing. The expression of circRNAs in highly divergent eukaryotes is abundant. With the development of high-throughput sequencing, the mysteries of circRNAs have gradually been revealed. Increased attention has been paid to determining their biological functions and whether their changed expression profiles are linked to disease progression. Functionally, circRNAs have been shown to act as miRNA sponges or nuclear transcription factor regulators, and to play a part in RNA splicing. Various types of circRNAs have been discovered to be differentially expressed under steady physiological and pathological conditions. Recently, several studies have focused on the roles of circRNAs in macrophages on inflammatory stimulation. In this study, we review the current advances in the understanding of circRNAs in macrophages under various pathological conditions, in particular during organ fibrosis, and summarize possible directions for future circRNA applications.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
25
|
Atrial fibrosis and decreased connexin 43 in rat hearts after exposure to high-intensity infrasound. Exp Mol Pathol 2020; 114:104409. [PMID: 32088192 DOI: 10.1016/j.yexmp.2020.104409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noise is an important environmental risk factor. Industrial environments are rich in high-intensity infrasound (hi-IFS), which we have found to induce myocardial and coronary perivascular fibrosis in rats. The effects of exposure to IFS on the ventricles have been studied, but not on the atria. We hypothesized that rats exposed to hi-IFS develop atrial remodeling involving fibrosis and connexin 43, which we sought to evaluate. MATERIAL AND METHODS Seventy-two Wistar rats, half exposed to hi-IFS (120 dB, <20 Hz) during a maximum period of 12 weeks and half age-matched controls, were studied. Atrial fibrosis was analyzed by Chromotrope-aniline blue staining. The immunohistochemical evaluation of Cx43 was performed using the polyclonal antibody connexin-43 m diluted 1:1000 at 4 °C overnight. Digitized images were obtained with an optical microscope using 400× magnifications. The measurements were performed using image J software. A two-way ANOVA model was used to compare the groups. RESULTS The mean values of the ratio "atrial fibrosis / cardiomyocytes" increased to a maximum of 0.1095 ± 0,04 and 0.5408 ± 0,01, and of the ratio "CX43 / cardiomyocytes" decreased to 0.0834 ± 0,03 and 0.0966 ± 0,03, respectively in IFS-exposed rats and controls. IFS-exposed rats exhibited a significantly higher ratio of fibrosis (p < .001) and lower ratio of Cx43 (p = .009). CONCLUSION High-intensity infrasound exposure leads to an increase in atrial interstitial fibrosis and a decrease in connexin 43 in rat hearts. This finding reinforces the need for further experimental and clinical studies concerning the effects of exposure to infrasound.
Collapse
|
26
|
TRPV4 deletion protects heart from myocardial infarction-induced adverse remodeling via modulation of cardiac fibroblast differentiation. Basic Res Cardiol 2020; 115:14. [PMID: 31925567 DOI: 10.1007/s00395-020-0775-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
Cardiac fibrosis caused by adverse cardiac remodeling following myocardial infarction can eventually lead to heart failure. Although the role of soluble factors such as TGF-β is well studied in cardiac fibrosis following myocardial injury, the physiological role of mechanotransduction is not fully understood. Here, we investigated the molecular mechanism and functional role of TRPV4 mechanotransduction in cardiac fibrosis. TRPV4KO mice, 8 weeks following myocardial infarction (MI), exhibited preserved cardiac function compared to WT mice. Histological analysis demonstrated reduced cardiac fibrosis in TRPV4KO mice. We found that WT CF exhibited hypotonicity-induced calcium influx and extracellular matrix (ECM)-stiffness-dependent differentiation in response to TGF-β1. In contrast, TRPV4KO CF did not display hypotonicity-induced calcium influx and failed to differentiate on high-stiffness ECM gels even in the presence of saturating amounts of TGF-β1. Mechanistically, TRPV4 mediated cardiac fibrotic gene promoter activity and fibroblast differentiation through the activation of the Rho/Rho kinase pathway and the mechanosensitive transcription factor MRTF-A. Our findings suggest that genetic deletion of TRPV4 channels protects heart from adverse cardiac remodeling following MI by modulating Rho/MRTF-A pathway-mediated cardiac fibroblast differentiation and cardiac fibrosis.
Collapse
|
27
|
She G, Ren YJ, Wang Y, Hou MC, Wang HF, Gou W, Lai BC, Lei T, Du XJ, Deng XL. K Ca3.1 Channels Promote Cardiac Fibrosis Through Mediating Inflammation and Differentiation of Monocytes Into Myofibroblasts in Angiotensin II -Treated Rats. J Am Heart Assoc 2020; 8:e010418. [PMID: 30563389 PMCID: PMC6405723 DOI: 10.1161/jaha.118.010418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac fibrosis is a core pathological process associated with heart failure. The recruitment and differentiation of primitive fibroblast precursor cells of bone marrow origin play a critical role in pathological interstitial cardiac fibrosis. The KC a3.1 channels are expressed in both ventricular fibroblasts and circulating mononuclear cells in rats and are upregulated by angiotensin II . We hypothesized that KC a3.1 channels mediate the inflammatory microenvironment in the heart, promoting the infiltrated bone marrow-derived circulating mononuclear cells to differentiate into myofibroblasts, leading to myocardial fibrosis. Methods and Results We established a cardiac fibrosis model in rats by infusing angiotensin II to evaluate the impact of the specific KC a3.1 channel blocker TRAM -34 on cardiac fibrosis. At the same time, mouse CD 4+ T cells and rat circulating mononuclear cells were separated to investigate the underlying mechanism of the TRAM -34 anti-cardiac fibrosis effect. TRAM -34 significantly attenuated cardiac fibrosis and the inflammatory reaction and reduced the number of fibroblast precursor cells and myofibroblasts. Inhibition of KC a3.1 channels suppressed angiotensin II -stimulated expression and secretion of interleukin-4 and interleukin-13 in CD 4+ T cells and interleukin-4- or interleukin-13-induced differentiation of monocytes into fibrocytes. Conclusions KC a3.1 channels facilitate myocardial inflammation and the differentiation of bone marrow-derived monocytes into myofibroblasts in cardiac fibrosis caused by angiotensin II infusion.
Collapse
Affiliation(s)
- Gang She
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yu-Jie Ren
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yan Wang
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Meng-Chen Hou
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Hui-Fang Wang
- 5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Wei Gou
- 3 Basic Experiment Teaching Center School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Bao-Chang Lai
- 4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Ting Lei
- 2 Department of Pathology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Xiao-Jun Du
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,6 Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Xiu-Ling Deng
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| |
Collapse
|
28
|
Ma S, Ma J, Zhou Y, Guo L, Bai J, Zhang M. Tongguan capsule derived-herb ameliorates remodeling at infarcted border zone and reduces ventricular arrhythmias in rats after myocardial infarction. Biomed Pharmacother 2019; 120:109514. [DOI: 10.1016/j.biopha.2019.109514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
|
29
|
Liang Y, Young JL, Kong M, Tong Y, Qian Y, Freedman JH, Cai L. Gender Differences in Cardiac Remodeling Induced by a High-Fat Diet and Lifelong, Low-Dose Cadmium Exposure. Chem Res Toxicol 2019; 32:1070-1081. [PMID: 30912652 DOI: 10.1021/acs.chemrestox.8b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood obesity, which is prevalent in developed countries, is a metabolic risk factor for cardiovascular disease. Cadmium (Cd), a ubiquitous environmental toxic metal, also has deleterious effects on the cardiovascular system. However, the combined effects of a high-fat diet (HFD) and lifelong, low-dose Cd exposure on cardiac remodeling remain unclear. This study aims to determine the effects of combined HFD and Cd exposure on cardiac remodeling, as well as gender-specific differences in the response. C57BL/6J mice were exposed to Cd at a low dose (L-Cd, 0.5 ppm) or high dose (H-Cd, 5 ppm) via drinking water from conception to sacrifice. After being weaned, the offspring mice were fed with a HFD (42% kcal from fat) for an additional 10 weeks. H-Cd exposure significantly increased Cd accumulation in the hearts of both parents and their offspring; a HFD showed no added effects on cardiac Cd content. H-Cd exposure increased cardiac metallothionein protein levels only in female mice, regardless of dietary intake. Histological analysis revealed that H-Cd exposure combined with a HFD induced cardiac hypertrophy and fibrosis only in female mice. This was further supported by elevated expression of ANP and COL1A1 protein levels along with COL1A1, COL1A2, and COL3A1 mRNA levels. Profibrotic markers PAI-1, CTGF, and FN were also elevated in HFD/H-Cd-exposed female mice. Levels of the oxidative stress marker 3-NT significantly increased in the hearts of HFD-fed female mice, whereas Cd exposure showed no additional effects. Of all the antioxidant markers examined, levels of CAT significantly increased in mice fed a HFD, regardless of gender and Cd exposure. In summary, a HFD combined with lifelong, low-dose Cd exposure induces cardiac hypertrophy and fibrosis in female but not male mice, a response that is independent of oxidative stress.
Collapse
Affiliation(s)
- Yaqin Liang
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | | | | - Yan Qian
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | |
Collapse
|
30
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Kong M, Lee J, Yazdi IK, Miri AK, Lin YD, Seo J, Zhang YS, Khademhosseini A, Shin SR. Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Adv Healthc Mater 2019; 8:e1801146. [PMID: 30609312 PMCID: PMC6546425 DOI: 10.1002/adhm.201801146] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Cardiac tissue is characterized by being dynamic and contractile, imparting the important role of biomechanical cues in the regulation of normal physiological activity or pathological remodeling. However, the dynamic mechanical tension ability also varies due to extracellular matrix remodeling in fibrosis, accompanied with the phenotypic transition from cardiac fibroblasts (CFs) to myofibroblasts. It is hypothesized that the dynamic mechanical tension ability regulates cardiac phenotypic transition within fibrosis in a strain-mediated manner. In this study, a microdevice that is able to simultaneously and accurately mimic the biomechanical properties of the cardiac physiological and pathological microenvironment is developed. The microdevice can apply cyclic compressions with gradient magnitudes (5-20%) and tunable frequency onto gelatin methacryloyl (GelMA) hydrogels laden with CFs, and also enables the integration of cytokines. The strain-response correlations between mechanical compression and CFs spreading, and proliferation and fibrotic phenotype remolding, are investigated. Results reveal that mechanical compression plays a crucial role in the CFs phenotypic transition, depending on the strain of mechanical load and myofibroblast maturity of CFs encapsulated in GelMA hydrogels. The results provide evidence regarding the strain-response correlation of mechanical stimulation in CFs phenotypic remodeling, which can be used to develop new preventive or therapeutic strategies for cardiac fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road, Qingdao, Shandong Province 266003, China
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junmin Lee
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA90095, USA
| | - Iman K. Yazdi
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Amir K. Miri
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi-Dong Lin
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, USA
| | - Jungmok Seo
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Yu Shrike Zhang
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA90095, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su Ryon Shin
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Childers RC, Sunyecz I, West TA, Cismowski MJ, Lucchesi PA, Gooch KJ. Role of the cytoskeleton in the development of a hypofibrotic cardiac fibroblast phenotype in volume overload heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H596-H608. [PMID: 30575422 DOI: 10.1152/ajpheart.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
Collapse
Affiliation(s)
- Rachel C Childers
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Ian Sunyecz
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - T Aaron West
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mary J Cismowski
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Pamela A Lucchesi
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| |
Collapse
|
33
|
Androgen receptor regulates cardiac fibrosis in mice with experimental autoimmune myocarditis by increasing microRNA-125b expression. Biochem Biophys Res Commun 2018; 506:130-136. [DOI: 10.1016/j.bbrc.2018.09.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
|
34
|
Liu Y, Gao L, Zhao X, Guo S, Liu Y, Li R, Liang C, Li L, Dong J, Li L, Yang H. Saikosaponin A Protects From Pressure Overload-Induced Cardiac Fibrosis via Inhibiting Fibroblast Activation or Endothelial Cell EndMT. Int J Biol Sci 2018; 14:1923-1934. [PMID: 30443195 PMCID: PMC6231222 DOI: 10.7150/ijbs.27022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Saikosaponin A (SSA) is a triterpenoid saponin with many pharmacological activities, including anti-inflammatory and antioxidant effects. The effect of SSA on cardiac remodeling and fibrosis, however, remains unclear. Aortic banding surgery was used to establish a mouse cardiac remodeling and fibrosis model. Mice were subjected to an intraperitoneal (i.p.) injection of SSA (5 mg/kg/d or 40 mg/kg/d) 2 weeks after surgery for 28 days. As a result, SSA had limited effect on cardiac hypertrophy but decreased cardiac fibrosis remarkably. Neonatal rat cardiomyocytes were isolated and cultured with SSA (1 and 30 μM). Both 1 and 30 μM SSA reduced atrial natriuretic peptide transcription induced by angiotensin II. Adult mouse cardiac fibroblasts were isolated and cultured with SSA (1, 3, 10 and 30 μM). Only 10 and 30 μM SSA ameliorated transforming growth factor β (TGFβ)-induced fibroblast activation and function. Mouse heart endothelial cells were isolated and stimulated with TGFβ and cocultured with SSA (1, 3, 10 and 30 μM). Only 1 and 3 μM SSA ameliorated TGFβ-induced endothelium-mesenchymal transition (EndMT). Consistently, only the 5 mg/kg/d treatment relieved pressure overload-induced EndMT in vivo. Furthermore, we found that high dosages of SSA (10 and 30 μM) inhibited the TGFβ/smad pathway in fibroblasts, while low dosages of SSA (1 and 3 μM) inhibited the Wnt/β-catenin pathway in endothelial cells. The Smad pathway activator SRI-011381 eliminated SSA (30 μM)-induced protective effects on fibroblasts. The Wnt pathway activator WAY-262611 eliminated SSA (1 μM)-induced protective effects on endothelial cells. In summary, this study indicates the potential application of SSA in the treatment of myocardial fibrosis in cardiac fibrosis, with different target effects associated with different dosages.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Ran Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Lina Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| |
Collapse
|
35
|
Lousinha A, R Oliveira MJ, Borrecho G, Brito J, Oliveira P, Oliveira de Carvalho A, Freitas D, P Águas A, Antunes E. Infrasound induces coronary perivascular fibrosis in rats. Cardiovasc Pathol 2018; 37:39-44. [PMID: 30342320 DOI: 10.1016/j.carpath.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chronic exposure to industrial noise is known to affect biological systems, namely, by inducing fibrosis in the absence of inflammatory cells. In rat hearts exposed to this environmental hazard, we have previously found myocardial and perivascular fibrosis. The acoustic spectrum of industrial environments is particularly rich in high-intensity infrasound (<20 Hz), whose effects on the heart are unknown. We evaluated the morphological changes induced by IFS in rat coronaries in the presence and absence of dexamethasone. METHODS Adult Wistar rats were divided into three groups: group A (GA)-IFS (<20 Hz, 120 dB)-exposed rats for 28 days treated with dexamethasone; group B (GB)-IFS-exposed rats; group C (GC)-age-matched controls. The midventricle was prepared for observation with an optical microscope using 100× magnification. Thirty-one arterial vessels were selected (GA 8, GB 10, GC 13). The vessel caliber, thickness of the wall, and perivascular dimensions were quantified using image J software. Mann-Whitney and Kruskal-Wallis tests were used to compare the groups for lumen-to-vessel wall (L/W) and vessel wall-to-perivascular tissue (W/P) ratios. RESULTS IFS-exposed rats exhibited a prominent perivascular tissue. The median L/W and median W/P ratios were 0.54 and 0.48, 0.66 and 0.49, and 0.71 and 0.68, respectively, in GA, GB, and GC. The W/P ratio was significantly higher in GC compared with IFS-exposed animals (P=.001). The difference was significant between GC and GB (P=.008) but not between GC and GA. CONCLUSION IFS induces coronary perivascular fibrosis that differs under treatment with corticosteroid.
Collapse
Affiliation(s)
- Ana Lousinha
- Center for Interdisciplinary Research Egas Moniz (CIIEM), Health Sciences Institute, Monte de Caparica, Portugal.
| | - Maria João R Oliveira
- Department of Anatomy and UMIB, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| | - Gonçalo Borrecho
- Center for Interdisciplinary Research Egas Moniz (CIIEM), Health Sciences Institute, Monte de Caparica, Portugal.
| | - José Brito
- Center for Interdisciplinary Research Egas Moniz (CIIEM), Health Sciences Institute, Monte de Caparica, Portugal.
| | - Pedro Oliveira
- Center for Interdisciplinary Research Egas Moniz (CIIEM), Health Sciences Institute, Monte de Caparica, Portugal.
| | | | | | - Artur P Águas
- Department of Anatomy and UMIB, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| | - Eduardo Antunes
- Center for Interdisciplinary Research Egas Moniz (CIIEM), Health Sciences Institute, Monte de Caparica, Portugal.
| |
Collapse
|
36
|
Mihalko E, Huang K, Sproul E, Cheng K, Brown AC. Targeted Treatment of Ischemic and Fibrotic Complications of Myocardial Infarction Using a Dual-Delivery Microgel Therapeutic. ACS NANO 2018; 12:7826-7837. [PMID: 30016078 DOI: 10.1021/acsnano.8b01977] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, affects millions of people worldwide and results in significant death and disabilities. A major cause of MI is fibrin-rich thrombus formation that occludes the coronary arteries, blocking blood flow to the heart and causing fibrin deposition. In treating MI, re-establishing blood flow is critical. However, ischemia reperfusion (I/R) injury itself can also occur and contributes to cardiac fibrosis. Fibrin-specific poly( N-isopropylacrylamide) nanogels (FSNs) comprised of a core-shell colloidal hydrogel architecture are utilized in this study to design a dual-delivery system that simultaneously addresses the need to (1) re-establish blood flow and (2) inhibit cardiac fibrosis following I/R injury. These therapeutic needs are met by controlling the release of a fibrinolytic protein, tissue plasminogen activator (tPA), and a small molecule cell contractility inhibitor (Y-27632). In vitro, tPA and Y-27632-loaded FSNs rapidly degrade fibrin and decrease cardiac cell stress fiber formation and connective tissue growth factor expression, which are both upregulated in cardiac fibrosis. In vivo, FSNs localize to fibrin in injured heart tissue and, when loaded with tPA and Y-27632, showed significant improvement in left ventricular ejection fraction 2 and 4 weeks post-I/R as well as significantly decreased infarct size, α-smooth muscle actin expression, and connective tissue growth factor expression 4 weeks post-I/R. Together, these data demonstrate the feasibility of this targeted therapeutic strategy to improve cardiac function following MI.
Collapse
|
37
|
Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018; 2018:1247857. [PMID: 30034478 PMCID: PMC6035836 DOI: 10.1155/2018/1247857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Heart development in mammals is followed by a postnatal decline in cell proliferation and cell renewal from stem cell populations. A better understanding of the developmental changes in cardiac microenvironments occurring during heart maturation will be informative regarding the loss of adult regenerative potential. We reevaluate the adult heart's mitotic potential and the reported adult cardiac stem cell populations, as these are two topics of ongoing debate. The heart's early capacity for cell proliferation driven by progenitors and reciprocal signalling is demonstrated throughout development. The mature heart architecture and environment may be more restrictive on niches that can host progenitor cells. The engraftment issues observed in cardiac stem cell therapy trials using exogenous stem cells may indicate a lack of supporting stem cell niches, while tissue injury adds to a hostile microenvironment for transplanted cells. Engraftment may be improved by preconditioning the cultured stem cells and modulating the microenvironment to host these cells. These prospective areas of further research would benefit from a better understanding of cardiac progenitor interactions with their microenvironment throughout development and may lead to enhanced cardiac niche support for stem cell therapy engraftment.
Collapse
|
38
|
Svystonyuk DA, Mewhort HEM, Fedak PWM. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair. Front Cardiovasc Med 2018; 5:35. [PMID: 29696148 PMCID: PMC5904207 DOI: 10.3389/fcvm.2018.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023] Open
Abstract
An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Liang C, Luo Y, Yang G, Xia D, Liu L, Zhang X, Wang H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. NANOSCALE RESEARCH LETTERS 2018; 13:15. [PMID: 29327198 PMCID: PMC5764901 DOI: 10.1186/s11671-018-2432-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young's modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yongchao Luo
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guodong Yang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dan Xia
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Xiaomin Zhang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Hongshui Wang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
40
|
Serum–glucocorticoid-regulated kinase 1 contributes to mechanical stretch-induced inflammatory responses in cardiac fibroblasts. Mol Cell Biochem 2017; 445:67-78. [DOI: 10.1007/s11010-017-3252-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/10/2017] [Indexed: 01/29/2023]
|
41
|
Worke LJ, Barthold JE, Seelbinder B, Novak T, Main RP, Harbin SL, Neu CP. Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis. Adv Healthc Mater 2017; 6. [PMID: 28881428 DOI: 10.1002/adhm.201700114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/10/2017] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is a disease state characterized by excessive collagenous matrix accumulation within the myocardium that can lead to ventricular dilation and systolic failure. Current treatment options are severely lacking due in part to the poor understanding of the complexity of molecular pathways involved in cardiac fibrosis. To close this gap, in vitro model systems that recapitulate the defining features of the fibrotic cellular environment are in need. Type I collagen, a major cardiac extracellular matrix protein and the defining component of fibrotic depositions, is an attractive choice for a fibrosis model, but demonstrates poor mechanical strength due to solubility limits. However, plastic compression of collagen matrices is shown to significantly increase its mechanical properties. Here, confined compression of oligomeric, type I collagen matrices is utilized to resemble defining hallmarks seen in fibrotic tissue such as increased collagen content, fibril thickness, and bulk compressive modulus. Cardiomyocytes seeded on compressed matrices show a strong beating abrogation as observed in cardiac fibrosis. Gene expression analysis of selected fibrosis markers indicates fibrotic activation and cardiomyocyte maturation with regard to the existing literature. With these results, a promising first step toward a facile heart-on-chip model is presented to study cardiac fibrosis.
Collapse
Affiliation(s)
- Logan J. Worke
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Jeanne E. Barthold
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Benjamin Seelbinder
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Tyler Novak
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Russell P. Main
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Sherry L. Harbin
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Corey P. Neu
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| |
Collapse
|
42
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
43
|
Jin W, Deng QQ, Chen BY, Lu ZX, Li Q, Zhao HK, Chang P, Yu J, Pei ZH. Inhibitory effects of low decibel infrasound on the cardiac fibroblasts and the involved mechanism. Noise Health 2017; 19:149-153. [PMID: 28615545 PMCID: PMC5501025 DOI: 10.4103/nah.nah_14_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Infrasound is a mechanical vibration wave with frequency between 0.0001 and 20 Hz. It has been established that infrasound of 120 dB or stronger is dangerous to humans. However, the biological effects of low decibel infrasound are largely unknown. The purpose of this study was to investigate the effects of low decibel infrasound on the cardiac fibroblasts. MATERIALS AND METHODS The cardiac fibroblasts were isolated and cultured from Sprague-Dawley rats. The cultured cells were assigned into the following four groups: control group, angiotensin II (Ang II) group, infrasound group, and Ang II+infrasound group. The cell proliferation and collagen synthesis rates were evaluated by means of [3H]-thymidine and [3H]-proline incorporation, respectively. The levels of TGF-β were determined by enzyme-linked immunosorbent assay. Moreover, RNAi approaches were used for the analysis of the biological functions of miR-29a, and the phosphorylation status of Smad3 was detected using western blotting analysis. RESULTS The results showed that low decibel infrasound significantly alleviated Ang II-induced enhancement of cell proliferation and collagen synthesis. DISCUSSION Compared with the control, Ang II markedly decreased the expression of miR-29a levels and increased the secretion of TGF-β and phosphorylation of Smad3, which was partly reversed by the treatment with low decibel infrasound. Importantly, knockdown of miR-29a diminished the effects of infrasound on the cardiac fibroblasts. In conclusion, low decibel infrasound inhibits Ang II-stimulated cardiac fibroblasts via miR-29a targeting TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Wei Jin
- Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
| | - Qin-Qin Deng
- Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
| | - Bao-Ying Chen
- Department of Radiology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Xing Lu
- Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
| | - Qing Li
- Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jun Yu
- Central Laboratory, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zhao-Hui Pei
- Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
| |
Collapse
|
44
|
Sadeghi AH, Shin SR, Deddens JC, Fratta G, Mandla S, Yazdi IK, Prakash G, Antona S, Demarchi D, Buijsrogge MP, Sluijter JPG, Hjortnaes J, Khademhosseini A. Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Adv Healthc Mater 2017; 6:10.1002/adhm.201601434. [PMID: 28498548 PMCID: PMC5545804 DOI: 10.1002/adhm.201601434] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Indexed: 12/19/2022]
Abstract
Activation of cardiac fibroblasts into myofibroblasts is considered to play an essential role in cardiac remodeling and fibrosis. A limiting factor in studying this process is the spontaneous activation of cardiac fibroblasts when cultured on two-dimensional (2D) culture plates. In this study, a simplified three-dimensional (3D) hydrogel platform of contractile cardiac tissue, stimulated by transforming growth factor-β1 (TGF-β1), is presented to recapitulate a fibrogenic microenvironment. It is hypothesized that the quiescent state of cardiac fibroblasts can be maintained by mimicking the mechanical stiffness of native heart tissue. To test this hypothesis, a 3D cell culture model consisting of cardiomyocytes and cardiac fibroblasts encapsulated within a mechanically engineered gelatin methacryloyl hydrogel, is developed. The study shows that cardiac fibroblasts maintain their quiescent phenotype in mechanically tuned hydrogels. Additionally, treatment with a beta-adrenergic agonist increases beating frequency, demonstrating physiologic-like behavior of the heart constructs. Subsequently, quiescent cardiac fibroblasts within the constructs are activated by the exogenous addition of TGF-β1. The expression of fibrotic protein markers (and the functional changes in mechanical stiffness) in the fibrotic-like tissues are analyzed to validate the model. Overall, this 3D engineered culture model of contractile cardiac tissue enables controlled activation of cardiac fibroblasts, demonstrating the usability of this platform to study fibrotic remodeling.
Collapse
Affiliation(s)
- Amir Hossein Sadeghi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, The Netherlands
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3584, CX, The Netherlands
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Janine C Deddens
- Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), 3584, CX, Utrecht, The Netherlands
| | - Giuseppe Fratta
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Serena Mandla
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Gyan Prakash
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Silvia Antona
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Marc P Buijsrogge
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3584, CX, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), 3584, CX, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, 3584, CX, Utrecht, The Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3584, CX, The Netherlands
- UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, 3584, CX, Utrecht, The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, 130-701, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
45
|
Dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress. Eur J Pharmacol 2017; 807:159-167. [PMID: 28414055 DOI: 10.1016/j.ejphar.2017.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
Abstract
Dihydromyricetin (DMY) is one of the most important flavonoids in vine tea, which showed several pharmacological effects. However, information about the potential role of DMY on angiotensin II (Ang II) induced cardiac fibroblasts proliferation remains unknown. In the present study, cardiac fibroblasts isolated from neonatal Sprague-Dawley rats were pretreated with different concentrations of DMY (0-320μM) for 4h, or DMY (80μM) for different time (0-24h), followed by Ang II (100nM) stimulation for 24h, Then number of cardiac fibroblasts and content of hydroxyproline was measured. The level of cellular reactive oxygen species, malondialdehyde (MDA), activity of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were also evaluated. Expression of type I, type III collagen, α-smooth muscle actin (α-SMA), p22phox (one vital subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase), SOD and thioredoxin (Trx) were detected with real time PCR or/and western blot. We found that pre-incubation with DMY (20μM, 40μM, 80μM) for 4h, 12h or 24h attenuated the proliferation of cardiac fibroblasts induced by Ang II. Expression of type I and type III collagen, as well as α-SMA were inhibited by DMY at both mRNA and protein level. DMY also significantly decreased cellular reactive oxygen species production and MDA level, while increased the SOD activity and T-AOC. DMY suppressed p22phox, while enhanced antioxidant SOD and Trx expression in Ang II stimulated cardiac fibroblasts. Thus, dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress.
Collapse
|
46
|
Deddens JC, Sadeghi AH, Hjortnaes J, van Laake LW, Buijsrogge M, Doevendans PA, Khademhosseini A, Sluijter JPG. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Adv Healthc Mater 2017; 6. [PMID: 27906521 DOI: 10.1002/adhm.201600571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
| | - Amir Hossein Sadeghi
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Marc Buijsrogge
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
- Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
| | - Joost P. G. Sluijter
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| |
Collapse
|
47
|
Fraccarollo D, Galuppo P, Bauersachs J. Modeling Cardiac Fibrosis in Mice: (Myo)Fibroblast Phenotype After Ischemia. Methods Mol Biol 2017; 1627:123-137. [PMID: 28836199 DOI: 10.1007/978-1-4939-7113-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiac (myo)fibroblasts play a key role in the regulation of wound healing and pathogenic remodeling after myocardial infarction. Impaired scar formation and alterations of the extracellular matrix network precipitate cardiac dysfunction leading to increased morbidity and mortality. Therapeutic approaches addressing (myo)fibroblast phenotype appear to be useful in preventing progressive structural, electrical, and functional impairment and heart failure.Permanent ligation of the left anterior descending coronary artery has proven to be a valuable experimental model to investigate the arrays of pathways/mechanisms involved in cardiac repair and extracellular matrix remodeling in ischemic heart failure. Here we describe the surgical procedure to occlude the left coronary artery in mice. Moreover, we present an accurate method to isolate (myo)fibroblasts from ischemic myocardium, with maintenance of the functional phenotype, using the specific marker for mouse cardiac fibroblasts mEF-SK4. The protocol can be completed within a few hours, and the isolated fibroblasts/myofibroblasts are suitable for downstream molecular biology applications, like gene expression profiling and cell culture.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
48
|
Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7. Sci Rep 2016; 6:33067. [PMID: 27703175 PMCID: PMC5050447 DOI: 10.1038/srep33067] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 01/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.
Collapse
|
49
|
Wang Y, Ouyang M, Wang Q, Jian Z. MicroRNA-142-3p inhibits hypoxia/reoxygenation‑induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med 2016; 38:1377-1386. [PMID: 28025989 PMCID: PMC5065300 DOI: 10.3892/ijmm.2016.2756] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as cardiac fibrosis, which is characterized as the transdifferentiation of fibroblasts to myofibroblasts and collagen deposition. MicroRNAs (miRNAs or miRs) have been demonstrated to be involved in myocardial I/R injury. However, the underlying molecular mechanism remains largely unclear. In the present study, mouse cardiomyocyte M6200 cells were treated with hypoxia/reoxygenation (H/R). Our data indicated that H/R treatment led to cell apoptosis, the increased expression of fibrosis-related proteins, namely collagen I, II, III, and fibronectin, as well as the downregulation of miR-142-3p in M6200 cells. Overexpression of miR-142-3p suppressed the H/R-induced apoptosis and fibrosis of M6200 cells. Bioinformatics analysis and a Dual-Luciferase reporter assay further identified high mobility group box 1 (HMGB1) as a direct target gene of miR-142-3p, and miR-142-3p negatively regulated the protein level of HMGB1 in M6200 cells. Furthermore, knockdown of HMGB1 enhanced cell proliferation whereas it inhibited the apoptosis and fibrosis of M6200 cells. In addition, TGF-β1/Smad3 signaling was suggested to be involved in the miR-142-3p/HMGB1-mediated apoptosis and fibrosis of M6200 cells treated with H/R. Taken together, the findings of the present study demonstrate that miR-142-3p inhibits H/R-induced apoptosis and fibrosis of cardiomyocytes, partly at least, by the direct inhibition of HMGB1 expression. Therefore, these findings have increased our understanding of the pathogenesis of H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yi Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Ouyang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zaijin Jian
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
50
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|