1
|
Tian H, Chen H, Yin X, Lv M, Wei L, Zhang Y, Jia S, Li J, Song H. CORM-3 Inhibits the Inflammatory Response of Human Periodontal Ligament Fibroblasts Stimulated by LPS and High Glucose. J Inflamm Res 2024; 17:4845-4863. [PMID: 39070135 PMCID: PMC11277920 DOI: 10.2147/jir.s460954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Diabetes has been recognized as an independent risk factor for periodontitis. Increasing evidences indicate that hyperglycemia aggravates inflammatory response of human periodontal ligament cells (hPDLCs). Carbon monoxide-releasing molecule-3 (CORM-3) is a water-soluble compound that can release carbon monoxide (CO) in a controllable manner. CORM-3 has been shown the anti-inflammatory effect in different cell lineages. Methods We stimulated periodontal ligament cells with LPS and high glucose. The expression of inflammatory cytokine was detected by ELISA. RT-qPCR, Western blot and immunofluorescence were used to detect the expression of TLR2, TLR4, RAGE and the activation of NF-κB pathway. We performed silencing and overexpression treatment of RAGE targeting the role of RAGE. We performed the immunostaining of paraffin sections of the periodontitis model in diabetes rats. Results The results showed that CORM-3 significantly inhibited the expression of inflammatory cytokine in hPDLCs stimulated with LPS and high glucose. CORM-3 also inhibited LPS and high glucose-induced expression of RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway. Silence of RAGE resulted in significantly decreased expression of proteins above. Overexpression of RAGE significantly enhanced the expression of these factors. CORM-3 abrogated the effect of RAGE partially. In animal model, CORM-3 suppressed the inflammatory response of periodontal tissues in experimental periodontitis of diabetic rats. Discussion Our research proved CORM-3 reduced the inflammatory response via RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway in the process of high glucose exacerbated periodontitis. These findings demonstrated the role of RAGE in the process of high glucose exacerbated periodontitis and suggested that CORM3 be a potential therapeutic strategy for the treatment of diabetes patients with periodontitis.
Collapse
Affiliation(s)
- Haoyang Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Xiaochun Yin
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Meiyi Lv
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Lingling Wei
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Yuna Zhang
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shuhan Jia
- Department of Stomatology, Yancheng NO. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Jingyuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| |
Collapse
|
2
|
Greenwood JC, Morgan RW, Abella BS, Shofer FS, Baker WB, Lewis A, Ko TS, Forti RM, Yodh AG, Kao SH, Shin SS, Kilbaugh TJ, Jang DH. Carbon monoxide as a cellular protective agent in a swine model of cardiac arrest protocol. PLoS One 2024; 19:e0302653. [PMID: 38748750 PMCID: PMC11095756 DOI: 10.1371/journal.pone.0302653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.
Collapse
Affiliation(s)
- John C. Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ryan W. Morgan
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Benjamin S. Abella
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Frances S. Shofer
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alistair Lewis
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Shih-Han Kao
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Samuel S. Shin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Resuscitation Science Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
3
|
Huang QS, Zhou LX, Yang LL, Jiang YX, Xiao H, Li DW, Zhou YM, Hu YG, Li N, Li YF, Ji AL, Luo P, Cai TJ. Association between ambient carbon monoxide levels and hospitalization costs of patients with myocardial infarction: Potential effect modification by ABO blood group. ENVIRONMENTAL RESEARCH 2023; 216:114516. [PMID: 36220442 DOI: 10.1016/j.envres.2022.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Previous researches have reported the association between air pollution and various diseases. However, few researches have investigated whether air pollutants are associated with the economic loss resulting from patients' hospitalization, especially the economic loss of hospitalization due to acute cardiovascular events. The purpose of our research was to explore the association between the levels of carbon monoxide (CO), taken as an index of pollution, and the hospitalization costs of myocardial infarction (MI), and the potential effect modification by the ABO blood group. A total of 3237 MI inpatients were included in this study. A multiple linear regression model was used to evaluate the association between ambient CO levels and hospitalization costs of MI patients. Moreover, we performed stratified analyses by age, gender, body mass index (BMI), season, hypertension, and ABO blood types. There was a positive association between the levels of CO in the air and the costs of hospitalization caused by MI. Furthermore, such association was stronger in males, BMI ≥25, <65 years, with hypertension, and non-O blood group. Interestingly, we found the association was particularly significant in patients with blood group B. Overall, our study first found that ambient CO levels could have an impact on the hospitalization costs for MI patients, and those with blood group B can be more sensitive.
Collapse
Affiliation(s)
- Qing-Song Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lai-Xin Zhou
- Medical Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li-Li Yang
- Department of Information, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yue-Xu Jiang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da-Wei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue-Gu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Na Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ai-Ling Ji
- Department of Preventive Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Tong-Jian Cai
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Yang Y, Liu Y, Jiang K, Liu Y. Fluorescent detection mechanism of CO-releasing molecule-3: Competition of inter-/intra-molecular hydrogen bonds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120227. [PMID: 34332242 DOI: 10.1016/j.saa.2021.120227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The fluorescent detection mechanism of 2-(4-nitro-1,3-dioxoisoindolin-2-yl) acetic acid (CORM3-green) on CO-Releasing Molecule-3 (CORM-3) is theoretically studied. Upon reaction with CORM-3, the non-fluorescent CORM3-green is transferred to the keto form of 2-(4-amino-1,3-dioxoisoindolin-2-yl)acetic acid (PTI) to produce strong fluorescence peak located at 423 nm. This peak red-shifts to 489 nm, which is induced by the strengthening of intermolecular hydrogen bond (HB) between PTI and water molecules and attributed to the experimentally observed fluorescence emission at 503 nm. This result is dramatically different from previous reports that the experimental fluorescence corresponds to the proton transferred enol form of PTI. To illustrate this confusion, the calculated fluorescence peak of PTI-Enol is located at 689 nm, which is much larger than that of experimental result. This result excludes the occurrence of excited state intramolecular proton transfer (ESIPT). It is concluded that intermolecular HBs hinders the formation of intramolecular HB and the ESIPT of the keto form of PTI. This conclusion confirms that experimental Stokes shift of 113 nm is mainly caused by the intermolecular hydrogen bonding rather than by ESIPT process. This work proposes a reasonable explanation for the detection mechanism of CORM3-green and experimental fluorescence phenomenon.
Collapse
Affiliation(s)
- Yonggang Yang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China.
| | - Yang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Iqbal J, Chamberlain J, Alfaidi M, Hughes M, Alizadeh T, Casbolt H, Evans P, Mann B, Motterlini R, Francis S, Gunn J. Carbon Monoxide Releasing Molecule A1 Reduces Myocardial Damage After Acute Myocardial Infarction in a Porcine Model. J Cardiovasc Pharmacol 2021; 78:e656-e661. [PMID: 34328710 DOI: 10.1097/fjc.0000000000001067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/01/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Infarct size is a major determinant of outcomes after acute myocardial infarction (AMI). Carbon monoxide-releasing molecules (CORMs), which deliver nanomolar concentrations of carbon monoxide to tissues, have been shown to reduce infarct size in rodents. We evaluated efficacy and safety of CORM-A1 to reduce infarct size in a clinically relevant porcine model of AMI. We induced AMI in Yorkshire White pigs by inflating a coronary angioplasty balloon to completely occlude the left anterior descending artery for 60 minutes, followed by deflation of the balloon to mimic reperfusion. Fifteen minutes after balloon occlusion, animals were given an infusion of 4.27 mM CORM-A1 (n = 7) or sodium borate control (n = 6) over 60 minutes. Infarct size, cardiac biomarkers, ejection fraction, and hepatic and renal function were compared amongst the groups. Immunohistochemical analyses were performed to compare inflammation, cell proliferation, and apoptosis between the groups. CORM-A1-treated animals had significant reduction in absolute infarct area (158 ± 16 vs. 510 ± 91 mm2, P < 0.001) and infarct area corrected for area at risk (24.8% ± 2.6% vs. 45.2% ± 4.0%, P < 0.0001). Biochemical markers of myocardial injury also tended to be lower and left ventricular function tended to recover better in the CORM-A1 treated group. There was no evidence of hepatic or renal toxicity with the doses used. The cardioprotective effects of CORM-A1 were associated with a significant reduction in cell proliferation and inflammation. CORM-A1 reduces infarct size and improves left ventricular remodeling and function in a porcine model of reperfused MI by a reduction in inflammation. These potential cardioprotective effects of CORMs warrant further translational investigations.
Collapse
Affiliation(s)
- Javaid Iqbal
- Cardiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Janet Chamberlain
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mabruka Alfaidi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tooba Alizadeh
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Helen Casbolt
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Brian Mann
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom ; and
| | | | - Sheila Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Julian Gunn
- Cardiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Guo Y, Li Q, Xuan YT, Wu WJ, Tan W, Slezak J, Zhu X, Tomlin A, Bolli R. Exercise-induced late preconditioning in mice is triggered by eNOS-dependent generation of nitric oxide and activation of PKCε and is mediated by increased iNOS activity. Int J Cardiol 2021; 340:68-78. [PMID: 34400167 DOI: 10.1016/j.ijcard.2021.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to assess whether short-term, mild exercise induces protection against myocardial infarction and, if so, what role the eNOS-PKCε-iNOS axis plays. Mice were subjected to 2 bouts/day of treadmill exercise (60 min at 15 m/min) for 2 consecutive days. At 24 h after the last bout of exercise, mice were subjected to a 30-min coronary artery occlusion and 24 h of reperfusion. In the exercise group (group III, wild-type mice), infarct size (25.5 ± 8.8% of risk region) was significantly (P < 0.05) reduced compared with the control groups (sham exercise, group II [63.4 ± 7.8%] and acute myocardial infarction, group I [58.6 ± 7.0%]). This effect was abolished by pretreatment with the NOS inhibitor L-NA (group VI, 56.1 ± 16.2%) and the PKC inhibitor chelerythrine (group VIII, 57.9 ± 12.5%). Moreover, the late PC effect of exercise was completely abrogated in eNOS-/- mice (group XIII, 61.0 ± 11.2%). The myocardial phosphorylated eNOS at Ser-1177 was significantly increased at 30 min after treadmill training (exercise group) compared with sham-exercised hearts. PKCε translocation was significantly increased at 30 min after exercise in WT mice but not in eNOS-/- mice. At 24 h after exercise, iNOS protein was upregulated compared with sham-exercised hearts. The protection of late PC was abrogated in iNOS-/- mice (group XVI, 56.4 ± 12.9%) and in wildtype mice given the selective iNOS inhibitor 1400 W prior to ischemia (group X 62.0 ± 8.8% of risk region). We conclude that 1) even short, mild exercise induces a delayed PC effect that affords powerful protection against infarction; 2) this cardioprotective effect is dependent on activation of eNOS, eNOS-derived NO generation, and subsequent PKCε activation during PC; 3) the translocation of PKCε is dependent on eNOS; 4) the protection 24 h later is dependent on iNOS activity. Thus, eNOS is the trigger and iNOS the mediator of PC induced by mild exercise.
Collapse
Affiliation(s)
- Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Qianhong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Yu-Ting Xuan
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Wei Tan
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Jan Slezak
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America; Institute for Heart Research, Bratislava, Slovakia
| | - Xiaoping Zhu
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Alex Tomlin
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, United States of America.
| |
Collapse
|
9
|
Zhang D, Krause BM, Schmalz HG, Wohlfart P, Yard BA, Schubert R. ET-CORM Mediated Vasorelaxation of Small Mesenteric Arteries: Involvement of Kv7 Potassium Channels. Front Pharmacol 2021; 12:702392. [PMID: 34552483 PMCID: PMC8451721 DOI: 10.3389/fphar.2021.702392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Although the vasoactive properties of carbon monoxide (CO) have been extensively studied, the mechanism by which CO mediates vasodilation is not completely understood. Through-out published studies on CO mediated vasodilation there is inconsistency on the type of K+-channels that are activated by CO releasing molecules (CORMs). Since the vasorelaxation properties of enzyme triggered CORMs (ET-CORMs) have not been studied thus far, we first assessed if ET-CORMs can mediate vasodilation of small mesenteric arteries and subsequently addressed the role of soluble guanylate cyclase (sGC) and that of K-channels herein. To this end, 3 different types of ET-CORMs that either contain acetate (rac-1 and rac-4) or pivalate (rac-8) as ester functionality, were tested ex vivo on methoxamine pre-contracted small rat mesenteric arteries in a myograph setting. Pre-contracted mesenteric arteries strongly dilated upon treatment with both types of acetate containing ET-CORMs (rac-1 and rac-4), while treatment with the pivalate containing ET-CORM (rac-8) resulted in no vasodilation. Pre-treatment of mesenteric arteries with the sGC inhibitor ODQ abolished rac-4 mediated vasodilation, similar as for the known sGC activator SNP. Likewise, rac-4 mediated vasodilation did not occur in KCL pretreated mesenteric arteries. Although mesenteric arteries abundantly expressed a variety of K+-channels only Kv7 channels were found to be of functional relevance for rac-4 mediated vasodilation. In conclusion the current results identified Kv7 channels as the main channel by which rac-4 mediates vasodilation. In keeping with the central role of Kv7 in the control of vascular tone and peripheral resistance these promising ex-vivo data warrant further in vivo studies, particularly in models of primary hypertension or cardiac diseases, to assess the potential use of ET-CORMs in these diseases.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, the Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Paulus Wohlfart
- Diabetes Research, Sanofi Aventis Deutschland GmbH, Frankfurt, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Medical Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Frankfurt, Germany.,Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
10
|
Tien Vo TT, Vo QC, Tuan VP, Wee Y, Cheng HC, Lee IT. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol 2021; 46:102124. [PMID: 34507160 PMCID: PMC8427320 DOI: 10.1016/j.redox.2021.102124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy. CO-RMs as pro-drugs for controlled CO delivery are potentially beneficial in cancer treatment. Anticancer activities of CO-RMs are varying and cell-type specific. Anti-proliferative, pro-apoptotic, and anti-angiogenic effects are major niches. ROS may play a central role in the molecular pathways underlying anticancer activities of CO-RMs. CO-RMs can act against Warburg effect, a feature of cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Logan SM, Gupta A, Wang A, Levy RJ, Storey KB. Isoflurane and low-level carbon monoxide exposures increase expression of pro-survival miRNA in neonatal mouse heart. Cell Stress Chaperones 2021; 26:541-548. [PMID: 33661504 PMCID: PMC8065082 DOI: 10.1007/s12192-021-01199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Anesthetics such as isoflurane are known to cause apoptosis in the developing mammalian brain. However, isoflurane may have protective effects on the heart via relieving ischemia and downregulating genes related to apoptosis. Ischemic preconditioning, e.g. through the use of low levels of carbon monoxide (CO), has promise in preventing ischemia-reperfusion injury and cell death. However, it is still unclear how it either triggers the stress response in neonatal hearts. For this reason, thirty-three microRNAs (miRNAs) known to be differentially expressed following anesthesia and/or ischemic or hypoxic heart damage were investigated in the hearts from neonatal mice exposed to isoflurane or low level of CO, using an air-exposed control group. Only miR-93-5p increased with isoflurane exposure, which may be associated with the suppression of cell death, autophagy, and inflammation. By contrast, twelve miRNAs were differentially expressed in the heart following CO treatment. Many miRNAs previously shown to be responsible for suppressing cell death, autophagy, and myocardial hypertrophy were upregulated (e.g., 125b-3p, 19-3p, and 21a-5p). Finally, some miRNAs (miR-103-3p, miR-1a-3p, miR-199a-1-5p) which have been implicated in regulating energy balance and cardiac contraction were also differentially expressed. Overall, this study demonstrated that CO-mediated miRNA regulation may promote ischemic preconditioning and cardioprotection based on the putative protective roles of the differentially expressed miRNAs explored herein and the consistency of these results with those that have shown positive effects of CO on heart viability following anesthesia and ischemia-reperfusion stress.
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Aakriti Gupta
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
12
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
13
|
Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway. Blood 2021; 136:1535-1548. [PMID: 32556090 DOI: 10.1182/blood.2020004964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Heme is an essential cofactor for numerous cellular functions, but release of free heme during hemolysis results in oxidative tissue damage, vascular dysfunction, and inflammation. Macrophages play a key protective role in heme clearance; however, the mechanisms that regulate metabolic adaptations that are required for effective heme degradation remain unclear. Here we demonstrate that heme loading drives a unique bioenergetic switch in macrophages, which involves a metabolic shift from oxidative phosphorylation toward glucose consumption. Metabolomic and transcriptional analysis of heme-loaded macrophages revealed that glucose is funneled into the pentose phosphate pathway (PPP), which is indispensable for efficient heme detoxification and is required to maintain redox homeostasis. We demonstrate that the metabolic shift to the PPP is controlled by heme oxygenase-dependent generation of carbon monoxide (CO). Finally, we show that PPP upregulation occurs in vivo in organ systems central to heme clearance and that PPP activity correlates with heme levels in mouse sickle cell disease (SCD). Together, our findings demonstrate that metabolic adaptation to heme detoxification in macrophages requires a shift to the PPP that is induced by heme-derived CO, suggesting pharmacologic targeting of macrophage metabolism as a novel therapeutic strategy to improve heme clearance in patients with hemolytic disorders.
Collapse
|
14
|
Zheng Y, Li Z, Yin M, Gong X. Heme oxygenase‑1 improves the survival of ischemic skin flaps (Review). Mol Med Rep 2021; 23:235. [PMID: 33537805 PMCID: PMC7893698 DOI: 10.3892/mmr.2021.11874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Heat shock protein 32 (Hsp32), also known as heme oxygenase‑1 (HO‑1), is an enzyme that exists in microsomes. HO‑1 can be induced by a variety of stimuli, including heavy metals, heat shock, inflammatory stimuli, heme and its derivatives, stress, hypoxia, and biological hormones. HO‑1 is the rate‑limiting enzyme of heme catabolism, which splits heme into biliverdin, carbon monoxide (CO) and iron. The metabolites of HO‑1 have anti‑inflammatory and anti‑oxidant effects, and provide protection to the cardiovascular system and transplanted organs. This review summarizes the biological characteristics of HO‑1 and the functional significance of its products, and specifically elaborates on its protective effect on skin flaps. HO‑1 improves the survival rate of ischemic skin flaps through anti‑inflammatory, anti‑oxidant and vasodilatory effects of enzymatic reaction products. In particular, this review focuses on the role of carbon monoxide (CO), one of the primary metabolites of HO‑1, in flap survival and discusses the feasibility and existing challenges of HO‑1 in flap surgery.
Collapse
Affiliation(s)
- Yinhua Zheng
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenlan Li
- Department of Rehabilitation Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yin
- Department of Nephrology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xu Gong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Yang XX, Ke BW, Lu W, Wang BH. CO as a therapeutic agent: discovery and delivery forms. Chin J Nat Med 2021; 18:284-295. [PMID: 32402406 DOI: 10.1016/s1875-5364(20)30036-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Carbon monoxide (CO) as one of the three important endogenously produced signaling molecules, termed as "gasotransmitter," has emerged as a promising therapeutic agent for treating various inflammation and cellular-stress related diseases. In this review, we discussed CO's evolution from a well-recognized toxic gas to a signaling molecule, and the effort to develop different approaches to deliver it for therapeutic application. We also summarize recently reported chemistry towards different CO delivery forms.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bo-Wen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610000, China
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bing-He Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA.
| |
Collapse
|
16
|
Zhang S, Xu Y, Zhu J, Ma J, Niu Q, Wang X. Carbon monoxide attenuates LPS-induced myocardial dysfunction in rats by regulating the mitochondrial dynamic equilibrium. Eur J Pharmacol 2020; 889:173726. [PMID: 33159931 DOI: 10.1016/j.ejphar.2020.173726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) induces myocardial dysfunction by damaging the mitochondrial structure in cardiomyocytes. Since low levels of carbon monoxide can confer cytoprotective effects against end-organ damage from endotoxic shock, we tested whether treatment with carbon monoxide-releasing molecule-2 (CORM-2) could ameliorate LPS-induced myocardial dysfunction in rats by maintaining the dynamic equilibrium between the mitochondrial fusion and fission processes. Cardiac function, myocardial histopathology, myocardial enzymes, and changes in myocardial mitochondrial function and mitochondrial fusion-fission protein expression were assessed in rats. The mitochondrial structure and morphology were studied by electron microscopy, and the expression levels of key proteins involved in the mitochondrial dynamics were assessed by Western blot assay. Cardiac dysfunction and increased myocardial enzyme activity together with myocardial pathological damage, mitochondrial dysfunction, and impaired mitochondrial dynamics homeostasis were observed in the LPS-challenged septic rats. However, these observations were reversed by CORM-2, which effectively inhibited cardiac and mitochondrial damage in the LPS-challenged rats and improved the survival rate of the animals. In conclusion, CORM-2 regulates the LPS-induced imbalance of the dynamic mitochondrial fusion and fission processes, thereby effectively ameliorating the LPS-induced myocardial dysfunction and improving the survival of the rats.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China; Cangzhou Central Hospital, Cangzhou, 061000, Hebei Province, People's Republic of China
| | - Yanping Xu
- Department of Cardiac Functions Examination, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jinlan Ma
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Qingsheng Niu
- Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xiaohong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
17
|
Carbon Monoxide-Releasing Molecule-3 Ameliorates Acute Lung Injury in a Model of Hemorrhagic Shock and Resuscitation: Roles of p38MAPK Signaling Pathway. Shock 2020; 55:816-826. [PMID: 33105439 DOI: 10.1097/shk.0000000000001684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE It was reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorates the HSR-induced acute lung injury (ALI); however, the specific mechanism of the protective effects against HSR-induced ALI remains unclear. METHODS To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mm Hg for 45 min and then resuscitated with shed blood via the left vein. CORM-3 (4 mg/kg or 8 mg/kg) was respectively administrated after HSR. Twelve hours post-HSR, lung injury was assessed by wet/dry (W/D) ratio, hematoxylin-eosin staining staining, and lung ultrasound; the apoptotic and pyroptotic macrophages were measured by immunofluorescence staining; and the expression of phosphorylated p38 mitogen activated protein kinase (p-p38MAPK) and total p38MAPK was measured by western blotting. SB203580 (5 mg/kg), a special inhibitor of p-p38MAPK, was administrated by abdominal cavity to assess the roles of p38MAPK in HSR-induced ALI. RESULTS Increased B-line score, lung injury score, and W/D ratio indicated the fact of ALI after HSR. Twelve hours post-HSR, CORM-3 administration significantly decreased the B-line score, lung injury score, W/D ratio, apoptotic and pyroptotic macrophages, and the expressions of p-p38MAPK. Further, SB203580 not only reduced HSR-induced ALI, but also enhanced the protective effects of CORM-3 against ALI. CONCLUSION We identified the protective effects of CORM-3 against HSR-induced ALI. The mechanism might be related to the inhibition of p38MAPK signaling pathway in lung macrophages.
Collapse
|
18
|
Wu J, Li Y, Yang P, Huang Y, Lu S, Xu F. Novel Role of Carbon Monoxide in Improving Neurological Outcome After Cardiac Arrest in Aged Rats: Involvement of Inducing Mitochondrial Autophagy. J Am Heart Assoc 2020; 8:e011851. [PMID: 31030597 PMCID: PMC6512094 DOI: 10.1161/jaha.118.011851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Dysfunctional mitochondria are associated with neurological injury after cardiac arrest (CA). Although carbon monoxide (CO) has shown various potential therapeutic effects in preclinical tissue injury models, its mechanism of action in CA remains unclear. We sought to investigate the effects of a novel CO‐releasing molecule on cerebral mitochondrial dysfunction and neurological injury after CA. Methods and Results Male Sprague‐Dawley rats aged 20 to 22 months were subjected to 6‐minute asphyxia CA before receiving CO treatment. Survival, neurologic deficit scores, neuronal death, mitochondrial function, and autophagy were evaluated after the return of spontaneous circulation. Results showed that CO post‐treatment increased 3‐day survival rate from 25% to 70.83% and reduced neurologic deficit scores. CO also ameliorated CA‐induced neuronal apoptosis and necrosis in the cerebral cortex and improved cerebral mitochondrial function by reducing reactive oxygen species, reversing mitochondrial membrane potential depolarization, and preventing cytochrome C release. Furthermore, CO increased mitochondrial autophagy by inducing mitochondrial accumulation of PINK1 (PTEN‐induced putative kinase 1) and Parkin. Downregulation of PINK1 with genetic silencing siRNA abolished CO‐afforded mitochondrial autophagy. Conclusions Taken together, our results indicate, for the first time, that CO treatment confers neuroprotection against ischemic neurological injury after CA possibly by promoting mitochondrial autophagy.
Collapse
Affiliation(s)
- Jun Wu
- 1 Department of Ultrasonography Medicine The Affiliated Suzhou Hospital of Nanjing University of Chinese Medicine Suzhou China
| | - Yi Li
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Peng Yang
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Yaping Huang
- 3 Department of Pathology The Affiliated Suzhou Hospital of Nanjing University of Chinese Medicine Suzhou China
| | - Shiqi Lu
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| | - Feng Xu
- 2 Department of Emergency Medicine The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
19
|
Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21072273. [PMID: 32218342 PMCID: PMC7177523 DOI: 10.3390/ijms21072273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Regeneration of adult neural circuits after an injury is limited in the central nervous system (CNS). Heme oxygenase (HO) is an enzyme that produces HO metabolites, such as carbon monoxide (CO), biliverdin and iron by heme degradation. CO may act as a biological signal transduction effector in CNS regeneration by stimulating neuronal intrinsic and extrinsic mechanisms as well as mitochondrial biogenesis. CO may give directions by which the injured neurovascular system switches into regeneration mode by stimulating endogenous neural stem cells and endothelial cells to produce neurons and vessels capable of replacing injured neurons and vessels in the CNS. The present review discusses the regenerative potential of CO in acute and chronic neuroinflammatory diseases of the CNS, such as stroke, traumatic brain injury, multiple sclerosis and Alzheimer’s disease and the role of signaling pathways and neurotrophic factors. CO-mediated facilitation of cellular communications may boost regeneration, consequently forming functional adult neural circuits in CNS injury.
Collapse
|
20
|
Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol 2019; 862:172636. [PMID: 31491405 DOI: 10.1016/j.ejphar.2019.172636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
Several studies have reported that CORM-3, a water-soluble carbon monoxide releasing molecule, elicits cardioprotection against myocardial infarction but the mechanism remains to be investigated. Numerous reports indicate that inhibition of pH regulators, the Na+/H+ exchanger (NHE) and Na+/HCO3- symporter (NBC), protect cardiomyocytes from hypoxia/reoxygenation injury by delaying the intracellular pH (pHi) recovery at reperfusion. Our goal was to explore whether CORM-3-mediated cytoprotection involves the modulation of pH regulation. When added at reoxygenation, CORM-3 (50 μM) reduced the mortality of cardiomyocytes exposed to 3 h of hypoxia and 2 h of reoxygenation in HCO3--buffered solution. This effect was lost when using inactive iCORM-3, which is depleted of CO and used as control, thus implicating CO as the mediator of this cardioprotection. Interestingly, the cardioprotective effect of CORM-3 was abolished by switching to a bicarbonate-free medium. This effect of CORM-3 was also inhibited by 5-hydroxydecanoate, a mitochondrial ATP-dependent K+ (mKATP) channel inhibitor (500 μM) or PD098059, a MEK1/2 inhibitor (10 μM). In additional experiments and in the absence of hypoxia-reoxygenation, intracellular pH was monitored in cardiomyocytes exposed to cariporide to block NHE activity. CORM-3 inhibited alkalinisation and this effect was blocked by PD098059 and 5-HD. In conclusion, CORM-3 protects the cardiomyocyte against hypoxia-reoxygenation injury by inhibiting a bicarbonate transporter at reoxygenation, probably the Na+/HCO3- symporter. This cardioprotective effect of CORM-3 requires the activation of mKATP channels and the activation of MEK1/2.
Collapse
Affiliation(s)
- Lolita Portal
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | | | - Bijan Ghaleh
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| | - Sandrine Pons
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| |
Collapse
|
21
|
Andreas M, Oeser C, Kainz FM, Shabanian S, Aref T, Bilban M, Messner B, Heidtmann J, Laufer G, Kocher A, Wolzt M. Intravenous Heme Arginate Induces HO-1 (Heme Oxygenase-1) in the Human Heart. Arterioscler Thromb Vasc Biol 2019; 38:2755-2762. [PMID: 30354231 DOI: 10.1161/atvbaha.118.311832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- HO-1 (heme oxygenase-1) induction may prevent or reduce ischemia-reperfusion injury. We previously evaluated its in vivo induction after a single systemic administration of heme arginate in peripheral blood mononuclear cells. The current trial was designed to assess the pharmacological tissue induction of HO-1 in the human heart with heme arginate in vivo. Approach and Results- Patients planned for conventional aortic valve replacement received placebo (n=8), 1 mg/kg (n=7) or 3 mg/kg (n=9) heme arginate infused intravenously 24 hours before surgery. A biopsy of the right ventricle was performed directly before aortic cross-clamping and after cross-clamp release. In addition, the right atrial appendage was partially removed for analysis. HO-1 protein and mRNA concentrations were measured in tissue samples and in peripheral blood mononuclear cells before to and up to 72 hours after surgery. No study medication-related adverse events occurred. A strong, dose-dependent effect on myocardial HO-1 mRNA levels was observed (right ventricle: 7.9±5.0 versus 88.6±49.1 versus 203.6±148.7; P=0.002 and right atrium: 10.8±8.8 versus 229.8±173.1 versus 392.7±195.7; P=0.001). This was paralleled by a profound increase of HO-1 protein concentration in atrial tissue (8401±3889 versus 28 585±10 692 versus 29 022±8583; P<0.001). Surgery and heme arginate infusion significantly increased HO-1 mRNA concentration in peripheral blood mononuclear cells ( P<0.001). HO-1 induction led to a significant increase of postoperative carboxyhemoglobin (1.7% versus 1.4%; P=0.041). No effect on plasma HO-1 protein levels could be detected. Conclusions- Myocardial HO-1 mRNA and protein can be dose-dependently induced by heme arginate. Protective effects of this therapeutic strategy should be evaluated in upcoming clinical trials. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT02314780.
Collapse
Affiliation(s)
- Martin Andreas
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Claudia Oeser
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Frieda-Maria Kainz
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Shiva Shabanian
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Tandis Aref
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine (M.B.), Medical University of Vienna, Austria
- Department of Clinical Pharmacology (M.B., M.W.), Medical University of Vienna, Austria
| | - Barbara Messner
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Julian Heidtmann
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Guenther Laufer
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Alfred Kocher
- From the Department of Cardiac Surgery (M.A., C.O., F.-M.K., S.S., T.A., B.M., J.H., G.L., A.K.), Medical University of Vienna, Austria
| | - Michael Wolzt
- Department of Clinical Pharmacology (M.B., M.W.), Medical University of Vienna, Austria
| |
Collapse
|
22
|
Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation 2019; 26:e12577. [PMID: 31230399 DOI: 10.1111/micc.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Limb compartment syndrome (CS), a complication of trauma, results in muscle necrosis and cell death; ischemia and inflammation contribute to microvascular dysfunction and parenchymal injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been shown to protect microvascular perfusion and reduce inflammation in animal models of CS. The purpose of the study was to test the effect of CORM-3 in human in vitro CS model, allowing exploration of the mechanism(s) of CO protection and potential development of pharmacologic treatment. METHODS Confluent human vascular endothelial cells (HUVECs) were stimulated for 6 h with serum isolated from patients with CS. Intracellular oxidative stress (production of reactive oxygen species (ROS)) apoptosis, transendothelial resistance (TEER), polymorphonuclear leukocyte (PMN) activation and transmigration across the monolayer in response to the CS stimulus were assessed. All experiments were performed in the presence of CORM-3 (100 μM) or its inactive form, iCORM-3. RESULTS CS serum induced a significant increase in ROS, apoptosis and endothelial monolayer breakdown; it also increased PMN superoxide production, leukocyte rolling and adhesion/transmigration. CORM-3 completely prevented CS-induced ROS production, apoptosis, PMN adhesion, rolling and transmigration, while improving monolayer integrity. CONCLUSION CORM-3 offers potent anti-oxidant and anti-inflammatory effects, and may have a potential application to patients at risk of developing CS.
Collapse
Affiliation(s)
- Aurelia Bihari
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Kyukwang Akira Chung
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David Sanders
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Emil Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| | - Abdel-Rahman Lawendy
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
24
|
Kumada Y, Takahashi T, Shimizu H, Nakamura R, Omori E, Inoue K, Morimatsu H. Therapeutic effect of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation. Exp Ther Med 2019; 17:3429-3440. [PMID: 30988722 PMCID: PMC6447800 DOI: 10.3892/etm.2019.7390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 01/14/2023] Open
Abstract
Hemorrhagic shock and resuscitation (HSR) induces a pulmonary inflammatory response and frequently causes acute lung injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been reported to liberate and deliver CO under physiological conditions, which exerts organ-protective effects during systemic insults. The present study aimed to determine whether the administration of CORM-3 following HSR exerts a therapeutic effect against HSR-induced lung injury without any detrimental effects on oxygenation and hemodynamics. To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mmHg for 45 min and then resuscitated with the shed blood. CORM-3 or a vehicle was intravenously administered immediately following the completion of resuscitation. The rats were divided into four groups, including sham, HSR, HSR/CORM-3 and HSR/inactive CORM-3 groups. Arterial blood gas parameters and vital signs were recorded during HSR. The histopathological changes to the lungs were evaluated using a lung injury score, while pulmonary edema was evaluated on the basis of the protein concentration in bronchoalveolar lavage fluid and the lung wet/dry ratio. We also investigated the pulmonary expression levels of inflammatory mediators and apoptotic markers such as cleaved caspase-3 and transferase-mediated dUTP-fluorescein isothiocyanate nick-end labeling (TUNEL) staining. Although HSR caused significant lung histopathological damage and pulmonary edema, CORM-3 significantly ameliorated this damage. CORM-3 also attenuated the HSR-induced upregulation of tumor necrosis factor-α, inducible nitric oxide synthase and interleukin-1β genes, and the expression of interleukin-1β and macrophage inflammatory protein-2. In addition, the expression of interleukin-10, an anti-inflammatory cytokine, was inversely enhanced by CORM-3, which also reduced the number of TUNEL-positive cells and the expression of cleaved caspase-3 following HSR. Although CORM-3 was administered during the acute phase of HSR, it did not exert any influence on arterial blood gas analysis data and vital signs during HSR. Therefore, treatment with CORM-3 ameliorated HSR-induced lung injury, at least partially, through anti-inflammatory and anti-apoptotic effects, without any detrimental effects on oxygenation and hemodynamics.
Collapse
Affiliation(s)
- Yuta Kumada
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Takahashi
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ryu Nakamura
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuyoshi Inoue
- Department of Anesthesiology, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
25
|
De Novo Assessment and Review of Pan-American Pit Viper Anticoagulant and Procoagulant Venom Activities via Kinetomic Analyses. Toxins (Basel) 2019; 11:toxins11020094. [PMID: 30736322 PMCID: PMC6409967 DOI: 10.3390/toxins11020094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.
Collapse
|
26
|
Shan H, Li T, Zhang L, Yang R, Li Y, Zhang M, Dong Y, Zhou Y, Xu C, Yang B, Liang H, Gao X, Shan H. Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. EBioMedicine 2018; 39:59-68. [PMID: 30527623 PMCID: PMC6355645 DOI: 10.1016/j.ebiom.2018.11.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
Background Cellular senescence is a stable cell-cycle arrest induced by telomere shortening and various types of cellular stress including oxidative stress, oncogene activation, DNA damage etc. Heme oxygenase-1 (HO-1) is an inducible stress-response protein that plays antioxidant and anti-apoptotic effects. However, the role and underlying mechanisms of HO-1 in cellular senescence in heart are largely unknown. Methods Echocardiography was employed to detect the effect of HO-1 on heart function in adult mice with myocardial infarction (MI) and aged mice. The senescence markers, p53, p16 and LaminB, were analyzed by western blot. The immunofluorescence and immunohistochemical staining were applied to analyze the expression level of p16. SA-β-Gal staining showed the level of cardiomyocyte senescence. Findings We found that hemin significantly induced the expression of HO-1, which notably suppressed cardiomyocyte senescence containing the secretion of senescence-associated secretory phenotype. Further studies showed that systemic HO-1 transgenic overexpression improved heart function by inhibiting aging-induced extracellular matrix deposition and fibrogenesis. More importantly, treatment of hemin improved heart function in MI mice. Furthermore, forced expression of HO-1 blunted cardiomyocyte senescence in natural aged mice and in primary cultured neonatal mouse cardiomyocytes. Interpretation Our study revealed that HO-1 improved heart function and attenuated cardiomyocyte senescence triggered by ischemic injury and aging. In addition, HO-1 induction alleviated H2O2-induced cardiomyocyte senescence. Finally, our study suggested a novel mechanism of HO-1 to play cardioprotective effect. Fund This study was supported by the National Natural Science Foundation of China (81770284 to Hongli Shan); and the National Natural Science Foundation of China (81673425, 81872863 to Yuhong Zhou). The National Natural Science Foundation of China (81473213 to Chaoqian Xu). National Key R&D Program of China (2017YFC1307403 to Baofeng Yang), National Natural Science Foundation of China (81730012 to Baofeng Yang).
Collapse
Affiliation(s)
- Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yuechao Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Xu Gao
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
27
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Interaction of carbon monoxide-releasing ruthenium carbonyl CORM-3 with plasma fibronectin. Toxicol In Vitro 2018; 50:201-209. [DOI: 10.1016/j.tiv.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022]
|
29
|
Parviz Y, Waleed M, Vijayan S, Adlam D, Lavi S, Al Nooryani A, Iqbal J, Stone GW. Cellular and molecular approaches to enhance myocardial recovery after myocardial infarction. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 20:351-364. [PMID: 29958820 DOI: 10.1016/j.carrev.2018.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Reperfusion therapy has resulted in significant improvement in post-myocardial infarction morbidity and mortality in over the last 4 decades. Nonetheless, it is well recognized that simply restoring patency of the epicardial artery may not stop or reverse damage at microvascular level, and myocardial salvage is often suboptimal. Numerous efforts have been undertaken to elucidate the mechanisms underlying extensive myonecrosis to facilitate the discovery of therapies to provide additional and incremental benefits over current therapeutic pathways. To date, conclusively effective strategies to promote myocardial recovery have not yet been established. Novel approaches are investigating the foundational cellular and molecular bases of myocardial ischemia and irreversible injury. Herein, we review the emerging concepts and proposed therapies that may improve myocardial protection and reduce infarct size. We examine the preclinical and clinical evidence for reduced infarct size with these strategies, including anti-inflammatory agents, intracellular ion channel modulators, agents affecting the reperfusion injury salvage kinase (RISK) and nitric oxide signaling pathways, modulators of mitochondrial function, anti-apoptotic agents, and stem cell and gene therapy. We review the potential reasons of failures to date and the potential for new strategies to further promote myocardial recovery and improve prognosis.
Collapse
Affiliation(s)
- Yasir Parviz
- New York Presbyterian Hospital, Columbia University Medical Centre and the Cardiovascular Research Foundation, New York, NY, USA.
| | | | | | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, UK
| | - Shahar Lavi
- Division of Cardiology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | | | - Javaid Iqbal
- South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield, UK
| | - Gregg W Stone
- New York Presbyterian Hospital, Columbia University Medical Centre and the Cardiovascular Research Foundation, New York, NY, USA
| |
Collapse
|
30
|
Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox FL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol 2018; 18:114-123. [PMID: 30007887 PMCID: PMC6067063 DOI: 10.1016/j.redox.2018.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological ‘gasotransmitter’, in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)3Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli. We demonstrate that CORM-3 releases little CO in buffers and cell culture media and that the active antimicrobial agent is Ru(II), which binds tightly to thiols. Thus, thiols and amino acids in complex growth media – such as histidine, methionine and oxidised glutathione, but most pertinently cysteine and reduced glutathione (GSH) – protect both bacterial and mammalian cells against CORM-3 by binding and sequestering Ru(II). No other amino acids exert significant protective effects. NMR reveals that CORM-3 binds cysteine and GSH in a 1:1 stoichiometry with dissociation constants, Kd, of about 5 μM, while histidine, GSSG and methionine are bound less tightly, with Kd values ranging between 800 and 9000 μM. There is a direct positive correlation between protection and amino acid affinity for CORM-3. Intracellular targets of CORM-3 in both bacterial and mammalian cells are therefore expected to include GSH, free Cys, His and Met residues and any molecules that contain these surface-exposed amino acids. These results necessitate a major reappraisal of the biological effects of CORM-3 and related CORMs. Carbon monoxide-releasing molecules (CORMs) are used for experimental CO delivery. CORM-3 is a potent antimicrobial, but is reportedly beneficial to mammalian cells. We demonstrate CORM-3 releases little CO in buffers and cell culture media. Redox-active Ru2+ is the biological agent, binding tightly to metabolites e.g. thiol. These results necessitate a major reappraisal of the biological effects of CORMs.
Collapse
Affiliation(s)
- Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas W Smith
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Rhiannon L Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chunyan Liao
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Clare R Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laurence A Middlemiss
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Francesca L Cox
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Jonathan A Chapman
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael Hippler
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
31
|
Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation 2018; 15:188. [PMID: 29929562 PMCID: PMC6014004 DOI: 10.1186/s12974-018-1226-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background At low levels, carbon monoxide (CO) has been shown to have beneficial effects on multiple organs and tissues through its potential anti-inflammatory, anti-apoptotic, and anti-proliferative properties. However, the effect of CO-releasing molecule (CORM)-3, a water-soluble CORM, on ischemic stroke and its mechanism of action are still unclear. Methods We investigated the role of CORM-3 in the mouse model of transient middle cerebral artery occlusion (tMCAO). CORM-3 or saline was administered to mice by retro-orbital injection at the time of reperfusion after 1-h tMCAO or at 1 h after sham surgery. We assessed infarct volume and brain water content at 24 and 72 h after ischemia, blood-brain barrier permeability at 6 and 72 h after ischemia, and neurologic deficits on days 1, 3, 7, and 14. Results Among mice that underwent tMCAO, those that received CORM-3 had significantly smaller infarct volume and greater expression of neuronal nuclear antigen (NeuN) and microtubule-associated protein 2 than did saline-treated mice. CORM-3-treated mice had significantly fewer activated microglia in the peri-infarction zone than did control mice and exhibited downregulated expression of ionized calcium-binding adapter molecule (Iba)-1, tumor necrosis factor-α, and interleukin 1β. CORM-3-treated mice had significantly lower brain water content and enhanced neurologic outcomes on days 3, 7, and 14 post-tMCAO. Lastly, CORM-3 treatment reduced Evans blue leakage; increased expression of platelet-derived growth factor receptor-β, tight junction protein ZO-1, and matrix protein laminin; and decreased protein level of matrix metalloproteinase-9. Conclusion CORM-3 treatment at the time of reperfusion reduces ischemia-reperfusion-induced brain injury by suppressing neuroinflammation and alleviating blood-brain barrier disruption. Our data suggest that CORM-3 may provide an effective therapy for ischemic stroke.
Collapse
|
32
|
Singh SP, McClung JA, Bellner L, Cao J, Waldman M, Schragenheim J, Arad M, Hochhauser E, Falck JR, Weingarten JA, Peterson SJ, Abraham NG. CYP-450 Epoxygenase Derived Epoxyeicosatrienoic Acid Contribute To Reversal of Heart Failure in Obesity-Induced Diabetic Cardiomyopathy via PGC-1 α Activation. ACTA ACUST UNITED AC 2018; 7. [PMID: 29707604 PMCID: PMC5922773 DOI: 10.4172/2329-6607.1000233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that an Epoxyeicosatrienoic Acid (EET) -agonist has pleiotropic effects and reverses cardiomyopathy by decreasing inflammatory molecules and increasing antioxidant signaling. We hypothesized that administration of an EET agonist would increase Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), which controls mitochondrial function and induction of HO-1 and negatively regulates the expression of the proinflammatory adipokines CCN3/NOV in cardiac and pericardial tissues. This pathway would be expected to further improve left ventricular (LV) systolic function as well as increase insulin receptor phosphorylation. Measurement of the effect of an EET agonist on oxygen consumption, fractional shortening, blood glucose levels, thermogenic and mitochondrial signaling proteins was performed. Control obese mice developed signs of metabolic syndrome including insulin resistance, hypertension, inflammation, LV dysfunction, and increased NOV expression in pericardial adipose tissue. EET agonist intervention decreased pericardial adipose tissue expression of NOV, while normalized FS, increased PGC-1α, HO-1 levels, insulin receptor phosphorylation and improved mitochondrial function, theses beneficial effect were reversed by deletion of PGC-1α. These studies demonstrate that an EET agonist increases insulin receptor phosphorylation, mitochondrial and thermogenic gene expression, decreased cardiac and pericardial tissue NOV levels, and ameliorates cardiomyopathy in an obese mouse model of the metabolic syndrome.
Collapse
Affiliation(s)
- S P Singh
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J A McClung
- Departments of Medicine, New York Medical College, Valhalla, New York, USA
| | - L Bellner
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J Cao
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Chinese PLA General Hospital, Beijing 100853, China
| | - M Waldman
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J Schragenheim
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - M Arad
- Leviev Heart Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - E Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J A Weingarten
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - S J Peterson
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - N G Abraham
- Departments of Medicine, New York Medical College, Valhalla, New York, USA.,Joan Edward School of Medicine, West Virginia, USA
| |
Collapse
|
33
|
|
34
|
Bihari A, Cepinskas G, Forbes TL, Potter RF, Lawendy AR. Systemic application of carbon monoxide-releasing molecule 3 protects skeletal muscle from ischemia-reperfusion injury. J Vasc Surg 2017; 66:1864-1871. [DOI: 10.1016/j.jvs.2016.11.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 11/28/2022]
|
35
|
Segersvärd H, Lakkisto P, Hänninen M, Forsten H, Siren J, Immonen K, Kosonen R, Sarparanta M, Laine M, Tikkanen I. Carbon monoxide releasing molecule improves structural and functional cardiac recovery after myocardial injury. Eur J Pharmacol 2017; 818:57-66. [PMID: 29055786 DOI: 10.1016/j.ejphar.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Carbon monoxide (CO), produced by heme oxygenase-1 (HO-1), is an endogenous paracrine factor involved in the regulation of cardiovascular structure and function. We studied the effects of a synthetic CO releasing molecule (CORM-3) on cardiac recovery and myocardial microRNA expression after myocardial infarction (MI). Male Wistar rats with MI (n = 75) or sham-operated controls (n = 75) were treated from day 4 to day 14 after MI either with synthetic CORM-3 or with inactive iCORM and killed 2, 4 or 8 weeks post-MI. Infarct size, vascular and capillary densities, the amount of cardiomyocytes in the infarct area, and cardiomyocyte proliferation and apoptosis were determined. PCR was used for microRNA and mRNA quantification, western blotting to evaluate protein expression and echocardiography to assess cardiac structure and function. CORM-3 treatment increased vascular density (P< 0.05 vs. iCORM) and the proportion of cardiomyocytes (P< 0.05 vs. iCORM) in the infarct area. Ejection fraction improved (P< 0.05) and left ventricular volumes decreased (P< 0.05) in CORM-3 treated MI groups compared to iCORM treatment. CORM-3 treatment decreased the amount of proliferating Ki67 positive cardiomyocytes in the infarct/border area at week 2 after MI compared to iCORM treatment, whereas the amount of apoptotic cardiomyocytes did not differ between CORM-3 and iCORM groups. Compared to iCORM treatment, CORM-3 decreased expression on miR-206 in the remote area at week 2 after MI. The CO releasing molecule CORM-3 improved structural and functional cardiac recovery after MI. Modulation of HO-1-CO axis may prove novel drug targets to facilitate cardiac recovery after myocardial injury.
Collapse
Affiliation(s)
- Heli Segersvärd
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland.
| | - Päivi Lakkisto
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Hänninen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Hanna Forsten
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Juuso Siren
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Katariina Immonen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Riikka Kosonen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | | | - Mika Laine
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
37
|
Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res 2017; 118:1940-1959. [PMID: 27283533 DOI: 10.1161/circresaha.116.306588] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
Understanding the processes governing the ability of the heart to repair and regenerate after injury is crucial for developing translational medical solutions. New avenues of exploration include cardiac cell therapy and cellular reprogramming targeting cell death and regeneration. An attractive possibility is the exploitation of cytoprotective genes that exist solely for self-preservation processes and serve to promote and support cell survival. Although the antioxidant and heat-shock proteins are included in this category, one enzyme that has received a great deal of attention as a master protective sentinel is heme oxygenase-1 (HO-1), the rate-limiting step in the catabolism of heme into the bioactive signaling molecules carbon monoxide, biliverdin, and iron. The remarkable cardioprotective effects ascribed to heme oxygenase-1 are best evidenced by its ability to regulate inflammatory processes, cellular signaling, and mitochondrial function ultimately mitigating myocardial tissue injury and the progression of vascular-proliferative disease. We discuss here new insights into the role of heme oxygenase-1 and heme on cardiovascular health, and importantly, how they might be leveraged to promote heart repair after injury.
Collapse
Affiliation(s)
- Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Roberta Foresti
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| | - Roberto Motterlini
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| |
Collapse
|
38
|
Inoue K, Patterson EK, Capretta A, Lawendy AR, Fraser DD, Cepinskas G. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1121-1133. [PMID: 28320610 DOI: 10.1016/j.ajpath.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 μg/mL lipopolysaccharide for 6 hours and perfused with 100 μmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.
Collapse
Affiliation(s)
- Ken Inoue
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Abdel R Lawendy
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
39
|
|
40
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
41
|
Ji X, Damera K, Zheng Y, Yu B, Otterbein LE, Wang B. Toward Carbon Monoxide-Based Therapeutics: Critical Drug Delivery and Developability Issues. J Pharm Sci 2016; 105:406-416. [PMID: 26869408 PMCID: PMC4755352 DOI: 10.1016/j.xphs.2015.10.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Carbon monoxide (CO) is an intrinsic signaling molecule with importance on par with that of nitric oxide. During the past decade, pharmacologic studies have amply demonstrated the therapeutic potential of carbon monoxide. However, such studies were mostly based on CO inhalation and metal-based CO-releasing molecules. The field is now at the stage that a major effort is needed to develop pharmaceutically acceptable forms of CO for delivery via various routes such as oral, injection, infusion, or topical applications. This review examines the state of the art, discusses the existing hurdles to overcome, and proposes developmental strategies necessary to address remaining drug delivery issues.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Krishna Damera
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Yueqin Zheng
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Bingchen Yu
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215
| | - Binghe Wang
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30303.
| |
Collapse
|
42
|
Pauwels B, Boydens C, Vanden Daele L, Van de Voorde J. Ruthenium-based nitric oxide-donating and carbon monoxide-donating molecules. J Pharm Pharmacol 2016; 68:293-304. [DOI: 10.1111/jphp.12511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/29/2015] [Indexed: 01/10/2023]
Abstract
Abstract
Objectives
Over the past few years, the use of metallocomplexes for medical purposes has considerably grown. Because of its favourable characteristics, ruthenium has taken a significant place in this expanding field of research. Several ruthenium-containing metal compounds have been developed as delivery agents of physiological important molecules such as nitric oxide (NO) and carbon monoxide (CO).
Key findings
This review focuses on the (vaso)relaxant capacity of ruthenium-based NO-donating and CO-donating molecules in view of their potential usefulness in the treatment of cardiovascular diseases and erectile dysfunction.
Summary
Ruthenium seems to be a valuable candidate for the design of NO-donating and CO-donating molecules. To date, ruthenium remains of interest in drug research as the search for new alternatives is still necessary.
Collapse
Affiliation(s)
- Bart Pauwels
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
43
|
Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Randé JL, Mann BE, Motterlini R, Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol 2015; 102:64-77. [PMID: 26721585 DOI: 10.1016/j.bcp.2015.12.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies.
Collapse
Affiliation(s)
- Sarah Fayad-Kobeissi
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Johary Ratovonantenaina
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jayne Louise Wilson
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Anne Marie Rodriguez
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jean-Luc Dubois-Randé
- AP-HP, Hôpital Henri Mondor-A. Chenevier, Service Hospitalier, Créteil 94000, France.
| | - Brian E Mann
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
| | - Roberto Motterlini
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Roberta Foresti
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| |
Collapse
|
44
|
Seixas JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Gonçalves AML, Romão MJ, Bernardes GJL, Santos-Silva T, Romão CC. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO. Dalton Trans 2015; 44:5058-75. [PMID: 25427784 DOI: 10.1039/c4dt02966f] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)3Cl2L] (L = DMSO (3), L-H3CSO(CH2)2CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)2CH(NH2)CO2H (6b); 3-NC5H4(CH2)2SO3Na (7); 4-NC5H4(CH2)2SO3Na (8); PTA (9); DAPTA (10); H3CS(CH2)2CH(OH)CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWN) shows the addition of Ru(II)(CO)(H2O)4 at the His15 binding site. Soakings with 7(4UWN) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)3](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO(-) on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.
Collapse
Affiliation(s)
- João D Seixas
- Instituto de Tecnologia Química e Biológica-António Xavier da Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Serizawa F, Patterson E, Potter RF, Fraser DD, Cepinskas G. Pretreatment of human cerebrovascular endothelial cells with CO-releasing molecule-3 interferes with JNK/AP-1 signaling and suppresses LPS-induced proadhesive phenotype. Microcirculation 2015; 22:28-36. [PMID: 25098198 DOI: 10.1111/micc.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exogenously administered CO interferes with PMN recruitment to the inflamed organs. The mechanisms of CO-dependent modulation of vascular proadhesive phenotype, a key step in PMN recruitment, are unclear. METHODS We assessed the effects/mechanisms of CO liberated from a water-soluble CORM-3 on modulation of the proadhesive phenotype in hCMEC/D3 in an in vitro model of endotoxemia. To this end, hCMEC/D3 were stimulated with LPS (1 μg/mL) for six hours. In some experiments hCMEC/D3 were pretreated with CORM-3 (200 μmol/L) before LPS-stimulation. PMN rolling/adhesion to hCMEC/D3 were assessed under conditions of laminar shear stress (0.7 dyn/cm(2) ). In parallel, expression of adhesion molecules E-selectin, ICAM-1, and VCAM-1 (qPCR), activation of transcription factors, NF-κB and AP-1 (ELISA), and MAPK-signaling (expression/phosphorylation of p38, ERK1/2, and JNK1/2; western blot) were assessed. RESULTS The obtained results indicate that CORM-3 pretreatment reduces PMN rolling/adhesion to LPS-stimulated hCMEC/D3 (p < 0.05). Decreased PMN rolling/adhesion to hCMEC/D3 was associated with CORM-3-dependent inhibition of MAPK JNK1/2 activation (Tyr-phosphorylation), inhibition of transcription factor, AP-1 (c-Jun phosphorylation), and subsequent suppression of VCAM-1 expression (p < 0.05). CONCLUSIONS These findings indicate that CORM-3 pretreatment interferes with JNK/AP-1 signaling and suppresses LPS-induced upregulation of the proadhesive phenotype in hCMEC/D3.
Collapse
Affiliation(s)
- Fukashi Serizawa
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
Seixas JD, Chaves-Ferreira M, Montes-Grajales D, Gonçalves AM, Marques AR, Saraiva LM, Olivero-Verbel J, Romão CC, Bernardes GJL. An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species. Chemistry 2015; 21:14708-12. [PMID: 26316066 PMCID: PMC4641457 DOI: 10.1002/chem.201502474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/27/2022]
Abstract
We have designed and synthesised a [Ru(CO)3 Cl2 (NAC)] pro-drug that features an N-acetyl cysteine (NAC) ligand. This NAC carbon monoxide releasing molecule (CORM) conjugate is able to simultaneously release biologically active CO and to ablate the concurrent formation of reactive oxygen species (ROS). Complexes of the general formulae [Ru(CO)3 (L)3 ](2+) , including [Ru(CO)3 Cl(glycinate)] (CORM-3), have been shown to produce ROS through a water-gas shift reaction, which contributes significantly, for example, to their antibacterial activity. In contrast, NAC-CORM conjugates do not produce ROS or possess antibacterial activity. In addition, we demonstrate the synergistic effect of CO and NAC both for the inhibition of nitric oxide (formation) and in the expression of tumour-necrosis factor (TNF)-α. This work highlights the advantages of combining a CO-releasing scaffold with the anti-oxidant and anti-inflammatory drug NAC in a unique pro-drug.
Collapse
Affiliation(s)
- João D Seixas
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal) www.gbernardes-lab.com.,Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras (Portugal).,Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Av. da República, EAN, 2780-157 Oeiras (Portugal)
| | - Miguel Chaves-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal) www.gbernardes-lab.com
| | - Diana Montes-Grajales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK).,School of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Bolivar 130015 (Colombia)
| | - Ana M Gonçalves
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Av. da República, EAN, 2780-157 Oeiras (Portugal)
| | - Ana R Marques
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Av. da República, EAN, 2780-157 Oeiras (Portugal)
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras (Portugal)
| | - Jesus Olivero-Verbel
- School of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Bolivar 130015 (Colombia)
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras (Portugal).,Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Av. da República, EAN, 2780-157 Oeiras (Portugal)
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal) www.gbernardes-lab.com. , .,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK). ,
| |
Collapse
|
47
|
Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, Elies J, Johnson E, Gamper N, Steele DS. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol 2015; 172:1546-56. [PMID: 24818840 PMCID: PMC4369263 DOI: 10.1111/bph.12760] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca(2+) -sensitive K(+) channels. More recent studies have revealed the ability of CO to inhibit T-type Ca(2+) channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.
Collapse
Affiliation(s)
- C Peers
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - M L Dallas
- School of Pharmacy, University of ReadingReading, UK
| | - M M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - N T Hettiarachichi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J Elies
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - E Johnson
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - N Gamper
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - D S Steele
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| |
Collapse
|
48
|
Queiroga CSF, Vercelli A, Vieira HLA. Carbon monoxide and the CNS: challenges and achievements. Br J Pharmacol 2015; 172:1533-45. [PMID: 24758548 PMCID: PMC4369262 DOI: 10.1111/bph.12729] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/12/2023] Open
Abstract
Haem oxygenase (HO) and its product carbon monoxide (CO) are associated with cytoprotection and maintenance of homeostasis in several different organs and tissues. This review focuses upon the role of exogenous and endogenous CO (via HO activity and expression) in various CNS pathologies, based upon data from experimental models, as well as from some clinical data on human patients. The pathophysiological conditions reviewed are cerebral ischaemia, chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases), multiple sclerosis and pain. Among these pathophysiological conditions, a variety of cellular mechanisms and processes are considered, namely cytoprotection, cell death, inflammation, cell metabolism, cellular redox responses and vasomodulation, as well as the different targeted neural cells. Finally, novel potential methods and strategies for delivering exogenous CO as a drug are discussed, particularly approaches based upon CO-releasing molecules, their limitations and challenges. The diagnostic and prognostic value of HO expression in clinical use for brain pathologies is also addressed.
Collapse
Affiliation(s)
- Cláudia S F Queiroga
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
| | - Alessandro Vercelli
- Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of TurinTurin, Italy
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)Oeiras, Portugal
| |
Collapse
|
49
|
Casali MB, Sironi L, Caligara M, Blandino A, Circelli S, Schiavi D, Cattaneo C. How Reliable are Parenchymal Tissues for the Evaluation of Carbon Monoxide Poisoning? A Pilot Study. J Forensic Sci 2014; 60:488-94. [DOI: 10.1111/1556-4029.12664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 12/10/2013] [Accepted: 03/11/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Michelangelo Bruno Casali
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Luca Sironi
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Marina Caligara
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Alberto Blandino
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Silvia Circelli
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Davide Schiavi
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| | - Cristina Cattaneo
- Institute of Forensic Medicine of Milan; Università degli Studi di Milano; v. L. Mangiagalli 37 Milano Italy
| |
Collapse
|
50
|
Jones SP, Tang XL, Guo Y, Steenbergen C, Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, Du J, Nong Y, Stowers HL, Kondo K, Hunt GN, Goodchild TT, Orr A, Chang CC, Ockaili R, Salloum FN, Bolli R. The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res 2014; 116:572-86. [PMID: 25499773 DOI: 10.1161/circresaha.116.305462] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. OBJECTIVE To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. METHODS AND RESULTS With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22-25 per group), rabbits (n=11-12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR's operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center-all with the oversight of an external Protocol Review and Monitoring Committee. CONCLUSIONS CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols ("CAESAR protocols") for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.
Collapse
Affiliation(s)
- Steven P Jones
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Xian-Liang Tang
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Yiru Guo
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Charles Steenbergen
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - David J Lefer
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Rakesh C Kukreja
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Maiying Kong
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Qianhong Li
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Shashi Bhushan
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Xiaoping Zhu
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Junjie Du
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Yibing Nong
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Heather L Stowers
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Kazuhisa Kondo
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Gregory N Hunt
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Traci T Goodchild
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Adam Orr
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Carlos C Chang
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Ramzi Ockaili
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Fadi N Salloum
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.)
| | - Roberto Bolli
- From the Cardiovascular Division, Department of Medicine, Institute of Molecular Cardiology, School of Medicine (S.P.J., X.-L.T., Y.G., Q.L., X.Z., J.D., Y.N., H.L.S., G.N.H., A.O., R.B.) and Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences (M.K.), University of Louisville, KY; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD (C.S.); Department of Pharmacology, Center for Cardiovascular Excellence, Louisiana State University Health Sciences Center, New Orleans (D.J.L., S.B., K.K., T.T.G., C.C.C.); and Department of Medicine-Cardiovascular, Medical College of Virginia, Richmond (R.C.K., R.O., F.N.S.).
| |
Collapse
|