1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
5
|
Tian J, Fan J, Zhang T. Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 2023; 54:543-557. [PMID: 37874501 DOI: 10.1007/s10735-023-10158-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of most common metabolic diseases and continues to be a leading cause of death worldwide. Although great efforts have been made to elucidate the pathogenesis of diabetes, the underlying mechanism still remains unclear. Notably, overwhelming evidence has demonstrated that mitochondria are tightly correlated with the development of T2DM, and the defects of mitochondrial function in peripheral insulin-responsive tissues, such as skeletal muscle, liver and adipose tissue, are crucial drivers of T2DM. Furthermore, exercise training is considered as an effective stimulus for improving insulin sensitivity and hence is regarded as the best strategy to prevent and treat T2DM. Although the precise mechanisms by which exercise alleviates T2DM are not fully understood, mitochondria may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Jingjing Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China
| | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, China.
| |
Collapse
|
6
|
Menendez-Montes I, Garry DJ, Zhang J(J, Sadek HA. Metabolic Control of Cardiomyocyte Cell Cycle. Methodist Debakey Cardiovasc J 2023; 19:26-36. [PMID: 38028975 PMCID: PMC10655756 DOI: 10.14797/mdcvj.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Current therapies for heart failure aim to prevent the deleterious remodeling that occurs after MI injury, but currently no therapies are available to replace lost cardiomyocytes. Several organisms now being studied are capable of regenerating their myocardium by the proliferation of existing cardiomyocytes. In this review, we summarize the main metabolic pathways of the mammalian heart and how modulation of these metabolic pathways through genetic and pharmacological approaches influences cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
| | | | | | - Hesham A. Sadek
- University of Texas Southwestern Medical Center, Dallas, Texas, US
| |
Collapse
|
7
|
Chen Z, Jin ZX, Cai J, Li R, Deng KQ, Ji YX, Lei F, Li HP, Lu Z, Li H. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022; 100:1721-1739. [PMID: 36396746 DOI: 10.1007/s00109-022-02269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhao-Xia Jin
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Ruyan Li
- Northfield Mount Hermon School, Gill, MA, 01354, USA
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huo-Ping Li
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
- School of Basic Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK, Hollander JM. Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol 2022; 322:C482-C495. [PMID: 35108116 PMCID: PMC8917913 DOI: 10.1152/ajpcell.00446.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus has been linked to an increase in mitochondrial microRNA-378a (miR-378a) content. Enhanced miR-378a content has been associated with a reduction in mitochondrial genome-encoded mt-ATP6 abundance, supporting the hypothesis that miR-378a inhibition may be a therapeutic option for maintaining ATP synthase functionality during diabetes mellitus. Evidence also suggests that long noncoding RNAs (lncRNAs), including lncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (Kcnq1ot1), participate in regulatory axes with microRNAs (miRs). Prediction analyses indicate that Kcnq1ot1 has the potential to bind miR-378a. This study aimed to determine if loss of miR-378a in a genetic mouse model could ameliorate cardiac dysfunction in type 2 diabetes mellitus (T2DM) and to ascertain whether Kcnq1ot1 interacts with miR-378a to impact ATP synthase functionality by preserving mt-ATP6 levels. MiR-378a was significantly higher in patients with T2DM and 25-wk-old Db/Db mouse mitochondria, whereas mt-ATP6 and Kcnq1ot1 levels were significantly reduced when compared with controls. Twenty-five-week-old miR-378a knockout Db/Db mice displayed preserved mt-ATP6 and ATP synthase protein content, ATP synthase activity, and preserved cardiac function, implicating miR-378a as a potential therapeutic target in T2DM. Assessments following overexpression of the 500-bp Kcnq1ot1 fragment in established mouse cardiomyocyte cell line (HL-1) cardiomyocytes overexpressing miR-378a revealed that Kcnq1ot1 may bind and significantly reduce miR-378a levels, and rescue mt-ATP6 and ATP synthase protein content. Together, these data suggest that Kcnq1ot1 and miR-378a may act as constituents in an axis that regulates mt-ATP6 content, and that manipulation of this axis may provide benefit to ATP synthase functionality in type 2 diabetic heart.
Collapse
Affiliation(s)
- Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
9
|
Sabir U, Irfan HM, Alamgeer, Ullah A, Althobaiti YS, Asim MH. Reduction of Hepatic Steatosis, Oxidative Stress, Inflammation, Ballooning and Insulin Resistance After Therapy with Safranal in NAFLD Animal Model: A New Approach. J Inflamm Res 2022; 15:1293-1316. [PMID: 35241921 PMCID: PMC8886028 DOI: 10.2147/jir.s354878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
|
10
|
Aguiar SS, Rosa TS, Sousa CV, Santos PA, Barbosa LP, Deus LA, Rosa EC, Andrade RV, Simões HG. Influence of Body Fat on Oxidative Stress and Telomere Length of Master Athletes. J Strength Cond Res 2021; 35:1693-1699. [PMID: 30640301 DOI: 10.1519/jsc.0000000000002932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
ABSTRACT Aguiar, SS, Rosa, TS, Sousa, CV, Santos, PA, Barbosa, LP, Deus, LA, Rosa, EC, Andrade, RV, and Simões, HG. Influence of body fat on oxidative stress and telomere length of master athletes. J Strength Cond Res 35(6): 1693-1699, 2021-The present investigation analyzed the role of body fat and training history on biological aging of master athletes by comparing and verifying the relationships between markers of adiposity, oxidative balance, and telomere length (TL) in middle-aged runners and untrained individuals. Master athletes (sprinters and endurance runners, n = 21; 51.62 ± 8.19 years) and untrained age-matched controls (n = 11; 45.41 ± 10.34 years) had blood samples collected for biochemical and biomolecular analyzes. Pro-oxidant and antioxidant measures as well as DNA extraction were performed using commercial kits. Relative TL (T/S) was determined in leukocytes through quantitative polymerase chain reaction analyses. Master athletes had lower body fat and longer TL than untrained controls (body fat: 12.21 ± 4.14% vs. 26.03 ± 4.29%; TL: 1.10 ± 0.84 vs. 0.56 ± 0.56 T/S; p < 0.05). Furthermore, master athletes also showed a better oxidative balance than untrained controls (p < 0.05). A negative correlation was observed between TL and body fat (r = -0.471; p = 0.007), and conicity index (r = -0.407; p = 0.021), catalase activity (r = -0.569; p = 0.001), and CAT/TBARS ratio (r = -0.463; p = 0.008) for the whole sample. In conclusion, master athletes have longer TL, better oxidative profile, and lower body fat than untrained individuals. Moreover, for this middle-aged sample, body fat was inversely correlated with both TL and markers of oxidative balance, demonstrating the key role of adiposity in biological aging.
Collapse
Affiliation(s)
- Samuel S Aguiar
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga-DF, Brazil
| | - Thiago S Rosa
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga-DF, Brazil
| | - Caio V Sousa
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga-DF, Brazil
| | - Patrick A Santos
- Department of Physical Education, UDF University Center, Brasilia-DF, Brazil
| | - Lucas P Barbosa
- Department of Physical Education, UDF University Center, Brasilia-DF, Brazil
| | - Lysleine A Deus
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga-DF, Brazil
| | - Erica C Rosa
- Graduate Program in Health Sciences, Laboratory of Molecular Pharmacology, University of Brasilia, Brasilia-DF, Brazil ; and
| | - Rosângela V Andrade
- Post-Graduation Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasilia-DF, Brazil
| | - Herbert G Simões
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga-DF, Brazil
| |
Collapse
|
11
|
Correia M, Bernardes de Jesus B, Nóbrega-Pereira S. Novel Insights Linking lncRNAs and Metabolism With Implications for Cardiac Regeneration. Front Physiol 2021; 12:586927. [PMID: 33776783 PMCID: PMC7987814 DOI: 10.3389/fphys.2021.586927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is typically characterized by the loss of cardiomyocytes that leads, eventually, to heart failure. Although conventional treatments exist, novel regenerative procedures are warranted for improving cardiac regeneration and patients well fare. Whereas following injury the capacity for regeneration of adult mammalian heart is limited, the neonatal heart is capable of substantial regeneration but this capacity is lost at postnatal stages. Interestingly, this is accompanied by a shift in the metabolic pathways and energetic fuels preferentially used by cardiomyocytes from embryonic glucose-driven anaerobic glycolysis to adult oxidation of substrates in the mitochondria. Apart from energetic sources, metabolites are emerging as key regulators of gene expression and epigenetic programs which could impact cardiac regeneration. Long non-coding RNAs (lncRNAs) are known master regulators of cellular and organismal carbohydrate and lipid metabolism and play multifaceted functions in the cardiovascular system. Still, our understanding of the metabolic determinants and pathways that can promote cardiac regeneration in the injured hearth remains limited. Here, we will discuss the emerging concepts that provide evidence for a molecular interplay between lncRNAs and metabolic signaling in cardiovascular function and whether exploiting this axis could provide ground for improved regenerative strategies in the heart.
Collapse
Affiliation(s)
- Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol 2021; 320:C577-C590. [PMID: 33439777 DOI: 10.1152/ajpcell.00264.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.
Collapse
Affiliation(s)
- Hannah E Wilson
- MD/PhD Medical Scientist Program, West Virginia University School of Medicine, Morgantown, West Virginia.,Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David A Stanton
- Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie Rellick
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Emidio E Pistilli
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,West Virginia Clinical and Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
13
|
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo DF, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC. Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes. Cell Metab 2020; 32:561-574.e7. [PMID: 33027675 PMCID: PMC7819711 DOI: 10.1016/j.cmet.2020.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.
Collapse
Affiliation(s)
- Calvin S Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| | - Sunny C Huang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Charles C Searby
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Benjamin Cassaidy
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael J Miller
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Wojciech J Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Thomas K Pak
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan A Walsh
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael Acevedo
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Qihong Zhang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Robert Weiss
- Department of Internal Medicine, Division of Cardiology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kyle Bradberry
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David W Dick
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Vamsidhar Akurathi
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kelly C Falls-Hubert
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Walter A Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kai Wang
- College of Public Health, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Andrew W Norris
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| |
Collapse
|
14
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 611] [Impact Index Per Article: 152.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
15
|
Cardiac regeneration as an environmental adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118623. [DOI: 10.1016/j.bbamcr.2019.118623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
16
|
|
17
|
Cardoso AC, Lam NT, Savla JJ, Nakada Y, Pereira AHM, Elnwasany A, Menendez-Montes I, Ensley EL, Petric UB, Sharma G, Sherry AD, Malloy CR, Khemtong C, Kinter MT, Tan WLW, Anene-Nzelu CG, Foo RSY, Nguyen NUN, Li S, Ahmed MS, Elhelaly WM, Abdisalaam S, Asaithamby A, Xing C, Kanchwala M, Vale G, Eckert KM, Mitsche MA, McDonald JG, Hill JA, Huang L, Shaul PW, Szweda LI, Sadek HA. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat Metab 2020; 2:167-178. [PMID: 32617517 PMCID: PMC7331943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.
Collapse
Affiliation(s)
- Alisson C. Cardoso
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Brazilian Biosciences National Laboratory, Brazilian Center
for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Nicholas T. Lam
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Jainy J. Savla
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Yuji Nakada
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Ana Helena M. Pereira
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Brazilian Biosciences National Laboratory, Brazilian Center
for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Abdallah Elnwasany
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Emily L. Ensley
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Ursa Bezan Petric
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas in Dallas,
Dallas, Texas, USA
| | - Craig R. Malloy
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Advanced Imaging Research Center, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical
Research Foundation, Oklahoma City, Oklahoma, USA
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, National University
Health Systems, Singapore, Genome Institute of Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University
Health Systems, Singapore, Genome Institute of Singapore, Singapore
| | - Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University
Health Systems, Singapore, Genome Institute of Singapore, Singapore
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Shujuan Li
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatric Cardiology, the First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen
University), Guangzhou, China
| | - Mahmoud Salama Ahmed
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Waleed M. Elhelaly
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Salim Abdisalaam
- Department of Radiation Oncology, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermontt Center for Human Growth and Development,
University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mohammed Kanchwala
- McDermontt Center for Human Growth and Development,
University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Kaitlyn M. Eckert
- Center for Human Nutrition, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew A Mitsche
- Center for Human Nutrition, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Genetics, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of
Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas,
USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of
Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas,
USA
| | - Luke I. Szweda
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Hesham A. Sadek
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
- Center for Regenerative Science and Medicine, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz ÖH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 2019; 15:e8849. [PMID: 31464373 PMCID: PMC6674232 DOI: 10.15252/msb.20198849] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational
- Proteomics/methods
- Rats
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antje Dittmann
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Norman J Kennedy
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nina L Soltero
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Nader Morshed
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Miyeko D Mana
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Roger J Davis
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Howard Hughes Medical InstituteWorcesterMAUSA
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
19
|
Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E, Ferreccio C, Quest AFG, Criollo A, Lavandero S. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic Biol Med 2018; 124:61-78. [PMID: 29859344 DOI: 10.1016/j.freeradbiomed.2018.05.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect millions of people around the world. Different factors contribute to their genesis and progression; however they share common features, which are critical for the development of novel therapeutic strategies. A persistently altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally, dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases, obesity and type II diabetes mellitus.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alexis Diaz-Vega
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Garcia
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Bambs
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res 2018; 60:1720-1732. [PMID: 30054342 DOI: 10.1194/jlr.r087510] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is a major risk factor for numerous diseases, including type 2 diabetes and cardiovascular disease. These disorders have dramatically increased in incidence with modern life, suggesting that excess nutrients and obesity are major causes of "common" insulin resistance. Despite considerable effort, the mechanisms that contribute to common insulin resistance are not resolved. There is universal agreement that extracellular perturbations, such as nutrient excess, hyperinsulinemia, glucocorticoids, or inflammation, trigger intracellular stress in key metabolic target tissues, such as muscle and adipose tissue, and this impairs the ability of insulin to initiate its normal metabolic actions in these cells. Here, we present evidence that the impairment in insulin action is independent of proximal elements of the insulin signaling pathway and is likely specific to the glucoregulatory branch of insulin signaling. We propose that many intracellular stress pathways act in concert to increase mitochondrial reactive oxygen species to trigger insulin resistance. We speculate that this may be a physiological pathway to conserve glucose during specific states, such as fasting, and that, in the presence of chronic nutrient excess, this pathway ultimately leads to disease. This review highlights key points in this pathway that require further research effort.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - James R Krycer
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Alison L Kearney
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha L Hocking
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia .,Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
21
|
Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation, and mitochondrial dysfunction in skeletal muscle of fetal rats. Biosci Rep 2018; 38:BSR20171731. [PMID: 29784871 PMCID: PMC6028760 DOI: 10.1042/bsr20171731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague–Dawley rats were randomized into two groups. Propylthiouracil (PTU) group received PTU in drinking water for 6 weeks (n=90), normal group received normal drinking water (n=50). The pregnant rats were obtained and had a cesarean-section to get at gestational ages of 8.5, 13, and 21 days, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein, and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of Periodic Acid-Schiff (PAS) and Oil Red O was used to observe the accumulation of muscle glycogen and lipid in the fetal rat. The results showed that the levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial, and adipokines increased with the fetus developed, but had no statistical differences in the PTU group compared with the normal group. In conclusion, pregnant rats with hypothyroidism had no influence on insulin resistance (IR), lipid accumulation, and mitochondrial dysfunction in skeletal muscle of the fetal rats.
Collapse
|
22
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Schafer C, Young ZT, Makarewich CA, Elnwasany A, Kinter C, Kinter M, Szweda LI. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice. J Biol Chem 2018. [PMID: 29540486 DOI: 10.1074/jbc.ra117.000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for β-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.
Collapse
Affiliation(s)
- Christopher Schafer
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Catherine A Makarewich
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Abdallah Elnwasany
- the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Caroline Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Michael Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| |
Collapse
|
24
|
17β-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle. Cell Metab 2018; 27:167-179.e7. [PMID: 29103922 PMCID: PMC5762397 DOI: 10.1016/j.cmet.2017.10.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 08/07/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
Menopause results in a progressive decline in 17β-estradiol (E2) levels, increased adiposity, decreased insulin sensitivity, and a higher risk for type 2 diabetes. Estrogen therapies can help reverse these effects, but the mechanism(s) by which E2 modulates susceptibility to metabolic disease is not well understood. In young C57BL/6N mice, short-term ovariectomy decreased-whereas E2 therapy restored-mitochondrial respiratory function, cellular redox state (GSH/GSSG), and insulin sensitivity in skeletal muscle. E2 was detected by liquid chromatography-mass spectrometry in mitochondrial membranes and varied according to whole-body E2 status independently of ERα. Loss of E2 increased mitochondrial membrane microviscosity and H2O2 emitting potential, whereas E2 administration in vivo and in vitro restored membrane E2 content, microviscosity, complex I and I + III activities, H2O2 emitting potential, and submaximal OXPHOS responsiveness. These findings demonstrate that E2 directly modulates membrane biophysical properties and bioenergetic function in mitochondria, offering a direct mechanism by which E2 status broadly influences energy homeostasis.
Collapse
|
25
|
Bockus LB, Matsuzaki S, Vadvalkar SS, Young ZT, Giorgione JR, Newhardt MF, Kinter M, Humphries KM. Cardiac Insulin Signaling Regulates Glycolysis Through Phosphofructokinase 2 Content and Activity. J Am Heart Assoc 2017; 6:e007159. [PMID: 29203581 PMCID: PMC5779029 DOI: 10.1161/jaha.117.007159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Diabetes mellitus disrupts this metabolic flexibility and promotes cardiomyopathy through mechanisms that are not completely understood. Phosphofructokinase 2 (PFK-2) is a primary regulator of cardiac glycolysis and substrate selection, yet its regulation under normal and pathological conditions is unknown. This study was undertaken to determine how changes in insulin signaling affect PFK-2 content, activity, and cardiac metabolism. METHODS AND RESULTS Streptozotocin-induced diabetes mellitus, high-fat diet feeding, and fasted mice were used to identify how decreased insulin signaling affects PFK-2 and cardiac metabolism. Primary adult cardiomyocytes were used to define the mechanisms that regulate PFK-2 degradation. Both type 1 diabetes mellitus and a high-fat diet induced a significant decrease in cardiac PFK-2 protein content without affecting its transcript levels. Overnight fasting also induced a decrease in PFK-2, suggesting it is rapidly degraded in the absence of insulin signaling. An unbiased metabolomic study demonstrated that decreased PFK-2 in fasted animals is accompanied by an increase in glycolytic intermediates upstream of phosphofructokianse-1, whereas those downstream are diminished. Mechanistic studies using cardiomyocytes showed that, in the absence of insulin signaling, PFK-2 is rapidly degraded via both proteasomal- and chaperone-mediated autophagy. CONCLUSIONS The loss of PFK-2 content as a result of reduced insulin signaling impairs the capacity to dynamically regulate glycolysis and elevates the levels of early glycolytic intermediates. Although this may be beneficial in the fasted state to conserve systemic glucose, it represents a pathological impairment in diabetes mellitus.
Collapse
MESH Headings
- Animals
- Autophagy
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/pathology
- Diabetic Cardiomyopathies/blood
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diet, Fat-Restricted
- Diet, High-Fat
- Down-Regulation
- Enzyme Stability
- Fasting/blood
- Glycolysis
- Insulin/blood
- Mice, Inbred C57BL
- Molecular Chaperones/metabolism
- Myocardium/enzymology
- Myocardium/pathology
- Phosphofructokinase-2/genetics
- Phosphofructokinase-2/metabolism
- Phosphorylation
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Signal Transduction
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Lee B Bockus
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Zachary T Young
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jennifer R Giorgione
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
26
|
Abstract
Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.
Collapse
|
27
|
Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol 2017; 234:R159-R181. [PMID: 28778962 DOI: 10.1530/joe-17-0186] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Obesity-linked insulin resistance is mainly due to fatty acid overload in non-adipose tissues, particularly skeletal muscle and liver, where it results in high production of reactive oxygen species and mitochondrial dysfunction. Accumulating evidence indicates that resistance and endurance training alone and in combination can counteract the harmful effects of obesity increasing insulin sensitivity, thus preventing diabetes. This review focuses the mechanisms underlying the exercise role in opposing skeletal muscle insulin resistance-linked metabolic dysfunction. It is apparent that exercise acts through two mechanisms: (1) it stimulates glucose transport by activating an insulin-independent pathway and (2) it protects against mitochondrial dysfunction-induced insulin resistance by increasing muscle antioxidant defenses and mitochondrial biogenesis. However, antioxidant supplementation combined with endurance training increases glucose transport in insulin-resistant skeletal muscle in an additive fashion only when antioxidants that are able to increase the expression of antioxidant enzymes and/or the activity of components of the insulin signaling pathway are used.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| | - Susanna Iossa
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| | - Paola Venditti
- Dipartimento di BiologiaUniversità di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
28
|
Abstract
Excessive feeding is associated with an increase in the incidence of chronic metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. Metabolic disturbance induces chronic low-grade inflammation in metabolically-important organs, such as the liver and adipose tissue. Many of the inflammatory signalling pathways are directly triggered by nutrients. The pro-inflammatory mediators in adipocytes and macrophages infiltrating adipose tissue promote both local and systemic pro-inflammatory status. Metabolic cardiomyopathy is a chronic metabolic disease characterized by structural and functional alterations and interstitial fibrosis without coronary artery disease or hypertension. In the early stage of metabolic cardiomyopathy, metabolic disturbance is not accompanied by substantial changes in myocardial structure and cardiac function. However, metabolic disturbance induces subcellular low-grade inflammation in the heart, and in turn, subcellular component abnormalities, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and impaired calcium handling, leading to impaired myocardial relaxation. In the advanced stage, the vicious cycle of subcellular component abnormalities, inflammatory cell infiltration, and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in impairment of both diastolic and systolic functions. This review discusses some recent advances in understanding involvement of inflammation in metabolic cardiomyopathy.
Collapse
|
29
|
Rindler PM, Cacciola A, Kinter M, Szweda LI. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Am J Physiol Heart Circ Physiol 2016; 311:H1091-H1096. [PMID: 27614223 DOI: 10.1152/ajpheart.00066.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022]
Abstract
We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H2O2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H2O2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H2O2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H2O2, we found that catalase contributes significantly to mitochondrial H2O2 consumption. In addition, catalase is solely responsible for removal of H2O2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H2O2 in response to high dietary fat, the selective increase in catalase did not prevent H2O2-induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H2O2 without perturbing redox-dependent signaling.
Collapse
Affiliation(s)
- Paul M Rindler
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Angela Cacciola
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Michael Kinter
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Luke I Szweda
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
30
|
Núñez J, Bonanad C, Navarro JP, Bondanza L, Artero A, Ventura S, Núñez E, Miñana G, Sanchis J, Real J. Efecto diferencial de la glucohemoglobina y el tratamiento antidiabético sobre el riesgo de reingreso a 30 días después de un ingreso por insuficiencia cardiaca aguda. Rev Esp Cardiol (Engl Ed) 2015. [DOI: 10.1016/j.recesp.2014.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Fernandes J, Weddle A, Kinter CS, Humphries KM, Mather T, Szweda LI, Kinter M. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart. Biochemistry 2015; 54:4008-18. [PMID: 26061789 DOI: 10.1021/acs.biochem.5b00375] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput proteomics studies have identified several thousand acetylation sites on more than 1000 proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3)-catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-coenzyme A resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and revealed significant increases with both in vitro treatments. A high-fat diet (60% of kilocalories from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high-fat diet also produced an increased level of aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high-fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity, and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation.
Collapse
Affiliation(s)
- Jolyn Fernandes
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alexis Weddle
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Caroline S Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Kenneth M Humphries
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Timothy Mather
- ‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,§Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Luke I Szweda
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Michael Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
32
|
Schilling JD. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxid Redox Signal 2015; 22:1515-26. [PMID: 25761843 PMCID: PMC4449623 DOI: 10.1089/ars.2015.6294] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Diabetes is an important risk factor for the development of heart failure (HF). Given the increasing prevalence of diabetes in the population, strategies are needed to reduce the burden of HF in these patients. RECENT ADVANCES Diabetes is associated with several pathologic findings in the heart including dysregulated metabolism, lipid accumulation, oxidative stress, and inflammation. Emerging evidence suggests that mitochondrial dysfunction may be a central mediator of these pathologic responses. The development of therapeutic approaches targeting mitochondrial biology holds promise for the management of HF in diabetic patients. CRITICAL ISSUES Despite significant data implicating mitochondrial pathology in diabetic cardiomyopathy, the optimal pharmacologic approach to improve mitochondrial function remains undefined. FUTURE DIRECTIONS Detailed mechanistic studies coupled with more robust clinical phenotyping will be necessary to develop novel approaches to improve cardiac function in diabetes. Moreover, understanding the interplay between diabetes and other cardiac stressors (hypertension, ischemia, and valvular disease) will be of the utmost importance for clinical translation of scientific discoveries made in this field.
Collapse
Affiliation(s)
- Joel D Schilling
- 1Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri.,2Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
33
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Van der Schueren B, Vangoitsenhoven R, Geeraert B, De Keyzer D, Hulsmans M, Lannoo M, Huber HJ, Mathieu C, Holvoet P. Low cytochrome oxidase 4I1 links mitochondrial dysfunction to obesity and type 2 diabetes in humans and mice. Int J Obes (Lond) 2015; 39:1254-63. [PMID: 25869607 DOI: 10.1038/ijo.2015.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/19/2015] [Accepted: 04/04/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Cytochrome oxidase (COX) dysfunction is associated with mitochondrial oxidative stress. We determined the association between COX expression, obesity and type 2 diabetes. SUBJECTS/METHODS COX4I1 and COX10 genes were measured in monocytes of 24 lean controls, 31 glucose-tolerant and 67 diabetic obese patients, and 17 morbidly obese patients before and after bariatric surgery. We investigated the effect of caloric restriction and peroxisome proliferator-activated receptor (PPAR) agonist treatment on Cox in obese diabetic mice, and that of diet-induced insulin resistance in Streptozotocin-treated mice. RESULTS Low COX4I1 was associated with type 2 diabetes in obese patients, adjusting for age, gender, smoking, interleukin-6 and high-sensitivity C-reactive protein, all related to metabolic syndrome (MetS; odds ratio: 6.1, 95% confidence interval: 2.3-16). In contrast, COX10 was low in glucose-tolerant and diabetic obese patients. In morbidly obese patients, COX4I1 was lower in visceral adipose tissue collected at bariatric surgery. In their monocytes, COX4I1 decreased after bariatric surgery, and low COX4I1 at 4 months was associated with MetS at 7 years. In leptin-deficient obese diabetic mice, Cox4i1 was low in white visceral adipose tissue (n=13; P<0.001) compared with age-matched lean mice (n=10). PPARγ-agonist treatment (n=13), but not caloric restriction (n=11), increased Cox4i1 (P<0.001). Increase in Cox4i1 depended on the increase in glucose transporter 4 (Glut4) expression and insulin sensitivity, independent of the increase in blood adiponectin. In streptozotocin-treated mice (three groups of seven mice, diet-induced insulin resistance decreased Cox4i1 and Glut4 (P<0.001 for both). CONCLUSION COX4I1 depression is related to insulin resistance and type 2 diabetes in obesity. In peripheral blood monocytes, it may be a diagnostically useful biomarker.
Collapse
Affiliation(s)
- B Van der Schueren
- Laboratory for Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - R Vangoitsenhoven
- Laboratory for Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - B Geeraert
- Division of Atherosclerosis and Metabolism, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - D De Keyzer
- Division of Atherosclerosis and Metabolism, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - M Hulsmans
- Division of Atherosclerosis and Metabolism, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - M Lannoo
- Laboratory for Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - H J Huber
- Division of Atherosclerosis and Metabolism, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - C Mathieu
- Laboratory for Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | - P Holvoet
- Division of Atherosclerosis and Metabolism, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Núñez J, Bonanad C, Navarro JP, Bondanza L, Artero A, Ventura S, Núñez E, Miñana G, Sanchis J, Real J. Differential Effect of Glycosylated Hemoglobin Value and Antidiabetic Treatment on the Risk of 30-day Readmission Following a Hospitalization for Acute Heart Failure. ACTA ACUST UNITED AC 2015; 68:852-60. [PMID: 25792287 DOI: 10.1016/j.rec.2014.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION AND OBJECTIVES In patients with heart failure and type 2 diabetes, low glycosylated hemoglobin has been related with higher risk of mortality but information regarding morbidity is scarce. We sought to evaluate the association between glycosylated hemoglobin and 30-day readmission in patients with type 2 diabetes and acute heart failure. METHODS Glycosylated hemoglobin was measured before discharge in 835 consecutive patients with acute heart failure and type 2 diabetes. Cox regression analysis adapted for competing events was used. RESULTS Mean (standard deviation) age was 72.9 (9.6) years and median glycosylated hemoglobin was 7.2% (6.5%-8.0%). Patients treated with insulin or insulin/sulfonylurea/meglitinides were 41.1% and 63.2% of the cohort, respectively. At 30 days post-discharge, 109 (13.1%) patients were readmitted. A multivariate analysis revealed that the effect of glycosylated hemoglobin on the risk of 30-day readmission was differentially affected by the type of treatment (P for interaction<.01). Glycosylated hemoglobin (per 1% decrease) was inversely associated with higher risk in those receiving insulin (hazard ratio = 1.45; 95% confidence interval, 1.13-1.86; P=.003) or insulin/sulfonylurea/meglitinides (hazard ratio = 1.44; 95% confidence interval, 1.16-1.80; P=.001). Conversely, glycosylated hemoglobin (per 1% increase) had no effect in non-insulin dependent diabetes (hazard ratio = 1.01; 95% confidence interval, 0.87-1.17; P=.897) or even a positive effect in patients not receiving insulin/sulfonylurea/meglitinides (hazard ratio = 1.12; 95% confidence interval, 1.03-1.22; P=.011). CONCLUSIONS In acute heart failure, glycosylated hemoglobin showed to be inversely associated to higher risk of 30-day readmission in insulin-dependent or those treated with insulin/sulfonylurea/meglitinides. A marginal effect was found in the rest. Whether this association reflects a treatment-related effect or a surrogate of more advanced disease should be clarified in further studies.
Collapse
Affiliation(s)
- Julio Núñez
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain.
| | - Clara Bonanad
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Juan Paulo Navarro
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Lourdes Bondanza
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Ana Artero
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario, INCLIVA, CIBERDEM and Universitat de Valencia, Valencia, Spain
| | - Silvia Ventura
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Eduardo Núñez
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Gema Miñana
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Juan Sanchis
- Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | - José Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario, INCLIVA, CIBERDEM and Universitat de Valencia, Valencia, Spain
| |
Collapse
|
36
|
Kandadi MR, Panzhinskiy E, Roe ND, Nair S, Hu D, Sun A. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:299-309. [DOI: 10.1016/j.bbadis.2014.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 01/11/2023]
|
37
|
Bhatt NM, Aon MA, Tocchetti CG, Shen X, Dey S, Ramirez-Correa G, O'Rourke B, Gao WD, Cortassa S. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2014; 308:H291-302. [PMID: 25485897 DOI: 10.1152/ajpheart.00378.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.
Collapse
Affiliation(s)
- Niraj M Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Swati Dey
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Genaro Ramirez-Correa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
38
|
Ramirez-Perez FI, Schenewerk AL, Coffman KL, Foote C, Ji T, Rivera RM, Martinez-Lemus LA. Effects of the use of assisted reproductive technologies and an obesogenic environment on resistance artery function and diabetes biomarkers in mice offspring. PLoS One 2014; 9:e112651. [PMID: 25386661 PMCID: PMC4227714 DOI: 10.1371/journal.pone.0112651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Maternal obesity affects the incidence of cardiovascular disease and diabetes in offspring. Also the use of assisted reproductive technologies (ART) has been associated with cardiovascular deficiencies in offspring. Obese women often suffer from infertility and use ART to achieve a pregnancy, but the combined effects of maternal obesity and ART on cardiovascular health and incidence of diabetes in the offspring is not known. Here, we report the effects of the use of ART within an obesogenic environment, consisting of feeding a western diet (WD) to dams and offspring, on resistance artery function and presence of diabetes biomarkers in juvenile mice offspring. Our results indicate that WD and ART interacted to induce endothelial dysfunction in mesenteric resistance arteries isolated from 7-week-old mice offspring. This was determined by presence of a reduced acetylcholine-induced dilation compared to controls. The arteries from these WD-ART mice also had greater wall cross-sectional areas and wall to lumen ratios indicative of vascular hypertrophic remodeling. Of the diabetes biomarkers measured, only resistin was affected by a WD×ART interaction. Serum resistin was significantly greater in WD-ART offspring compared to controls. Diet and sex effects were observed in other diabetes biomarkers. Our conclusion is that in mice the use of ART within an obesogenic environment interacts to favor the development of endothelial dysfunction in the resistance arteries of juvenile offspring, while having marginal effects on diabetes biomarkers.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Angela L. Schenewerk
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Katy L. Coffman
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Christopher Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, United States of America
- * E-mail: (LAM); (RMR)
| |
Collapse
|
39
|
Orlando P, Silvestri S, Brugè F, Tiano L, Kloting I, Falcioni G, Polidori C. High-fat diet-induced met-hemoglobin formation in rats prone (WOKW) or resistant (DA) to the metabolic syndrome: effect of CoQ10 supplementation. Biofactors 2014; 40:603-9. [PMID: 25428841 DOI: 10.1002/biof.1190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/18/2014] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the effects of a high-fat diet (HFD) on oxidative indexes in WistarOttawaKarlsburg W (WOKW) rats used as a model of metabolic syndrome in comparison with Dark Agouti (DA) rats used as a control strain. This syndrome is defined by the occurrence of two or more risk factors including obesity, hypertension, dyslipidemia, and insulin resistance. Forty rats were used in the study and the effect of HFD was evaluated in terms of body weight and both hemoglobin and CoQ oxidative status. Moreover, 16 rats (8 of each strain) were supplemented with 3 mg/100 g b.w. of CoQ10 for 1 month in view of its beneficial properties in cardiovascular disease due to its antioxidant activity in the lipid environment. HFD promoted an increase in body weight, in particular in WOKW males, and in the methemoglobin (met-Hb) index in both strains. Moreover, HFD promoted endogenous CoQ10 oxidation. CoQ10 supplementation was able to efficiently counteract the HFD pro-oxidant effects, preventing met-Hb formation and CoQ oxidation.
Collapse
Affiliation(s)
- Patrick Orlando
- Department of Clinical and Dental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Paneni F, Costantino S, Cosentino F. p66(Shc)-induced redox changes drive endothelial insulin resistance. Atherosclerosis 2014; 236:426-9. [PMID: 25150941 DOI: 10.1016/j.atherosclerosis.2014.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Obesity-induced insulin resistance (IR) precipitates cardiovascular disease (CVD). Impairment of insulin signalling in the endothelium is emerging as a trigger of IR but the underlying mechanisms remain elusive. The mitochondrial adaptor p66(Shc) drives endothelial dysfunction via reactive oxygen species (ROS) generation. This study investigates p66(Shc) role in obesity-induced impairment of endothelial insulin signalling. METHODS All experiments were performed in leptin-deficient (Lep(Ob/Ob)) and wild-type (WT) mice. RESULTS Endothelium-dependent relaxations to insulin were blunted in Lep(Ob/Ob) as compared to WT. Interestingly, in vivo gene silencing of p66(Shc) restored insulin response via IRS-1/Akt/eNOS pathway. Furthermore, p66(Shc) knockdown in endothelial cells isolated from Lep(Ob/Ob) mice attenuated ROS production, free fatty acids (FFA) oxidation and prevented dysregulation of redox-sensitive pathways such as nuclear factor-kappa-B (NF-kB), AGE precursor methylglyoxal and PGI2 synthase. CONCLUSIONS Targeting endothelial p66(Shc) may represent a promising strategy to prevent IR and CVD in obese individuals.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden; Cardiology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Italy
| | - Sarah Costantino
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
41
|
Liang L, Shou XL, Zhao HK, Ren GQ, Wang JB, Wang XH, Ai WT, Maris JR, Hueckstaedt LK, Ma AQ, Zhang Y. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:343-52. [PMID: 24993069 DOI: 10.1016/j.bbadis.2014.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/10/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023]
Abstract
Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Lei Liang
- Department of Cardiology, The People's Hospital of Shaanxi Province, Xi'an, China; Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xi-Ling Shou
- Department of Cardiology, The People's Hospital of Shaanxi Province, Xi'an, China; Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Gu-Qun Ren
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jian-Bang Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xi-Hui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Wen-Ting Ai
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jackie R Maris
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Lindsay K Hueckstaedt
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Ai-Qun Ma
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
42
|
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014; 2014:137919. [PMID: 25019091 PMCID: PMC4082845 DOI: 10.1155/2014/137919] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, RES-314E, Fort Worth, TX 76107, USA
- *Liang-Jun Yan:
| |
Collapse
|