1
|
Palmer JA, Kaufman CS, Whitaker-Hilbig AA, Billinger SA. APOE4 carriers display loss of anticipatory cerebral vascular regulation over AD progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315344. [PMID: 39417136 PMCID: PMC11482999 DOI: 10.1101/2024.10.11.24315344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Maintenance of cerebral blood flow during orthostasis is impaired with aging and associated with cognitive decline, but the effect of Apolipoprotein 4-allele (APOE4) is unknown. METHODS Older adults (n=108) (APOE4 carriers, n=47; noncarriers, n=61) diagnosed as cognitively-normal (NC), MCI, or AD participated. Middle cerebral artery blood velocity (MCAv), assessed using Transcranial Doppler ultrasound, and beat-to-beat mean arterial blood pressure (MAP) were continuously recorded during a sit-to-stand transition. Anticipatory and orthostatic-induced MCAv and MAP responses were compared between genotypes and across disease progression. RESULTS Cognitively-normal APOE4 carriers showed greater anticipatory MCAv increase, greater MCAv decrease with orthostasis, and shorter latency of peripheral MAP responses to orthostasis compared to noncarriers. MCAv and MAP responses were delayed and attenuated across the APOE4 disease progression, with no differences between genotypes in MCI and AD. DISCUSSION APOE4 carriers and noncarriers present with distinct phenotypes of cerebral vascular dysfunction during hemodynamic orthostatic challenge. Unique cerebral and peripheral vascular compensation observed in APOE4 carriers may be lost as AD progresses.
Collapse
Affiliation(s)
- Jacqueline A. Palmer
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota Medical School, , Minneapolis, MN, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| | - Carolyn S. Kaufman
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Internal Medicine, Stanford Health Care, Stanford University, Palo Alto, CA, United States of America
| | - Alicen A. Whitaker-Hilbig
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 123 Milwaukee Way, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Sandra A. Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| |
Collapse
|
2
|
Lakatos LB, Shin DC, Müller M, Österreich M, Marmarelis V, Bolognese M. Impaired dynamic cerebral autoregulation measured in the middle cerebral artery in patients with vertebrobasilar ischemia is associated with autonomic failure. J Stroke Cerebrovasc Dis 2024; 33:107454. [PMID: 37931481 PMCID: PMC10841591 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVES To assess whether vertebrobasilar artery ischemia (VBI) affects cortical cerebral blood flow (CBF) regulation. MATERIAL AND METHODS 107 consecutive patients (mean age 65 ± 15 years; women 21) with VBI underwent structured stroke care with assessment of dynamic cerebral autoregulation (dCA) in both middle cerebral arteries (MCAs) by transfer function analysis using spontaneous oscillations of blood pressure (BP) and CBF velocity that yields by extraction of phase and gain information in the very low (0.02-0.07 Hz), low (0.07-0.15 Hz) and high frequency (0.15-0.5 Hz) ranges. Additionally, power spectrum analysis of BP and heart rate variability (HRV) was performed. The control group consists of 29 age- and sex-matched healthy persons. RESULTS Compared to controls, phase in the VBI patients was significantly reduced and gain increased in the very low frequencies (VLF), in the low (LF), phase was significantly reduced only ipsilaterally. In the high frequencies (HF), phase reduction was only marginally significant. BP power spectral density (PSD) was much higher in the patients than in the controls across all frequencies. In the PSD of heart rate variability the controls but not the patients exhibited a strong peak around 0.11Hz, while the patients, but not the controls, exhibit a strong peak around 0.36 Hz. In regression analysis, patient's phase and gain results were not related to age, sex, arterial hypertension, diabetes mellitus, renal dysfunction, heart failure as indicated by left ventricular ejection fraction, stroke subtype, presence or absence of cerebral small vessel disease. CONCLUSION Patients with VBI exhibit bilateral cortical autoregulation impairment in association with an autonomic nervous system disbalance. CLINICALTRIALS GOV IDENTIFIER NCT04611672.
Collapse
Affiliation(s)
- Lehel Barna Lakatos
- Department of Neurology and Neurorehabilitation, Lucerne Kantonsspital, Spitalstrasse Switzerland
| | - Dae C Shin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Martin Müller
- Department of Neurology and Neurorehabilitation, Lucerne Kantonsspital, Spitalstrasse Switzerland.
| | - Mareike Österreich
- Department of Neurology and Neurorehabilitation, Lucerne Kantonsspital, Spitalstrasse Switzerland
| | - Vasilis Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Manuel Bolognese
- Department of Neurology and Neurorehabilitation, Lucerne Kantonsspital, Spitalstrasse Switzerland
| |
Collapse
|
3
|
Chen S, Chen H, Duan J, Cui L, Liu R, Xing Y. Impaired Dynamic Cerebral Autoregulation in Patients With Cerebral Venous Sinus Thrombosis: Evaluation Using Transcranial Doppler and Silent Reading Stimulation. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2221-2226. [PMID: 37532632 DOI: 10.1016/j.ultrasmedbio.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Cerebral venous sinus thrombosis (CVST) may impair dynamic cerebral autoregulation (dCA) of the middle cerebral artery (MCA). However, most studies have focused on dCA of the MCA; a few studies are based on the posterior cerebral artery (PCA) during silent reading and neurovascular coupling (NVC). This study explored the effects of CVST on dCA of the MCA and PCA during silent reading and NVC. METHODS From January 2021 to August 2022, 60 CVST patients and 30 controls were enrolled in this study. Non-invasive continuous beat-to-beat blood pressure, cerebral blood flow velocity and other associated information on the MCA and PCA during silent reading were collected using a transcranial Doppler. NVC assessment was performed by opening and closing the eyes periodically based on voice prompts, and eye-opening visual stimulation was achieved by silently reading Chinese tourism materials. Visual stimulation signals can selectively activate Brodmann's areas 17, 18, and 19 of the occipital when reading silently with open eyes, prompting them to release neurotransmitters and dilate PCA. dCA was determined by transfer function analysis. RESULTS In dCA of the PCA during silent reading, the CVST group's very low frequency phase was lower than that of the control group (p = 0.047). In NVC, the difference in the indexes of the cerebrovascular conductance and visually evoked flow response of the CVST group were lower than those of the control group (p = 0.017 and p = 0.019, respectively). CONCLUSION Compared with the control group, dCA and NVC of the PCA during silent reading were impaired in CVST patients.
Collapse
Affiliation(s)
- Songwei Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongxiu Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liuping Cui
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Besnier F, Gagnon C, Monnet M, Dupuy O, Nigam A, Juneau M, Bherer L, Gayda M. Acute Effects of a Maximal Cardiopulmonary Exercise Test on Cardiac Hemodynamic and Cerebrovascular Response and Their Relationship with Cognitive Performance in Individuals with Type 2 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085552. [PMID: 37107835 PMCID: PMC10138481 DOI: 10.3390/ijerph20085552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular and cerebrovascular diseases are prevalent in individuals with type 2 diabetes (T2D). Among people with T2D aged over 70 years, up to 45% might have cognitive dysfunction. Cardiorespiratory fitness (V˙O2max) correlates with cognitive performances in healthy younger and older adults, and individuals with cardiovascular diseases (CVD). The relationship between cognitive performances, V˙O2max, cardiac output and cerebral oxygenation/perfusion responses during exercise has not been studied in patients with T2D. Studying cardiac hemodynamics and cerebrovascular responses during a maximal cardiopulmonary exercise test (CPET) and during the recovery phase, as well as studying their relationship with cognitive performances could be useful to detect patients at greater risk of future cognitive impairment. Purposes: (1) to compare cerebral oxygenation/perfusion during a CPET and during its post-exercise period (recovery); (2) to compare cognitive performances in patients with T2D to those in healthy controls; and (3) to examine if V˙O2max, maximal cardiac output and cerebral oxygenation/perfusion are associated with cognitive function in individuals with T2D and healthy controls. Nineteen patients with T2D (61.9 ± 7 years old) and 22 healthy controls (HC) (61.8 ± 10 years old) were evaluated on the following: a CPET test with impedance cardiography and cerebral oxygenation/perfusion using a near-infrared spectroscopy. Prior to the CPET, the cognitive performance assessment was performed, targeting: short-term and working memory, processing speed, executive functions, and long-term verbal memory. Patients with T2D had lower V˙O2max values compared to HC (34.5 ± 5.6 vs. 46.4 ± 7.6 mL/kg fat free mass/min; p < 0.001). Compared to HC, patients with T2D showed lower maximal cardiac index (6.27 ± 2.09 vs. 8.70 ± 1.09 L/min/m2, p < 0.05) and higher values of systemic vascular resistance index (826.21 ± 308.21 vs. 583.35 ± 90.36 Dyn·s/cm5·m2) and systolic blood pressure at maximal exercise (204.94 ± 26.21 vs. 183.61 ± 19.09 mmHg, p = 0.005). Cerebral HHb during the 1st and 2nd min of recovery was significantly higher in HC compared to T2D (p < 0.05). Executive functions performance (Z score) was significantly lower in patients with T2D compared to HC (-0.18 ± 0.7 vs. -0.40 ± 0.60, p = 0.016). Processing speed, working and verbal memory performances were similar in both groups. Brain tHb during exercise and recovery (-0.50, -0.68, p < 0.05), and O2Hb during recovery (-0.68, p < 0.05) only negatively correlated with executive functions performance in patients with T2D (lower tHb values associated with longer response times, indicating a lower performance). In addition to reduced V˙O2max, cardiac index and elevated vascular resistance, patients with T2D showed reduced cerebral hemoglobin (O2Hb and HHb) during early recovery (0-2 min) after the CPET, and lower performances in executive functions compared to healthy controls. Cerebrovascular responses to the CPET and during the recovery phase could be a biological marker of cognitive impairment in T2D.
Collapse
Affiliation(s)
- Florent Besnier
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Gagnon
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
| | - Meghann Monnet
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
| | - Olivier Dupuy
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Anil Nigam
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Martin Juneau
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Louis Bherer
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada
| | - Mathieu Gayda
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
5
|
Grout M, Lovegrove JA, Lamport DJ. A multimeal paradigm producing a low glycemic response is associated with modest cognitive benefits relative to a high glycemic response: a randomized, crossover trial in patients with type 2 diabetes. Am J Clin Nutr 2023; 117:859-869. [PMID: 36841444 DOI: 10.1016/j.ajcnut.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2DM) and poor glucose regulation in the immediate postprandial period are both associated with impairments in cognitive function. There is evidence that foods that generate a better postprandial glycemic response, such as low GI foods (which produce a lower glycemic peak, less variability, and a more sustained decline), are associated with cognitive benefits over the morning. However, the potential impact of consuming multiple meals of this nature over the course of a day on cognition in T2DM has not been explored. OBJECTIVES The primary aim of this research was to investigate whether a multimeal paradigm producing a low glycemic response was associated with cognitive benefits in patients with noninsulin-dependent T2DM relative to a multimeal paradigm producing a high glycemic response. METHODS Twenty-five adults with noninsulin-dependent T2DM (mean age: 57 y) consumed 2 multimeal profiles consisting of a breakfast, lunch, and afternoon snack on 2 separate test days following a randomized, counterbalanced, crossover design. The 2 conditions were a low GI profile (LGIP) and a high GI profile (HGIP). RESULTS Cognitive function, glycemic response, mood, and satiety were assessed over the day from 8:30 to 17:00. Overall, there were limited cognitive effects. However, there was evidence for cognitive benefits in the period before lunch, as demonstrated by better global cognitive and executive functions for the LGIP relative to the HGIP. No clear effects were observed for mood. CONCLUSIONS This study shows that a multimeal paradigm producing a low glycemic response was associated with some benefits for cognitive function in patients with T2DM. CLINICAL TRAIL REGISTRY REFERENCE NCT03360604 (clinical trial.gov).
Collapse
Affiliation(s)
- Matthew Grout
- School of Psychology and Clinical Language Science, University of Reading, United Kingdom
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Institute of Food, Nutrition and Health, Department of Food and Nutrition Sciences, University of Reading, United Kingdom
| | - Daniel J Lamport
- School of Psychology and Clinical Language Science, University of Reading, United Kingdom.
| |
Collapse
|
6
|
Shimoda M, Kaneko K, Nakagawa T, Kawano N, Otsuka R, Ota A, Naito H, Matsunaga M, Ichino N, Yamada H, Chiang C, Hirakawa Y, Tamakoshi K, Aoyama A, Yatsuya H. Relationship Between Fasting Blood Glucose Levels in Middle Age and Cognitive Function in Later Life: The Aichi Workers' Cohort Study. J Epidemiol 2023; 33:76-81. [PMID: 34024876 PMCID: PMC9794446 DOI: 10.2188/jea.je20210128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is limited evidence regarding the relationship between Diabetes mellitus (DM) in middle age and mild cognitive impairment after a follow-up. Therefore, we investigated the relationship between fasting blood glucose (FBG) levels in middle age and cognitive function assessed using the Japanese version of the Montreal Cognitive Assessment (MoCA-J) in later life, following over 15 years of follow-up in the Aichi Workers' Cohort Study in Japan. METHODS Participants were 253 former local government employees aged 60-79 years in 2018 who participated in a baseline survey conducted in 2002. Using baseline FBG levels and self-reported history, participants were classified into the normal, impaired fasting glucose (IFG) and, and DM groups. Total MoCA-J score ranges from 0 to 30, and cognitive impairment was defined as MoCA-J score ≤25 in this study. A general linear model was used to estimate the mean MoCA-J scores in the FBG groups, adjusted for age, sex, educational year, smoking status, alcohol consumption, physical activity, body mass index, systolic blood pressure, total cholesterol, and estimated glomerular filtration rate. RESULTS The mean MoCA-J score in the total population was 25.0, and the prevalence of MoCA-J score ≤25 was 49.0%. Multivariable-adjusted total MoCA-J scores were 25.2, 24.8, and 23.4 in the normal, IFG, and DM groups, respectively. The odds ratio of MoCA-J score ≤25 in the DM group was 3.29. CONCLUSION FBG level in middle age was negatively associated with total MoCA-J scores assessed later in life, independent of confounding variables.
Collapse
Affiliation(s)
- Masako Shimoda
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kayo Kaneko
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | - Rei Otsuka
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Atsuhiko Ota
- Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| | - Masaaki Matsunaga
- Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| | - Naohiro Ichino
- Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| | - Hiroya Yamada
- Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| | - Chifa Chiang
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Hirakawa
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Tamakoshi
- Department of Nursing, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Atsuko Aoyama
- Nagoya University of Arts and Sciences, Aichi, Japan
| | - Hiroshi Yatsuya
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Public Health, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
7
|
Bolognese M, Karwacki G, Österreich M, Müller M, Lakatos L. Middle cerebral artery dynamic cerebral autoregulation is impaired by infarctions in the anterior but not the posterior cerebral artery territory in patients with mild strokes. Transl Neurosci 2023; 14:20220278. [PMID: 37021296 PMCID: PMC10068749 DOI: 10.1515/tnsci-2022-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 04/07/2023] Open
Abstract
Objective The aim of this study was to ascertain whether dynamic cerebral autoregulation (CA) in the middle cerebral artery (MCA) is disturbed by cerebral infarctions outside the MCA territory. Methods We estimated transfer function parameters gain and phase from simultaneous recordings of spontaneous oscillation in blood pressure and MCA cerebral blood flow velocity in 10 consecutive patients with isolated anterior cerebral artery (ACA) infarctions and in 22 consecutive patients with isolated posterior cerebral artery (PCA) infarctions. All ACA infarctions were in the motor, premotor, or supplementary motor cortex areas and presented with pronounced leg hemiparesis. Twenty-eight age- and sex-matched healthy subjects served as controls. Results Compared to controls, phase was significantly reduced in the MCA ipsilateral to the lesion site and in the contralateral MCA (unaffected hemisphere) in the very low (0.02-0.07 Hz) and low (0.07-0.15 Hz) frequency ranges in the ACA infarctions but not in the PCA infarctions. Gain was reduced only in the very low frequency range in the MCA contralateral to the ACA lesion site. Systemic factors were unrelated to phase and gain results. Conclusion Bilateral impairment of MCA dynamic CA in patients with a unilateral ACA infarction is frequent.
Collapse
Affiliation(s)
- Manuel Bolognese
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Grzegorz Karwacki
- Section Neuroradiology, Department of Radiology, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Mareike Österreich
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Martin Müller
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| | - Lehel Lakatos
- Department of Neurology and Neurorehabilitation, Kantonsspital Lucerne, Spitalstrasse, CH-6000Lucerne 16, Switzerland
| |
Collapse
|
8
|
Sprick JD, Jones T, Jeong J, DaCosta D, Park J. Dynamic cerebral autoregulation is intact in chronic kidney disease. Physiol Rep 2022; 10:e15495. [PMID: 36325592 PMCID: PMC9630754 DOI: 10.14814/phy2.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/09/2023] Open
Abstract
Chronic Kidney Disease (CKD) patients experience an elevated risk for cerebrovascular disease. One factor that may contribute to this heightened risk is an impairment in dynamic cerebral autoregulation, the mechanism by which cerebral vessels modulate cerebral blood flow during fluctuations in arterial pressure. We hypothesized that dynamic cerebral autoregulation would be impaired in CKD. To test this hypothesis, we compared dynamic cerebral autoregulation between CKD patients stages III-IV and matched controls (CON) without CKD. Fifteen patients with CKD and 20 CON participants performed 2, 5-minute bouts of repeated sit-to-stand maneuvers at 0.05 Hz and 0.10 Hz while mean arterial pressure (MAP, via finger photoplethysmography) and middle cerebral artery blood velocity (MCAv, via transcranial Doppler ultrasound) were measured continuously. Cerebral autoregulation was characterized by performing a transfer function analysis (TFA) on the MAP-MCAv relationship to derive coherence, phase, gain, and normalized gain (nGain). We observed no group differences in any of the TFA metrics during the repeated sit-to-stand maneuvers. During the 0.05 Hz maneuver, Coherence: CKD = 0.83 ± 0.13, CON = 0.85 ± 0.12, Phase (radians): CKD = 1.39 ± 0.41, CON = 1.25 ± 0.30, Gain (cm/s/mmHg): CKD = 0.69 ± 0.20, CON = 0.71 ± 0.22, nGain (%/mmHg): CKD = 1.26 ± 0.35, CON = 1.20 ± 0.28, p ≥ 0.24. During the 0.10 Hz maneuver (N = 6 CKD and N = 12 CON), Coherence: CKD = 0.61 ± 0.10, CON = 0.67 ± 0.11, Phase (radians): CKD = 1.43 ± 0.26, CON = 1.30 ± 0.23, Gain (cm/s/mmHg): CKD = 0.75 ± 0.15, CON = 0.84 ± 0.26, nGain (%/mmHg): CKD = 1.50 ± 0.28, CON = 1.29 ± 0.24, p ≥ 0.12. Contrary to our hypothesis, dynamic cerebral autoregulation remains intact in CKD stages III-IV. These findings suggest that other mechanisms likely contribute to the increased cerebrovascular disease burden experienced by this population. Future work should determine if other cerebrovascular regulatory mechanisms are impaired and related to cerebrovascular disease risk in CKD.
Collapse
Affiliation(s)
- Justin D. Sprick
- Division of Renal Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans Affairs Health Care SystemDecaturGeorgiaUSA
- Department of Kinesiology, Health Promotion and RecreationUniversity of North TexasDentonTexasUSA
| | - Toure Jones
- Division of Renal Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans Affairs Health Care SystemDecaturGeorgiaUSA
| | - Jinhee Jeong
- Division of Renal Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans Affairs Health Care SystemDecaturGeorgiaUSA
| | - Dana DaCosta
- Division of Renal Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans Affairs Health Care SystemDecaturGeorgiaUSA
| | - Jeanie Park
- Division of Renal Medicine, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans Affairs Health Care SystemDecaturGeorgiaUSA
| |
Collapse
|
9
|
Zafeiridis A, Kounoupis A, Papadopoulos S, Koutlas A, Boutou AK, Smilios I, Dipla K. Brain oxygenation during multiple sets of isometric and dynamic resistance exercise of equivalent workloads: Association with systemic haemodynamics. J Sports Sci 2022; 40:1020-1030. [PMID: 35271420 DOI: 10.1080/02640414.2022.2045061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain function relies on sufficient blood flow and oxygen supply. Changes in cerebral oxygenation during exercise have been linked to brain activity and central command. Isometric- and dynamic-resistance exercise-(RE) may elicit differential responses in systemic circulation, neural function and metabolism; all important regulators of cerebral circulation. We examined whether (i) cerebral oxygenation differs between isometric- and dynamic-RE of similar exercise characteristics and (ii) cerebral oxygenation changes relate to cardiovascular adjustments occurring during RE. Fourteen men performed, randomly, an isometric-RE and a dynamic-RE of similar characteristics (bilateral-leg-press, 2-min×4-sets, 30% of maximal-voluntary-contraction, equivalent tension-time-index/workload). Cerebral-oxygenation (oxyhaemoglobin-O2Hb; total haemoglobin-tHb/blood-volume-index; deoxyhemoglobin-HHb) was assessed by NIRS and beat-by-beat haemodynamics via photoplethysmography. Cerebral-O2Hb and tHb progressively increased from the 1st to 4th set in both RE-protocols (p < 0.05); HHb slightly decreased (p < 0.05). Changes in NIRS-parameters were similar between RE-protocols within each exercise-set (p = 0.91-1.00) and during the entire protocol (including resting-phases) (p = 0.48-0.63). O2Hb and tHb changes were not correlated with changes in systemic haemodynamics. In conclusion, cerebral oxygenation/blood-volume steadily increased during multiple-set RE-protocols. Isometric- and dynamic-RE of matched exercise characteristics resulted in similar prefrontal oxygenation/blood volume changes, suggesting similar cerebral haemodynamic and possibly neuronal responses to maintain a predetermined force.
Collapse
Affiliation(s)
- Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, General Papanikolaou Hospital, Thessaloniki, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
10
|
Washio T, Watanabe H, Suzuki K, Saito S, Ogoh S. Site-specific different dynamic cerebral autoregulation and cerebrovascular response to carbon dioxide in posterior cerebral circulation during isometric exercise in healthy young men. Auton Neurosci 2022; 238:102943. [PMID: 35086019 DOI: 10.1016/j.autneu.2022.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
Abstract
Different cerebral blood flow (CBF) responses to exercise between the posterior cerebral artery (PCA) and vertebral artery (VA) have been previously observed, though the physiological mechanisms remain unknown. There is regional heterogeneity in sympathetic innervation between the PCA and VA, which may affect CBF regulation, especially during sympathoexcitation. Thus, in the present study, we hypothesized that different CBF regulatory mechanisms between PCA and VA contribute to heterogeneous CBF responses to isometric exercise. To test this hypothesis, in thirteen healthy young men, dynamic cerebral autoregulation (CA) and cerebrovascular CO2 reactivity (CVR), were identified in each artery during a 2-min isometric handgrip (IHG) exercise at 30% of maximum voluntary contraction. Similar to previous data, PCA cerebrovascular conductance (CVC) index was decreased from rest (P < 0.004), but not VA CVC during IHG exercise (P > 0.084). Dynamic CA in both PCA and VA were unaltered during the IHG exercise (P = 0.129). On the other hand, PCA CVR was increased during the IHG exercise (P < 0.001) while VA CVR was unchanged (P = 0.294). In addition, individual exercise-induced changes in end-tidal partial pressure of CO2 was related to the individual change in PCA blood velocity (P < 0.046), but was not observed for VA blood flow (P > 0.420). Therefore, these exercise-induced differences in CVR between PCA and VA may contribute to exercise-induced heterogeneous CBF response in the posterior cerebral circulation. These findings indicate that the site-specific posterior CBF should be considered in further research for assessing posterior cerebral circulation.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Kazuya Suzuki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan; Neurovascular Research Laboratory, University of South Wales, UK.
| |
Collapse
|
11
|
Zhang W, Fu W, Yan L, Wang M, Ning B, Mo X, Xiong L, Liu J, Zhang P, Zhong J, Sun L, Fu W. Impaired dynamic cerebral autoregulation in young adults with mild depression. Psychophysiology 2021; 59:e13949. [PMID: 34587299 DOI: 10.1111/psyp.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
The incidence of depression is increasing, especially in the young adult population. Impaired cognitive function is one of the characteristics of depression, which may be related to impaired cerebral autoregulation (CA). We investigated the characteristics of CA in young adults with mild depression, as well as its validity for identifying patients with depression. Patients (aged 18-35 years) with Hamilton Depression Rating Scale (HAMD) scores ranging from 8 to 17 and a first episode of mild depression were enrolled in this study. Healthy volunteers were recruited as controls. Noninvasive continuous arterial blood pressure and bilateral middle cerebral artery blood flow velocity were simultaneously recorded from each subject. Transfer function analysis was applied to derive phase difference, gain, coherence and rate of recovery for the assessment of CA. Forty-three patients and 43 healthy controls were enrolled. Phase difference values were significantly compromised in young adults with mild depression and were negatively correlated with HAMD scores. Rate of recovery values estimated from depressed patients was significantly lower. The validity in identifying patients with depression was favorable for the phase difference. The cutoff phase difference value was 29.66. Our findings suggest that dynamic CA was impaired in young patients with mild depression and negatively correlated with HAMD scores. CA represented by phase difference can be used as an objective auxiliary examination of depression, and has clinical diagnostic value for the early identification of patients with depression.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Fu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Luda Yan
- Shenzhen Bao'an Research Center for Acupuncture and Moxibustion, Shenzhen, China
| | - Mengyu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baile Ning
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Mo
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pandeng Zhang
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingxin Zhong
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Department of Psychosomatics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Mizuno M, Hotta N, Ishizawa R, Kim HK, Iwamoto G, Vongpatanasin W, Mitchell JH, Smith SA. The Impact of Insulin Resistance on Cardiovascular Control During Exercise in Diabetes. Exerc Sport Sci Rev 2021; 49:157-167. [PMID: 33965976 PMCID: PMC8195845 DOI: 10.1249/jes.0000000000000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Gary Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| |
Collapse
|
13
|
Nogueira RC, Beishon L, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral Autoregulation in Ischemic Stroke: From Pathophysiology to Clinical Concepts. Brain Sci 2021; 11:511. [PMID: 33923721 PMCID: PMC8073938 DOI: 10.3390/brainsci11040511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke (IS) is one of the most impacting diseases in the world. In the last decades, new therapies have been introduced to improve outcomes after IS, most of them aiming for recanalization of the occluded vessel. However, despite this advance, there are still a large number of patients that remain disabled. One interesting possible therapeutic approach would be interventions guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). Supportive hemodynamic therapies aiming to optimize perfusion in the ischemic area could protect the brain and may even extend the therapeutic window for reperfusion therapies. However, the knowledge of how to implement these therapies in the complex pathophysiology of brain ischemia is challenging and still not fully understood. This comprehensive review will focus on the state of the art in this promising area with emphasis on the following aspects: (1) pathophysiology of CA in the ischemic process; (2) methodology used to evaluate CA in IS; (3) CA studies in IS patients; (4) potential non-reperfusion therapies for IS patients based on the CA concept; and (5) the impact of common IS-associated comorbidities and phenotype on CA status. The review also points to the gaps existing in the current research to be further explored in future trials.
Collapse
Affiliation(s)
- Ricardo C. Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Neurology, Hospital Nove de Julho, São Paulo 01409-002, Brazil
| | - Lucy Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK; (L.B.); (R.B.P.); (T.G.R.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
14
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
15
|
Pinna V, Doneddu A, Roberto S, Magnani S, Ghiani G, Mulliri G, Sanna I, Serra S, Hosseini Kakhak SA, Milia R, Fadda D, Lecis R, Guicciardi M, Crisafulli A. Combined mental task and metaboreflex impair cerebral oxygenation in patients with type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2021; 320:R488-R499. [PMID: 33533319 DOI: 10.1152/ajpregu.00288.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular regulation is altered by type 2 diabetes mellitus (DM2), producing an abnormal response to muscle metaboreflex. During physical exercise, cerebral blood flow is impaired in patients with DM2, and this phenomenon may reduce cerebral oxygenation (COX). We hypothesized that the simultaneous execution of a mental task (MT) and metaboreflex activation would reduce COX in patients with DM2. Thirteen individuals suffering from DM2 (6 women) and 13 normal age-matched controls (CTL, 6 women) participated in this study. They underwent five different tests, each lasting 12 min: postexercise muscle ischemia (PEMI) to activate the metaboreflex, control exercise recovery (CER), PEMI + MT, CER + MT, and MT alone. COX was evaluated using near-infrared spectroscopy with sensors applied to the forehead. Central hemodynamics was assessed using impedance cardiography. We found that when MT was superimposed on the PEMI-induced metaboreflex, patients with DM2 could not increase COX to the same extent reached by the CTL group (101.13% ± 1.08% vs. 104.23% ± 2.51%, P < 0.05). Moreover, patients with DM2 had higher mean blood pressure and systemic vascular resistance as well as lower stroke volume and cardiac output levels compared with the CTL group, throughout our experiments. It was concluded that patients with DM2 had reduced capacity to enhance COX when undertaking an MT during metaboreflex. Results also confirm that patients with DM2 had dysregulated hemodynamics during metaboreflex, with exaggerated blood pressure response and vasoconstriction. This may have implications for these patients' lack of inclination to exercise.
Collapse
Affiliation(s)
- Virginia Pinna
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Sardinia, Italy
| | - Azzurrra Doneddu
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | - Silvana Roberto
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | - Sara Magnani
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Sardinia, Italy
| | - Giovanna Ghiani
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | - Gabriele Mulliri
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Sardinia, Italy
| | - Irene Sanna
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | - Stefano Serra
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | | | - Raffaele Milia
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy
| | - Daniela Fadda
- The Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Sardinia, Italy
| | - Romina Lecis
- The Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Sardinia, Italy
| | - Marco Guicciardi
- The Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Sardinia, Italy
| | - Antonio Crisafulli
- The Sports Physiology Laboratory, University of Cagliari, Sardinia, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Sardinia, Italy
| |
Collapse
|
16
|
Kim YS, van der Ster BJP, Brassard P, Secher NH, van Lieshout JJ. Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients. Front Physiol 2021; 11:583155. [PMID: 33519500 PMCID: PMC7844205 DOI: 10.3389/fphys.2020.583155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The human brain is constantly active and even small limitations to cerebral blood flow (CBF) may be critical for preserving oxygen and substrate supply, e.g., during exercise and hypoxia. Exhaustive exercise evokes a competition for the supply of oxygenated blood between the brain and the working muscles, and inability to increase cardiac output sufficiently during exercise may jeopardize cerebral perfusion of relevance for diabetic patients. The challenge in diabetes care is to optimize metabolic control to slow progression of vascular disease, but likely because of a limited ability to increase cardiac output, these patients perceive aerobic exercise to be more strenuous than healthy subjects and that limits the possibility to apply physical activity as a preventive lifestyle intervention. In this review, we consider the effects of functional activation by exercise on the brain and how it contributes to understanding the control of CBF with the limited exercise tolerance experienced by type 2 diabetic patients. Whether a decline in cerebral oxygenation and thereby reduced neural drive to working muscles plays a role for "central" fatigue during exhaustive exercise is addressed in relation to brain's attenuated vascular response to exercise in type 2 diabetic subjects.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, Netherlands
| | - Björn J. P. van der Ster
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Niels H. Secher
- Department of Anesthesia, The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Johannes J. van Lieshout
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, United Kingdom
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Guicciardi M, Fadda D, Fanari R, Doneddu A, Crisafulli A. Affective Variables and Cognitive Performances During Exercise in a Group of Adults With Type 2 Diabetes Mellitus. Front Psychol 2021; 11:611558. [PMID: 33424722 PMCID: PMC7785934 DOI: 10.3389/fpsyg.2020.611558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022] Open
Abstract
Previous research has documented that type 2 diabetes mellitus (T2DM) is associated with cognitive impairment. Psychological variables were repeatedly investigated to understand why T2DM patients are poorly active, despite standards of medical care recommends performing aerobic and resistance exercise regularly and reducing the amount of time spent sitting. This exploratory study aims to investigate how affective variables as thoughts, feelings, and individuals’ stage of exercise adoption can modulate low cognitive performances during an experimental procedure based on exercise. The Exercise Thoughts Questionnaire (ETQ), Exercise-Induced Feeling Scale (EFI), and Physical Activity Stage of Change were administered to a sample of 12 T2DM patients. The Bivalent Shape Task (BST) alone (BST), BST with exercise [control exercise recovery (CER) + BST], and BST with metaboreflex [post-exercise muscle ischemia (PEMI) + BST] were used as mental task, and response time to congruent, incongruent, and neutral stimuli was recorded. Concomitant cerebral oxygenation (COX) was evaluated by near-infrared spectroscopy (NIRS). As expected, T2DM patients performed significantly better when the stimulus was presented in congruent trials (followed by neutral and incongruent). In the CER + BST session, T2DM patients showed longer reaction time to incongruent trials than in the PEMI + BST and BST alone sessions. Positive feelings toward exercise seem to modulate cognitive performances in high challenging task only if T2DM patients were conscious to play exercise. These results could provide some insights for health intervention targeting exercise for patients with T2DM in order to enhance cognitive performances.
Collapse
Affiliation(s)
- Marco Guicciardi
- Department of Education, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Daniela Fadda
- Department of Education, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Rachele Fanari
- Department of Education, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Azzurra Doneddu
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
18
|
Tsukamoto H, Ishibashi A, Marley CJ, Shinohara Y, Ando S, Bailey DM, Hashimoto T, Ogoh S. Plasma brain-derived neurotrophic factor and dynamic cerebral autoregulation in acute response to glycemic control following breakfast in young men. Am J Physiol Regul Integr Comp Physiol 2021; 320:R69-R79. [PMID: 33112655 DOI: 10.1152/ajpregu.00059.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
We examined the acute impact of both low- and high-glycemic index (GI) breakfasts on plasma brain-derived neurotrophic factor (BDNF) and dynamic cerebral autoregulation (dCA) compared with breakfast omission. Ten healthy men (age 24 ± 1 yr) performed three trials in a randomized crossover order; omission and Low-GI (GI = 40) and High-GI (GI = 71) breakfast conditions. Middle cerebral artery velocity (transcranial Doppler ultrasonography) and arterial pressure (finger photoplethysmography) were continuously measured for 5 min before and 120 min following breakfast consumption to determine dCA using transfer function analysis. After these measurements of dCA, venous blood samples for the assessment of plasma BDNF were obtained. Moreover, blood glucose was measured before breakfast and every 30 min thereafter. The area under the curve of 2 h postprandial blood glucose in the High-GI trial was higher than the Low-GI trial (P < 0.01). The GI of the breakfast did not affect BDNF. In addition, both very-low (VLF) and low-frequency (LF) transfer function phase or gains were not changed during the omission trial. In contrast, LF gain (High-GI P < 0.05) and normalized gain (Low-GI P < 0.05) were decreased by both GI trials, while a decrease in VLF phase was observed in only the High-GI trial (P < 0.05). These findings indicate that breakfast consumption augmented dCA in the LF range but High-GI breakfast attenuated cerebral blood flow regulation against slow change (i.e., the VLF range) in arterial pressure. Thus we propose that breakfast and glycemic control may be an important strategy to optimize cerebrovascular health.
Collapse
Affiliation(s)
- Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Aya Ishibashi
- Japan Institute of Sports Science, Tokyo, Japan
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Yasushi Shinohara
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
| |
Collapse
|
19
|
Mahinrad S, Shownkeen M, Sedaghat S, Yaffe K, Hausdorff JM, Lloyd-Jones DM, Gorelick PB, Sorond FA. Vascular health across young adulthood and midlife cerebral autoregulation, gait, and cognition. Alzheimers Dement 2020; 17:745-754. [PMID: 33283978 DOI: 10.1002/alz.12246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION To test the association of vascular health (VH) across young adulthood with midlife dynamic cerebral autoregulation (dCA), gait, and cognition; and to test whether dCA is a modifying factor. METHODS We studied 196 participants from the Coronary Artery Risk Development in Young Adults cohort who were followed over 30 years. VH was assessed at each visit according to American Heart Association recommendations. At year 30, dCA was measured using transcranial Doppler ultrasound and several gait and cognitive domains were assessed. RESULTS Worse VH from baseline through year 7, but not at year 30, was associated with less efficient dCA (all P < .05). Worse VH at all visits was associated with slower gait speed, and at year 7 with worse executive and global cognition (all P < .05). The association of baseline VH and midlife gait, but not cognition, was moderated by dCA (interaction P < .05). CONCLUSIONS VH as early as young adulthood may influence midlife brain health, and dCA may modify this relationship.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meghana Shownkeen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sanaz Sedaghat
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristine Yaffe
- Department of Psychiatry, Neurology and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey M Hausdorff
- Center for the Study of Movement Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience and Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Rush Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University, Chicago, Illinois, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Philip B Gorelick
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Farzaneh A Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
20
|
Mahinrad S, Sabayan B, Garner CR, Lloyd-Jones DM, Sorond FA. N-Terminal Pro Brain, N-Terminal Pro Atrial Natriuretic Peptides, and Dynamic Cerebral Autoregulation. J Am Heart Assoc 2020; 9:e018203. [PMID: 33059537 PMCID: PMC7763392 DOI: 10.1161/jaha.120.018203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Elevated natriuretic peptides (NP) are associated with adverse cerebrovascular conditions including stroke, cerebral small vessel disease, and dementia. However, the mechanisms underlying these associations remain unclear. In this study, we examined the relationship of NT‐proBNP (N‐terminal pro brain NP) and NT‐proANP (N‐terminal pro atrial NP) with cerebrovascular function, measured by cerebral autoregulation. Methods and Results We included 154 participants (mean age 56±4 years old) from the CARDIA (Coronary Artery Risk Development in Young Adults) cohort. NT‐proBNP and NT‐proANP were measured in blood samples from the year 25 examination using electrochemiluminescence Immunoassay and enzyme‐linked immunoassay, respectively. Dynamic cerebral autoregulation (dCA) was assessed at the year 30 examination by transcranial Doppler ultrasound, using transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations, where lower phase and higher gain reflect less efficient cerebral autoregulation. We used multivariable linear regression models adjusted for demographics, vascular risk factors, and history of kidney and cardiac diseases. Higher NT‐proBNP levels at year 25 were associated with lower phase (β [95% CI]=−5.30 lower degrees of phase [−10.05 to −0.54]) and higher gain (β [95% CI]=0.06 higher cm/s per mm Hg of gain [0.004–0.12]) at year 30. Similarly, higher NT‐proANP levels were associated with lower phase (β [95% CI]=−9.08 lower degrees of phase [−16.46 to −1.70]). Conclusions Higher circulating levels of NT‐proBNP and NT‐proANP are associated with less efficient dCA 5 years later. These findings link circulating NP to cerebral autoregulation and may be one mechanism tying NP to adverse cerebrovascular outcomes.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL
| | - Behnam Sabayan
- Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL
| | - Chaney R Garner
- Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Farzaneh A Sorond
- Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL
| |
Collapse
|
21
|
Junejo RT, Braz ID, Lucas SJ, van Lieshout JJ, Phillips AA, Lip GY, Fisher JP. Neurovascular coupling and cerebral autoregulation in atrial fibrillation. J Cereb Blood Flow Metab 2020; 40:1647-1657. [PMID: 31426699 PMCID: PMC7370373 DOI: 10.1177/0271678x19870770] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The risk of cognitive decline and stroke is increased by atrial fibrillation (AF). We sought to determine whether neurovascular coupling and cerebral autoregulation are blunted in people with AF in comparison with age-matched, patients with hypertension and healthy controls. Neurovascular coupling was assessed using five cycles of visual stimulation for 30 s followed by 30 s with both eyes-closed. Cerebral autoregulation was examined using a sit-stand test, and a repeated squat-to-stand (0.1 Hz) manoeuvre with transfer function analysis of mean arterial pressure (MAP; input) and middle cerebral artery mean blood flow velocity (MCA Vm; output) relationships at 0.1 Hz. Visual stimulation increased posterior cerebral artery conductance, but the magnitude of the response was blunted in patients with AF (18 [8] %; mean [SD]) and hypertension (17 [8] %), in comparison with healthy controls (26 [9] %) (P < 0.05). In contrast, transmission of MAP to MCA Vm was greater in AF patients compared to hypertension and healthy controls, indicating diminished cerebral autoregulation. We have shown for the first time that AF patients have impaired neurovascular coupling responses to visual stimulation and diminished cerebral autoregulation. Such deficits in cerebrovascular regulation may contribute to the increased risk of cerebral dysfunction in people with AF.
Collapse
Affiliation(s)
- Rehan T Junejo
- School of Sport, Exercise & Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK.,Liverpool Centre for Cardiovascular Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Igor D Braz
- Medical School, University Center of Volta Redonda, Volta Redonda, Brazil
| | - Samuel Je Lucas
- School of Sport, Exercise & Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes J van Lieshout
- Department of Internal Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Clinical Cardiovascular Physiology, AMC Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Aaron A Phillips
- Departments of Physiology, Pharmacology & Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Gregory Yh Lip
- Liverpool Centre for Cardiovascular Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - James P Fisher
- School of Sport, Exercise & Rehabilitation Sciences, College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK.,Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Doneddu A, Roberto S, Pinna V, Magnani S, Ghiani G, Sainas G, Mulliri G, Serra S, Kakhak SAH, Milia R, Lecis R, Guicciardi M, Crisafulli A. Effect of Combined Mental Task and Metaboreflex Activation on Hemodynamics and Cerebral Oxygenation in Patients With Metabolic Syndrome. Front Physiol 2020; 11:397. [PMID: 32477157 PMCID: PMC7241117 DOI: 10.3389/fphys.2020.00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 01/26/2023] Open
Abstract
Objective: The hemodynamic response to muscle metaboreflex has been reported to be significantly altered by metabolic syndrome (MS), with exaggerated systemic vascular resistance (SVR) increments and reduced cardiac output (CO) in comparison to healthy controls (CTLs). Moreover, patients with metabolic disorders, such as type 2 diabetes, have proven to have impaired cerebral blood flow in response to exercise. Thus, we hypothesized that contemporary mental task (MT) and metaboreflex would result in reduced cerebral oxygenation (COX) in these patients. Methods: Thirteen MS patients (five women) and 14 normal age-matched CTLs (six women) were enrolled in this study. All the participants underwent five different tests, each lasting 12 min: post-exercise muscle ischemia (PEMI) to activate the metaboreflex, control exercise recovery (CER), PEMI + MT, CER + MT, and MT alone. Cerebral oxygenation was evaluated using near-infrared spectroscopy with sensors applied to the forehead. Hemodynamics were measured using impedance cardiography. Results: The main results show that MS patients had higher SVR and lower CO levels compared to the CTL group during metaboreflex activation. Stroke volume and ventricular filling and emptying rates were also significantly reduced. Moreover, when MT was added to PEMI, COX was significantly increased in the CTL group with respect to the baseline (103.46 ± 3.14%), whereas this capacity was reduced in MS patients (102.37 ± 2.46%). Conclusion: It was concluded that (1) patients with MS showed hemodynamic dysregulation during the metaboreflex, with exaggerated vasoconstriction and that (2) as compared to CTL, MS patients had reduced capacity to enhance COX when an MT superimposed the metaboreflex.
Collapse
Affiliation(s)
- Azzurrra Doneddu
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Virginia Pinna
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Sara Magnani
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Giovanna Ghiani
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Gianmarco Sainas
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Gabriele Mulliri
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Stefano Serra
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | | | - Raffaele Milia
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Romina Lecis
- Department of Pedagogy, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Marco Guicciardi
- Department of Pedagogy, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy.,International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. Int J Mol Sci 2020; 21:ijms21082896. [PMID: 32326182 PMCID: PMC7215312 DOI: 10.3390/ijms21082896] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.
Collapse
|
24
|
Min M, Shi T, Sun C, Liang M, Zhang Y, Tian S, Sun Y. The association between orthostatic hypotension and cognition and stroke: a meta-analysis of prospective cohort studies. Blood Press 2019; 29:3-12. [DOI: 10.1080/08037051.2019.1689808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Min Min
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Chenyu Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shun Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Guicciardi M, Crisafulli A, Doneddu A, Fadda D, Lecis R. Effects of Metabolic Syndrome on Cognitive Performance of Adults During Exercise. Front Psychol 2019; 10:1845. [PMID: 31440195 PMCID: PMC6694762 DOI: 10.3389/fpsyg.2019.01845] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
The metabolic syndrome (MS) has been associated with poor performances in multiple cognitive domains, as processing speed, visuo-spatial abilities, and executive functioning. Exercise is a critical factor for MS people's vulnerability to cognitive dysfunction, because this may be beneficial to reduce cognitive impairment, but limited physical activity and impaired cerebral blood flow in response to exercise have been reported by individuals suffering from MS. Using an attentional interference test, the Bivalent Shape Task (BST), and metaboreflex, we analyzed cognitive performance and cerebral oxygenation (COX) in 13 MS people (five women), and 14 normal age-matched control (CTL, six women). Five different sessions were administered to all participants, each lasting 12 min: control exercise recovery (CER), post-exercise muscle ischemia (PEMI) to activate the metaboreflex, CER + BST, PEMI + BST, and BST alone. During each session, cognitive performance was assessed by means of response times and response accuracy with which participants make the decision and COX was evaluated by near infrared spectroscopy with sensors applied in the forehead. Compared to CTL, MS group performed significantly worse in all sessions (F = 4.18; p = 0.05; ES = 0.13): their poorest performance was observed in the BST alone session. Moreover, when BST was added to PEMI, individuals of the CTL group significantly increased their COX compared to baseline (103.46 ± 3.14%), whereas this capacity was impaired in MS people (102.37 ± 2.46%). It was concluded that: (1) MS affects cognitive performance; (2) people with MS were able to enhance COX during exercise, but they impair their COX when an attentional interference task was added.
Collapse
Affiliation(s)
- Marco Guicciardi
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | | | - Azzurra Doneddu
- Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - Daniela Fadda
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| | - Romina Lecis
- Department of Pedagogy, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Cagliari, Italy
| |
Collapse
|
26
|
Luo MY, Guo ZN, Qu Y, Zhang P, Wang Z, Jin H, Ma HY, Lv S, Sun X, Yang Y. Compromised Dynamic Cerebral Autoregulation in Patients With Depression. Front Psychiatry 2019; 10:373. [PMID: 31258489 PMCID: PMC6587060 DOI: 10.3389/fpsyt.2019.00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Patients with depression tend to have various comorbid neurological symptoms, but the mechanisms remain unclear. The purpose of this study was to analyze the characteristics of dynamic cerebral autoregulation in depressed patients. Methods: Patients (aged ≥ 18 years) who were diagnosed with depression [17-item Hamilton Depression Rating Scale (HAMD) > 17] or suspected of depression (HAMD > 7) were enrolled in this study. Medically healthy volunteers were recruited as controls. The subjects also received the 7-item HAMD. We simultaneously recorded noninvasive continuous arterial blood pressure and bilateral middle cerebral artery blood flow velocity from each subject. Cerebral autoregulation was assessed by analyzing the phase difference using transfer function analysis. Results: This study enrolled 54 patients with suspected depression, 45 patients with depression, and 48 healthy volunteers. The mean phase difference values were significantly lower in the patients with depression (F = 9.071, P < 0.001). In the multiple regression analysis, depression was negatively correlated with the phase difference values. Conclusions: Dynamic cerebral autoregulation was compromised in patients with depression and negatively correlated with the depression score. Improving dynamic cerebral autoregulation may be a potential therapeutic method for treating the neurological symptoms of depression.
Collapse
Affiliation(s)
- Ming-Ya Luo
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Peng Zhang
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Zan Wang
- Clinical Trial and Research Center for Stroke, Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Hang Jin
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Hong-Yin Ma
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Shan Lv
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Xin Sun
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Department of Neurology, First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
27
|
Roberto S, Milia R, Doneddu A, Pinna V, Palazzolo G, Serra S, Orrù A, Hosseini Kakhak SA, Ghiani G, Mulliri G, Pagliaro P, Crisafulli A. Hemodynamic abnormalities during muscle metaboreflex activation in patients with type 2 diabetes mellitus. J Appl Physiol (1985) 2018; 126:444-453. [PMID: 30543497 DOI: 10.1152/japplphysiol.00794.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metaboreflex is a reflex triggered during exercise or postexercise muscle ischemia (PEMI) by metaboreceptor stimulation. Typical features of metaboreflex are increased cardiac output (CO) and blood pressure. Patients suffering from metabolic syndrome display hemodynamic abnormalities, with an exaggerated systemic vascular resistance (SVR) and reduced CO response during PEMI-induced metaboreflex. Whether patients with type 2 diabetes mellitus (DM2) have similar hemodynamic abnormalities is unknown. Here we contrast the hemodynamic response to PEMI in 14 patients suffering from DM2 (age 62.7 ± 8.3 yr) and in 15 age-matched controls (CTLs). All participants underwent a control exercise recovery reference test and a PEMI test to obtain the metaboreflex response. Central hemodynamics were evaluated by unbiased operator-independent impedance cardiography. Although the blood pressure response to PEMI was not significantly different between the groups, we found that the SVR and CO responses were reversed in patients with DM2 as compared with the CTLs (SVR: 392.5 ± 549.6 and -14.8 ± 258.9 dyn·s-1·cm-5; CO: -0.25 ± 0.63 and 0.46 ± 0.50 l/m, respectively, in DM2 and in CTL groups, respectively; P < 0.05 for both). Of note, stroke volume (SV) increased during PEMI in the CTL group only. Failure to increase SV and CO was the consequence of reduced venous return, impaired cardiac performance, and augmented afterload in patients with DM2. We conclude that patients with DM2 have an exaggerated vasoconstriction in response to metaboreflex activation not accompanied by a concomitant increase in heart performance. Therefore, in these patients, blood pressure response to the metaboreflex relies more on SVR increases rather than on increases in SV and CO. NEW & NOTEWORTHY The main new finding of the present investigation is that subjects with type 2 diabetes mellitus have an exaggerated vasoconstriction in response to metaboreflex activation. In these patients, blood pressure response to the metaboreflex relies more on systemic vascular resistance than on cardiac output increments.
Collapse
Affiliation(s)
- Silvana Roberto
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Raffaele Milia
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Azzurra Doneddu
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Virginia Pinna
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Girolamo Palazzolo
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Stefano Serra
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Andrea Orrù
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | | | - Giovanna Ghiani
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Gabriele Mulliri
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Pasquale Pagliaro
- Cardiovascular Physiology Laboratory, Department of Clinical and Biological Science, University of Torino , Turin , Italy
| | - Antonio Crisafulli
- Sports Physiology Laboratory, Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| |
Collapse
|
28
|
Slupe AM, Kirsch JR. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab 2018; 38:2192-2208. [PMID: 30009645 PMCID: PMC6282215 DOI: 10.1177/0271678x18789273] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Administration of anesthetic agents fundamentally shifts the responsibility for maintenance of homeostasis from the patient and their intrinsic physiological regulatory mechanisms to the anesthesiologist. Continuous delivery of oxygen and nutrients to the brain is necessary to prevent irreversible injury and arises from a complex series of regulatory mechanisms that ensure uninterrupted cerebral blood flow. Our understanding of these regulatory mechanisms and the effects of anesthetics on them has been driven by the tireless work of pioneers in the field. It is of paramount importance that the anesthesiologist shares this understanding. Herein, we will review the physiological determinants of cerebral blood flow and how delivery of anesthesia impacts these processes.
Collapse
Affiliation(s)
- Andrew M Slupe
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey R Kirsch
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
29
|
Vianna LC, Fernandes IA, Barbosa TC, Amaral TG, Rocha NG, Secher NH, Nóbrega AC. Absent increase in vertebral artery blood flow during l-arginine infusion in hypertensive men. Am J Physiol Regul Integr Comp Physiol 2018; 315:R820-R824. [DOI: 10.1152/ajpregu.00088.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is observed in the peripheral vasculature of hypertensive patients, but it is unclear how the cerebral circulation is affected. More specifically, little is known about the impact of human hypertension on vertebral artery (VA) endothelial function. This study evaluated whether the endothelial function of the VA is impaired in hypertensive men. For 13 male hypertensive subjects (46 ± 3 yr) and eight age-matched male controls (46 ± 4 yr), blood pressure (BP; photoplethysmography), VA, and common carotid (CC) blood flow (duplex ultrasound) were determined at rest and during 30 min of intravenous l-arginine (30 g; a precursor of nitric oxide) or isotonic saline infusion. Controls and hypertensive subjects demonstrated a similar resting CC (601 ± 30 vs. controls 570 ± 43 ml/min; P = 0.529) and VA blood flow (119 ± 11 vs. controls 112 ± 9 ml/min; P = 0.878). During administration of l-arginine, CC blood flow increased similarly between groups (hypertensive 12 ± 3%, controls 13 ± 2%; P = 0.920). In contrast, the increase in VA blood flow was nonexistent in the hypertensive subjects (0.8 ± 3% vs. controls: 16 ± 4%; P = 0.015) with no significant change in BP. Both CC and VA flow returned to near-resting values within 30 min after the infusion, and for four hypertensive subjects and three controls, time-control experiments using 0.9% saline did not affect VA or CC blood flow significantly. The results demonstrate endothelial dysfunction in the posterior cerebral circulation of middle-aged hypertensive men.
Collapse
Affiliation(s)
- Lauro C. Vianna
- NeuroVASQ Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Federal District, Brazil
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Igor A. Fernandes
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thales C. Barbosa
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Tatiana G. Amaral
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Natalia G. Rocha
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Niels H. Secher
- Department of Anaesthesiology, The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Antonio C. Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The extrinsic risk factors for postoperative cognitive disturbance have been a source of concern during the perioperative period, and these risk factors remain the subject of controversy. This review of recent studies focuses on the effect of these factors on postoperative cognitive disturbance during the perioperative period. RECENT FINDINGS Impairment of cerebral autoregulation may predispose patients to intraoperative cerebral malperfusion, which may subsequently induce postoperative cognitive disturbance. The neurotoxicity of several volatile anesthetics may contribute to cognitive functional decline, and the impact of intravenous anesthesia on cognitive function requires further exploration. Multimodal analgesia may not outperform traditional postoperative analgesia in preventing postoperative delirium. Furthermore, acute pain and chronic pain may exacerbate the cognitive functional decline of patients with preexisting cognitive impairment. The nuclear factor-kappa beta pathway is an important node in the neuroinflammatory network. SUMMARY Several intraoperative factors are associated with postoperative cognitive disturbance. However, if these factors are optimized in perioperative management, postoperative cognitive disturbance will improve.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
31
|
Moralez G, Jouett NP, Tian J, Zimmerman MC, Bhella P, Raven PB. Effect of centrally acting angiotensin converting enzyme inhibitor on the exercise-induced increases in muscle sympathetic nerve activity. J Physiol 2018; 596:2315-2332. [PMID: 29635787 PMCID: PMC6002210 DOI: 10.1113/jp274697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS The arterial baroreflex's operating point pressure is reset upwards and rightwards from rest in direct relation to the increases in dynamic exercise intensity. The intraneural pathways and signalling mechanisms that lead to upwards and rightwards resetting of the operating point pressure, and hence the increases in central sympathetic outflow during exercise, remain to be identified. We tested the hypothesis that the central production of angiotensin II during dynamic exercise mediates the increases in sympathetic outflow and, therefore, the arterial baroreflex operating point pressure resetting during acute and prolonged dynamic exercise. The results identify that perindopril, a centrally acting angiotensin converting enzyme inhibitor, markedly attenuates the central sympathetic outflow during acute and prolonged dynamic exercise. ABSTRACT We tested the hypothesis that the signalling mechanisms associated with the dynamic exercise intensity related increases in muscle sympathetic nerve activity (MSNA) and arterial baroreflex resetting during exercise are located within the central nervous system. Participants performed three randomly ordered trials of 70° upright back-supported dynamic leg cycling after ingestion of placebo and two different lipid soluble angiotensin converting enzyme inhibitors (ACEi): perindopril (high lipid solubility), captopril (low lipid solubility). Repeated measurements of whole venous blood (n = 8), MSNA (n = 7) and arterial blood pressures (n = 14) were obtained at rest and during an acute (SS1) and prolonged (SS2) bout of steady state dynamic exercise. Arterial baroreflex function curves were modelled at rest and during exercise. Peripheral venous superoxide concentrations measured by electron spin resonance spectroscopy were elevated during exercise and were not altered by ACEi at rest (P ≥ 0.4) or during exercise (P ≥ 0.3). Baseline MSNA and mean arterial pressure were unchanged at rest (P ≥ 0.1; P ≥ 0.8, respectively). However, during both SS1 and SS2, the centrally acting ACEi perindopril attenuated MSNA compared to captopril and the placebo (P < 0.05). Arterial pressures at the operating point and threshold pressures were decreased with perindopril from baseline to SS1 with no further changes in the operating point pressure during SS2 under all three conditions. These data suggest that centrally acting ACEi is significantly more effective at attenuating the increase in the acute and prolonged exercise-induced increases in MSNA.
Collapse
Affiliation(s)
- Gilbert Moralez
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital Dallas and The University of Texas Southwestern Medical CenterDallasTXUSA
| | - Noah P. Jouett
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| | - Jun Tian
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Paul Bhella
- Department of Cardiac Imaging at the John Peter Smith Health NetworkFort WorthTXUSA
- Department of Internal MedicineTCU and UNTHSC School of MedicineFort WorthTXUSA
| | - Peter B. Raven
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
32
|
Vianna LC, Fernandes IA, Barbosa TC, Teixeira AL, Nóbrega ACL. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans. J Appl Physiol (1985) 2018; 125:362-368. [PMID: 29698108 DOI: 10.1152/japplphysiol.00038.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) is comprised of group III and IV skeletal muscle afferents and is one of the principal mediators of the cardiovascular response to exercise. In animals, capsaicin-based analgesic balm (CAP) attenuates the pressor response to muscle contraction, indicating the transient receptor potential vanilloid 1 (TRPv1) receptor (localized on the group IV afferent neuron) as an important mediator of the EPR. However, whether these findings can be extrapolated to humans remains unknown. Here, we tested the hypothesis that CAP would attenuate blood pressure (BP) and muscle sympathetic nerve activity (MSNA) responses to isolated muscle metaboreflex activation in healthy men. MSNA (microneurography) and beat-to-beat heart hate (HR, by electrocardiography), and BP (finger photoplethysmography) were continuously measured in eight healthy males (23 ± 5 yr) at rest, during isometric handgrip exercise, and during postexercise ischemia (PEI). Trials were performed before and 30 and 60 min after the topical application of CAP (0.1%, CAPZASIN-HP) over the volar forearm of the subject's exercising arm. Isometric exercise evoked increases in mean BP (∆32 ± 4 mmHg) and MSNA (∆26 ± 5 bursts/min; ∆19 ± 5 bursts/100 heart beats). The increases in BP during handgrip were not affected by CAP, but the increase in MSNA was lower after 60 min of CAP application. During PEI, the increases in BP and MSNA were all significantly less than those before CAP (all P < 0.05). In conclusion, CAP attenuated BP and sympathetic responses evoked by PEI in humans. These data provide evidence that transient receptor potential vanilloid 1 receptors potentially contribute to the EPR in humans, via its metabolic component. NEW & NOTEWORTHY We found that topical application of capsaicin-based analgesic balm attenuates arterial blood pressure and muscle sympathetic nerve activity during isolated muscle metaboreflex activation following isometric handgrip exercise in healthy humans. These findings suggest that the transient receptor potential vanilloid 1 may contribute to the exercise pressor reflex in humans via its metabolic component.
Collapse
Affiliation(s)
- Lauro C Vianna
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasilia, Federal District , Brazil
| | - Igor A Fernandes
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasilia, Federal District , Brazil.,Department of Physiology and Pharmacology, Fluminense Federal University , Niterói, Rio de Janeiro , Brazil
| | - Thales C Barbosa
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas
| | - André L Teixeira
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasilia, Federal District , Brazil
| | - Antonio C L Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University , Niterói, Rio de Janeiro , Brazil
| |
Collapse
|
33
|
Caldas JR, Panerai RB, Salinet AM, Seng-Shu E, Ferreira GSR, Camara L, Passos RH, Galas FRBG, Almeida JP, Nogueira RC, de Lima Oliveira M, Robinson TG, Hajjar LA. Dynamic cerebral autoregulation is impaired during submaximal isometric handgrip in patients with heart failure. Am J Physiol Heart Circ Physiol 2018; 315:H254-H261. [PMID: 29652541 DOI: 10.1152/ajpheart.00727.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of neurological complications, including stroke and cognitive dysfunction, is elevated in patients with heart failure (HF) with reduced ejection fraction. We hypothesized that the cerebrovascular response to isometric handgrip (iHG) is altered in patients with HF. Adults with HF and healthy volunteers were included. Cerebral blood velocity (CBV; transcranial Doppler, middle cerebral artery) and arterial blood pressure (BP; Finometer) were continuously recorded supine for 6 min, corresponding to 1 min of baseline and 3 min of iHG exercise, at 30% maximum voluntary contraction, followed by 2 min of recovery. The resistance-area product was calculated from the instantaneous BP-CBV relationship. Dynamic cerebral autoregulation (dCA) was assessed with the time-varying autoregulation index estimated from the CBV step response derived by an autoregressive moving-average time-domain model. Forty patients with HF and 23 BP-matched healthy volunteers were studied. Median left ventricular ejection fraction was 38.5% (interquartile range: 0.075%) in the HF group. Compared with control subjects, patients with HF exhibited lower time-varying autoregulation index during iHG, indicating impaired dCA ( P < 0.025). During iHG, there were steep rises in CBV, BP, and heart rate in control subjects but with different temporal patterns in HF, which, together with the temporal evolution of resistance-area product, confirmed the disturbance in dCA in HF. Patients with HF were more likely to have impaired dCA during iHG compared with age-matched control subjects. Our results also suggest an impairment of myogenic, neurogenic, and metabolic control mechanisms in HF. The relationship between impaired dCA and neurological complications in patients with HF during exercise deserves further investigation. NEW & NOTEWORTHY Our findings provide the first direct evidence that cerebral blood flow regulatory mechanisms can be affected in patients with heart failure during isometric handgrip exercise. As a consequence, eventual blood pressure modulations are buffered less efficiently and metabolic demands may not be met during common daily activities. These deficits in cerebral autoregulation are compounded by limitations of the systemic response to isometric exercise, suggesting that patients with heart failure may be at greater risk for cerebral events during exercise.
Collapse
Affiliation(s)
- J R Caldas
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil.,Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil.,Critical Care Unit, Hospital São Rafael , Salvador , Brazil
| | - R B Panerai
- Department of Cardiovascular Sciences, University of Leicester , Leicester , United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital , Leicester , United Kingdom
| | | | - E Seng-Shu
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - G S R Ferreira
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | - L Camara
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | - R H Passos
- Critical Care Unit, Hospital São Rafael , Salvador , Brazil
| | - F R B G Galas
- Department of Anesthesia, Heart Institute, University of Sao Paulo , Sao Paulo , Brazil
| | | | - R C Nogueira
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - M de Lima Oliveira
- Department of Neurosurgery, Hospital das Clinicas, University of São Paulo , São Paulo , Brazil
| | - T G Robinson
- Department of Cardiovascular Sciences, University of Leicester , Leicester , United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital , Leicester , United Kingdom
| | - L A Hajjar
- Department of Cardiopneumology, Heart Institute, University of Sao Paulo , São Paulo , Brazil
| |
Collapse
|
34
|
Naschitz JE. Blood pressure management in older people: balancing the risks. Postgrad Med J 2018; 94:348-353. [PMID: 29555655 DOI: 10.1136/postgradmedj-2017-135493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Guidelines of arterial hypertension treatment based on individualised expected outcomes are not available for frail older persons. In this paper, we review the evidence, concerning management of arterial blood pressure (BP) in frail older patients. We focused on the best affordable methods for BP measurement; the age-related optimum BP; specific BP goals in agreement with the patients' general heath, frailty status, orthostatic and postprandial hypotension; balancing the benefits against risks of antihypertensive treatment. Lenient BP goals are generally recommended for older persons with moderate or severe frailty, multimorbidity and limited life expectancy. To this aim, there may be a need for deintensification of antihypertensive treatment.
Collapse
Affiliation(s)
- Jochanan E Naschitz
- Bait Balev Nesher and The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
35
|
Caldas JR, Haunton VJ, Panerai RB, Hajjar LA, Robinson TG. Cerebral autoregulation in cardiopulmonary bypass surgery: a systematic review. Interact Cardiovasc Thorac Surg 2017; 26:494-503. [DOI: 10.1093/icvts/ivx357] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/03/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Juliana R Caldas
- Department of Anesthesia, Heart Institute, University of São Paulo, São Paulo, Brazil
- Hospital Sao Rafael, Salvador, Bahia, Brazil
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ludhmila A Hajjar
- Department of Anesthesia, Heart Institute, University of São Paulo, São Paulo, Brazil
- Department of Cardiopneumology, Heart Institute, University of São Paulo, Brazil
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Roberto S, Crisafulli A. Consequences of Type 1 and 2 Diabetes Mellitus on the Cardiovascular Regulation During Exercise: A Brief Review. Curr Diabetes Rev 2017; 13:560-565. [PMID: 27306960 PMCID: PMC5684785 DOI: 10.2174/1573399812666160614123226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023]
Abstract
INTRODUCTION One challenging problem in patients suffering from Diabetes Mellitus (DM) is the elevate incidence of cardiovascular events. Exercise has been proved useful in reducing cardiovascular risks in these patients. However, both type 1 and 2 DM significantly affect the cardiovascular response during exercise. Therefore, on one side exercise is considered to be a valid therapeutic tool for DM, whereas on the other side during exercise these patients may experience troubles in the cardiovascular regulation. BACKGROUND Several impairments at central and at peripheral level have been reported during exercise in both types of DM. For example, sympathetic dysfunctions have been demonstrated in type 1 and 2 DM. Furthermore, impairments in hemodynamics have been often reported. The purpose of the present paper is to briefly review the latest data on the role played by type 1 and 2 DM in the cardiovascular regulation during dynamic exercise. CONCLUSION Hemodynamic dysfunctions may develop in both type 1 and 2 DM during exercise. However, these cardiovascular dys-regulations are different between the two kinds of diabetes.
Collapse
Affiliation(s)
| | - Antonio Crisafulli
- Address correspondence to this author at the Department of Medical
Sciences, Sports Physiology Lab., University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy; Tel: +390706758937; Fax: +390706758917;
E-mail:
| |
Collapse
|
37
|
Vianna LC. Is obesity mechanistically linked to the greater risk of cerebral vascular disease? Exp Physiol 2017; 102:1263. [PMID: 28776803 DOI: 10.1113/ep086596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lauro C Vianna
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
38
|
Hoiland RL, Smith KJ, Carter HH, Lewis NC, Tymko MM, Wildfong KW, Bain AR, Green DJ, Ainslie PN. Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia. Am J Physiol Heart Circ Physiol 2017; 313:H24-H31. [DOI: 10.1152/ajpheart.00119.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
Abstract
Evidence for shear stress as a regulator of carotid artery dilation in response to increased arterial CO2 was recently demonstrated in humans during sustained elevations in CO2 (hypercapnia); however, the relative contributions of CO2 and shear stress to this response remains unclear. We examined the hypothesis that, after a 30-s transient increase in arterial CO2 tension and consequent increase in internal carotid artery shear stress, internal carotid artery diameter would increase, indicating shear-mediated dilation, in the absence of concurrent hypercapnia. In 27 healthy participants, partial pressures of end-tidal O2 and CO2, ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), internal carotid artery flow, diameter, and shear stress (high-resolution duplex ultrasound), and middle cerebral artery blood velocity (transcranial Doppler) were measured during 4-min steady-state and transient 30-s hypercapnic tests (both +9 mmHg CO2). Internal carotid artery dilation was lower in the transient compared with steady-state hypercapnia (3.3 ± 1.9 vs. 5.3 ± 2.9%, respectively, P < 0.03). Increases in internal carotid artery shear stress preceded increases in diameter in both transient (time: 16.8 ± 13.2 vs. 59.4 ± 60.3 s, P < 0.01) and steady-state (time: 18.2 ± 14.2 vs. 110.3 ± 79.6 s, P < 0.01) tests. Internal carotid artery dilation was positively correlated with shear rate area under the curve in the transient ( r2 = 0.44, P < 0.01) but not steady-state ( r2 = 0.02, P = 0.53) trial. Collectively, these results suggest that hypercapnia induces shear-mediated dilation of the internal carotid artery in humans. This study further promotes the application and development of hypercapnia as a clinical strategy for the assessment of cerebrovascular vasodilatory function and health in humans. NEW & NOTEWORTHY Shear stress dilates the internal carotid artery in humans. This vasodilatory response occurs independent of other physiological factors, as demonstrated by our transient CO2 test, and is strongly correlated to shear area under the curve. Assessing carotid shear-mediated dilation may provide a future avenue for assessing cerebrovascular health and the risk of cerebrovascular events.
Collapse
Affiliation(s)
- Ryan L. Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Kurt J. Smith
- School of Sport Science, Exercise, and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Howard H. Carter
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nia C.S. Lewis
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Michael M. Tymko
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Kevin W. Wildfong
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Anthony R. Bain
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado; and
| | - Daniel J. Green
- School of Sport Science, Exercise, and Health, The University of Western Australia, Crawley, Western Australia, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Philip N. Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| |
Collapse
|
39
|
Lenasi H, Klonizakis M. Assessing the evidence: Exploring the effects of exercise on diabetic microcirculation. Clin Hemorheol Microcirc 2017; 64:663-678. [PMID: 27767975 DOI: 10.3233/ch-168022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is associated with cardiovascular complications. Impairment of glycemic control induces noxious glycations, an increase in oxydative stress and dearangement of various metabolic pathways. DM leads to dysfunction of micro- and macrovessels, connected to metabolic, endothelial and autonomic nervous system. Thus, assessing vascular reactivity might be one of the clinical tools to evaluate the impact of harmful effects of DM and potential benefit of treatment; skin and skeletal muscle microcirculation have usually been tested. Physical exercise improves vascular dysfunction through various mechanisms, and is regarded as an additional effective treatment strategy of DM as it positively impacts glycemic control, improves insulin sensitivity and glucose uptake in the target tissues, thus affecting glucose and lipid metabolism, and increases the endothelium dependent vasodilation. Yet, not all patients respond in the same way so titrating the exercise type individualy would be desirable. Resistance training has, apart from aerobic one, been shown to positively correlate to glycemic control, and improve vascular reactivity. It has been prescribed in various forms or in combination with aerobic training. This review would assess the impact of different modes of exercise, the mechanisms involved, and its potential positive and negative effects on treating patients with Type I and Type II DM, focusing on the recent literature.
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Markos Klonizakis
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK
| |
Collapse
|
40
|
Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 2016; 98:90-102. [PMID: 26876648 PMCID: PMC4975999 DOI: 10.1016/j.freeradbiomed.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Bischoff SJ, Schmidt M, Lehmann T, Irintchev A, Schubert H, Jung C, Schwab M, Huber O, Matziolis G, Schiffner R. Increase of cortical cerebral blood flow and further cerebral microcirculatory effects of Serelaxin in a sheep model. Am J Physiol Heart Circ Physiol 2016; 311:H613-20. [PMID: 27402664 DOI: 10.1152/ajpheart.00118.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/02/2016] [Indexed: 12/17/2022]
Abstract
Serelaxin, recombinant human relaxin-2, modulates endothelial vasodilatory functionality and is under evaluation for treatment of acute heart failure. Little is known about acute effects on cerebral perfusion. We tested the hypothesis that Serelaxin might also have effects on the cerebral microcirculation in a sheep model, which resembles human brain structure quite well. We used laser Doppler flowmetry and sidestream dark-field (SDF) imaging techniques, which are reliable tools to continuously assess dynamic changes in cerebral perfusion. Laser Doppler flowmetry shows that bolus injection of 30 μg Serelaxin/kg body wt induces an increase (P = 0.006) to roughly 150% of cortical cerebral blood flow (CBF), whereas subcortical CBF remains unchanged (P = 0.688). The effects on area-dependent CBF were significantly different after the bolus injection (P = 0.042). Effects on cortical CBF were further confirmed by SDF imaging. The bolus injection of Serelaxin increased total vessel density to 127% (P = 0.00046), perfused vessel density to 145% (P = 0.024), and perfused capillary density to 153% (P = 0.024). Western blotting confirmed the expression of relaxin receptors RXFP1 and truncated RXFP2-variants in the respective brain regions, suggesting a possible contribution of RXFP1 on the effects of Serelaxin. In conclusion, the injection of a high dose of Serelaxin exerts quick effects on the cerebral microcirculation. Therefore, Serelaxin might be suitable to improve cortical microcirculation and exert neuroprotective effects in clinically relevant scenarios that involve cortical hypoperfusion. These findings need to be confirmed in relevant experimental settings involving cerebral cortical hypoperfusion and can possibly be translated into clinical practice.
Collapse
Affiliation(s)
- Sabine J Bischoff
- Institute for Laboratory Animal Science and Welfare, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Harald Schubert
- Institute for Laboratory Animal Science and Welfare, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; and
| | - Otmar Huber
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - René Schiffner
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; and Orthopaedic Department, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
42
|
Jouett NP, Moralez G, White DW, Eubank WL, Chen S, Tian J, Smith ML, Zimmerman MC, Raven PB. N-Acetylcysteine reduces hyperacute intermittent hypoxia-induced sympathoexcitation in human subjects. Exp Physiol 2016; 101:387-96. [PMID: 27027616 DOI: 10.1113/ep085546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
NEW FINDINGS What is the central question of this study? This study evaluated the following central question: does N-acetylcysteine (N-AC), an antioxidant that readily penetrates the blood-brain barrier, have the capability to reduce the increase in sympathetic nerve activity observed during hyperacute intermittent hypoxia? What is the main finding and its importance? We demonstrate that N-AC decreases muscle sympathetic nerve activity in response to hyperacute intermittent hypoxia versus placebo control. This finding suggests that antioxidants, such as N-AC, have therapeutic potential in obstructive sleep apnoea. This investigation tested the following hypotheses: that (i) N-acetylcysteine (N-AC) attenuates hyperacute intermittent hypoxia-induced sympathoexcitation, (ii) without elevating superoxide measured in peripheral venous blood. Twenty-eight healthy human subjects were recruited to the study. One hour before experimentation, each subject randomly ingested either 70 mg kg(-1) of N-AC (n = 16) or vehicle placebo (n = 12). Three-lead ECG and arterial blood pressure, muscle sympathetic nerve activity (n = 17) and whole-blood superoxide concentration (using electron paramagnetic resonance spectroscopy; n = 12) were measured. Subjects underwent a 20 min hyperacute intermittent hypoxia training (hAIHT) protocol that consisted of cyclical end-expiratory apnoeas with 100% nitrogen. N-AC decreased muscle sympathetic nerve activity after hAIHT compared with placebo (P < 0.02). However, N-AC did not alter superoxide concentrations in venous blood compared with placebo (P > 0.05). Moreover, hAIHT did not increase superoxide concentrations in the peripheral circulation as measured by electron paramagnetic resonance (P > 0.05). Based on these findings, we contend that (i) hAIHT and (ii) the actions of N-AC in hAIHT are primarily mediated centrally rather than peripherally, although central measurements of reactive oxygen species are difficult to obtain in human subjects, thus making this assertion difficult to verify. This investigation suggests the possibility of developing a pharmaceutical therapy to inhibit the sympathoexcitation associated with obstructive sleep apnoea.
Collapse
Affiliation(s)
- Noah P Jouett
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gilbert Moralez
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel W White
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Wendy L Eubank
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shande Chen
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael L Smith
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter B Raven
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
43
|
Ogoh S, Hirasawa A, Sugawara J, Nakahara H, Ueda S, Shoemaker JK, Miyamoto T. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension. J Appl Physiol (1985) 2015; 119:527-33. [DOI: 10.1152/japplphysiol.00277.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; −50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s−1, P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation ( P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol ( P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension.
Collapse
Affiliation(s)
| | | | - Jun Sugawara
- National Institute of Advanced Industrial Science and Technology, Ibaraki Japan
| | | | - Shinya Ueda
- Morinomiya University of Medical Sciences, Osaka, Japan; and
| | | | | |
Collapse
|
44
|
Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. J Clin Monit Comput 2015; 30:255-64. [PMID: 26285741 DOI: 10.1007/s10877-015-9754-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P < 0.001). Effective autoregulation was found in a blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200).
Collapse
|