1
|
Rentería LI, Zheng X, Valera I, Machin DR, Garcia CK, Leon LR, Laitano O. Ovariectomy aggravates the pathophysiological response to exertional heat stroke in mice. J Appl Physiol (1985) 2023; 134:1224-1231. [PMID: 37022961 PMCID: PMC10151055 DOI: 10.1152/japplphysiol.00092.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Female mice have a greater capacity for exercising in the heat than male mice, reaching greater power output and longer times of heat exposure before succumbing to exertional heat stroke (EHS). Differences in body mass, size, or testosterone do not explain these distinct sex responses. Whether the ovaries could account for the superior exercise capacity in the heat in females remains unknown. Here, we determined the influence of ovariectomy (OVX) on exercise capacity in the heat, thermoregulation, intestinal damage, and heat shock response in a mouse EHS model. We performed bilateral OVX (n = 10) or sham (n = 8) surgeries in young adult (4 mo) female C57/BL6J mice. Upon recovery from surgeries, mice exercised on a forced wheel placed inside an environmental chamber set at 37.5 °C and 40% relative humidity until experiencing loss of consciousness (LOC). Terminal experiments were performed 3 h after LOC. OVX increased body mass by the time of EHS (sham = 3.8 ± 1.1, OVX = 8.3 ± 3.2 g, P < 0.05), resulted in shorter running distance (sham = 753 ± 189, OVX = 490 ± 87 m, P < 0.05), and shorter time to LOC (sham = 126.3 ± 21, OVX = 99.1 ± 19.8 min, P < 0.05). Histopathological assessment of the intestines revealed damage in the jejunum (sham = 0.2 ± 0.7, OVX = 2.1 ± 1.7 AU, P < 0.05) and ileum (sham = 0.3 ± 0.5, OVX = 1.8 ± 1.4 AU, P < 0.05). OVX increased mesenteric microvascular density (sham = 101 ± 25, OVX = 156 ± 66 10-2 mm/mm2, P < 0.05) and decreased concentration of circulatory heat shock protein 72 (HSP72) (sham = 26.7 ± 15.8, OVX = 10.3 ± 4.6 ng/mL, P < 0.05). No differences were observed in cytokines or chemokines between groups. Our findings indicate that OVX aggravates the pathophysiological response to EHS in mice.NEW & NOTEWORTHY Females outperform males in a mouse model of exertional heat stroke (EHS). Here, we show for the first time the impact of ovariectomy (OVX) on EHS pathophysiology. OVX resulted in a shorter exercise capacity in the heat, greater intestinal damage, and lower heat shock response following EHS.
Collapse
Affiliation(s)
- Liliana I Rentería
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Xiangyu Zheng
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Isela Valera
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christian K Garcia
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Lisa R Leon
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
2
|
Giersch G, Garcia C, Stachenfeld N, Charkoudian N. Are there sex differences in risk for exertional heat stroke? A translational approach. Exp Physiol 2022; 107:1136-1143. [PMID: 35598159 DOI: 10.1113/ep090402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the current status of the literature in sex differences in exertional heat stroke. What advances does this review highlight? We utilize a translational model to explore possible physical and physiological differences with respect risk and treatment of exertional heat stroke. ABSTRACT Exertional heat stroke (EHS) is a potentially fatal condition brought about by a combination of physical activity and heat stress and resulting in central nervous system dysfunction and organ damage. EHS impacts several hundred individuals each year ranging from military personnel, athletes, to occupational workers. Understanding the pathophysiology and risk factors can aid in reducing EHS across the globe. While we know there are differences between sexes in mechanisms of thermoregulation, there is currently not a clear understanding if/how those differences impact EHS risk. The purpose of this review is to assess the current status of the literature surrounding EHS from risk factors to treatment using both animal and human models. We use a translational approach, considering both animal and human research to elucidate the possible influence of female sex hormones on temperature regulation and performance in the heat and highlight the specific areas with limited research. While more work is necessary to comprehensively understand these differences, the current research presented provides a good framework for future investigations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gabrielle Giersch
- Thermal and Mountain Medicine Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Belcamp, MD, USA
| | - Christian Garcia
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Nina Stachenfeld
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| |
Collapse
|
3
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
4
|
Bhatia TN, Clark RN, Needham PG, Miner KM, Jamenis AS, Eckhoff EA, Abraham N, Hu X, Wipf P, Luk KC, Brodsky JL, Leak RK. Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics 2021; 18:2541-2564. [PMID: 34528172 PMCID: PMC8804008 DOI: 10.1007/s13311-021-01114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/01/2023] Open
Abstract
The role of molecular chaperones, such as heat shock protein 70 (Hsp70), is not typically studied as a function of biological sex, but by addressing this gap we might improve our understanding of proteinopathic disorders that predominate in one sex. Therefore, we exposed male or female primary hippocampal cultures to preformed α-synuclein fibrils in a model of early-stage Lewy pathology. We first discovered that two mechanistically distinct inhibitors of Hsp70 function increased phospho-α-synuclein+ inclusions more robustly in male-derived neurons. Because Hsp70 is released into extracellular compartments and may restrict cell-to-cell transmission/amplification of α-synucleinopathy, we then tested the effects of low-endotoxin, exogenous Hsp70 (eHsp70) in primary hippocampal cultures. eHsp70 was taken up by and reduced α-synuclein+ inclusions in cells of both sexes, but pharmacological suppression of Hsp70 function attenuated the inhibitory effect of eHsp70 on perinuclear inclusions only in male neurons. In 20-month-old male mice infused with α-synuclein fibrils in the olfactory bulb, daily intranasal eHsp70 delivery also reduced inclusion numbers and the time to locate buried food. eHsp70 penetrated the limbic system and spinal cord of male mice within 3 h but was cleared within 72 h. Unexpectedly, no evidence of eHsp70 uptake from nose into brain was observed in females. A trend towards higher expression of inducible Hsp70-but not constitutive Hsp70 or Hsp40-was observed in amygdala tissues from male subjects with Lewy body disorders compared to unaffected male controls, supporting the importance of this chaperone in human disease. Women expressed higher amygdalar Hsp70 levels compared to men, regardless of disease status. Together, these data provide a new link between biological sex and a key chaperone that orchestrates proteostasis.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Patrick G Needham
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Elizabeth A Eckhoff
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Dept. of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Dept. of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
de Oliveira AA, Priviero F, Webb RC, Nunes KP. Impaired HSP70 Expression in the Aorta of Female Rats: A Novel Insight Into Sex-Specific Differences in Vascular Function. Front Physiol 2021; 12:666696. [PMID: 33967836 PMCID: PMC8100344 DOI: 10.3389/fphys.2021.666696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, GA, United States
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
6
|
Schuldt M, Dorsch LM, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Michels M, Jimenez CR, Kuster DWD, van der Velden J. Sex-Related Differences in Protein Expression in Sarcomere Mutation-Positive Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2021; 8:612215. [PMID: 33732734 PMCID: PMC7956946 DOI: 10.3389/fcvm.2021.612215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Sex-differences in clinical presentation contribute to the phenotypic heterogeneity of hypertrophic cardiomyopathy (HCM) patients. While disease prevalence is higher in men, women present with more severe diastolic dysfunction and worse survival. Until today, little is known about the cellular differences underlying sex-differences in clinical presentation. Methods: To define sex-differences at the protein level, we performed a proteomic analysis in cardiac tissue obtained during myectomy surgery to relieve left ventricular outflow tract obstruction of age-matched female and male HCM patients harboring a sarcomere mutation (n = 13 in both groups). Furthermore, these samples were compared to 8 non-failing controls. Women presented with more severe diastolic dysfunction. Results: Out of 2099 quantified proteins, direct comparison of male, and female HCM samples revealed only 46 significantly differentially expressed proteins. Increased levels of tubulin and heat shock proteins were observed in female compared to male HCM patients. Western blot analyses confirmed higher levels of tubulin in female HCM samples. In addition, proteins involved in carbohydrate metabolism were significantly lower in female compared to male samples. Furthermore, we found lower levels of translational proteins specifically in male HCM samples. The disease-specificity of these changes were confirmed by a second analysis in which we compared female and male samples separately to non-failing control samples. Transcription factor analysis showed that sex hormone-dependent transcription factors may contribute to differential protein expression, but do not explain the majority of protein changes observed between male and female HCM samples. Conclusion: In conclusion, based on our proteomics analyses we propose that increased levels of tubulin partly underlie more severe diastolic dysfunction in women compared to men. Since heat shock proteins have cardioprotective effects, elevated levels of heat shock proteins in females may contribute to later disease onset in woman, while reduced protein turnover in men may lead to the accumulation of damaged proteins which in turn affects proper cellular function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Schelfhorst
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cris Dos Remedios
- Victor Chang Cardiac Research Institute, Darlinghurst Sydney, Sydney, NSW, Australia.,Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
McGarr GW, Fujii N, Schmidt MD, Muia CM, Kenny GP. Heat shock protein 90 modulates cutaneous vasodilation during an exercise-heat stress, but not during passive whole-body heating in young women. Physiol Rep 2020; 8:e14552. [PMID: 32845578 PMCID: PMC7448794 DOI: 10.14814/phy2.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 90 (HSP90) modulates exercise-induced cutaneous vasodilation in young men via nitric oxide synthase (NOS), but only when core temperature is elevated ~1.0°C. While less is known about modulation of this heat loss response in women during exercise, sex differences may exist. Further, the mechanisms regulating cutaneous vasodilation can differ between exercise- and passive-heat stress. Therefore, in 11 young women (23 ± 3 years), we evaluated whether HSP90 contributes to NOS-dependent cutaneous vasodilation during exercise (Protocol 1) and passive heating (Protocol 2) and directly compared responses between end-exercise and a matched core temperature elevation during passive heating. Cutaneous vascular conductance (CVC%max ) was measured at four forearm skin sites continuously treated with (a) lactated Ringers solution (control), (b) 178 μM Geldanamycin (HSP90 inhibitor), (c) 10 mM L-NAME (NOS inhibitor), or (d) combined 178 μM Geldanamycin and 10 mM L-NAME. Participants completed both protocols during the early follicular (low hormone) phase of the menstrual cycle (0-7 days). Protocol 1: participants rested in the heat (35°C) for 70 min and then performed 50 min of moderate-intensity cycling (~55% VO2peak ) followed by 30 min of recovery. Protocol 2: participants were passively heated to increase rectal temperature by 1.0°C, comparable to end-exercise. HSP90 inhibition attenuated CVC%max relative to control at end-exercise (p < .05), but not during passive heating. While NOS inhibition and combined HSP90 + NOS inhibition attenuated CVC%max relative to control for both protocols (all p < .05), they did not differ from each other. We show that HSP90 modulates cutaneous vasodilation NOS-dependently during exercise in young women, with no effect during passive heating, despite a similar NOS contribution.
Collapse
Affiliation(s)
- Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Madison D. Schmidt
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Caroline M. Muia
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| |
Collapse
|
8
|
Kobbe P, Bläsius FM, Lichte P, Oberbeck R, Hildebrand F. Neuroendocrine Modulation of the Immune Response after Trauma and Sepsis: Does It Influence Outcome? J Clin Med 2020; 9:jcm9072287. [PMID: 32708472 PMCID: PMC7408630 DOI: 10.3390/jcm9072287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Although the treatment of multiple-injured patients has been improved during the last decades, sepsis and multiple organ failure (MOF) still remain the major cause of death. Following trauma, profound alterations of a large number of physiological systems can be observed that may potentially contribute to the development of sepsis and MOF. This includes alterations of the neuroendocrine and the immune system. A large number of studies focused on posttraumatic changes of the immune system, but the cause of posttraumatic immune disturbance remains to be established. However, an increasing number of data indicate that the bidirectional interaction between the neuroendocrine and the immune system may be an important mechanism involved in the development of sepsis and MOF. The aim of this article is to highlight the current knowledge of the neuroendocrine modulation of the immune system during trauma and sepsis.
Collapse
Affiliation(s)
- Philipp Kobbe
- Deparment of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (P.K.); (F.M.B.); (P.L.)
| | - Felix M. Bläsius
- Deparment of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (P.K.); (F.M.B.); (P.L.)
| | - Philipp Lichte
- Deparment of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (P.K.); (F.M.B.); (P.L.)
| | - Reiner Oberbeck
- Deparment of Trauma and Hand Surgery, Wald-Klinikum, 07548 Gera, Germany;
| | - Frank Hildebrand
- Deparment of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (P.K.); (F.M.B.); (P.L.)
- Correspondence: ; Tel.: +49-241-89350
| |
Collapse
|
9
|
Rossi GP, Caroccia B, Seccia TM. Role of estrogen receptors in modulating aldosterone biosynthesis and blood pressure. Steroids 2019; 152:108486. [PMID: 31499072 DOI: 10.1016/j.steroids.2019.108486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Blood pressure is lower in premenopausal women than in age-matched men; after menopause blood pressure values and the prevalence of hypertension show opposite trends indicating that estrogens contribute to maintaining normal blood pressure values in women. In experimental studies menopause increases aldosterone levels, an effect alleviated by estrogen treatment. We have recently discovered a role of estrogen receptors (ER) in controlling aldosterone biosynthesis in the human adrenocortical zona glomerulosa, which expresses both the classical ERα and β receptors and G protein-coupled estrogen receptor (GPER). We have also identified that GPER mediates an aldosterone-induced aldosterone response. We found that 17 β-estradiol exerts a dual effect: it blunts aldosterone production via ERβ, but displays a potent aldosterone secretagogue effect via GPER activation after ERβ blockade. Thus, in premenopausal women high estrogen levels might tonically blunt aldosterone synthesis via ERβ, thereby maintaining normal blood pressure; after menopause loss of this estrogen-mediated inhibition can contribute to increasing blood pressure via GPER-mediated aldosterone release. The additional findings that GPER mediates an aldosterone-induced stimulation of aldosterone biosynthesis and that GPER predominates in aldosterone-producing adenomas strongly involves this receptor in the pathophysiology of primary aldosteronism. Our purpose here was to provide an update on estrogen receptor function in the normal adrenal cortex and its relevance for the sex differences in blood pressure in light of the newly discovered role of GPER in regulating aldosterone synthesis. The implications of the novel knowledge for the treatment of estrogen-dependent malignancies with ER modulators are also discussed.
Collapse
|
10
|
Yoshihara T, Natsume T, Tsuzuki T, Chang SW, Kakigi R, Sugiura T, Naito H. Sex differences in forkhead box O3a signaling response to hindlimb unloading in rat soleus muscle. J Physiol Sci 2019; 69:235-244. [PMID: 30259391 PMCID: PMC10716962 DOI: 10.1007/s12576-018-0640-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/16/2018] [Indexed: 12/28/2022]
Abstract
We tested the hypothesis that there are sex differences in hindlimb unloading-induced activation of the forkhead box subfamily O3a (FoxO3a) signaling pathway in rat soleus muscle. Age-matched male and female Wistar rats were subjected to hindlimb unloading, and the soleus muscle was removed before or 1 or 7 days after unloading. Female rats showed greater percent changes in relative soleus muscle weight than males. FoxO3a phosphorylation was lower in females than in males and was associated with higher levels of protein ubiquitination 7 days after unloading. Heat shock protein 72 (Hsp72) levels were lower in female rats and increased in males during unloading. Female rats showed slightly higher myostatin levels, which showed a non-significant decline in male rats following unloading. Thus, males and females show different responses to the FoxO3a/ubiquitin-proteasome pathway following hindlimb unloading in rat soleus muscle, which may be associated with differences in Hsp72 expression and myostatin signaling.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Shuo-Wen Chang
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8513, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
11
|
Hwang HV, Lin Y, Rebuffatti MN, Tran DT, Lee L, Gomes AV, Li CS, Knowlton AA. Impaired proteostasis in senescent vascular endothelial cells: a perspective on estrogen and oxidative stress in the aging vasculature. Am J Physiol Heart Circ Physiol 2018; 316:H421-H429. [PMID: 30499713 DOI: 10.1152/ajpheart.00318.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heat shock response is an important cytoprotective mechanism for protein homeostasis and is an essential protective response to cellular stress and injury. Studies on changes in the heat shock response with aging have been mixed with regard to whether it is inhibited, and this, at least in part, reflects different tissues and different models. Cellular senescence is a key feature in aging, but work on the heat shock response in cultured senescent (SEN) cells has largely been limited to fibroblasts. Given the prevalence of oxidative injury in the aging cardiovascular system, we investigated whether SEN primary human coronary artery endothelial cells have a diminished heat shock response and impaired proteostasis. In addition, we tested whether this downregulation of heat shock response can be mitigated by 17β-estradiol (E2), which has a critical cardioprotective role in women, as we have previously reported that E2 improves the heat shock response in endothelial cells (Hamilton KL, Mbai FN, Gupta S, Knowlton AA. Arterioscler Thromb Vasc Biol 24: 1628-1633, 2004). We found that SEN endothelial cells, despite their unexpectedly increased proteasome activity, had a diminished heat shock response and had more protein aggregation than early passage cells. SEN cells had increased oxidative stress, which promoted protein aggregation. E2 treatment did not decrease protein aggregation or improve the heat shock response in either early passage or SEN cells. In summary, cellular senescence in adult human endothelial cells is accompanied by increased oxidative stress and a blunting of proteostasis, and E2 did not mitigate these changes. NEW & NOTEWORTHY Senescent human endothelial cells have a diminished heat shock response and increased protein aggregates. Senescent human endothelial cells have increased basal oxidative stress, which increases protein aggregates. Physiological level of 17β-estradiol did not improve proteostasis in endothelial cells.
Collapse
Affiliation(s)
- HyunTae V Hwang
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Michelle N Rebuffatti
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Darlene T Tran
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Lily Lee
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Chin-Shang Li
- School of Nursing, The State University of New York, University at Buffalo, Buffalo, New York
| | - Anne A Knowlton
- Veterans Affairs Medical Center, Sacramento, California.,Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California.,Department of Pharmacology, University of California, Davis, California
| |
Collapse
|
12
|
Hosszu A, Antal Z, Veres-Szekely A, Lenart L, Balogh DB, Szkibinszkij E, Illesy L, Hodrea J, Banki NF, Wagner L, Vannay A, Szabo AJ, Fekete A. The role of Sigma-1 receptor in sex-specific heat shock response in an experimental rat model of renal ischaemia/reperfusion injury. Transpl Int 2018; 31:1268-1278. [PMID: 29908082 DOI: 10.1111/tri.13293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023]
Abstract
We previously showed that female rats are more protected against renal ischaemia/reperfusion (I/R) injury than males, which is partly attributed to their more pronounced heat shock response. We recently described that Sigma-1 receptor (S1R) activation improves postischaemic survival and renal function. 17β-estradiol activates S1R, thus here we investigated the role of sex-specific S1R activation and heat shock response in severe renal I/R injury. Proximal tubular cells were treated with 17β-estradiol, which caused direct S1R activation and subsequent induction of heat shock response. Uninephrectomized female, male and ovariectomized female (Ovx) Wistar rats were subjected to 50-min renal ischaemia followed by 2 (T2) and 24 (T24) hours of reperfusion. At T24 renal functional, impairment was less severe and structural damage was less prominent in females versus males or Ovx. Postischaemic increase in S1R, pAkt, HSF-1, HSP72 levels were detected as early as at T2, while pHSP27 was elevated later at T24. Abundance of heat shock proteins was higher in healthy female rats and remained higher at T2 and T24 (female versus male or Ovx; resp.). We propose a S1R-dependent mechanism, which contributes to the relative renoprotection of females after I/R injury by enhancing the heat shock response.
Collapse
Affiliation(s)
- Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Antal
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
| | - Dora Bianka Balogh
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Edgar Szkibinszkij
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Lilla Illesy
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
| | - Nora F Banki
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Budapest, Hungary
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Heat shock protein(s) may serve as estrus indicators in animals: A conceptual hypothesis. Med Hypotheses 2018; 117:47-49. [DOI: 10.1016/j.mehy.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
|
14
|
Möller C, Stiermaier T, Brabant G, Graf T, Thiele H, Eitel I. Comprehensive assessment of sex hormones in Takotsubo syndrome. Int J Cardiol 2018; 250:11-15. [PMID: 29169749 DOI: 10.1016/j.ijcard.2017.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND The detailed pathomechanism of Takotsubo syndrome (TS) is still elusive. Due to the predominance of postmenopausal females, a potential role of sex hormones has been suggested. However, the limited available data are contradictory. The aim of this study was to comprehensively assess the role of sex hormone levels in a large cohort of TS patients. METHODS Serum samples of 57 female TS patients and 57 female patients with myocardial infarction (MI), matched for age (±2years) and repolarization disturbances were analyzed for estradiol (E2), estrone (E1), testosterone and androstenedione using liquid chromatography-tandem mass spectrometry. RESULTS There was no difference concerning the concentrations of E1 [pmol/l (IQR): 89.1 (62.5, 132.0) vs. 98.8 (63.3, 156.0), p=0,441], testosterone [nmol/l (IQR): 0.67 (0.46, 1.00) vs. 0.80 (0.49, 1.08), p=0.382] and androstenedione [nmol/l (IQR): 2.03 (1.57, 3.11) vs. 2.98 (1.48, 5.27), p=0.244] between female TS and MI patients. Regarding E2, the majority of patients demonstrated concentrations below the detection limit of 30pmol/l (TS: n=41/54, 75.9%; MI: n=32/53, 60.4%; p=0.078). The remaining individuals with detectable E2 concentrations did not show a significant difference between TS and MI patients [pmol/l (IQR): 40.5 (33.0, 53.3) vs. 54.1 (37.9, 60.9); p=0.20]. CONCLUSIONS Altered sex hormone levels, especially an estradiol deficiency, could not be identified as a risk factor for TS.
Collapse
Affiliation(s)
- Christian Möller
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Stiermaier
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Experimental and Clinical Endocrinology, Medical Clinic I, University Medical Center Lübeck, Lübeck, Germany
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Holger Thiele
- Department of Internal Medicine-Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Ingo Eitel
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Abstract
Several lines of evidence indicate that female sex is a protective factor in trauma and hemorrhage. In both clinical and experimental studies, proestrus females have been shown to have better chances of survival and reduced rates of posttraumatic sepsis. Estrogen receptors are expressed in a variety of tissues and exert genomic, as well as nongenomic effects. By improving cardiac, pulmonary, hepatic, and immune function, estrogens have been shown to prolong survival in animal models of hemorrhagic shock. Despite encouraging results from experimental studies, retrospective clinical studies have not clearly pointed to advantages of estrogens following trauma-hemorrhage, which may be due to insufficient study design. Therefore, this review aims to give an overview on the current evidence and emphasizes on the importance of further clinical investigation on estrogens following trauma.
Collapse
|
16
|
Caroccia B, Seccia TM, Barton M, Rossi GP. Estrogen Signaling in the Adrenal Cortex: Implications for Blood Pressure Sex Differences. Hypertension 2018; 68:840-8. [PMID: 27600178 DOI: 10.1161/hypertensionaha.116.07660] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brasilina Caroccia
- From the Molecular Internal Medicine, University of Zurich, Switzerland (M.B.); and Department of Medicine-DIMED, University of Padua, Italy (B.C., T.M.S., G.P.R.)
| | - Teresa M Seccia
- From the Molecular Internal Medicine, University of Zurich, Switzerland (M.B.); and Department of Medicine-DIMED, University of Padua, Italy (B.C., T.M.S., G.P.R.)
| | - Matthias Barton
- From the Molecular Internal Medicine, University of Zurich, Switzerland (M.B.); and Department of Medicine-DIMED, University of Padua, Italy (B.C., T.M.S., G.P.R.)
| | - Gian Paolo Rossi
- From the Molecular Internal Medicine, University of Zurich, Switzerland (M.B.); and Department of Medicine-DIMED, University of Padua, Italy (B.C., T.M.S., G.P.R.).
| |
Collapse
|
17
|
Emerging role of various signaling pathways in the pathogenesis and therapeutics of atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.rvm.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Walaszczyk A, Szołtysek K, Jelonek K, Polańska J, Dörr W, Haagen J, Widłak P, Gabryś D. Heart irradiation reduces microvascular density and accumulation of HSPA1 in mice. Strahlenther Onkol 2017; 194:235-242. [PMID: 29063166 PMCID: PMC5847036 DOI: 10.1007/s00066-017-1220-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Improvement of radiotherapy techniques reduces the exposure of normal tissues to ionizing radiation. However, the risk of radiation-related late effects remains elevated. In the present study, we investigated long-term effects of radiation on heart muscle morphology. MATERIALS AND METHODS We established a mouse model to study microvascular density (MVD), deposition of collagen fibers, and changes in accumulation of heat shock 70 kDa protein 1 (HSPA1) in irradiated heart tissue. Hearts of C57BL/6 mice received a single dose of X‑ray radiation in the range 0.2-16 Gy. Analyses were performed 20, 40, and 60 weeks after irradiation. RESULTS Reduction in MD was revealed as a long-term effect observed 20-60 weeks after irradiation. Moreover, a significant and dose-dependent increase in accumulation of HSPA1, both cytoplasmic and nuclear, was observed in heart tissues collected 20 weeks after irradiation. We also noticed an increase in collagen deposition in hearts treated with higher doses. CONCLUSIONS This study shows that some changes induced by radiation in the heart tissue, such as reduction in microvessel density, increase in collagen deposition, and accumulation of HSPA1, are observed as long-term effects which might be associated with late radiation cardiotoxicity.
Collapse
Affiliation(s)
- Anna Walaszczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Katarzyna Szołtysek
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Karol Jelonek
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | | | - Wolfgang Dörr
- Department of Radiotherapy and Radiooncology, Medical Faculty Carl Gustav Carus, University of Technology, Dresden, Germany.,Department of Radiation Oncology, Applied and Translational Radiobiology (ATRAB), Medical University Vienna, Vienna, Austria
| | - Julia Haagen
- Department of Radiotherapy and Radiooncology, Medical Faculty Carl Gustav Carus, University of Technology, Dresden, Germany
| | - Piotr Widłak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Dorota Gabryś
- Department of Radiotherapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| |
Collapse
|
19
|
Kondo T, Goto R, Ono K, Kitano S, Suico MA, Sato M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Activation of heat shock response to treat obese subjects with type 2 diabetes: a prospective, frequency-escalating, randomized, open-label, triple-arm trial. Sci Rep 2016; 6:35690. [PMID: 27759092 PMCID: PMC5069544 DOI: 10.1038/srep35690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022] Open
Abstract
Activation of heat shock response (HSR) improves accumulated visceral adiposity and metabolic abnormalities in type 2 diabetes. To identify the optimal intervention strategy of the activation of the HSR provided by mild electrical stimulation (MES) with heat shock (HS) in type 2 diabetes. This study was a prospective, frequency-escalating, randomized, open-label, triple-arm trial in Japan. A total of 60 obese type 2 diabetes patients were randomized into three groups receiving two, four, or seven treatments per week for 12 weeks. No adverse events were identified. MES + HS treatment (when all three groups were combined), significantly improved visceral adiposity, glycemic control, insulin resistance, systemic inflammation, renal function, hepatic steatosis and lipid profile compared to baseline. The reduction in HbA1c was significantly greater among those treated four times per week (−0.36%) or seven times per week (−0.65%) than among those treated two times per week (−0.10%). The relative HbA1c levels in seven times per week group was significantly decreased when adjusted by two times per week group (−0.55%. p = 0.001). This research provides the positive impact of MES + HS to treat obese patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, 5-1 Oe, Chuo-Ward, Kumamoto 862-0973, Japan
| | - Miki Sato
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, 5-1 Oe, Chuo-Ward, Kumamoto 862-0973, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ward, Kumamoto 860-8556, Japan
| |
Collapse
|
20
|
Cumming KT, Ellefsen S, Rønnestad BR, Ugelstad I, Raastad T. Acute and long-term effects of blood flow restricted training on heat shock proteins and endogenous antioxidant systems. Scand J Med Sci Sports 2016; 27:1190-1201. [DOI: 10.1111/sms.12774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Affiliation(s)
- K. T. Cumming
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - S. Ellefsen
- Lillehammer University College; Lillehammer Norway
- Innlandet Hospital Trust; Brumunddal Norway
| | | | - I. Ugelstad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - T. Raastad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| |
Collapse
|
21
|
Deer RR, Stallone JN. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol 2016; 310:H1285-94. [PMID: 26993224 DOI: 10.1152/ajpheart.00645.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
In the present study, interactions of age and estrogen in the modulation of cerebrovascular function were examined in small arteries <150 μM. The hypothesis tested was that age enhances deleterious effects of exogenous estrogen by augmenting constrictor prostanoid (CP)-potentiated reactivity of the female (F) cerebrovasculature. F Sprague-Dawley rats approximating key stages of "hormonal aging" in humans were studied: perimenopausal (mature multi-gravid, MA, cyclic, 5-6 mo of age) and postmenopausal (reproductively senescent, RS, acyclic 10-12 mo of age). Rats underwent bilateral ovariectomy and were given estrogen replacement therapy (E) or placebo (O) for 14-21 days. Vasopressin reactivity (VP, 10(-12)-10(-7) M) was measured in pressurized middle cerebral artery segments, alone or in the presence of COX-1- (SC560, 1 μM) or COX-2- (NS398, 10 μM) selective inhibitors. VP-stimulated release of prostacyclin (PGI2) and thromboxane (TXA2) were assessed by radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites). VP-induced vasoconstriction was attenuated in ovariectomized + estrogen-replaced, multigravid adult rats (5-6 mo; MAE) but potentiated in older ovariectomized + estrogen-replaced, reproductively senescent rats (12-14 mo; RSE). SC560 and NS398 reduced reactivity similarly in ovariectomized multigravid adult rats (5-6 mo; MAO) and ovariectomized reproductively senescent rat (12-14 mo; RSO). In MAE, reactivity to VP was reduced to a greater extent by SC560 than by NS398; however, in RSE, this effect was reversed. VP-stimulated PGI2 was increased by estrogen, yet reduced by age. VP-stimulated TXA2 was increased by estrogen and age in RSE but did not differ in MAO and RSO. Taken together, these data reveal that the vascular effects of estrogen are distinctly age-dependent in F rats. In younger MA, beneficial and protective effects of estrogen are evident (decreased vasoconstriction, increased dilator prostanoid function). Conversely, in older RS, detrimental effects of estrogen begin to be manifested (enhanced vasoconstriction and CP function). These findings may lead to age-specific estrogen replacement therapies that maximize beneficial and minimize detrimental effects of this hormone on small cerebral arteries that regulate blood flow.
Collapse
Affiliation(s)
- Rachel R Deer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Weniger M, D'Haese JG, Angele MK, Chaudry IH. Potential therapeutic targets for sepsis in women. Expert Opin Ther Targets 2015; 19:1531-43. [PMID: 26083575 DOI: 10.1517/14728222.2015.1057570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Gender is increasingly recognized as a key factor in trauma and sepsis. Multiple clinical and experimental studies on sepsis have shown a distinct advantage of females in the proestrus cycle to survive sepsis compared with age-matched males. In addition, estrogen treatment is beneficial in non-proestrus cycles and also in ovarectomized females. In this manuscript, the effects of gender and sex hormones in sepsis are summarized and potential gender-specific therapeutic strategies in women are evaluated. AREAS COVERED This review comprises current clinical studies on the effect of gender in sepsis and gives an overview on gender and sex hormone-related effects on immune cells and organ function. Based on clinical and experimental data, potential therapeutic targets are presented. EXPERT OPINION Estrogens and estrogen-receptor agonists have been extensively shown to be beneficial in the setting of sepsis. Clinical data, however, do not clearly support their therapeutic use. This discrepancy appears to be mainly due to insufficient study design in clinical trials conducted up to now. Therefore, improved study protocols with exact analysis of the patients' hormonal status are needed to clarify the role of gender and sex hormones in trauma and sepsis.
Collapse
Affiliation(s)
- Maximilian Weniger
- a 1 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Jan G D'Haese
- b 2 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Martin K Angele
- c 3 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Irshad H Chaudry
- d 4 University of Alabama at Birmingham, Center for Surgical Research and Department of Surgery , G094 Volker Hall, 1670 University Boulevard, Birmingham, AL 35294, USA +1 205 975 2195 ; +1 205 975 9719 ;
| |
Collapse
|
24
|
Estrogen deprivation does not affect vascular heat shock response in female rats: a comparison with oxidative stress markers. Mol Cell Biochem 2015; 407:239-49. [PMID: 26045174 DOI: 10.1007/s11010-015-2472-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
Hot flashes, which involve a tiny rise in core temperature, are the most common complaint of peri- and post-menopausal women, being tightly related to decrease in estrogen levels. On the other hand, estradiol (E2) induces the expression of HSP72, a member of the 70 kDa family of heat shock proteins (HSP70), which are cytoprotective, cardioprotective, and heat inducible. Since HSP70 expression is compromised in age-related inflammatory diseases, we argued whether the capacity of triggering a robust heat shock (HS) response would be still present after E2 withdrawal. Hence, we studied the effects of HS treatment (hot tub) in female Wistar rats subjected to bilateral ovariectomy (OVX) after a 7-day washout period. Twelve h after HS, the animals were killed and aortic arches were surgically excised for molecular analyses. The results were compared with oxidative stress markers in the plasma (superoxide dismutase, catalase, and lipoperoxidation) because HSP70 expression is also sensitive to redox regulation. Extracellular (plasma) to intracellular HSP70 ratio, an index of systemic inflammatory status, was also investigated. The results showed that HS response was preserved in OVX animals, as inferred from HSP70 expression (up to 40% rise, p < 0.01) in the aortas, which was accompanied by no further alterations in oxidative stress, hematological parameters, and glycemic control either. This suggests that the lack of estrogen per se could not be solely ascribed as the unique source of low HSP70 expression as observed in long-term post-menopausal individuals. As a consequence, periodic evaluation of HSP70 status (iHSP70 vs. eHSP70) may be of clinical relevance because decreased HS response capacity is at the center of the onset of menopause-related dysfunctions.
Collapse
|
25
|
Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Complications 2015; 29:578-88. [PMID: 25746357 DOI: 10.1016/j.jdiacomp.2015.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Heat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU). OBJECTIVE To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds. METHODS Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry. RESULTS Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=<0.001 for HSP70; p value=0.007 for HSP47; p value=0.007 for HSP27) in DFU along with their downstream molecules TLR4 and p38-MAPK (p value=0.006 for p38-MAPK; p value=0.02 for TLR4). HSP70 levels were significantly lower in male subjects and their levels increased significantly with the grades of wound on Wagner's scale. Infection status of the wounds was found to be significantly associated with the increased levels of HSP70 and HSP27 in infected diabetic wounds. CONCLUSIONS Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi-221005, India
| | - Neeraj K Agrawal
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjeev K Gupta
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gyanendra Mohan
- Indian Railway Cancer Institute and Research Centre, N.E.R., Varanasi, 221002, India
| | - Sunanda Chaturvedi
- Indian Railway Cancer Institute and Research Centre, N.E.R., Varanasi, 221002, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
26
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
27
|
Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014; 5:e1325. [PMID: 25032848 PMCID: PMC4123081 DOI: 10.1038/cddis.2014.287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranscriptional regulation of gene expression, and exerting regulatory roles in plethora of biological processes. In recent years, miRNAs have received increased attention for their crucial role in health and disease, including in cardiovascular disease. This review summarizes the role of miRNAs in regulation of cardiac cell death/cell survival pathways, including apoptosis, autophagy and necrosis. It is envisaged that these miRNAs may explain the mechanisms behind the pathogenesis of many cardiac diseases, and, most importantly, may provide new avenues for therapeutic intervention that will limit cardiomyocyte cell death before it irreversibly affects cardiac function. Through an in-depth literature analysis coupled with integrative bioinformatics (pathway and synergy analysis), we dissect here the landscape of complex relationships between the apoptosis-regulating miRNAs in the context of cardiomyocyte cell death (including regulation of autophagy–apoptosis cross talk), and examine the gaps in our current understanding that will guide future investigations.
Collapse
|
28
|
Bombardier E, Vigna C, Bloemberg D, Quadrilatero J, Tiidus PM, Tupling AR. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus. Can J Physiol Pharmacol 2014; 91:823-29. [PMID: 24303535 DOI: 10.1139/cjpp-2013-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the influence of estrogen receptor-alpha (ERα) activation on estrogen-mediated regulation of heat shock proteins 70 (Hsp70) and 27 (Hsp27) in soleus. Ovariectomized rats received estrogen (EST), an ERα agonist (propyl pyrazole triol, PPT), both (EST+PPT), or a sham, and they served as either unexercised controls or were subjected to exercise by having to run downhill (17 m/min, -13.5° grade) for 90 min. At 72 h postexercise, soleus muscles were removed and either immunohistochemically stained for Hsp70 and myosin heavy chain or homogenized for Western blotting for Hsp70 and Hsp27. Elevated (p < 0.05) basal Hsp70 in both type I and II fibres in the unexercised EST, PPT, and EST+PPT groups relative to unexercised sham animals was noted. Compared with Hsp70 levels in the unexercised animals, that in exercised animals was elevated (p < 0.05) in both sham and PPT groups but not in EST and EST+PPT groups. Western blot determined that Hsp27 levels were not significantly different between groups. Hence, the ability of estrogen to augment resting type I and type II muscle fibre Hsp70 content is primarily mediated via muscle ERα. However, the blunted Hsp70 response following damaging exercise in estrogen-supplemented animals does not appear to be fully accounted for by ERα-mediated effects.
Collapse
|
29
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
30
|
Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 2014; 5:6. [PMID: 24612699 PMCID: PMC3975301 DOI: 10.1186/2042-6410-5-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/21/2014] [Indexed: 01/20/2023] Open
Abstract
Sex differences in cardiovascular disease and cardiac physiology have been reported in humans as well as in animal models. Premenopausal women have reduced cardiovascular disease compared to men, but the incidence of cardiovascular disease in women increases following menopause. Sex differences in cardiomyocytes likely contribute to the differences in male-female physiology and response to disease. Sex differences in the heart have been noted in electrophysiology, contractility, signaling, metabolism, and cardioprotection. These differences appear to be due, at least in part, to differences in gene and protein expression as well as in posttranslational protein modifications. This review will focus primarily on estrogen-mediated male-female differences in protein expression and signaling pathways in the heart and cardiac cells. It should be emphasized that these basic differences are not intrinsically beneficial or detrimental per se; the difference can be good or bad depending on the context and circumstances.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Cardiac Physiology, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20824-0105, USA
| | | |
Collapse
|
31
|
Liu T, Chen L, Kim E, Tran D, Phinney BS, Knowlton AA. Mitochondrial proteome remodeling in ischemic heart failure. Life Sci 2014; 101:27-36. [PMID: 24548633 DOI: 10.1016/j.lfs.2014.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
Abstract
AIMS Mitochondrial dysfunction is an important part of the decline in cardiac function in heart failure. We hypothesized for hypothesized that there would be specific abnormalities in mitochondrial function and proteome with the progression of ischemic heart failure (HF). MAIN METHODS We used a high left anterior descending artery (LAD) ligation in 3-4month old male rats to generate HF. Rats were studied 9weeks post-ligation. KEY FINDINGS Electron microscopy of left ventricle samples showed mitochondrial changes including decreased size, increased number, abnormal distribution, and cristae loss. Mitochondria in ischemic HF exhibited decreased total ATP, impaired mitochondrial respiration, as well as reduced complex I activity. Analysis of LV mitochondrial proteins by mass spectrometry was performed, and 31 differentially expressed proteins (p<0.05) of more than 500 total proteins were identified. Of these proteins, 15 were up-regulated and 16 were down-regulated in the failing heart. A set of complex I proteins was significantly decreased, consistent with the impairment of complex I activity. There were distinct changes in mitochondrial function and proteome in ischemic HF. Although there were similarities, the distinction between the reported proteomic changed with TAC pressure overload induced HF and ischemic HF in the current study suggested different pathological mechanisms. SIGNIFICANCE Specific changes in mitochondrial protein expression, which correlate with changes in mitochondrial function, have been identified in ischemic HF for the first time.
Collapse
Affiliation(s)
- Tingting Liu
- Molecular & Cellular Cardiology, Cardiovascular Division, University of California - Davis, Davis, CA, USA
| | - Le Chen
- Molecular & Cellular Cardiology, Cardiovascular Division, University of California - Davis, Davis, CA, USA
| | - Eunjung Kim
- Clinical Research, St. Mary's Hospital of Daejeon Catholic University, Daejeon, Republic of Korea
| | - Diana Tran
- Proteomics Core Facility, University of California - Davis, Davis, CA, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California - Davis, Davis, CA, USA
| | - Anne A Knowlton
- Molecular & Cellular Cardiology, Cardiovascular Division, University of California - Davis, Davis, CA, USA; Pharmacology Department, University of California - Davis, Davis, CA, USA; VA Medical Center Sacramento, CA, USA.
| |
Collapse
|
32
|
Muhammad SI, Maznah I, Mahmud RB, Saeed MI, Imam MU, Ishaka A. Estrogen receptor modulatory effects of germinated brown rice bioactives in the uterus of rats through the regulation of estrogen-induced genes. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1409-20. [PMID: 24324328 PMCID: PMC3854924 DOI: 10.2147/dddt.s50861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms. Methods Rats were treated orally with GBR bioactives (phenolics), acylated steryl glucosides (ASG), γ-amino butyric acid (GABA), and γ-oryzanol (ORZ) at 100 and 200 mg/kg, Remifemin (REM) at 10 mg/kg and 20 mg/kg, or estrogen (EST) at 0.2 mg/kg. Ribonucleic acid (RNA) was extracted from the uterus, and messenger (m)RNA expression of selected genes encoding estrogen receptor-beta (ER-β), calcium-binding protein (CaBP9k), complement protein (C3), heat shock protein 70 kDa (HSP70), and interleukin (IL)-4 receptor were quantified. Similarly, serum steroid hormone concentration was monitored at 2, 4, and 8 weeks after treatments. ER-β antibody binding to the uterus sections was also studied using immunohistochemistry. Results The group treated with EST (0.2 mg/kg) upregulated ER-β, C3, and IL-4 receptor genes compared to other groups (P<0.001). GBR phenolics (200 mg/kg) treatment upregulated the ER-β gene almost to the level of the sham non-treated group. The CaBP9k gene showed upregulation in groups treated with ASG (200 mg/kg), EST (0.2 mg/kg), and ORZ (200 mg/kg) (P<0.05). Estrogen levels increased in groups treated with EST, ASG, and ORZ (200 mg/kg) compared to the OVX untreated group (P<0.05), and there was a slight non-significant decrease (P>0.05) in the progesterone levels in the OVX untreated group compared to the sham and other treated groups. There was a significant increase at 8 weeks in the level of FSH (P<0.05) in the treated groups compared to the OVX untreated group. There was no significant difference (P>0.05) in serum luteinizing hormone (LH) between the OVX untreated group and other groups. The sham and GBR phenolics treated group showed ER-β reactivity at the glandular epithelium, while the group treated with EST showed immunoreactivity at the glandular, luminal, and stromal epithelium. Conclusion GBR phenolics moderately regulate the expression of ER-β, HSP70, and IL-4 receptor genes, and gave a positive immunoreaction to ER-β antigen in the uterus. ASG regulates the expression of CaBP9k and IL-4 receptor genes, and ORZ regulates the expression of the CaBP9k gene, while GABA at 100 mg/kg regulates the expression of the HSP70 gene. GBR and its bioactives might have an effect on estrogen-regulated genes in the uterus of rats.
Collapse
Affiliation(s)
- Sani Ismaila Muhammad
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia ; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu, Danfodiyo University Sokoto, Sokoto, Nigeria
| | | | | | | | | | | |
Collapse
|
33
|
Gillum T, Kuennen M, Gourley C, Dokladny K, Schneider S, Moseley P. Sex differences in heat shock protein 72 expression in peripheral blood mononuclear cells to acute exercise in the heat. Int J Endocrinol Metab 2013; 11:e8739. [PMID: 24719632 PMCID: PMC3968984 DOI: 10.5812/ijem.8739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/17/2013] [Accepted: 04/27/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Heat shock protein 72 (Hsp72) is responsible for maintaining critical cellular function during heat stress. Hsp72 confers thermotolerance and may play a role in heat acclimation. Animal research suggests a difference between sexes in Hsp72 expression in response to exercise, however, human data is lacking. OBJECTIVES To determine sex differences in intracellular heat shock protein 72 (Hsp72) following exercise in the heat. PATIENTS AND METHODS Nine non-heat acclimated women with normal menstrual cycles (VO2pk 58 ± 5 mL.kgFFM(-1).min(-1)) and nine non-heat acclimated men (VO2pk 60 ± 7 ml.kgFFM(-1).min(-1)) completed 2 treadmill bouts at 60% VO2pk for 60 min in a 42°C, 20% RH environment. Women were tested in follicular (fol) and luteal (lut) phases. The duplicate trials were separated by 12 days for men and women. Blood samples were drawn pre, immediately post, 1, and 4 hrs post-exercise. RESULTS Men and women differed in their Hsp72 response after exercise (time X sex X trial interaction; P < 0.05). Men increased Hsp72 after exercise more than women. Both men and women produced less Hsp72 during trial 2 compared to trial 1. Estrogen (r = 0.24; P > 0.05) and progesterone (r = 0.27, P > 0.05) concentrations were not correlated with Hsp72. CONCLUSION Our findings suggest that men and women differ in their cellular stress response. Men up-regulated Hsp72 after a single bout of exercise in the heat, which persists for 12 days, suggesting an accumulation of Hsp72 which may lead to acquired cellular thermotolerance.
Collapse
Affiliation(s)
- Trevor Gillum
- Department of Kinesiology, California Baptist University, Riverside, USA
- Corresponding author: Trevor Gillum, Kinesiology Department, California Baptist University, 8432 Magnolia Ave, Riverside, CA 92504. Tel: +1-9513434950, Fax: +1-9513434343, E-mail:
| | - Matthew Kuennen
- Department of Sports and Exercise Science, West Texas A&M University, Canyon, USA
| | - Cheryl Gourley
- Department of Health, Exercise and Sport Sciences, The University of New Mexico, Albuquerque, USA
| | - Karol Dokladny
- Department of Internal Medicine, The University of New Mexico, Albuquerque, USA
| | - Suzanne Schneider
- Department of Health, Exercise and Sport Sciences, The University of New Mexico, Albuquerque, USA
| | - Pope Moseley
- Department of Internal Medicine, The University of New Mexico, Albuquerque, USA
| |
Collapse
|
34
|
Lee AR, Pechenino AS, Dong H, Hammock BD, Knowlton AA. Aging, estrogen loss and epoxyeicosatrienoic acids (EETs). PLoS One 2013; 8:e70719. [PMID: 23967089 PMCID: PMC3742755 DOI: 10.1371/journal.pone.0070719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/26/2013] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system.
Collapse
Affiliation(s)
- Alison R. Lee
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
| | - Angela S. Pechenino
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
| | - Hua Dong
- Department of Entymology, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entymology, University of California Davis, Davis, California, United States of America
| | - Anne A. Knowlton
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California Davis, Davis, California, United States of America
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
- The Department of Veteran's Affairs, Northern California VA, Sacramento, California, United States of America
| |
Collapse
|
35
|
Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol 2013; 113:2503-10. [PMID: 23821238 DOI: 10.1007/s00421-013-2686-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Heat shock protein (HSP) expression and sex hormone levels have been shown to influence several aspects of skeletal muscle physiology (e.g., hypertrophy, resistance to oxidative stress), suggesting that sex hormone levels can effect HSP expression. This study evaluated the effects of differing levels of sex-specific sex hormones (i.e., testosterone in males and estrogen in females) on the expression of 4: HSP70, HSC70, HSP25, and αB-crystallin in the quadriceps muscles of male and female rats. Animals were assigned to 1 of 3 groups (n = 5 M and F/group). The first group (Ctl) consisted of typically cage-housed animals that served as controls. The second group (H) was gonadectomized and received either testosterone (males) or estradiol (females) via injection for 12 consecutive days. The third group (Gx) was gonadectomized and injected as above, but with vehicle only, rather than hormones. Significant sex by condition interactions (P < 0.05 by two-way MANOVA) were found for all 4 proteins studied, except for HSP70, which exhibited a significant effect of condition only. The expression of all HSPs was greater (1.9-2.5-fold) in males vs. females in the Ctl group, except for HSP70, which was no different. Generally, gonadectomy appeared to have greater effects in males than females, but administration of the exogenous sex hormones tended to produce more robust relative changes in females than males. There were no differences in myosin composition in any of the groups, suggesting that changes in fiber type were not a factor in the differential protein expression. These data may have implications for sex-related differences in muscular responses to exercise, disuse, and injury.
Collapse
|
36
|
Vardiman JP, Jefferies L, Touchberry C, Gallagher P. Intramuscular heating through fluidotherapy and heat shock protein response. J Athl Train 2013; 48:353-61. [PMID: 23675795 DOI: 10.4085/1062-6050-48.2.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Therapeutic modalities that can increase intramuscular temperature commonly are used to treat injuries in the clinical setting. Researchers recently have suggested that the physiologic changes occurring during an increase in temperature also could provide a cytoprotective effect for exercise-induced muscle damage. OBJECTIVE(S) To determine if the Fluidotherapy treatment increases the inducible expression of heat shock protein (HSP), to identify the rate of heating that occurs in the lower extremity with Fluidotherapy treatment, and to evaluate the relationship between the inducible expression of HSP and temperature. DESIGN Controlled laboratory study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Six male (age = 21.67 ± 1.63 years, height = 180.09 ± 4.83 cm, mass = 87.60 ± 10.51 kg) and 6 female (age = 24.60 ± 4.59 years, height = 151.05 ± 35.76 cm, mass = 55.59 ± 14.58 kg) college-aged students. INTERVENTION(S) One lower extremity was randomly selected to receive the heat treatment, and the other extremity received no treatment. MAIN OUTCOME MEASURE(S) We measured intramuscular temperature every 10 minutes, determining peak intramuscular temperature by 2 identical sequential measurements, and we analyzed the time to peak temperature. We analyzed the amount of HSP70 expression and HSP27P:T (ratio of HSP27 to the total HSP27 expression) in the gastrocnemius and soleus muscles and measured baseline skinfold thickness and estradiol levels. RESULTS Fluidotherapy increased intramuscular temperature by 5.66 ± 0.78°C (t11 = 25.67, P < .001) compared with baseline temperature, with a peak temperature of 39.08°C ± 0.39°C occurring at 84.17 ± 6.69 minutes. We did not find a heat treatment effect for HSP70 or HSP27P:T in the gastrocnemius or soleus muscles (P > .05). Peak temperature and the percentage change of HSP70 were positively correlated for the gastrocnemius and soleus muscles (P < .05). We found no other correlations for skinfold thickness, sex, or estradiol levels (P > .05). No effect of sex for skinfold thickness or estradiol levels at baseline was discovered (P > .05). CONCLUSIONS This Fluidotherapy protocol increased the intramuscular temperature to a therapeutic level; however, it did not stimulate inducible HSP70 or HSP27P:T in the soleus and gastrocnemius muscles regardless of sex or skinfold thickness. These data confirmed that Fluidotherapy is an effective heating modality but suggested it is not an effective method for stimulating an HSP response in the lower limb.
Collapse
Affiliation(s)
- John P Vardiman
- Applied Physiology Lab, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
37
|
Weber MH, da Rocha RF, Schnorr CE, Schröder R, Moreira JCF. Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels. J Physiol Biochem 2013; 68:365-75. [PMID: 22294379 DOI: 10.1007/s13105-012-0148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
Abstract
Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12-24 years old) were divided into low (≥30 pg mL(-1)) (LE) and normal (30-330 pg mL(-1)) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Maria Helena Weber
- Nutrition, Clinic, Institute of Health Sciences, Superior Teaching Establishment Federation University (Universidade FEEVALE), Novo Hamburgo, Rio Grande do Sul, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Heat shock proteins: pathogenic role in atherosclerosis and potential therapeutic implications. Autoimmune Dis 2012; 2012:502813. [PMID: 23304456 PMCID: PMC3530228 DOI: 10.1155/2012/502813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/15/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) are a highly conserved group of proteins that are constitutively expressed and function as molecular chaperones, aiding in protein folding and preventing the accumulation of misfolded proteins. In the arterial wall, HSPs have a protective role under normal physiologic conditions. In disease states, however, HSPs expressed on the vascular endothelial cell surface can act as targets for detrimental autoimmunity due to their highly conserved sequences. Developing therapeutic strategies for atherosclerosis based on HSPs is challenged by the need to balance such physiologic and pathologic roles of these proteins. This paper summarizes the role of HSPs in normal vascular wall processes as well as in the development and progression of atherosclerosis. The potential implications of HSPs in clinical therapies for atherosclerosis are also discussed.
Collapse
|
39
|
Sex and life expectancy. ACTA ACUST UNITED AC 2012; 9:390-401. [PMID: 23164528 DOI: 10.1016/j.genm.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/14/2012] [Accepted: 10/11/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND A sexual dimorphism in human life expectancy has existed in almost every country for as long as records have been kept. Although human life expectancy has increased each year, females still live longer, on average, than males. Undoubtedly, the reasons for the sex gap in life expectancy are multifaceted, and it has been discussed from both sociological and biological perspectives. However, even if biological factors make up only a small percentage of the determinants of the sex difference in this phenomenon, parity in average life expectancy should not be anticipated. OBJECTIVE The aim of this review is to highlight biological mechanisms that may underlie the sexual dimorphism in life expectancy. METHODS Using PubMed, ISI Web of Knowledge, and Google Scholar, as well as cited and citing reference histories of articles through August 2012, English-language articles were identified, read, and synthesized into categories that could account for biological sex differences in human life expectancy. RESULTS The examination of biological mechanisms accounting for the female-based advantage in human life expectancy has been an active area of inquiry; however, it is still difficult to prove the relative importance of any 1 factor. Nonetheless, biological differences between the sexes do exist and include differences in genetic and physiological factors such as progressive skewing of X chromosome inactivation, telomere attrition, mitochondrial inheritance, hormonal and cellular responses to stress, immune function, and metabolic substrate handling among others. These factors may account for at least a part of the female advantage in human life expectancy. CONCLUSIONS Despite noted gaps in sex equality, higher body fat percentages and lower physical activity levels globally at all ages, a sex-based gap in life expectancy exists in nearly every country for which data exist. There are several biological mechanisms that may contribute to explaining why females live longer than men on average, but the complexity of the human life experience makes research examining the contribution of any single factor for the female advantage difficult. However, this information may still prove important to the development of strategies for healthy aging in both sexes.
Collapse
|
40
|
Abstract
Estrogen is a potent steroid with pleiotropic effects, which have yet to be fully elucidated. Estrogen has both nuclear and non-nuclear effects. The rapid response to estrogen, which involves a membrane associated estrogen receptor(ER) and is protective, involves signaling through PI3K, Akt, and ERK 1/2. The nuclear response is much slower, as the ER-estrogen complex moves to the nucleus, where it functions as a transcription factor, both activating and repressing gene expression. Several different ERs regulate the specificity of response to estrogen, and appear to have specific effects in cardiac remodeling and the response to injury. However, much remains to be understood about the selectivity of these receptors and their specific effects on gene expression. Basic studies have demonstrated that estrogen treatment prevents apoptosis and necrosis of cardiac and endothelial cells. Estrogen also attenuates pathologic cardiac hypertrophy. Estrogen may have great benefit in aging as an anti-inflammatory agent. However, clinical investigations of estrogen have had mixed results, and not shown the clear-cut benefit of more basic investigations. This can be explained in part by differences in study design: in basic studies estrogen treatment was used immediately or shortly after ovariectomy, while in some key clinical trials, estrogen was given years after menopause. Further basic research into the underlying molecular mechanisms of estrogen's actions is essential to provide a better comprehension of the many properties of this powerful hormone.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
41
|
Hutchens MP, Fujiyoshi T, Komers R, Herson PS, Anderson S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am J Physiol Renal Physiol 2012; 303:F377-85. [PMID: 22622457 DOI: 10.1152/ajprenal.00354.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Emerging evidence suggests that renal endothelial function may be altered in ischemia-reperfusion injury. Acute kidney injury is sexually dimorphic, and estrogen protects renal tubular function after experimental ischemic injury. This study tested the hypothesis that during ischemia-reperfusion, estrogen alters glomerular endothelial function to prevent hyperpermeability. Glomerular endothelial cells were exposed to 8-h oxygen-glucose deprivation (OGD) followed by 4- and 8-h reoxygenation-glucose repletion. After 4-h reoxygenation-glucose repletion, transendothelial permeability to Ficoll-70 was reduced, and transendothelial resistance increased, by 17β-estradiol vs. vehicle treatment during OGD (OGD-vehicle: 91.0 ± 11.8%, OGD-estrogen: 102.6 ± 10.8%, P < 0.05). This effect was reversed by coadministration of G protein-coupled receptor 30 (GPR30) antagonist G15 with 17β-estradiol (OGD-estrogen-G15: 89.5 ± 6.9, P < 0.05 compared with 17β-estradiol). To provide preliminary confirmation of this result in vivo, Ficoll-70 was administered to mice 24 h after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Blood urea nitrogen (BUN) and serum creatinine (SCr) in these mice were elevated within 12 h following CA/CPR and reduced at 24 h by pretreatment with 17β-estradiol (BUN/SCr 17β-estradiol: 34 ± 19/0.2 ± 0.1 vehicle: 92 ± 49/0.5 ± 0.3, n = 8-12, P < 0.05). Glomerular sieving of Ficoll 70 was increased by CA/CPR within 2 h of injury and 17β-estradiol treatment (θ; 17β-estradiol: 0.74 ± 0.26 vs. vehicle: 1.05 ± 0.53, n = 14-15, P < 0.05). These results suggest that estrogen reduces postischemic glomerular endothelial hyperpermeability at least in part through GPR30 and that estrogen may regulate post CA/CPR glomerular permeability in a similar fashion in vivo.
Collapse
Affiliation(s)
- Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
42
|
Xu Q, Metzler B, Jahangiri M, Mandal K. Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol 2011; 302:H506-14. [PMID: 22058161 DOI: 10.1152/ajpheart.00646.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.
Collapse
Affiliation(s)
- Qingbo Xu
- Cardiovascular Division, King's British Heart Foundation Center, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
43
|
Abstract
Estrogen has pleiotropic effects on the cardiovascular system. The mechanisms by which estrogen confers these pleiotropic effects are undergoing active investigation. Until a decade ago, all estrogen signaling was thought to occur by estrogen binding to nuclear estrogen receptors (estrogen receptor-α and estrogen receptor-β), which bind to DNA and function as ligand-activated transcription factors. Estrogen binding to the receptor alters gene expression, thereby altering cell function. Estrogen also binds to nuclear estrogen receptors that are tethered to the plasma membrane, resulting in acute activation of signaling kinases such as PI3K. An orphan G-protein-coupled receptor, G-protein-coupled receptor 30, can also bind estrogen and activate acute signaling pathways. Thus, estrogen can alter cell function by binding to different estrogen receptors. This article reviews the different estrogen receptors and their signaling mechanisms, discusses mechanisms that regulate estrogen receptor levels and locations, and considers the cardiovascular effects of estrogen signaling.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiac Physiology Section, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Pechenino AS, Lin L, Mbai FN, Lee AR, He XM, Stallone JN, Knowlton AA. Impact of aging vs. estrogen loss on cardiac gene expression: estrogen replacement and inflammation. Physiol Genomics 2011; 43:1065-73. [PMID: 21750230 DOI: 10.1152/physiolgenomics.00228.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite an abundance of evidence to the contrary from animal studies, large clinical trials on humans have shown that estrogen administered to postmenopausal women increases the risk of cardiovascular disease. However, timing may be everything, as estrogen is often administered immediately after ovariectomy (Ovx) in animal studies, while estrogen administration in human studies occurred many years postmenopause. This study investigates the discrepancy by administering 17β-estradiol (E2) in a slow-release capsule to Norway Brown rats both immediately following Ovx and 9 wk post-Ovx (Late), and studying differences in gene expression between these two groups compared with age-matched Ovx and sham-operated animals. Two different types of microarray were used to analyze the left ventricles from these groups: an Affymetrix array (n = 3/group) and an inflammatory cytokines and receptors PCR array (n = 4/group). Key genes were analyzed by Western blotting. Ovx without replacement led to an increase in caspase 3, caspase 9, calpain 2, matrix metalloproteinase (MMP)9, and TNF-α. Caspase 6, STAT3, and CD11b increased in the Late group, while tissue inhibitor of metalloproteinase 2, MMP14, and collagen I α1 were decreased. MADD and fibronectin were increased in both Ovx and Late. TNF-α and inducible nitric oxide synthase (iNOS) protein levels increased with Late replacement. Many of these changes were prevented by early E2 replacement. These findings suggest that increased expression of inflammatory genes, such as TNF-α and iNOS, may be involved in some of the deleterious effects of delayed E2 administration seen in human studies.
Collapse
|
45
|
Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal 2011; 5:885-94. [DOI: 10.1017/s1751731110002612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Chana F, Guisasola MC, Villanueva MJ, de las Heras J, Calvo JA, Vaquero J. Heat shock proteins in total knee arthroplasty. A pilot study. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12570-010-0026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Mendoza I, Novaro GM. Takotsubo cardiomyopathy: New disease or unrecognized diagnosis. Maturitas 2010; 67:3-4. [DOI: 10.1016/j.maturitas.2010.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
48
|
Bhupathy P, Haines CD, Leinwand LA. Influence of sex hormones and phytoestrogens on heart disease in men and women. ACTA ACUST UNITED AC 2010; 6:77-95. [PMID: 20088732 DOI: 10.2217/whe.09.80] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular disease (CVD) is the number one cause of morbidity and mortality in men and women worldwide. According to the WHO, by 2015, almost 20 million people will die from CVD each year. It is well established that men and women differ not only in baseline cardiac parameters, but also in the clinical presentation, diagnosis and treatment outcomes of CVD. Women tend to develop heart disease later in life than men. This difference has been attributed to the loss of estrogen during the menopausal transition; however, the biological explanations for the sexual dimorphism in CVD are more complex and seem unlikely to be due to estrogen alone. The current controversy that has arisen regarding the effects of HRT on CVD in women is a case in point. In this review, the sex-based differences in cardiac (patho-) physiology are discussed with emphasis on the impact of sex hormones, hormone receptors and diet on heart disease.
Collapse
Affiliation(s)
- Poornima Bhupathy
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309-80347, USA.
| | | | | |
Collapse
|
49
|
Kocsis J, Madaras B, Tóth ÉK, Füst G, Prohászka Z. Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress Chaperones 2010; 15:143-51. [PMID: 19578980 PMCID: PMC2866989 DOI: 10.1007/s12192-009-0128-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/08/2009] [Indexed: 12/13/2022] Open
Abstract
Many findings indicate that measuring the serum concentration of soluble 70-kD heat shock protein (soluble HSP70) may provide important information in cardiovascular, inflammatory, and pregnancy-related diseases; however, only scarce data are available in cancer. Therefore, using a commercial ELISA kit, we measured soluble HSP70 concentration in the sera of 179 patients with colorectal cancer. We investigated the relationship between soluble HSP70 concentration and mortality, during 33.0 (24.4-44.0) months long follow-up. High (>1.65 pg/ml, median concentration) soluble HSP70 level was a significant (hazard ratio: 1.88 (1.20-2.96, p = 0.005) predictor of mortality during the follow-up period. When we compared the soluble HSP70 levels in patients with non-resected primary tumors as compared to those who were recruited into the study 4-6 weeks after the tumor resection they were found to be significantly (p = 0.020) higher in the former group. Since the patients with non-resected primary tumors had also distant metastasis and died early, we limited the further analysis to 142 patients with no distant metastasis at the beginning of the follow-up. This association remained significant even after multiple Cox-regression analysis had been performed to adjust the data for age and sex (p = 0.028); age, sex, and TNM-T stage (p = 0.041); age, sex, and TNM-N stage (p = 0.021); age, sex, and histological grade (p = 0.023); or age, sex, and tumor localization (p = 0.029). Further analysis showed that the significant association between high HSP70 levels and poor survival is in the strongest in the group of <70-year-old female patients (HR: 5.52 (2.02-15.15), p = 0.001), as well as in those who were in a less advanced stage of the disease at baseline. These novel findings indicate that the serum level of soluble HSP70 might prove a useful, stage-independent prognostic marker in colorectal cancer without distant metastasis.
Collapse
Affiliation(s)
- Judit Kocsis
- Third Department of Internal Medicine, Semmelweis University, Budapest, Kútvölgyi út 4, 1125 Hungary
| | - Balázs Madaras
- Third Department of Internal Medicine, Semmelweis University, Budapest, Kútvölgyi út 4, 1125 Hungary
| | - Éva Katalin Tóth
- Third Department of Internal Medicine, Semmelweis University, Budapest, Kútvölgyi út 4, 1125 Hungary
| | - George Füst
- Third Department of Internal Medicine, Semmelweis University, Budapest, Kútvölgyi út 4, 1125 Hungary
| | - Zoltán Prohászka
- Third Department of Internal Medicine, Semmelweis University, Budapest, Kútvölgyi út 4, 1125 Hungary
| |
Collapse
|
50
|
Ribas V, Nguyen MTA, Henstridge DC, Nguyen AK, Beaven SW, Watt MJ, Hevener AL. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am J Physiol Endocrinol Metab 2010; 298:E304-19. [PMID: 19920214 PMCID: PMC2822483 DOI: 10.1152/ajpendo.00504.2009] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Impaired estrogen action is associated with the metabolic syndrome in humans. We sought to determine whether impaired estrogen action in female C57Bl6 mice, produced by whole body Esr1 ablation, could recapitulate aspects of this syndrome, including inflammation, insulin resistance, and obesity. Indeed, we found that global knockout (KO) of the estrogen receptor (ER)alpha leads to reduced oxygen uptake and caloric expenditure compared with wild-type (WT) mice. In addition, fasting insulin, leptin, and PAI-1 levels were markedly elevated, whereas adiponectin levels were reduced in normal chow-fed KO. Furthermore, ERalpha-KO mice exhibited impaired glucose tolerance and marked skeletal muscle insulin resistance that was accompanied by the accumulation of bioactive lipid intermediates, inflammation, and diminished PPARalpha, PPARdelta, and UCP2 transcript levels. Although the relative glucose intolerance and insulin resistance phenotype in KO mice became more severe with high-fat feeding, WT mice were refractory to these dietary-induced effects, and this protection coincided with a marked increase in circulating adiponectin and heat shock protein 72 levels in muscle, liver, and fat. These data indicate that ERalpha is critical for the maintenance of whole body insulin action and protection against tissue inflammation during both normal chow and high-fat feeding.
Collapse
Affiliation(s)
- Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California Los Angeles, Los Angeles, California 90095-7073, USA
| | | | | | | | | | | | | |
Collapse
|