1
|
Kim DY, Han GP, Lim C, Kim JM, Kil DY. Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions. Anim Biosci 2023; 36:1632-1646. [PMID: 37654169 PMCID: PMC10623048 DOI: 10.5713/ab.23.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. METHODS A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. RESULTS Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. CONCLUSION HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.
Collapse
Affiliation(s)
- Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
2
|
Sun J, Wang L, Matthews RC, Walcott GP, Yu-An L, Wei Y, Zhou Y, Zangi L, Zhang J. CCND2 Modified mRNA Activates Cell Cycle of Cardiomyocytes in Hearts With Myocardial Infarction in Mice and Pigs. Circ Res 2023; 133:484-504. [PMID: 37565345 PMCID: PMC10529295 DOI: 10.1161/circresaha.123.322929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Experiments in mammalian models of cardiac injury suggest that the cardiomyocyte-specific overexpression of CCND2 (cyclin D2, in humans) improves recovery from myocardial infarction (MI). The primary objective of this investigation was to demonstrate that our specific modified mRNA translation system (SMRTs) can induce CCND2 expression in cardiomyocytes and replicate the benefits observed in other studies of cardiomyocyte-specific CCND2 overexpression for myocardial repair. METHODS The CCND2-cardiomyocyte-specific modified mRNA translation system (cardiomyocyte SMRTs) consists of 2 modRNA constructs: one codes for CCND2 and contains a binding site for L7Ae, and the other codes for L7Ae and contains recognition elements for the cardiomyocyte-specific microRNAs miR-1 and miR-208. Thus, L7Ae suppresses CCND2 translation in noncardiomyocytes but is itself suppressed by endogenous miR-1 and -208 in cardiomyocytes, thereby facilitating cardiomyocyte-specific CCND2 expression. Experiments were conducted in both mouse and pig models of MI, and control assessments were performed in animals treated with an SMRTs coding for the cardiomyocyte-specific expression of luciferase or green fluorescent protein (GFP), in animals treated with L7Ae modRNA alone or with the delivery vehicle, and in Sham-operated animals. RESULTS CCND2 was abundantly expressed in cultured, postmitotic cardiomyocytes 2 days after transfection with the CCND2-cardiomyocyte SMRTs, and the increase was accompanied by the upregulation of markers for cell-cycle activation and proliferation (eg, Ki67 and Aurora B kinase). When the GFP-cardiomyocyte SMRTs were intramyocardially injected into infarcted mouse hearts, the GFP signal was observed in cardiomyocytes but no other cell type. In both MI models, cardiomyocyte proliferation (on day 7 and day 3 after treatment administration in mice and pigs, respectively) was significantly greater, left-ventricular ejection fractions (days 7 and 28 in mice, days 10 and 28 in pigs) were significantly higher, and infarcts (day 28 in both species) were significantly smaller in animals treated with the CCND2-cardiomyocyte SMRTs than in any other group that underwent MI induction. CONCLUSIONS Intramyocardial injections of the CCND2-cardiomyocyte SMRTs promoted cardiomyocyte proliferation, reduced infarct size, and improved cardiac performance in small and large mammalian hearts with MI.
Collapse
Affiliation(s)
- Jiacheng Sun
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
- These authors contributed equally to this work
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
- These authors contributed equally to this work
| | - Rachel C. Matthews
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Gregory P. Walcott
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham
| | - Lu Yu-An
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham
| |
Collapse
|
3
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
4
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
5
|
Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D, Aslam MI, Rainer PP, Mishra S, Dunkerly-Eyring B, Holewinski RJ, Virus C, Zhang H, Mannion MM, Agrawal V, Hahn V, Lee DI, Sasaki M, Van Eyk JE, Willis MS, Page RC, Schisler JC, Kass DA. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat Commun 2020; 11:5237. [PMID: 33082318 PMCID: PMC7575552 DOI: 10.1038/s41467-020-18980-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we report that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein half-life, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKG-mediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Christian Oeing
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Rebekah Sanchez-Hodge
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Danielle Dillard
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - M Imran Aslam
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Division of Cardiology, Department of Medicine, Medical University of Graz, 8036, Graz, Austria
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Brittany Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Ronald J Holewinski
- Cedar Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, 8700 Beverly Blvd, AHSP A9229, Los Angeles, CA, 90048, USA
| | - Cornelia Virus
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Matthew M Mannion
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Vineet Agrawal
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Virginia Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Masayuki Sasaki
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Jennifer E Van Eyk
- Cedar Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, 8700 Beverly Blvd, AHSP A9229, Los Angeles, CA, 90048, USA
| | - Monte S Willis
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jonathan C Schisler
- Division of Cardiology, McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Liu J, Lei Q, Li F, Zhou Y, Gao J, Liu W, Han H, Cao D. Dynamic Transcriptomic Analysis of Breast Muscle Development From the Embryonic to Post-hatching Periods in Chickens. Front Genet 2020; 10:1308. [PMID: 31998367 PMCID: PMC6967404 DOI: 10.3389/fgene.2019.01308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle development and growth are closely associated with efficiency of poultry meat production and its quality. We performed whole transcriptome profiling based on RNA sequencing of breast muscle tissue obtained from Shouguang chickens at embryonic days (E) 12 and 17 to post-hatching days (D) 1, 14, 56, and 98. A total of 9,447 differentially expressed genes (DEGs) were filtered (Q < 0.01, fold change > 2). Time series expression profile clustering analysis identified five significantly different expression profiles that were divided into three clusters. DEGs from cluster I with downregulated pattern were significantly enriched in cell proliferation processes such as cell cycle, mitotic nuclear division, and DNA replication. DEGs from cluster II with upregulated pattern were significantly enriched in metabolic processes such as glycolysis/gluconeogenesis, insulin signaling pathway, calcium signaling pathway, and biosynthesis of amino acids. DEGs from cluster III, with a pattern that increased from E17 to D1 and then decreased from D1 to D14, mainly contributed to lipid metabolism. Therefore, this study may help us explain the mechanisms underlying the phenotype that myofiber hyperplasia occurs predominantly during embryogenesis and hypertrophy occurs mainly after birth at the transcriptional level. Moreover, lipid metabolism may contribute to the early muscle development and growth. These findings add to our knowledge of muscle development in chickens.
Collapse
Affiliation(s)
- Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Jinbo Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| |
Collapse
|
7
|
Luckey SW, Haines CD, Konhilas JP, Luczak ED, Messmer-Kratzsch A, Leinwand LA. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy. Exp Biol Med (Maywood) 2017; 242:1820-1830. [PMID: 28901173 PMCID: PMC5714145 DOI: 10.1177/1535370217731503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1-/-), and mice deficient in cyclin D2 (cyclin D2-/-). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2-/- mice. Cardiac function was not impacted in the cyclin D2-/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2-/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.
Collapse
Affiliation(s)
- Stephen W Luckey
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Biology Department, Seattle University, Seattle, WA 98122, USA
| | - Chris D Haines
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John P Konhilas
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Elizabeth D Luczak
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antke Messmer-Kratzsch
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease. Cell Mol Life Sci 2016; 74:1367-1378. [PMID: 27812722 PMCID: PMC5357290 DOI: 10.1007/s00018-016-2404-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cardiomyocytes proliferate profusely during early development and for a brief period after birth in mammals. Within a month after birth, this proliferative capability is dramatically reduced in mammals unlike lower vertebrates where it persists into adult life. The zebrafish, for example, retains the ability to regenerate the apex of the heart following resection by a mechanism predominantly driven by cardiomyocyte proliferation. Differences in proliferative capacity of cardiomyocytes in adulthood between mammals and lower vertebrates are closely liked to ontogenetic or phylogenetic factors. Elucidation of these factors has the potential to provide enormous benefits if they lead to the development of therapeutic strategies that facilitate cardiomyocyte proliferation. In this review, we highlight the differences between Mammalian and Zebrafish cardiomyocytes, which could explain at least in part the different proliferative capacities in these two species. We discuss the advantages of the zebrafish as a model of cardiomyocyte proliferation, particularly at the embryonic stage. We also identify a number of key molecular pathways with potential to reveal key steps in switching cardiomyocytes from a quiescent to a proliferative phenotype.
Collapse
|
9
|
Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, Deng C, Xue Y, Yang M, Wu S, Shan Z. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 2015; 412:289-96. [PMID: 26699910 DOI: 10.1007/s11010-015-2635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3'UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weiwei Yuan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunmei Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wensi Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiening Zhu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiuxiong Lin
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yongheng Fu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunyu Deng
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yumei Xue
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Min Yang
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shulin Wu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
10
|
Chen X, Qin L, Liu Z, Liao L, Martin JF, Xu J. Knockout of SRC-1 and SRC-3 in Mice Decreases Cardiomyocyte Proliferation and Causes a Noncompaction Cardiomyopathy Phenotype. Int J Biol Sci 2015. [PMID: 26221073 PMCID: PMC4515817 DOI: 10.7150/ijbs.12408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noncompaction cardiomyopathy (NCC) is a congenital heart disease that causes ventricular dysfunction and high mortality rate in children. The mechanisms responsible for NCC are still unknown. The steroid receptor coactivator-1 (SRC-1) and SRC-3 are transcriptional coactivators for nuclear hormone receptors and certain other transcription factors that regulate many genes in development and organ function. However, the roles of SRC-1/3 in heart morphogenesis, function and NCC occurrence are unknown. This study aims to examine the spatial and temporal expression patterns of SRC-1/3 in the heart and investigate the specific roles of SRC-1/3 in heart development, function and NCC occurrence. Immunochemical analysis detected SRC-1/3 expressions in the proliferating cardiomyocytes of mouse heart at prenatal and neonatal stages, while these expressions disappeared within two weeks after birth. Through generating and characterizing mouse lines with global or cardiomyocyte-specific knockouts of SRC-1/3, we found ablation of SRC-1/3 in the myocardial lineage resulted in prominent trabeculae, deep intertrabecular recesses and thin ventricular wall and septum. These developmental defects caused a failure of trabecular compaction, decreased internal ventricular dimension, reduced cardiac ejection fraction and output and led to a high rate of postnatal mortality. Collectively, these structural and functional abnormalities closely simulate the phenotype of NCC patients. Further molecular analysis of cardiomyocytes in vivo and in vitro revealed that SRC-1/3 directly up-regulate cyclin E2, cyclin B1 and myocardin to promote cardiomyocyte proliferation and differentiation. In conclusion, SRC-1/3 are required for cardiomyocyte proliferation and differentiation at earlier developmental stages, and their dysfunction causes NCC-like abnormalities in the hearts of newborn and adult mice.
Collapse
Affiliation(s)
- Xian Chen
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Qin
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhaoliang Liu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- 2. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; 3. Sichuan Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
11
|
Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med 2015; 19:608-19. [PMID: 25583328 PMCID: PMC4369817 DOI: 10.1111/jcmm.12445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022] Open
Abstract
Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuai Huang
- Medical Research Department of Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 2014; 13:532-41. [PMID: 25306390 PMCID: PMC4435693 DOI: 10.1016/j.scr.2014.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Cardiomyocyte proliferation and progenitor differentiation are endogenous mechanisms of myocardial development. Cardiomyocytes continue to proliferate in mammals for part of post-natal development. In adult mammals under homeostatic conditions, cardiomyocytes proliferate at an extremely low rate. Because the mechanisms of cardiomyocyte generation provide potential targets for stimulating myocardial regeneration, a deep understanding is required for developing such strategies. We will discuss approaches for examining cardiomyocyte regeneration, review the specific advantages, challenges, and controversies, and recommend approaches for interpretation of results. We will also draw parallels between developmental and regenerative principles of these mechanisms and how they could be targeted for treating heart failure.
Collapse
Affiliation(s)
- Samuel E Senyo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bernhard Kühn
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can J Cardiol 2014; 30:1270-8. [PMID: 25442430 DOI: 10.1016/j.cjca.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 11/21/2022] Open
Abstract
The concept of myocyte division and myocyte-mediated regeneration has re-emerged in the past 5 years through development of sophisticated transgenic mice and carbon-dating of cells. Although recently, a couple of studies have been conducted as an attempt to intervene in myocyte division, the efficiency in adult animals remains discouragingly low. Re-enforcing myocyte division is a vision that has been desired for decades, leading to years of experience in myocyte resistance to proproliferative stimuli. Previous attempts have indeed provided a platform for basic knowledge on molecular players and signalling in myocytes. However, natural biological processes such as hypertrophy and binucleation provide layers of complexity in interpretation of previous and current findings. A major hurdle in mediating myocyte division is a lack of insight in the myocyte cell cycle. To date, no knowledge is gained on myoycte cell cycle progression and/or duration. This review will include an overview of previous and current literature on myocyte cell cycle and division. Furthermore, the limitations of current approaches and basic questions that might be essential in understanding myocardial resistance to division will be discussed.
Collapse
|
14
|
Muralidhar SA, Mahmoud AI, Canseco D, Xiao F, Sadek HA. Harnessing the power of dividing cardiomyocytes. Glob Cardiol Sci Pract 2013; 2013:212-21. [PMID: 24689023 PMCID: PMC3963758 DOI: 10.5339/gcsp.2013.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022] Open
Abstract
Lower vertebrates, such as newt and zebrafish, retain a robust cardiac regenerative capacity following injury. Recently, our group demonstrated that neonatal mammalian hearts have a remarkable regenerative potential in the first few days after birth. Although adult mammals lack this regenerative potential, it is now clear that there is measurable cardiomyocyte turnover that occurs in the adult mammalian heart. In both neonatal and adult mammals, proliferation of pre-existing cardiomyocytes appears to be the underlying mechanism of myocyte turnover. This review will highlight the advances and landmark studies that opened new frontiers in cardiac regeneration.
Collapse
Affiliation(s)
- Shalini A Muralidhar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ahmed I Mahmoud
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Diana Canseco
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
15
|
14-3-3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol Cell Biol 2012; 32:5089-102. [PMID: 23071090 DOI: 10.1128/mcb.00829-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G(2)/M and the accumulation of cardiomyocytes in the G(0)/G(1) phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27(Kip1), possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27(Kip1). These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.
Collapse
|
16
|
Musumeci M, Maccari S, Sestili P, Signore M, Molinari P, Ambrosio C, Stati T, Colledge WH, Grace AA, Catalano L, Marano G. Propranolol enhances cell cycle-related gene expression in pressure overloaded hearts. Br J Pharmacol 2012; 164:1917-28. [PMID: 21615725 DOI: 10.1111/j.1476-5381.2011.01504.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the β-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload. EXPERIMENTAL APPROACH Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg(-1) ·day(-1) ) was administered in drinking water for 14 days. KEY RESULTS Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL(-1) , blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. β-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of β-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a β(1) -adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice. CONCLUSIONS AND IMPLICATIONS Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via β(2) -adrenoceptor-mediated mechanisms.
Collapse
Affiliation(s)
- Marco Musumeci
- Department of Pharmacology, National Institute of Health, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the preseptation period and then gradually decreasing toward birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling by means of growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease.
Collapse
Affiliation(s)
- David Sedmera
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | |
Collapse
|
18
|
Nakamura H, Tokumoto M, Mizobuchi M, Ritter CS, Finch JL, Mukai M, Slatopolsky E. Novel markers of left ventricular hypertrophy in uremia. Am J Nephrol 2010; 31:292-302. [PMID: 20130393 DOI: 10.1159/000279768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/04/2009] [Indexed: 01/17/2023]
Abstract
AIMS Left ventricular hypertrophy (LVH) is the most frequent cardiac complication in chronic renal disease. Previous studies implicate elevated serum phosphorus as a risk factor for LVH. METHODS We treated 5/6 nephrectomized rats with enalapril or enalapril + sevelamer carbonate for 4 months to determine if sevelamer carbonate had an additional beneficial effect on the development of LVH and uremia-induced left ventricle (LV) remodeling. RESULTS Uremia increased LV weight and cardiomyocyte size. Enalapril and enalapril + sevelamer blunted the increase in left ventricular weight. Only enalapril + sevelamer diminished the increase in cardiomyocyte size. Uremia increased cyclin D2 and PCNA and decreased p27 protein expression in the heart. Enalapril + sevelamer diminished the decrease in p27 expression caused by uremia. Uremia increased Ki67-positive and phosphohistone H(3)-positive interstitial cells. This was not seen in cardiomyocytes. Multivariable regression analysis showed that increased phosphorus was an independent risk factor for both increased LV weight and cardiomyocyte size. CONCLUSIONS These data suggest left ventricular remodeling consists of cardiomyocyte hypertrophy and interstitial cell proliferation, but not cardiomyocyte proliferation. p27 and cyclin D2 may play important roles in the development of LVH. In addition, phosphorus can be an independent risk factor for the development of LVH.
Collapse
|
19
|
Mahmoudabady M, Mathieu M, Touihri K, Hadad I, Da Costa AM, Naeije R, Mc Entee K. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy. BMC Cardiovasc Disord 2009; 9:49. [PMID: 19818143 PMCID: PMC2763849 DOI: 10.1186/1471-2261-9-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/09/2009] [Indexed: 01/18/2023] Open
Abstract
Background Insulin-like growth factor-1 (IGF-1), transforming growth factor β (TGFβ) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Methods Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFβ and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Results Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFβ, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. Conclusion These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.
Collapse
Affiliation(s)
- Maryam Mahmoudabady
- Laboratory of Physiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
20
|
Coxon CH, Bicknell KA, Moseley FL, Brooks G. Over expression of Plk1 does not induce cell division in rat cardiac myocytes in vitro. PLoS One 2009; 4:e6752. [PMID: 19707596 PMCID: PMC2727448 DOI: 10.1371/journal.pone.0006752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division. PRINCIPAL FINDINGS The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation. CONCLUSIONS We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.
Collapse
Affiliation(s)
- Carmen H. Coxon
- School of Pharmacy, University of Reading, Reading, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Fleur L. Moseley
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, United Kingdom
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
21
|
Hinrichsen R, Hansen AH, Haunsø S, Busk PK. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy. Cell Prolif 2008; 41:813-29. [PMID: 18700867 DOI: 10.1111/j.1365-2184.2008.00549.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES A number of stimuli induce cardiac hypertrophy and may lead to cardiomyopathy and heart failure. It is believed that cardiomyocytes withdraw from the cell cycle shortly after birth and become terminally differentiated. However, cell cycle regulatory proteins take part in the development of hypertrophy, and it is important to elucidate the mechanisms of how these proteins are involved in the hypertrophic response in cardiomyocytes. MATERIALS AND METHODS, AND RESULTS In the present study, by immunohistochemistry with a phosphorylation-specific antibody, we found that cyclin D-cdk4/6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4/6. Inhibition of cyclin E-cdk2 complex only partly impaired E2F activity and did not prevent hypertrophic growth, but diminished endoreplication during hypertrophy. CONCLUSIONS These results indicate that cyclin D-cdk4/6-dependent phosphorylation of pRb and activation of E2F is necessary for hypertrophic growth in cardiomyocytes, whereas cyclin E-cdk2 kinase is not necessary for hypertrophy but regulates endoreplication in these cells. The data support the notion that hypertrophic growth of cardiomyocytes involves a partial progression through the G1 phase of the cell cycle
Collapse
Affiliation(s)
- R Hinrichsen
- Risø National Laboratory, Biosystems Department, Cell Biology Programme, Roskilde, Denmark.
| | | | | | | |
Collapse
|
22
|
Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR. A cyclin D2-Rb pathway regulates cardiac myocyte size and RNA polymerase III after biomechanical stress in adult myocardium. Circ Res 2008; 102:1222-9. [PMID: 18420946 DOI: 10.1161/circresaha.107.163550] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Normally, cell cycle progression is tightly coupled to the accumulation of cell mass; however, the mechanisms whereby proliferation and cell growth are linked are poorly understood. We have identified cyclin (Cyc)D2, a G(1) cyclin implicated in mediating S phase entry, as a potential regulator of hypertrophic growth in adult post mitotic myocardium. To examine the role of CycD2 and its downstream targets, we subjected CycD2-null mice to mechanical stress. Hypertrophic growth in response to transverse aortic constriction was attenuated in CycD2-null compared with wild-type mice. Blocking the increase in CycD2 in response to hypertrophic agonists prevented phosphorylation of CycD2-target Rb (retinoblastoma gene product) in vitro, and mice deficient for Rb had potentiated hypertrophic growth. Hypertrophic growth requires new protein synthesis and transcription of tRNA genes by RNA polymerase (pol) III, which increases with hypertrophic signals. This load-induced increase in RNA pol III activity is augmented in Rb-deficient hearts. Rb binds and represses Brf-1 and TATA box binding protein (TBP), subunits of RNA pol III-specific transcription factor B, in adult myocardium under basal conditions. However, this association is disrupted in response to transverse aortic constriction. RNA pol III activity is unchanged in CycD2(-/-) myocardium after transverse aortic constriction, and there is no dissociation of TBP from Rb. These investigations identify an essential role for the CycD2-Rb pathway as a governor of cardiac myocyte enlargement in response to biomechanical stress and, more fundamentally, as a regulator of the load-induced activation of RNA pol III.
Collapse
Affiliation(s)
- Ekaterini Angelis
- The Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1760, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ahuja P, Sdek P, Maclellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007; 87:521-44. [PMID: 17429040 PMCID: PMC2708177 DOI: 10.1152/physrev.00032.2006] [Citation(s) in RCA: 422] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interest in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period, and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration.
Collapse
Affiliation(s)
| | | | - W. Robb Maclellan
- Corresponding author: W. Robb MacLellan, Cardiovascular Research Laboratories, David Geffen school of Medicine at UCLA, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California, 90095-1760; Phone: (310) 825-2556; Fax: (310) 206-5777; e-mail:
| |
Collapse
|
24
|
Engel FB, Hsieh PCH, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 2006; 103:15546-51. [PMID: 17032753 PMCID: PMC1622860 DOI: 10.1073/pnas.0607382103] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian cardiomyocytes have limited proliferation potential, and acutely injured mammalian hearts do not regenerate adequately. Instead, injured myocardium develops fibrosis and scarring. Here we show that FGF1/p38 MAP kinase inhibitor treatment after acute myocardial injury in 8- to 10-week-old rats increases cardiomyocyte mitosis. At 3 months after injury, 4 weeks of FGF1/p38 MAP kinase inhibitor therapy results in reduced scarring and wall thinning, with markedly improved cardiac function. In contrast, p38 MAP kinase inhibition alone fails to rescue heart function despite increased cardiomyocyte mitosis. FGF1 improves angiogenesis, possibly contributing to the survival of newly generated cardiomyocytes. Our data indicate that FGF1 and p38 MAP kinase, proteins involved in cardiomyocyte proliferation and angiogenesis during development, may be delivered therapeutically to enhance cardiac regeneration.
Collapse
Affiliation(s)
- Felix B. Engel
- *Department of Pediatrics, Harvard Medical School, and Department of Cardiology, Children's Hospital, 320 Longwood Avenue, Boston, MA 02115
| | - Patrick C. H. Hsieh
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Richard T. Lee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Mark T. Keating
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| |
Collapse
|
25
|
Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, Cohen JE, Chaudhry HW. Therapeutic delivery of cyclin A2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation 2006; 114:I206-13. [PMID: 16820573 DOI: 10.1161/circulationaha.105.000455] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a global health concern. As a novel therapeutic strategy, the induction of endogenous myocardial regeneration was investigated by initiating cardiomyocyte mitosis by expressing the cell cycle regulator cyclin A2. METHODS AND RESULTS Lewis rats underwent left anterior descending coronary artery ligation followed by peri-infarct intramyocardial delivery of adenoviral vector expressing cyclin A2 (n =32) or empty adeno-null (n =32). Cyclin A2 expression was characterized by Western Blot and immunohistochemistry. Six weeks after surgery, in vivo myocardial function was analyzed using an ascending aortic flow probe and pressure-volume catheter. DNA synthesis was analyzed by proliferating cell nuclear antigen (PCNA), Ki-67, and BrdU. Mitosis was analyzed by phosphohistone-H3 expression. Myofilament density and ventricular geometry were assessed. Cyclin A2 levels peaked at 2 weeks and tapered off by 4 weeks. Borderzone cardiomyocyte cell cycle activation was demonstrated by increased PCNA (40.1+/-2.6 versus 9.3+/-1.1; P<0.0001), Ki-67 (46.3+/-7.2 versus 20.4+/-6.0; P<0.0001), BrdU (44.2+/-13.7 versus 5.2+/-5.2; P<0.05), and phosphohistone-H3 (12.7+/-1.4 versus 0+/-0; P<0.0001) positive cells/hpf. Cyclin A2 hearts demonstrated increased borderzone myofilament density (39.8+/-1.1 versus 31.8+/-1.0 cells/hpf; P=0.0011). Borderzone wall thickness was greater in cyclin A2 hearts (1.7+/-0.4 versus 1.4+/-0.04 mm; P<0.0001). Cyclin A2 animals manifested improved hemodynamics: Pmax (70.6+/-8.9 versus 60.4+/-11.8 mm Hg; P=0.017), max dP/dt (3000+/-588 versus 2500+/-643 mm Hg/sec; P<0.05), preload adjusted maximal power (5.75+/-4.40 versus 2.75+/-0.98 mWatts/microL2; P<0.05), and cardiac output (26.8+/-3.7 versus 22.7+/-2.6 mL/min; P=0.004). CONCLUSIONS A therapeutic strategy of cyclin A2 expression via gene transfer induced cardiomyocyte cell cycle activation yielded increased borderzone myofilament density and improved myocardial function. This approach of inducing endogenous myocardial regeneration provides proof-of-concept evidence that cyclin A2 may ultimately serve as an efficient, alternative therapy for heart failure.
Collapse
Affiliation(s)
- Y Joseph Woo
- Division of Cardiothoracic Surgery, Department of Surgery, University of Pennsylvania School of Medicine, 3400 Spruce St, Philadelphia PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, Fishbein MC, de Alborán IM, MacLellan WR. Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J 2006; 25:3869-79. [PMID: 16902412 PMCID: PMC1553193 DOI: 10.1038/sj.emboj.7601252] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 07/04/2006] [Indexed: 11/09/2022] Open
Abstract
c-Myc (Myc) is highly expressed in developing embryos where it regulates body size by controlling proliferation but not cell size. However, Myc is also induced in many postmitotic tissues, including adult myocardium, in response to stress where the predominant form of growth is an increase in cell size (hypertrophy) and not number. The function of Myc induction in this setting is unproven. Therefore, to explore Myc's role in hypertrophic growth, we created mice where Myc can be inducibly inactivated, specifically in adult myocardium. Myc-deficient hearts demonstrated attenuated stress-induced hypertrophic growth, secondary to a reduction in cell growth of individual myocytes. To explore the dependence of Myc-induced cell growth on CycD2, we created bigenic mice where Myc can be selectively activated in CycD2-null adult myocardium. Myc-dependent hypertrophic growth and cell cycle reentry is blocked in CycD2-deficient hearts. However, in contrast to Myc-induced DNA synthesis, hypertrophic growth is independent of CycD2-induced Cdk2 activity. These data suggest that Myc is required for a normal hypertrophic response and that its growth-promoting effects are also mediated through a CycD2-dependent pathway.
Collapse
Affiliation(s)
- Weiguang Zhong
- The Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | - Songyan Mao
- The Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | - Scott Tobis
- The Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | - Ekaterini Angelis
- The Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | - Maria C Jordan
- The Cardiovascular Research Laboratories, Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Kenneth P Roos
- The Cardiovascular Research Laboratories, Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA
| | - Michael C Fishbein
- The Cardiovascular Research Laboratories, Department of Pathology, UCLA School of Medicine, Los Angeles, California, USA
| | - Ignacio Moreno de Alborán
- Department of Immunology, National Center for Biotechnology, Madrid, Spain
- Department of Oncology, National Center for Biotechnology, Madrid, Spain
| | - W Robb MacLellan
- The Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
- The Cardiovascular Research Laboratories, Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA
- Departments of Medicine–Cardiology, Cardiovascular Research Laboratories, UCLA School of Medicine, 675 CE Young Dr, MRL 3-645, Los Angeles, CA 90095-1760, USA. Tel.: +1 310 825 2556; Fax: +1 310 206 5777; E-mail:
| |
Collapse
|
27
|
Abstract
Emerging evidence demonstrates that heart disease may originate during fetal development. This review will focus on the role of maternal nutrition in the development of the fetal cardiovascular system. Emphasis will be placed upon the concept that nutritional inadequacies during gestation may be major programming stimuli that alter fetal cardiac, as well as vascular, physiology and predispose an individual to cardiovascular abnormalities in postnatal life. It is hypothesized that this research area will yield new information, resulting in improved fetal nutrition, growth and development through efficient maternal nutrition before and during pregnancy and will form the basis for nutritional strategies for the primary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Department of Human Nutritional Sciences, Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre (R3020), Winnipeg, Manitoba, R2H 2A6, Canada.
| | | |
Collapse
|
28
|
Bicknell K, Coxon C, Brooks G. Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 2005; 382:411-6. [PMID: 15253691 PMCID: PMC1133796 DOI: 10.1042/bj20031481] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 07/14/2004] [Accepted: 07/15/2004] [Indexed: 11/17/2022]
Abstract
Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1-CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1-CDC2 complex might re-initiate cell division in mature cardiomyocytes in vivo and facilitate myocardial regeneration following injury.
Collapse
Affiliation(s)
- Katrina A. Bicknell
- Cardiovascular Research Group, School of Pharmacy, The University of Reading, P.O. Box 228, Whiteknights, Reading, Berkshire RG6 6AJ, U.K
| | - Carmen H. Coxon
- Cardiovascular Research Group, School of Pharmacy, The University of Reading, P.O. Box 228, Whiteknights, Reading, Berkshire RG6 6AJ, U.K
| | - Gavin Brooks
- Cardiovascular Research Group, School of Pharmacy, The University of Reading, P.O. Box 228, Whiteknights, Reading, Berkshire RG6 6AJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW, Chou MY, Yang JJ. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun 2004; 324:973-80. [PMID: 15485649 DOI: 10.1016/j.bbrc.2004.09.156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 11/17/2022]
Abstract
Various intracellular or intercellular stimuli have been associated with the development of cardiac cell hypertrophy. However, the mechanisms underlying this association are not completely understood. In a previous study we determined that ZAK mRNA expression is abundant in heart. ZAK is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the stress-activated protein kinase/c-jun N-terminal kinase pathway and activates NF-kappaB. We, therefore, investigated the potential involvement of ZAK (which in cultured H9c2 cardiomyoblast cell is a positive mediator of cell hypertrophy). Our results showed that the expression of a wild-type form of ZAK induces the characteristic hypertrophic growth features, including increased cell size, elevated atrial natriuretic factor expression, and increased actin fiber organization.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Institute of Biochemistry, Chung-Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol 2004; 558:111-21. [PMID: 15133065 PMCID: PMC1664914 DOI: 10.1113/jphysiol.2004.061697] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, alpha-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac alpha-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.
Collapse
Affiliation(s)
- Hyung-Chul Han
- Center for the Study of Fetal Programming and Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
31
|
Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J, Zhou JN, Factor SM, Weiss LM, Krishnamachary M, Mukherjee S, Wittner M, Kitsis RN, Pestell RG, Lisanti MP, Albanese C, Tanowitz HB. Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis. Infect Immun 2003; 71:2859-67. [PMID: 12704159 PMCID: PMC153290 DOI: 10.1128/iai.71.5.2859-2867.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The myocardium of CD1 mice was examined for the activation of signal transduction pathways leading to cardiac inflammation and subsequent remodeling during Trypanosoma cruzi infection (Brazil strain). The activity of three pathways of the mitogen-activated protein kinases (MAPKs) was determined. Immunoblotting revealed a persistent elevation of phosphorylated (activated) extracellular-signal-regulated kinase (ERK), which regulates cell proliferation. During infection there was a transient activation of p38 MAPK but no activation of Jun N-terminal kinase. Early targets of activated ERK, c-Jun and c-Fos, were elevated during infection, as demonstrated by semiquantitative reverse transcription-PCR. Immunostaining revealed that the endothelium and the interstitial cells were most intensely stained with antibodies to c-Jun and c-Fos. Soon after infection, AP-1 and NF-kappa B DNA binding activity was increased. Protein levels of cyclin D1, the downstream target of ERK and NF-kappa B, were induced during acute infection. Immunostaining demonstrated increased expression of cyclin D1 in the vascular and endocardial endothelium, inflammatory cells, and the interstitial areas. Increased expression of the cyclin D1-specific phosphorylated retinoblastoma protein (Ser780) was also evident. Immunoblotting and immunostaining also demonstrated increased expression of proliferating cellular nuclear antigen that was predominantly present in the inflammatory cells, interstitial areas (i.e., fibroblasts), and endothelium. These data demonstrate that T. cruzi infection results in activation of the ERK-AP-1 pathway and NF-kappa B. Cyclin D1 expression was also increased. These observations provide a molecular basis for the activation of pathways involved in cardiac remodeling in chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D, Cittadini A, Cardone L, Coppola C, Cavuto L, Arcucci O, Sacca L, Avvedimento EV, Chiariello M. Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation 2002; 106:2118-24. [PMID: 12379583 DOI: 10.1161/01.cir.0000034047.70205.97] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with cardiac hypertrophy are at increased cardiovascular risk. It has been hypothesized that hydroxymethylglutaryl coenzyme A reductase inhibitors may exert beneficial effects other than their cholesterol-lowering actions. The aims of the study were to assess the in vivo effects of simvastatin (SIM) on cardiac hypertrophy and on Ras signaling in rats with ascending aorta banding. METHODS AND RESULTS Wistar rats were randomized to receive either treatment with SIM or placebo, and then short-term (group I) and long-term (group II) left ventricular pressure overload was performed by placing a tantalum clip on ascending aorta. At the end of treatment period, left and right ventricular weight, body weight, and tibial length were measured and echocardiographic evaluations were performed. Ras signaling was investigated by analyzing Ras membrane localization and activation, ERK2 phosphorylation, and p27(kip1) and cdk4 levels. In SIM-treated rats, a significant reduction of left ventricular weight/body weight, echocardiographic left ventricular mass, and left ventricular end-diastolic diameter and end-diastolic pressure was found. In rats with pressure overload, SIM treatment significantly reduced Ras membrane targeting, Ras in vivo activation, ERK2 phosphorylation, and the ratio cdk4/p27(kip1). CONCLUSIONS HMG CoA inhibitor SIM inhibits in vivo Ras signaling and prevents left ventricular hypertrophy development in aortic-banded animals.
Collapse
Affiliation(s)
- Ciro Indolfi
- Division of Cardiology, Magna Graecia University, Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 2002; 40:477-84. [PMID: 12364350 DOI: 10.1161/01.hyp.0000032031.30374.32] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased reactive oxygen species (ROS) production is implicated in the pathophysiology of left ventricular (LV) hypertrophy and heart failure. However, the enzymatic sources of myocardial ROS production are unclear. We examined the expression and activity of phagocyte-type NADPH oxidase in LV myocardium in an experimental guinea pig model of progressive pressure-overload LV hypertrophy. Concomitant with the development of LV hypertrophy, NADPH-dependent O2- production in LV homogenates, measured by lucigenin (5 micro mol/L) chemiluminescence or cytochrome c reduction assays, significantly and progressively increased (by approximately 40% at the stage of LV decompensation; P<0.05). O2- production was fully inhibited by diphenyleneiodonium (100 micromol/L). Immunoblotting revealed a progressive increase in expression of the NADPH oxidase subunits p22(phox), gp91(phox), p67(phox), and p47(phox) in the LV hypertrophy group, whereas immunolabeling studies indicated the presence of oxidase subunits in cardiomyocytes and endothelial cells. In parallel with the increase in O2- production, there was a significant increase in activation of extracellular signal-regulated kinase 1/2, extracellular signal-regulated kinase 5, c-Jun NH2-terminal kinase 1/2, and p38 mitogen-activated protein kinase. These data indicate that an NADPH oxidase expressed in cardiomyocytes is a major source of ROS generation in pressure overload LV hypertrophy and may contribute to pathophysiological changes such as the activation of redox-sensitive kinases and progression to heart failure.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Guy's King's & St Thomas' School of Medicine (Denmark Hill Campus), King's College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, Shah AM. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res 2002; 90:143-50. [PMID: 11834706 DOI: 10.1161/hh0202.103615] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A phagocyte-type NADPH oxidase complex is a major source of endothelial reactive oxygen species (ROS) production, but its biochemical function and regulation remain unclear. In neutrophils, the p47(phox) subunit is centrally involved in oxidase activation in response to agonists such as phorbol-12-myristate-13-acetate (PMA). We investigated the role of p47(phox) in endothelial cell ROS production in response to PMA or tumor necrosis factor-alpha (TNFalpha) stimulation. To specifically address the role of p47(phox), we studied coronary microvascular endothelial cells (CMECs) isolated from p47(phox-/-) mice and wild-type controls. p47(phox) was absent in hearts of knockout mice whereas the essential oxidase subunit, p22(phox), was expressed in both groups. In the absence of agonist stimulation, the lack of p47(phox) did not result in a reduction in NADPH-dependent ROS production in p47(phox-/-) CMECs compared with wild-type CMECs. Prestimulation with PMA (100 ng/mL) or TNFalpha (100 U/mL) for 10 minutes significantly increased NADPH-dependent O(2)(-) production in wild-type CMECs, assessed either by lucigenin (5 micromol/L) chemiluminescence or dichlorohydrofluorescein (DCF) fluorescence. This response was completely lost in p47(phox-/-) cells. Transfection of the full-length p47(phox) cDNA into p47(phox-/-) CMECs caused expression of p47(phox) protein and restoration of the O(2)(-) response to PMA and TNFalpha. In wild-type CMECs, transfection of antisense p47(phox) cDNA substantially reduced p47(phox) expression and caused loss of the O(2)(-) response to PMA and TNFalpha. These data show that endothelial cell p47(phox) is critical in the upregulation of NADPH oxidase activity by PMA and TNFalpha.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Guy's King's & St Thomas' School of Medicine (Denmark Hill Campus), King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Xiao G, Mao S, Baumgarten G, Serrano J, Jordan MC, Roos KP, Fishbein MC, MacLellan WR. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 2001; 89:1122-9. [PMID: 11739276 DOI: 10.1161/hh2401.100742] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-Myc, a protooncogene, mediates both proliferative and cellular growth in many cell types. Although not expressed in the adult heart under normal physiological conditions, Myc expression is rapidly upregulated in response to hypertrophic stimuli. Although Myc is capable of sustaining hyperplastic growth in fetal myocytes, the effects of its re-expression in adult postmitotic myocardium and its role in mediating cardiac hypertrophy are unknown. To determine the effects of de novo Myc activity in adult postmitotic myocardium in vivo, we created a novel transgenic model in which Myc is expressed and inducibly activated specifically in cardiac myocytes. Activation of Myc in adult myocardium was sufficient to reproduce the characteristic changes in myocyte size, protein synthesis, and cardiac-specific gene expression seen in cardiac hypertrophy. Despite the increased cardiac mass, left ventricular function remained normal. Activation of Myc also provoked cell cycle reentry in postmitotic myocytes, which led to increased nuclei per myocyte and DNA content per nuclei.
Collapse
Affiliation(s)
- G Xiao
- Cardiovascular Research Laboratories, Department of Medicine, University of California at Los Angeles School of Medicine, Friederich-Wilhelms University of Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, Lorell BH, Izumo S. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001; 88:443-50. [PMID: 11230113 DOI: 10.1161/01.res.88.4.443] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 2 (cdk2) plays a critical role in the G1- to S-phase checkpoint of the cell cycle. Adult cardiomyocytes are believed to withdraw from the cell cycle. To determine whether forced overexpression of cdk2 results in altered cell-cycle regulation in the adult heart, we generated transgenic mice specifically overexpressing cdk2 in hearts. Transgenic hearts expressed high levels of both cdk2 mRNA and catalytically active cdk2 proteins. Cdk2 overexpression significantly increased the levels of cdk4 and cyclins A, D3, and E. There was an increase in both DNA synthesis and proliferating cell nuclear antigen levels in the adult transgenic hearts. The ratio of heart weight to body weight in cdk2 transgenic mice was significantly increased in neonatal day 2 but not in adults compared with that of wild-type mice. Analysis of dispersed individual adult cardiomyocytes showed a 5.6-fold increase in the proportion of smaller mononuclear cardiomyocytes in the transgenic mice. Echocardiography revealed that transgenic heart was functionally normal. However, adult transgenic ventricles expressed beta-myosin heavy chain and atrial natriuretic factor. Surgically induced pressure overload caused an exaggerated maladaptive hypertrophic response in transgenic mice but did not change the proportion of mononuclear cardiomyocytes. The data suggest that overexpression of cdk2 promotes smaller, less-differentiated mononuclear cardiomyocytes in adult hearts that respond in an exaggerated manner to pressure overload.
Collapse
Affiliation(s)
- H S Liao
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nozato T, Ito H, Tamamori M, Adachi S, Abe S, Marumo F, Hiroe M. G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II. JAPANESE CIRCULATION JOURNAL 2000; 64:595-601. [PMID: 10952156 DOI: 10.1253/jcj.64.595] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the cell cycle in proliferating cells is well known, but little is known about the role of cell cycle regulatory proteins in cardiac myocytes, which are fully differentiated cells. The present study determined, in vitro, the effect of angiotensin II (Ang II) treatment of neonatal rat cardiac myocytes on protein levels of cyclins and retinoblastoma gene product (pRb) phosphorylation. The role of G1 cyclin/cdk in Ang II-induced cardiac myocyte hypertrophy by overexpressing cdk inhibitor p21Cip1/Waf1 or p16INK4a was also examined using recombinant adenoviral vectors encoding these genes. Western blot analysis revealed that Ang II stimulated cyclin D1, D2, D3 and A protein levels in cardiac myocytes. Moreover, Ang II phosphorylated pRb on serine 780, which is known to occur in mitotic cells during cell cycle progression. Cultured cardiac myocytes treated with Ang II and infected with either control or recombinant adenovirus indicated that expression of p21 and p16 inhibited Ang II-induced cardiac myocyte hypertrophy, [3H]leucine incorporation into total cellular proteins, and skeletal alpha-actin (SK-A) and atrial natriuretic peptide (ANP) mRNA accumulation. Control virus had no effects on these parameters. These results suggest that G1 cyclins play an important role in cardiac myocyte hypertrophy stimulated by Ang II.
Collapse
Affiliation(s)
- T Nozato
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Pasumarthi KB, Nakajima H, Nakajima HO, Jing S, Field LJ. Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified TSC2 transgene. Circ Res 2000; 86:1069-77. [PMID: 10827137 DOI: 10.1161/01.res.86.10.1069] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by the appearance of benign tumors in multiple organs, including the heart. Disease progression is accompanied by homozygous mutation at 1 of 2 loci (designated TSC1 or TSC2), leading to the suggestion that these genes function as tumor suppressors. In this study, we generated a series of TSC2 cDNAs in which one or more structural motifs were deleted, with the hope that expression of the modified gene product would override the growth-inhibitory activity of the endogenous TSC2 gene product. Several of the modified cDNAs enhanced growth rate, increased endocytosis, and promoted aberrant protein trafficking when expressed in NIH-3T3 cells, thereby mimicking phenotypes typical of TSC2-deficient cells. Surprisingly, targeted expression of the most potent TSC2 cDNA to the heart did not perturb cardiac development. However, the level of cardiomyocyte DNA synthesis in adult transgenic mice was elevated >35-fold during isoproterenol-induced hypertrophy compared with their nontransgenic siblings. These results suggest that alteration of TSC2 gene activity in combination with beta-adrenergic stimulation can reactivate the cell cycle in a limited number of terminally differentiated adult cardiomyocytes.
Collapse
Affiliation(s)
- K B Pasumarthi
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | |
Collapse
|
39
|
Poolman RA, Li JM, Durand B, Brooks G. Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 1999; 85:117-27. [PMID: 10417393 DOI: 10.1161/01.res.85.2.117] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
-The precise role of cell cycle-dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains to be determined. We report that loss of p27(KIP1) in the mouse results in a significant increase in heart size and in the total number of cardiac myocytes. In comparison to p27(KIP1)+/+ myocytes, the percentage of neonatal p27(KIP1)-/- myocytes in S phase was increased significantly, concomitant with a significant decrease in the percentage of G(0)/G(1) cells. The expressions of proliferating cell nuclear antigen, G(1)/S and G(2)/M phase-acting cyclins, and cyclin-dependent kinases (CDKs) were upregulated significantly in ventricular tissue obtained from early neonatal p27(KIP1)-/- mice, concomitant with a substantial decrease in the expressions of G(1) phase-acting cyclins and CDKs. Furthermore, mRNA expressions of the embryonic genes atrial natriuretic factor and alpha-skeletal actin were detectable at significant levels in neonatal and adult p27(KIP1)-/- mouse hearts but were undetectable in p27(KIP1)+/+ hearts. In addition, loss of p27(KIP1) was not compensated for by the upregulation of other CDK inhibitors. Thus, the loss of p27(KIP1) results in prolonged proliferation of the mouse cardiac myocyte and perturbation of myocyte hypertrophy.
Collapse
Affiliation(s)
- R A Poolman
- Cardiovascular Cellular and Molecular Biology, The Rayne Institute, St. Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|