1
|
Dawadi S, Shrestha DB, Oli PR, Shtembari J, Kansakar S, Paudel S, Pant K. Mineralocorticoid Receptor Antagonist versus Placebo in a Patient With End-Stage Kidney Disease Under Renal Replacement Therapy: A Systematic Review and Meta-Analysis. J Cardiovasc Pharmacol 2025; 85:270-277. [PMID: 39665433 DOI: 10.1097/fjc.0000000000001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
ABSTRACT The number of patients living with chronic kidney diseases is increasing, and so are the patients with end-stage renal disease (ESRD) undergoing renal replacement therapy. Although there is a common understanding that these patients face higher risks of fatal or nonfatal cardiovascular and cerebrovascular events, and mineralocorticoid receptor antagonists (MRAs) have been an essential pillar in managing heart failure, their use in this subset of patients has been overshadowed because of concerns of hyperkalemia. Patients with ESRD under renal replacement therapy have often been excluded from landmark trials. This meta-analysis was conducted based on the PRISMA guideline after registering the protocol with PROSPERO (CRD42024499835). A database search included articles until April 2024, and relevant data were extracted from the included studies. Analysis was done using RevMan web (version 5.4). A total of 15 studies among 1086 studies were included in the final analysis. Our meta-analysis revealed MRA significantly reduced all-cause mortality (odds ratio (OR) 0.35, confidence interval (CI), 0.23-0.54) and cardiovascular mortality (OR 0.37, 0.21-0.65). With some possible increase in the risk of hyperkalemia (OR 1.56, CI, 1.01-2.42), with no discernible difference in the occurrence of stroke (OR 0.57, CI, 0.25-1.28) or myocardial infarction (OR 0.63, CI, 0.08-4.72). The utilization of MRA in patients with ESRD under dialysis is linked to improved mortality outcomes, albeit with slight concerns for hyperkalemia. Although current evidence leans toward MRA usage, prospective randomized controlled trials involving a broader patient cohort are essential to establish robust guidance for MRA application in this subset of patients.
Collapse
Affiliation(s)
- Sagun Dawadi
- Department of Internal Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Dhan Bahadur Shrestha
- Division of Cardiology, Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY
| | - Prakash Raj Oli
- Department of Internal Medicine, Mount Sinai Hospital, Chicago, IL
| | - Jurgen Shtembari
- Division of Cardiology, Department of Internal Medicine, Carle Foundation Hospital, Urbana, IL
| | - Sajog Kansakar
- Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY
| | - Suman Paudel
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY; and
| | - Kailash Pant
- Division of Cardiovascular Medicine, UMass Chan-Baystate, Springfield, MA
| |
Collapse
|
2
|
Wang R, Wang N, Liang W, Lin T, Qiao H. The role of central amygdaloid nucleus in regulating the nongenomic effect of aldosterone on sodium intake in the nucleus tractus solitary. Brain Behav 2022; 12:e2615. [PMID: 35588446 PMCID: PMC9226841 DOI: 10.1002/brb3.2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The central nucleus of the amygdala (CeA) has dense downward fiber projections towards the nucleus tractus solitary (NTS) and can modulate the activity of NTS taste neurons. However, whether CeA affects the nongenomic role of aldosterone (ALD) in regulating sodium intake at the NTS level remains unclear. METHODS First, 40 adult male Sprague Dawley rats were divided into five groups, referring to different concentrations of ALD, to observe the sodium intake pattern compared with the vehicle (n = 8). ALD, the mineralocorticoid receptor antagonist spironolactone (SPI), and ALD + SPI were injected into the NTS. Then, the rats were divided into four groups (n = 16): bilateral/unilateral CeA electrolytic lesions, bilateral/unilateral CeA sham lesions. After recovery, one stainless steel 23-gauge cannula with two tubes was implanted into the rat NTS, and all rats underwent a recovery period of 7 days. Then, each group was divided into two subgroups that received aldosterone or control solution injection, and the cumulative intake of 0.3 mol/L NaCl solution was recorded within 30 min. RESULTS Bilateral CeA lesion eliminated the increased 0.3 mol/L NaCl intake induced by aldosterone microinjected into the NTS (CeA lesion: 0.3 ± 0.04 ml/30 min vs. sham lesion: 1.3 ± 0.3 ml/30 min). Unilateral CeA lesion reduced the increased NaCl intake induced by aldosterone microinjected into the NTS compared with the control group (p < .05) in the first 15 min but not in 15-30 min (p > .05). In sham lesion rats, aldosterone (5 ng/0.1 μl) still induced a significant increase in NaCl intake (aldosterone: 1.3 ± 0.3 ml/30 min vs. control: 0.25 ± 0.02 ml/30 min) (p < .05). CONCLUSION The results verified that the complete CeA may play an important role in aldosterone to regulate the nongenomic effect on rapid sodium intake.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Human Anatomy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wenhui Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Lin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Bruns B, Daub R, Schmitz T, Hamze-Sinno M, Spaich S, Dewenter M, Schwale C, Gass P, Vogt M, Katus H, Herzog W, Friederich HC, Frey N, Schultz JH, Backs J. Forebrain corticosteroid receptors promote post-myocardial infarction depression and mortality. Basic Res Cardiol 2022; 117:44. [PMID: 36068417 PMCID: PMC9448693 DOI: 10.1007/s00395-022-00951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 01/31/2023]
Abstract
Myocardial infarction (MI) with subsequent depression is associated with increased cardiac mortality. Impaired central mineralocorticoid (MR) and glucocorticoid receptor (GR) equilibrium has been suggested as a key mechanism in the pathogenesis of human depression. Here, we investigate if deficient central MR/GR signaling is causative for a poor outcome after MI in mice. Mice with an inducible forebrain-specific MR/GR knockout (MR/GR-KO) underwent baseline and follow-up echocardiography every 2 weeks after MI or sham operation. Behavioral testing at 4 weeks confirmed significant depressive-like behavior and, strikingly, a higher mortality after MI, while cardiac function and myocardial damage remained unaffected. Telemetry revealed cardiac autonomic imbalance with marked bradycardia and ventricular tachycardia (VT) upon MI in MR/GR-KO. Mechanistically, we found a higher responsiveness to atropine, pointing to impaired parasympathetic tone of 'depressive' mice after MI. Serum corticosterone levels were increased but-in line with the higher vagal tone-plasma and cardiac catecholamines were decreased. MR/GR deficiency in the forebrain led to significant depressive-like behavior and a higher mortality after MI. This was accompanied by increased vagal tone, depleted catecholaminergic compensatory capacity and VTs. Thus, limbic MR/GR disequilibrium may contribute to the impaired outcome of depressive patients after MI and possibly explain the lack of anti-depressive treatment benefit.
Collapse
Affiliation(s)
- Bastian Bruns
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany ,Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany ,Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Ricarda Daub
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany ,Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmitz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany ,Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Maria Hamze-Sinno
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Spaich
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany ,Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany ,Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Chrysovalandis Schwale
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany ,Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Miriam Vogt
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Hugo Katus
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany ,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany ,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Signal Transduction of Mineralocorticoid and Angiotensin II Receptors in the Central Control of Sodium Appetite: A Narrative Review. Int J Mol Sci 2021; 22:ijms222111735. [PMID: 34769164 PMCID: PMC8584094 DOI: 10.3390/ijms222111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone-sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II-sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen-activated protein kinase (MAPK) and inositol 1,4,5-thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation.
Collapse
|
5
|
Yu Y, Wei SG, Weiss RM, Felder RB. Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience 2021; 463:227-237. [PMID: 33540053 PMCID: PMC8106624 DOI: 10.1016/j.neuroscience.2021.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling in cardiovascular regulatory regions of the brain contributes to sympathetic excitation in myocardial infarction (MI)-induced heart failure (HF) by increasing brain renin-angiotensin system (RAS) activity, neuroinflammation, and endoplasmic reticulum (ER) stress. The mechanisms eliciting brain ERK1/2 signaling in HF are still poorly understood. We tested the involvement of the epidermal growth factor receptor (EGFR) which, upon activation, stimulates ERK1/2 activity. Adult male Sprague-Dawley rats received bilateral microinjections of a lentiviral vector encoding a small interfering RNA (siRNA) for EGFR, or a scrambled siRNA, into the hypothalamic paraventricular nucleus (PVN), a recognized source of sympathetic overactivity in HF. One week later, coronary artery ligation was performed to induce HF. Four weeks later, the EGFR siRNA-treated HF rats, compared with the scrambled siRNA-treated HF rats, had lower mRNA and protein levels of EGFR, lower levels of phosphorylated (p-) EGFR and p-ERK1/2 and lower mRNA levels of the inflammatory mediators TNF-α, IL-1β and cyclooxygenase-2, the RAS components angiotensin-converting enzyme and angiotensin II type 1a receptor and the ER stress markers BIP and ATF4 in the PVN. They also had lower plasma and urinary norepinephrine levels and improved peripheral manifestations of HF. Additional studies revealed that p-EGFR was increased in the PVN of HF rats, compared with sham-operated control rats. These results suggest that activation of EGFR in the PVN triggers ERK1/2 signaling, along with ER stress, neuroinflammation and RAS activity, in MI-induced HF. Brain EGFR may be a novel target for therapeutic intervention in MI-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA; VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
6
|
Qiao H, Wang N, Yan J. [Role of the central nucleus of the amygdala in regulating the nongenomic effect of aldosterone on sodium intake in rat nucleus tractus solitarius]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1159-1164. [PMID: 30377123 DOI: 10.3969/j.issn.1673-4254.2018.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To reveal the nongenomic effect of aldosterone on the regulation of sodium intake in the nucleus tractus solitarius (NTS) and the role of central nucleus of the amygdala (CeA) in regulating this effect. METHODS Adult male SD rats were divided into four groups and underwent operations to induce bilateral CeA electrolytic lesions (400 μA, 25 s; n=28), bilateral sham CeA lesions (n=28), unilateral CeA lesions (n=28), or unilateral sham CeA lesions (n=26). After 3 days of recovery, the rats received implantation of a stainless steel 23-gauge cannula wih two tubes into the NTS followed by a recovery period of 7 days. The rats in each group were then divided into two subgroups for microinjection of aldosterone (50 ng/μL) or control solution in the NTS, and the cumulative intake within 30 min of 0.3 mol/L NaCl solution was recorded for each rat. RESULTS Bilateral CeA lesions (3 days) eliminated the increased 0.3 mol/L NaCl intake induced by aldosterone microinjected into the NTS (0.3±0.04 mL in CeA lesion group vs 1.3±0.3 mL in sham lesion group). Unilateral CeA lesion (3 days) reduced aldosterone-induced increase of NaCl intake in the first 15 min (P < 0.05) but not in 15-30 min (P > 0.05). In rats with sham lesions, aldosterone (50 ng/μL) still induced a significant increase in NaCl intake[1.3±0.3 mL vs 0.25±0.02 mL in the control group; F (3, 224)=24.0, P < 0.05]. CONCLUSIONS The regulation of sodium intake by aldosterone is subjected to descending facilitatory modulation by the bilateral CeA, and CeA integrity is essential for aldosterone to execute the nongenomic effect in regulating rapid sodium intake.
Collapse
Affiliation(s)
- Hu Qiao
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Nan Wang
- Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Jianqun Yan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Physiology and Pathophysiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| |
Collapse
|
7
|
Trebak F, Li W, Feng Y. Neuronal (pro)renin receptor regulates deoxycorticosterone-induced sodium intake. Physiol Genomics 2018; 50:904-912. [PMID: 30142028 DOI: 10.1152/physiolgenomics.00065.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased sodium appetite is a physiological response to sodium deficiency; however, it has also been implicated in disease conditions such as congestive heart failure, kidney failure, and salt-sensitive hypertension. The central nervous system is the major regulator of sodium appetite and intake behavior; however, the neural mechanisms underlying this behavior remain incompletely understood. Here, we investigated the involvement of the (pro)renin receptor (PRR), a component of the brain renin-angiotensin system, in the regulation of sodium intake in a neuron-specific PRR knockout (PRRKO) mouse model generated previously in our laboratory. Sodium intake following deoxycorticosterone (DOCA) stimulation was tested by assessing the preference of mice for 0.9% saline or regular water in single-animal metabolic cages. Blood pressure was monitored in conscious, freely moving mice by a telemetry system. We found that saline intake and total fluid intake were significantly reduced in PRRKO mice following DOCA treatment compared with that in wild-type (WT) mice, whereas regular water intake was similar between the genotypes. Sodium preference and total sodium intake were significantly reduced in PRRKO mice compared with WT mice. PRRKO mice also excreted less urine and urinary sodium compared with WT mice following DOCA treatment, whereas potassium excretion was similar between the two groups. Finally, we found that the sodium balance, calculated by subtracting urinary sodium excretion from sodium intake, was greater in WT mice than in PRRKO mice. Collectively, these findings suggest that the neuronal PRR plays a regulatory role in DOCA-induced sodium intake.
Collapse
Affiliation(s)
- Fatima Trebak
- Pharmacology and Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University , Winston-Salem, North Carolina
| | - Yumei Feng
- Pharmacology and Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
8
|
Yu Y, Wei SG, Weiss RM, Felder RB. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience 2018; 381:46-58. [PMID: 29684507 DOI: 10.1016/j.neuroscience.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Inflammation in the hypothalamic paraventricular nucleus (PVN) contributes to neurohumoral excitation and its adverse consequences in systolic heart failure (HF). The stimuli that trigger inflammation in the PVN in HF are not well understood. Angiotensin II (AngII) has pro-inflammatory effects, and circulating levels of AngII increase in HF. The subfornical organ (SFO), a circumventricular structure that lacks an effective blood-brain barrier and senses circulating AngII, contains PVN-projecting neurons. We hypothesized that activation of AngII type 1a receptors (AT1aR) in the SFO induces neuroinflammation downstream in the PVN. Male rats received SFO microinjections of an adeno-associated virus carrying shRNA for AT1aR, a scrambled shRNA, or vehicle. One week later, some rats were euthanized to confirm the transfection potential and knockdown efficiency of the shRNA. Others underwent coronary artery ligation to induce HF or a sham coronary artery ligation (Sham). Four weeks later, HF rats that received the scrambled shRNA had increased mRNA in SFO and PVN for AT1aR, inflammatory mediators and indicators of neuronal and glial activation, increased plasma levels of AngII, tumor necrosis factor-α, norepinephrine and arginine vasopressin, and impaired cardiac function, compared with Sham rats that received scrambled shRNA. The central abnormalities were ameliorated in HF rats that received AT1aR shRNA, as were plasma norepinephrine and vasopressin. Sham rats that received AT1aR shRNA had reduced SFO AT1aR mRNA but no other changes compared with Sham rats that received scrambled shRNA. The results suggest that activation of AT1aR in the SFO upregulates the neuroinflammation in the PVN that contributes to neurohumoral excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Research Service, Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA, USA.
| |
Collapse
|
9
|
Chen B, Geng J, Gao SX, Yue WW, Liu Q. Eplerenone Modulates Interleukin-33/sST2 Signaling and IL-1β in Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction. J Interferon Cytokine Res 2018; 38:137-144. [PMID: 29565745 DOI: 10.1089/jir.2017.0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bo Chen
- Department of Cardiology, The Fourth People's Hospital of Jinan, Medical School, Tai Shan Medical College, Jinan, P.R. China
| | - Jing Geng
- Department of Cardiology, The Fourth People's Hospital of Jinan, Medical School, Tai Shan Medical College, Jinan, P.R. China
| | - Shao-Xi Gao
- Department of Cardiology, The Fourth People's Hospital of Jinan, Medical School, Tai Shan Medical College, Jinan, P.R. China
| | - Wen-Wei Yue
- Department of Cardiology, The Fourth People's Hospital of Jinan, Medical School, Tai Shan Medical College, Jinan, P.R. China
| | - Qiang Liu
- Department of Cardiology, The Fourth People's Hospital of Jinan, Medical School, Tai Shan Medical College, Jinan, P.R. China
| |
Collapse
|
10
|
Belden Z, Deiuliis JA, Dobre M, Rajagopalan S. The Role of the Mineralocorticoid Receptor in Inflammation: Focus on Kidney and Vasculature. Am J Nephrol 2017; 46:298-314. [PMID: 29017166 PMCID: PMC6863172 DOI: 10.1159/000480652] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The remarkable success of clinical trials in mineralocorticoid receptor (MR) inhibition in heart failure has driven research on the physiological and pathological role(s) of nonepithelial MR expression. MR is widely expressed in the cardiovascular system and is a major determinant of endothelial function, smooth muscle tone, vascular remodeling, fibrosis, and blood pressure. An important new dimension is the appreciation of the role MR plays in immune cells and target organ damage in the heart, kidney and vasculature, and in the development of insulin resistance. SUMMARY The mechanism for MR activation in tissue injury continues to evolve with the evidence to date suggesting that activation of MR results in a complex repertoire of effects involving both macrophages and T cells. MR is an important transcriptional regulator of macrophage phenotype and function. Another important feature of MR activation is that it can occur even with normal or low aldosterone levels in pathological conditions. Tissue-specific conditional models of MR expression in myeloid cells, endothelial cells, smooth muscle cells and cardiomyocytes have been very informative and have firmly demonstrated a critical role of MR as a key pathophysiologic variable in cardiac hypertrophy, transition to heart failure, adipose inflammation, and atherosclerosis. Finally, the central nervous system activation of MR in permeable regions of the blood-brain barrier may play a role in peripheral inflammation. Key Message: Ongoing clinical trials will help clarify the role of MR blockade in conditions, such as atherosclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Zachary Belden
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey A. Deiuliis
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Leenen FHH, Blaustein MP, Hamlyn JM. Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect 2017; 6:R131-R145. [PMID: 28855243 PMCID: PMC5613704 DOI: 10.1530/ec-17-0161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research GroupUniversity of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mordecai P Blaustein
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of MedicineUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John M Hamlyn
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Aimo A, Giannoni A, Castiglione V, Mancuso M, Siciliano G, Piepoli MF, Passino C, Emdin M. Neurohormonal modulation for treatment of cardiac involvement in dystrophinopathies and mitochondrial disease. Eur J Prev Cardiol 2017; 24:1718-1724. [DOI: 10.1177/2047487317725018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
13
|
Downey RM, Mizuno M, Mitchell JH, Vongpatanasin W, Smith SA. Mineralocorticoid receptor antagonists attenuate exaggerated exercise pressor reflex responses in hypertensive rats. Am J Physiol Heart Circ Physiol 2017; 313:H788-H794. [PMID: 28733447 DOI: 10.1152/ajpheart.00155.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023]
Abstract
Exaggerated heart rate (HR) and blood pressure responses to exercise in hypertension are mediated, in part, by overactivity of the exercise pressor reflex (EPR). The mechanisms underlying this EPR dysfunction have not been fully elucidated. Previous studies have shown that stimulation of mineralocorticoid receptors (MRs) with exogenous administration of aldosterone in normal, healthy rats reproduces the EPR overactivity characteristic of hypertensive animals. Conversely, the purpose of this study was to examine whether antagonizing MR with spironolactone (SPIR) or eplerenone (EPL) in decerebrated hypertensive rats ameliorates abnormal EPR function. Changes in mean arterial pressure (MAP) and HR induced by EPR or muscle mechanoreflex (a component of EPR) activation were assessed in normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) fed normal chow (NC) or a customized diet containing either SPIR or EPL for 3 wk. SHRs treated with SPIR or EPL had significantly attenuated MAP responses to EPR (NC: 45 ± 7 mmHg, SPIR: 26 ± 4 mmHg, and EPL: 24 ± 5 mmHg, P = 0.02) and mechanoreflex (NC: 34 ± 9 mmHg, SPIR: 17 ± 3 mmHg, and EPL: 15 ± 3 mmHg, P = 0.03) activation. SHRs treated with SPIR or EPL also showed significantly attenuated HR responses to EPR (NC: 17 ± 3 beats/min, SPIR: 9 ± 1 beats/min, and EPL: 9 ± 2 beats/min, P = 0.01) and mechanoreflex (NC: 15 ± 3 beats/min, SPIR: 6 ± 1 beats/min, and EPL: 7 ± 1 beats/min, P = 0.01) activation. Wistar-Kyoto rats treated with SPIR did not demonstrate significant differences in MAP or HR responses to EPR or mechanoreflex activation. The data suggest that antagonizing MRs may be an effective strategy for the treatment of EPR overactivity in hypertension.NEW & NOTEWORTHY Exaggerated cardiovascular responses to exercise in hypertensive patients are linked with overactive exercise pressor reflexes (EPRs). Administration of low-dose mineralocorticoid receptor antagonists (spironolactone or eplerenone) effectively ameliorates abnormal EPR function in hypertension. Effective treatment of EPR overactivity may reduce the cardiovascular risks associated with physical activity in hypertension.
Collapse
Affiliation(s)
- Ryan M Downey
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Masaki Mizuno
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Jere H Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and.,Hypertension Section, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas; .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
14
|
Liu L, Xu B, Ju Y. Addition of spironolactone in patients with resistant hypertension: A meta-analysis of randomized controlled trials. Clin Exp Hypertens 2017; 39:257-263. [DOI: 10.1080/10641963.2016.1246564] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Qiao H, Hu B, Zhou H, Yan J, Jia R, Lu B, Sun B, Luo X, Fan Y, Wang N. Aldosterone induces rapid sodium intake by a nongenomic mechanism in the nucleus tractus solitarius. Sci Rep 2016; 6:38631. [PMID: 27934887 PMCID: PMC5146675 DOI: 10.1038/srep38631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/11/2016] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study was to determine whether aldosterone has a rapid action in the nucleus tractus solitarius (NTS) that increases sodium intake, and to examine whether this effect of aldosterone, if present, is mediated by G protein-coupled estrogen receptor (GPER). Adult male Sprague-Dawley rats with a stainless-steel cannula in the NTS were used. Aldosterone was injected into the NTS at the doses of 1, 5, 10 and 20 ng 0.1 μl−1. A rapid dose-related increase of 0.3 M NaCl intake was induced within 30 min and this increase was not suppressed by the mineralocorticoid receptor (MR) antagonist spironolactone (10 ng 0.1 μl−1). Water intake was not affected by aldosterone. The GPER agonist G-1 produced a parallel and significant increase in sodium intake, while pre-treatment with GPER antagonist G15 (10 ng 0.1 μl−1) blocked the G-1 or aldosterone-induced rapid sodium intake. In addition, sodium intake induced by sodium depletion or low-sodium diet fell within 30 min after injection into the NTS of the MR antagonist spironolactone, while G15 had no effect. Our results confirm previous reports, and support the hypothesis that aldosterone evokes rapid sodium intake through a non-genomic mechanism involving GPER in NTS.
Collapse
Affiliation(s)
- Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710000, P.R. China.,Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China.,Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710000, P.R. China
| | - Bo Hu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710000, P.R. China.,Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710000, P.R. China
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710000, P.R. China.,Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Ru Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Lu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanyuan Fan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Nan Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Science, 76# W. Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Karashima S, Yoneda T, Kometani M, Ohe M, Mori S, Sawamura T, Furukawa K, Yamagishi M, Takeda Y. Angiotensin II receptor blocker combined with eplerenone or hydrochlorothiazide for hypertensive patients with diabetes mellitus. Clin Exp Hypertens 2016; 38:565-570. [DOI: 10.3109/10641963.2016.1151526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shigehiro Karashima
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masashi Ohe
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shunsuke Mori
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshitaka Sawamura
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kenji Furukawa
- Department of Internal Medicine, Kanazawa Insurance Hospital, Kanazawa, Japan
| | - Masakazu Yamagishi
- Department of Cardiovascular Disease, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiyu Takeda
- Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Wei SG, Yu Y, Weiss RM, Felder RB. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H871-H880. [PMID: 27496879 DOI: 10.1152/ajpheart.00362.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
18
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Crocin treatment prevents doxorubicin-induced cardiotoxicity in rats. Life Sci 2016; 157:145-151. [PMID: 27297631 DOI: 10.1016/j.lfs.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is well-known as a serious complication of chemotherapy in patients with cancer. It is unknown whether crocin (CRO), main component of Crocus sativus L. (Saffron), could reduce the severity of DOX-induced cardiotoxicity. Therefore, this study was undertaken to assess the protective impact of CRO on DOX-induced cardiotoxicity in rats. The rats were divided into four groups: control, DOX (2mg/kg/48h, for 12days), and CRO groups that receiving DOX as in group 2 and CRO (20 and 40mg/kg/24h, for 20days) starting 4days prior to first DOX injection and throughout the study. Echocardiographic, electrocardiographic and hemodynamic studies, along with histopathological examination and MTT test were carried out. Our findings demonstrate that DOX resulted in cardiotoxicity manifested by decreased the left ventricular (LV) systolic and diastolic pressures, rate of rise/drop of LV pressure, ejection fraction, fractional shortening and contractility index, as compared to control group. In addition, histopathological analysis of heart confirmed adverse structural changes in myocardial cells following DOX administration. The results also showed that CRO treatment significantly improved DOX-induced heart damage, structural changes in the myocardium and ventricular function. In addition, CRO did not affect the in vitro antitumor activity of DOX. Taken together, our data confirm that CRO is protective against cardiovascular-related disorders produced by DOX, and clinical studies are needed to examine these findings in human.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran.
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| |
Collapse
|
19
|
Souza NS, Dos-Santos RC, Silveira ALBD, R SC, Gantus MAV, Fortes FS, Olivares EL. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism. Clin Exp Pharmacol Physiol 2016; 43:476-83. [DOI: 10.1111/1440-1681.12543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- NS Souza
- Multicentre Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
| | - RC Dos-Santos
- Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
| | - Anderson Luiz Bezerra da Silveira
- Multicentre Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
| | - Sonoda-Côrtes R
- Multicentre Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
| | - Michel Alexandre Villani Gantus
- Therapy and Cellular and Molecular Physiology Laboratory; Centre for Biological and Health Sciences; West Zone State University Centre; Rio de Janeiro Brazil
| | - FS Fortes
- Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
- Therapy and Cellular and Molecular Physiology Laboratory; Centre for Biological and Health Sciences; West Zone State University Centre; Rio de Janeiro Brazil
| | - Emerson Lopes Olivares
- Multicentre Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
- Graduate Program in Physiological Sciences; Department of Physiological Sciences; Institute of Biological and Health Sciences; Federal Rural University of Rio de Janeiro; Seropédica Brazil
| |
Collapse
|
20
|
Evans LC, Ivy JR, Wyrwoll C, McNairn JA, Menzies RI, Christensen TH, Al-Dujaili EAS, Kenyon CJ, Mullins JJ, Seckl JR, Holmes MC, Bailey MA. Conditional Deletion of Hsd11b2 in the Brain Causes Salt Appetite and Hypertension. Circulation 2016; 133:1360-70. [PMID: 26951843 PMCID: PMC4819772 DOI: 10.1161/circulationaha.115.019341] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11βHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11βHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. Methods and Results— Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. Conclusions— Reduced 11βHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11βHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor–dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease.
Collapse
Affiliation(s)
- Louise C Evans
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Jessica R Ivy
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Caitlin Wyrwoll
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Julie A McNairn
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Robert I Menzies
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Thorbjørn H Christensen
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Emad A S Al-Dujaili
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Christopher J Kenyon
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - John J Mullins
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Jonathan R Seckl
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Megan C Holmes
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Matthew A Bailey
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense.
| |
Collapse
|
21
|
Yu Y, Wei SG, Zhang ZH, Weiss RM, Felder RB. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 310:H732-9. [PMID: 26801309 DOI: 10.1152/ajpheart.00703.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023]
Abstract
Brain MAPK signaling pathways are activated in heart failure (HF) induced by myocardial infarction and contribute to augmented sympathetic nerve activity. We tested whether decreasing ERK1/2 (also known as p44/42 MAPK) signaling in the hypothalamic paraventricular nucleus (PVN), a forebrain source of presympathetic neurons, would reduce the upregulation of sympathoexcitatory mediators in the PVN and augmented sympathetic nerve activity in rats with HF. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce HF, with left ventricular dysfunction confirmed by echocardiography. One week after coronary artery ligation or sham operation, small interfering (si)RNAs targeting ERK1/2 or a nontargeting control siRNA was microinjected bilaterally into the PVN. Experiments were conducted 5-7 days later. Confocal images revealed reduced phosphorylated ERK1/2 immunofluorescence in the PVN of HF rats treated with ERK1/2 siRNAs compared with HF rats treated with control siRNA. Western blot analysis confirmed significant reductions in both total and phosphorylated ERK1/2 in the PVN of HF rats treated with ERK1/2 siRNAs along with reduced expression of renin-angiotensin system components and inflammatory mediators. HF rats treated with ERK1/2 siRNAs also had reduced PVN neuronal excitation (fewer Fos-related antigen-like-immunoreactive neurons), lower plasma norepinephrine levels, and improved peripheral manifestations of HF compared with HF rats treated with control siRNAs. These results demonstrate that ERK1/2 signaling in the PVN plays a pivotal role in mediating sympathetic drive in HF induced by myocardial infarction and may be a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
22
|
Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism. Hypertens Res 2015; 39:133-7. [PMID: 26606875 DOI: 10.1038/hr.2015.129] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/04/2023]
Abstract
The mineralocorticoid receptor (MR) is expressed in the kidneys and in adipose tissue, and primary aldosteronism (PA) is associated with metabolic syndrome. This study assessed the effects of MR blockade by eplerenone (EPL) and spironolactone (SPL) on blood pressure (BP) and metabolic factors in patients with PA. Fifty-four patients with PA were treated with one of two MRAs, EPL (25-100 mg daily, n=27) or SPL (12.5-100 mg daily, n=27) for 12 months. Visceral (VAT) and subcutaneous adipose tissue were quantified using CT and FatScan imaging analysis software. Body mass index, homeostasis model assessment-insulin resistance (HOMA-IR), serum creatinine, potassium and lipids, urinary albumin excretion (UAE) and plasma aldosterone concentration (PAC) and plasma renin activity (PRA) were measured before and after treatment. EPL and SPL decreased BP and increased serum potassium levels to similar degrees. PAC and PRA did not differ between the two groups. Although treatment with the MRAs did not change HOMA-IR or serum lipids, they significantly decreased UAE and VAT (P<0.05). These results suggest that EPL and SPL are effective and safe for the treatment of PA. The long-term metabolic and renal effects of these MRAs should be further investigated.
Collapse
|
23
|
Wei SG, Yu Y, Weiss RM, Felder RB. Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats. Hypertension 2015; 67:229-36. [PMID: 26573710 DOI: 10.1161/hypertensionaha.115.06329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/24/2015] [Indexed: 01/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling and endoplasmic reticulum (ER) stress in the brain have been implicated in the pathophysiology of hypertension. This study determined whether ER stress occurs in subfornical organ and hypothalamic paraventricular nucleus in heart failure (HF) and how MAPK signaling interacts with ER stress and other inflammatory mediators. HF rats had significantly higher levels of the ER stress biomarkers (glucose-regulated protein 78, activating transcription factor 6, activating transcription factor 4, X-box binding protein 1, P58(IPK), and C/EBP homologous protein) in subfornical organ and paraventricular nucleus, which were attenuated by a 4-week intracerebroventricular infusion of inhibitors selective for p44/42 MAPK (PD98059), p38 MAPK (SB203580), or c-Jun N-terminal kinase (SP600125). HF rats also had higher mRNA levels of tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and nuclear factor-κB p65, and a lower mRNA level of IκB-α, in subfornical organ and paraventricular nucleus, compared with SHAM rats, and these indicators of increased inflammation were attenuated in the HF rats treated with the MAPK inhibitors. Plasma norepinephrine level was higher in HF rats than in SHAM rats but was reduced in the HF rats treated with PD98059 and SB203580. A 4-week intracerebroventricular infusion of PD98059 also improved some hemodynamic and anatomic indicators of left ventricular function in HF rats. These data demonstrate that ER stress increases in the subfornical organ and paraventricular nucleus of rats with ischemia-induced HF and that inhibition of brain MAPK signaling reduces brain ER stress and inflammation and decreases sympathetic excitation in HF. An interaction between MAPK signaling and ER stress in cardiovascular regions of the brain may contribute to the development of HF.
Collapse
Affiliation(s)
- Shun-Guang Wei
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Yang Yu
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert M Weiss
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert B Felder
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (S.-G.W., Y.Y., R.M.W., R.B.F.); and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.).
| |
Collapse
|
24
|
Igunnu A, Seok YM, Olatunji LA, Kang SH, Kim I. Combined oral contraceptive synergistically activates mineralocorticoid receptor through histone code modifications. Eur J Pharmacol 2015; 769:48-54. [PMID: 26506558 DOI: 10.1016/j.ejphar.2015.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
Abstract
Clinical studies have shown that the use of combined oral contraceptive in pre-menopausal women is associated with fluid retention. However, the molecular mechanism is still elusive. We hypothesized that combined oral contraceptive (COC) ethinyl estradiol (EE) and norgestrel (N) synergistically activates mineralocorticoid receptor (MR) through histone code modifications. Twelve-week-old female Sprague-Dawley rats were treated with olive oil (control), a combination of 0.1µg EE and 1.0µg N (low COC) or 1.0µg EE and 10.0µg N (high COC) as well as 0.1 or 1.0µg EE and 1.0 or 10.0µg N daily for 6 weeks. Expression of MR target genes in kidney cortex was determined by quantitative real-time polymerase chain reaction. MR was quantified by western blot. Recruitment of MR and RNA polymerase II (Pol II) on promoters of target genes as well as histone code modifications was analyzed by chromatin immunoprecipitation assay. Treatment with COC increased renal cortical expression of MR target genes such as serum and glucocorticoid-regulated kinase 1 (Sgk-1), glucocorticoid-induced leucine zipper (Gilz), epithelial Na(+)channel (Enac) and Na(+)-K(+)-ATPase subunit α1 (Atp1a1). Although COC increased neither serum aldosterone nor MR expression in kidney cortex, it increased recruitment of MR and Pol II in parallel with increased H3Ac and H3K4me3 on the promoter regions of MR target genes. However, treatment with EE or N alone did not affect renal cortical expression of Sgk-1, Gilz, Enac or Atp1a1. These results indicate that COC synergistically activates MR through histone code modifications.
Collapse
Affiliation(s)
- Adedoyin Igunnu
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea
| | - Young-Mi Seok
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan, Gyeongbuk 712-260, Republic of Korea
| | - Lawrence A Olatunji
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea
| | - Seol-Hee Kang
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea.
| |
Collapse
|
25
|
Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 2015; 36:1974-82b. [PMID: 25975657 DOI: 10.1093/eurheartj/ehv087] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular autonomic imbalance, a cardinal phenotype of human heart failure, has adverse implications for symptoms during wakefulness and sleep; for cardiac, renal, and immune function; for exercise capacity; and for lifespan and mode of death. The objectives of this Clinical Review are to summarize current knowledge concerning mechanisms for disturbed parasympathetic and sympathetic circulatory control in heart failure with reduced ejection fraction and its clinical and prognostic implications; to demonstrate the patient-specific nature of abnormalities underlying this common phenotype; and to illustrate how such variation provides opportunities to improve or restore normal sympathetic/parasympathetic balance through personalized drug or device therapy.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Suite 1614, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Piotr Ponikowski
- Department for Heart Disease, Medical University, Clinical Military Hospital, Wroclaw, Poland
| |
Collapse
|
26
|
Butler J, Papadimitriou L, Georgiopoulou V, Skopicki H, Dunbar S, Kalogeropoulos A. Comparing Sodium Intake Strategies in Heart Failure: Rationale and Design of the Prevent Adverse Outcomes in Heart Failure by Limiting Sodium (PROHIBIT) Study. Circ Heart Fail 2015; 8:636-45. [PMID: 25991806 PMCID: PMC4441040 DOI: 10.1161/circheartfailure.114.001700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Javed Butler
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA.
| | - Lampros Papadimitriou
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA
| | - Vasiliki Georgiopoulou
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA
| | - Hal Skopicki
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA
| | - Sandra Dunbar
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA
| | - Andreas Kalogeropoulos
- From the Department of Medicine, Division of Cardiology, Stony Brook University, NY (J.B., L.P., H.S.); and Department of Medicine, Division of Cardiology (V.G., A.K.) and Nell Hodgson Woodruff School of Nursing (S.D.), Emory University, Atlanta, GA
| |
Collapse
|
27
|
Sorota S. The sympathetic nervous system as a target for the treatment of hypertension and cardiometabolic diseases. J Cardiovasc Pharmacol 2014; 63:466-76. [PMID: 24805148 DOI: 10.1097/fjc.0000000000000064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The regulation of blood pressure by the sympathetic nervous system is reviewed with an emphasis on the role of the sympathetic nervous system in the development and maintenance of hypertension. Evidence from patients and animal models is summarized. Because it is clear that there is a neural contribution to many types of human hypertension and other cardiometabolic diseases, the case is presented for a renewed emphasis on the development of sympatholytic approaches for the treatment of hypertension and other conditions associated with hyperactivity of the sympathetic nervous system.
Collapse
Affiliation(s)
- Steve Sorota
- Cardiorenal Department, Merck Research Laboratories, Kenilworth, NJ
| |
Collapse
|
28
|
Fu Y, Vallon V. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms. Nephron Clin Pract 2014; 128:8-16. [PMID: 25376899 DOI: 10.1159/000368264] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC.
Collapse
Affiliation(s)
- Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
29
|
Interaction between AT1 receptor and NF-κB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol 2014; 13:381-90. [PMID: 23877628 DOI: 10.1007/s12012-013-9219-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiotensin II type 1 receptor (AT1-R) and nuclear factor-kappaB (NF-κB) in the paraventricular nucleus (PVN) play important roles in heart failure (HF); however, the central mechanisms by which AT1-R and NF-κB contribute to sympathoexcitation in HF are yet unclear. In this study, we determined whether interaction between AT1-R and NF-κB in the PVN modulates neurotransmitters and contributes to NAD(P)H oxidase-dependent oxidative stress and sympathoexcitation in HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (SHAM). Subsequently, animals were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS, 10 μg/h), an AT1-R antagonist; or pyrrolidine dithiocarbamate (PDTC, 5 μg/h), a NF-κB inhibitor via osmotic minipump. Myocardial infarction (MI) rats had higher levels of glutamate (Glu), norepinephrine (NE) and NF-κB p65 activity, lower levels of gamma-aminobutyric acid (GABA), and more positive neurons for phosphorylated IKKβ and gp91(phox) (a subunit of NAD(P)H oxidase) in the PVN when compared to SHAM rats. MI rats also had higher levels of renal sympathetic nerve activity (RSNA) and plasma proinflammatory cytokines (PICs), NE and epinephrine. PVN infusions of LOS or PDTC attenuated the decreases in GABA and the increases in gp91(phox), NF-κB activity, Glu and NE, in the PVN of HF rats. PVN infusions of LOS or PDTC also attenuated the increases in RSNA and plasma PICs, NE and epinephrine in MI rats. These findings suggest that interaction between AT1 receptor and NF-κB in the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.
Collapse
|
30
|
Rafatian N, Westcott KV, White RA, Leenen FHH. Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. Am J Physiol Regul Integr Comp Physiol 2014; 307:R879-87. [PMID: 25100076 DOI: 10.1152/ajpregu.00075.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After myocardial infarction (post-MI), inflammation and apoptosis contribute to progressive cardiac remodeling and dysfunction. Cardiac mineralocorticoid receptor (MR) and β-adrenergic signaling promote apoptosis and inflammation. Post-MI, MR activation in the brain contributes to sympathetic hyperactivity and an increase in cardiac aldosterone. In the present study, we assessed the time course of macrophage infiltration and apoptosis in the heart as detected by both terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and active caspase-3 immunostaining in both myocytes and nonmyocytes, as well as the effects of central MR blockade by intracerebroventricular infusion of eplerenone at 5 μg/day on peak changes in macrophage infiltration and apoptosis post-MI. Macrophage numbers were markedly increased in the infarct and peri-infarct zones and to a minor extent in the noninfarct part of the left ventricle at 10 days post-MI and decreased over the 3-mo study period. Apoptosis of both myocytes and nonmyocytes was clearly apparent in the infarct and peri-infarct areas at 10 days post-MI. For TUNEL, the increases persisted at 4 and 12 wk, but the number of active caspase-3-positive cells markedly decreased. Central MR blockade significantly decreased CD80-positive proinflammatory M1 macrophages and increased CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade also reduced apoptosis of myocytes by 40-50% in the peri-infarct and to a lesser extent of nonmyocytes in the peri-infarct and infarct zones. These findings indicate that MR activation in the brain enhances apoptosis both in myocytes and nonmyocytes in the peri-infarct and infarct area post-MI and contributes to the inflammatory response.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine V Westcott
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roselyn A White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Kawarazaki W, Fujita T. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2014; 40:929-36. [PMID: 24111570 DOI: 10.1111/1440-1681.12177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
Abstract
According to Guyton's model, impaired renal sodium excretion plays a key role in the increased salt sensitivity of blood pressure (BP). Several factors contribute to impaired renal sodium excretion, including the sympathetic nervous system, the renin-angiotensin system and aldosterone. Accumulating evidence suggests that abnormalities in aldosterone and its receptor (i.e. the mineralocorticoid receptor (MR)) are involved in the development of salt-sensitive (SS) hypertension. Patients with metabolic syndrome often exhibit hyperaldosteronism and are susceptible to SS hypertension. Aldosterone secretion from the adrenal glands is not suppressed in obese hypertensive rats fed a high-salt diet because of the abundant production of adipocyte-derived aldosterone-releasing factors, which are independent of the negative feedback regulation of aldosterone secretion by the renin-angiotensin-aldosterone system. Increased plasma aldosterone levels lead to SS hypertension via MR activation in the kidney. Renal MR activity is increased in Dahl salt-sensitive rats fed a high-salt diet, despite the appropriate suppression of plasma aldosterone levels. In this rat strain, activation of MR in the distal nephron causes salt-induced hypertension. This paradoxical response of the MR to salt loading can be attributed to activation of Rac1, a small GTPase. In the presence of aldosterone, activated Rac1 synergistically and directly activates MR in a ligand-independent manner. Thus, Rac1 activation in the kidney determines the salt sensitivity of BP. Together, the available evidence suggests that the aberrant Rac1-MR pathway plays a key role in the development of SS hypertension.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology=1, The University of Tokyo=1, Tokyo, Japan
| | | |
Collapse
|
32
|
Liu Q, Wang T, Yu H, Liu B, Jia R. Interaction between interleukin-1 beta and angiotensin II receptor 1 in hypothalamic paraventricular nucleus contributes to progression of heart failure. J Interferon Cytokine Res 2014; 34:870-5. [PMID: 24955935 DOI: 10.1089/jir.2013.0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The central mechanisms by which interleukin-1 beta (IL-1β) and angiotension II receptor 1 (AT1-R) contribute to sympathoexcitation in heart failure (HF) are unclear. In this study, we determined whether an interaction between IL-1β and AT1-R in the paraventricular nucleus (PVN) contributes to progression of HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (Sham). Subsequently, animals were treated for 4 weeks through PVN infusion with either vehicle, losartan (LOS, 200 μg/day), IL-1β (IL, 1 μg/day), or IL-1β along with LOS (LOS+IL). HF rats had higher levels of corticotropin-releasing hormone (CRH), norepinephrine (NE), and glutamate (Glu); lower levels of gamma-aminobutyric acid (GABA); and more positive fra-like activity in PVN when compared with Sham rats. HF rats also had higher levels of NE, epinephrine (EPI), and IL-1β in plasma. PVN infusion of LOS attenuated the decreases in GABA and the increases in CRH, NE, and Glu in the PVN of HF rats. IL-1β could further increase the expression of CRH, NE, Glu, EPI, and IL-1β and decrease GABA expression. Treatment with IL-1β along with LOS could eliminate the effects of IL-1β. These findings suggest that an interaction between AT1-R and IL-1β in the PVN contributes to progression in HF.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardiology, Medical School, Tai Shan Medical College, The Fourth People's Hospital of Jinan , Jinan, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Huang BS, Chen A, Ahmad M, Wang HW, Leenen FHH. Mineralocorticoid and AT1 receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. J Physiol 2014; 592:3273-86. [PMID: 24951624 DOI: 10.1113/jphysiol.2014.276584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intracerebroventricular infusion of a mineralocorticoid receptor (MR) or angiotensin II type 1 receptor (AT1R) blocker in rats attenuates sympathetic hyperactivity and progressive left ventricular (LV) dysfunction post myocardial infarction (MI). The present study examined whether knockdown of MRs or AT1Rs specifically in the paraventricular nucleus (PVN) contributes to these effects, and compared cardiac effects with those of systemic treatment with the β1-adrenergic receptor blocker metoprolol. The PVN of rats was infused with adeno-associated virus carrying small interfering RNA against either MR (AAV-MR-siRNA) or AT1R (AAV-AT1R-siRNA), or as control scrambled siRNA. At 4 weeks post MI, AT1R but not MR expression was increased in the PVN, excitatory renal sympathetic nerve activity and pressor responses to air stress were enhanced, and arterial baroreflex function was impaired; LV end-diastolic pressure (LVEDP) was increased and LV peak systolic pressure (LVPSP), ejection fraction (EF) and dP/dtmax decreased. AAV-MR-siRNA and AAV-AT1R-siRNA both normalized AT1R expression in the PVN, similarly ameliorated sympathetic and pressor responses to air stress, largely prevented baroreflex desensitization, and improved LVEDP, EF and dP/dtmax as well as cardiac interstitial (but not perivascular) fibrosis. In a second set of rats, metoprolol at 70 or 250 mg kg(-1) day(-1) in the drinking water for 4 weeks post MI did not improve LV function except for a decrease in LVEDP at the lower dose. These results suggest that in rats MR-dependent upregulation of AT1Rs in the PVN contributes to sympathetic hyperactivity, and LV dysfunction and remodelling post MI. In rats, normalizing MR-AT1R signalling in the PVN is a more effective strategy to improve LV dysfunction post MI than systemic β1 blockade.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Aidong Chen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Monir Ahmad
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Hong-Wei Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
34
|
Ufnal M, Skrzypecki J. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs. Neuropeptides 2014; 48:65-73. [PMID: 24485840 DOI: 10.1016/j.npep.2014.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Marcin Ufnal
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland.
| | - Janusz Skrzypecki
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| |
Collapse
|
35
|
Abstract
Statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) reduce plasma cholesterol and improve endothelium-dependent vasodilation, inflammation and oxidative stress. A ‘pleiotropic’ property of statins receiving less attention is their effect on the autonomic nervous system. Increased central sympathetic outflow and diminished cardiac vagal tone are disturbances characteristic of a range of cardiovascular conditions for which statins are now prescribed routinely to reduce cardiovascular events: following myocardial infarction, and in hypertension, chronic kidney disease, heart failure and diabetes. The purpose of the present review is to synthesize contemporary evidence that statins can improve autonomic circulatory regulation. In experimental preparations, high-dose lipophilic statins have been shown to reduce adrenergic outflow by attenuating oxidative stress in central brain regions involved in sympathetic and parasympathetic discharge induction and modulation. In patients with hypertension, chronic kidney disease and heart failure, lipophilic statins, such as simvastatin or atorvastatin, have been shown to reduce MNSA (muscle sympathetic nerve activity) by 12–30%. Reports concerning the effect of statin therapy on HRV (heart rate variability) are less consistent. Because of their implications for BP (blood pressure) control, insulin sensitivity, arrhythmogenesis and sudden cardiac death, these autonomic nervous system actions should be considered additional mechanisms by which statins lower cardiovascular risk.
Collapse
|
36
|
May CN, Yao ST, Booth LC, Ramchandra R. Cardiac sympathoexcitation in heart failure. Auton Neurosci 2013; 175:76-84. [DOI: 10.1016/j.autneu.2012.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
37
|
Gabor A, Leenen FHH. Central mineralocorticoid receptors and the role of angiotensin II and glutamate in the paraventricular nucleus of rats with angiotensin II-induced hypertension. Hypertension 2013; 61:1083-90. [PMID: 23509081 DOI: 10.1161/hypertensionaha.111.00797] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A chronic increase in circulating angiotensin II (Ang II) activates an aldosterone-mineralocorticoid receptor-ouabain neuromodulatory pathway in the brain that increases neuronal activation in hypothalamic nuclei, such as the paraventricular nucleus (PVN) and causes progressive hypertension. Several models of chronic sympathetic hyperactivity are associated with an increase in AT1 and glutamate receptor activation in the PVN. The current study evaluated whether increased angiotensin type 1 (AT1) and glutamate receptor-dependent signaling in the PVN contributes to the maintenance of blood pressure (BP) in Ang II-hypertensive Wistar rats, and the role of aldosterone-mineralocorticoid receptor pathway in this enhanced signaling. After subcutaneous infusion of Ang II for 2 weeks, in conscious rats BP and heart rate were recorded after (1) 10-minute bilateral infusions of candesartan and kynurenate in the PVN; (2) 1 hour intracerebroventricular infusion of eplerenone, and (3) candesartan and kynurenate after eplerenone. Candesartan or kynurenate in the PVN fully reversed the increase in BP from circulating Ang II. Kynurenate after candesartan or candesartan after kynurenate did not further lower BP. Intracerebroventricular infusion of eplerenone at 16 hours after its infusion fully reversed the increase in BP from circulating Ang II. After eplerenone, candesartan and kynurenate in the PVN did not further decrease BP. These findings suggest that increased mineralocorticoid receptor activation in the brain activates a slow neuromodulatory pathway that maintains enhanced AT1 and glutamate receptor-dependent signaling in the PVN, and thereby the hypertension from a chronic increase in circulating Ang II.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
38
|
Formenti S, Bassi M, Nakamura NB, Schoorlemmer GHM, Menani JV, Colombari E. Hindbrain mineralocorticoid mechanisms on sodium appetite. Am J Physiol Regul Integr Comp Physiol 2013. [DOI: 10.1152/ajpregu.00385.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280–350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite.
Collapse
Affiliation(s)
- Silmara Formenti
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Natália B. Nakamura
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Guus H. M. Schoorlemmer
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology, School of Medicine, Federal University of São Paulo-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; and
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
39
|
May CN, Calzavacca P, Ishikawa K, Langenberg C, Wan L, Ramchandra R, Bellomo R. Novel targets for sepsis-induced kidney injury: the glomerular arterioles and the sympathetic nervous system. Exp Physiol 2012; 97:1168-77. [DOI: 10.1113/expphysiol.2011.061804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Effects of Spironolactone Alone and in Addition to a Beta-blocker on Myocardial Histological and Electrical Remodeling in Chronic Severe Failing Rat Hearts. J Cardiovasc Pharmacol 2012; 60:315-21. [DOI: 10.1097/fjc.0b013e318260e688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Abstract
Clinical studies have shown that aldosterone and salt are independently related to hypertension, cardiovascular morbidity and mortality. More recently, studies in humans have demonstrated that, similarly to animals, endogenous aldosterone and dietary salt intake have not only separate, but also combined effects to accelerate target-organ deterioration. The aldosterone-salt interaction has important clinical implications, because combined effects of both can be minimized, if not avoided, by reducing salt intake. This interaction could also be interrupted by blocking the effects of aldosterone, with use of mineralocorticoid receptor antagonists, or by reducing aldosterone effects by adrenalectomy, in patients with aldosterone producing adenoma. Furthermore, aldosterone reduction or blockade may reduce salt appetite.
Collapse
Affiliation(s)
- E Pimenta
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Princess Alexandra and Greenslopes Hospitals, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
42
|
Leenen FHH, Ruzicka M, Floras JS. Central sympathetic inhibition by mineralocorticoid receptor but not angiotensin II type 1 receptor blockade: are prescribed doses too low? Hypertension 2012; 60:278-80. [PMID: 22733463 DOI: 10.1161/hypertensionaha.112.197012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Oki K, Gomez-Sanchez EP, Gomez-Sanchez CE. Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2012; 39:90-5. [PMID: 21585422 PMCID: PMC3164934 DOI: 10.1111/j.1440-1681.2011.05538.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The mechanisms by which excessive salt causes hypertension involve more than retention of sodium and water by the kidneys and are far from clear. Mineralocorticoids act centrally to increase salt appetite, sympathetic drive and vasopressin release, resulting in hypertension that is prevented by the central infusion of mineralocorticoid receptor (MR) antagonists. The MR has similar affinity for aldosterone and the glucocorticoids corticosterone or cortisol. Specificity is conferred in transport epithelia by the colocalization of the MR with 11β-hydroxysteroid dehydrogenase Type 2. Coexpression also occurs in some neurons, notably those of the nucleus tractus solitarius that are activated by sodium depletion and aldosterone and mediate salt-seeking behaviour. 2. The salt-induced hypertension of the Dahl salt-sensitive rat is mitigated by the central infusion of a mineralocorticoid antagonist even though circulating aldosterone is normal or reduced in salt-sensitive (SS). Contrary to reports that salt appetite in the Dahl salt-sensitive rat is depressed, we found that it is increased compared with that in Spraque-Dawley rats. 3. Extra-adrenal aldosterone synthesis in the brain occurs in minute amounts that could only be relevant locally. Expression of aldosterone synthase mRNA and aldosterone concentrations in the brain of Dahl salt-sensitive rats are increased compared with Spraque-Dawley rats. The central infusion of inhibitors of aldosterone synthesis lowers salt-induced hypertension in the Dahl salt-sensitive rat, suggesting a role for excessive Dahl salt-sensitive synthesis in the brain. Brain MR, particularly those in the paraventricular nuclei, regulate inflammatory processes that are exacerbated by sodium and lead to cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kenji Oki
- Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
- Division of Endocrinology University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elise P. Gomez-Sanchez
- Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
- Division of Endocrinology University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Celso E. Gomez-Sanchez
- Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
- Division of Endocrinology University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
44
|
Abstract
High plasmatic levels of aldosterone cause hypertension and contribute to progressive organ damage to the heart, vasculature, and kidneys. Recent studies have demonstrated a role for the immune system in these pathological processes. Aldosterone promotes an inflammatory state characterized by vascular infiltration of immune cells, reactive oxidative stress, and proinflammatory cytokine production. Further, cells of the adaptive immune system, such as T cells, seem to participate in the genesis of mineralocorticoid hormone-induced hypertension. In addition, the observation that aldosterone can promote CD4⁺ T-cell activation and Th17 polarization suggests that this hormone could contribute to the onset of autoimmunity. Here we discuss recent evidence supporting a significant involvement of the immune system, especially adaptive immunity, in the genesis of hypertension and organ damage induced by primary aldosteronism. In addition, possible new therapeutic approaches consisting of immunomodulator drugs to control exacerbated immune responses triggered by elevated aldosterone concentrations will be described.
Collapse
|
45
|
Zhang ZH, Yu Y, Wei SG, Felder RB. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am J Physiol Heart Circ Physiol 2011; 302:H742-51. [PMID: 22081704 DOI: 10.1152/ajpheart.00856.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, owa City, IA52242, USA.
| | | | | | | |
Collapse
|
46
|
de Souza JT, Matsubara LS, Menani JV, Matsubara BB, Johnson AK, De Gobbi JIF. Higher salt preference in heart failure patients. Appetite 2011; 58:418-23. [PMID: 22019543 DOI: 10.1016/j.appet.2011.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/30/2011] [Accepted: 09/29/2011] [Indexed: 11/19/2022]
Abstract
Heart failure (HF) is a complex syndrome that involves changes in behavioral, neural and endocrine regulatory systems. Dietary salt restriction along with pharmacotherapy is considered an essential component in the effective management of symptomatic HF patients. However, it is well recognized that HF patients typically have great difficulty in restricting sodium intake. We hypothesized that under HF altered activity in systems that normally function to regulate body fluid and cardiovascular homeostasis could produce an increased preference for the taste of salt. Therefore, this study was conducted to evaluate the perceived palatability (defined as salt preference) of food with different concentrations of added salt in compensated chronically medicated HF patients and comparable control subjects. Healthy volunteers (n=25) and medicated, clinically stable HF patients (n=38, NYHA functional class II or III) were interviewed and given an evaluation to assess their preferences for different amounts of saltiness. Three salt concentrations (0.58, 0.82, and 1.16 g/100 g) of bean soup were presented to the subjects. Salt preference for each concentration was quantified using an adjective scale (unpleasant, fair or delicious). Healthy volunteers preferred the soup with medium salt concentration (p=0.042), HF patients disliked the low concentration (p<0.001) and preferred the high concentration of salted bean soup (p<0.001). When compared to healthy volunteers, HF patients demonstrated a significantly greater preference for the soup with a high salt concentration (p=0.038). It is concluded that medicated, compensated patients under chronic treatment for HF have an increased preference for salt.
Collapse
|
47
|
Huang BS, Zheng H, Tan J, Patel KP, Leenen FHH. Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Exp Physiol 2011; 96:1028-38. [PMID: 21824999 DOI: 10.1113/expphysiol.2011.059840] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats with salt-induced hypertension or postmyocardial infarction, angiotensin II type 1 receptor (AT(1)R) densities and oxidative stress increase and neuronal NO synthase (nNOS) levels decrease in the paraventricular nucleus (PVN). The present study was designed to determine whether these changes may depend on activation of the aldosterone -'ouabain' neuromodulatory pathway. After intracerebroventricular (i.c.v.) infusion of aldosterone (20 ng h(-1)) for 14 days, blood pressure (BP) and heart rate (HR) were recorded in conscious Wistar rats, and mRNA and protein for nNOS, endothelial NO synthase (eNOS), AT(1)R and NADPH oxidase subunits were assessed in brain tissue. Blood pressure and HR were significantly increased by aldosterone. Aldosterone significantly increased mRNA and protein of AT(1)R, P22phox, P47phox, P67phox and Nox2, and decreased nNOS but not eNOS mRNA and protein in the PVN, as well as increased the angiotensin-converting enzyme and AT(1)R binding densities in the PVN and supraoptic nucleus. The increases in BP and HR, as well as the changes in mRNA, proteins and angiotensin-converting enzyme and AT(1)R binding densities were all largely prevented by concomitant i.c.v. infusion of Digibind (to bind 'ouabain') or benzamil (to block presumed epithelial sodium channels). These data indicate that aldosterone, via 'ouabain', increases in the PVN angiotensin-converting enzyme, AT(1)R and oxidative stress, but decreases nNOS, and suggest that endogenous aldosterone may cause the similar pattern of changes observed in salt-sensitive hypertension and heart failure postmyocardial infarction.
Collapse
Affiliation(s)
- Bing S Huang
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | | | |
Collapse
|
48
|
Albaghdadi M, Gheorghiade M, Pitt B. Mineralocorticoid receptor antagonism: therapeutic potential in acute heart failure syndromes. Eur Heart J 2011; 32:2626-33. [DOI: 10.1093/eurheartj/ehr170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
49
|
Kontak AC, Wang Z, Arbique D, Adams-Huet B, Auchus RJ, Nesbitt SD, Victor RG, Vongpatanasin W. Reversible sympathetic overactivity in hypertensive patients with primary aldosteronism. J Clin Endocrinol Metab 2010; 95:4756-61. [PMID: 20660053 PMCID: PMC3050103 DOI: 10.1210/jc.2010-0823] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Aldosterone has been shown to exert a central sympathoexcitatory action in multiple animal models, but evidence in humans is still lacking. OBJECTIVES Our objective was to determine whether hyperaldosteronism causes reversible sympathetic activation in humans. METHODS We performed a cross-sectional comparison of muscle sympathetic nerve activity (SNA, intraneural microelectrodes) in 14 hypertensive patients with biochemically proven primary aldosteronism (PA) with 20 patients with essential hypertension (EH) and 18 age-matched normotensive (NT) controls. Seven patients with aldosterone-producing adenoma (APA) were restudied 1 month after unilateral adrenalectomy. RESULTS Mean blood pressure values in patients with PA and EH and NT controls was 145 ± 4/88 ± 2, 150 ± 4/90 ± 2, and 119 ± 2/76 ± 2 mm Hg, respectively. The major new findings are 2-fold: 1) baseline SNA was significantly higher in the PA than the NT group (40 ± 3 vs. 30 ± 2 bursts/min, P = 0.014) but similar to the EH group (41 ± 3 bursts/min) and 2) after unilateral adrenalectomy for APA, SNA decreased significantly from 38 ± 5 to 27 ± 4 bursts/min (P = 0.01), plasma aldosterone levels fell from 72.4 ± 20.3 to 11.4 ± 2.3 ng/dl (P < 0.01), and blood pressure decreased from 155 ± 8/94 ± 3 to 117 ± 4/77 ± 2 mm Hg (P < 0.01). CONCLUSION These data provide the first evidence in humans that APA is accompanied by reversible sympathetic overactivity, which may contribute to the accelerated hypertensive target organ disease in this condition.
Collapse
Affiliation(s)
- Andrew C Kontak
- Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8586, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang BS, Ahmadi S, Ahmad M, White RA, Leenen FHH. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-“ouabain” pathway. Am J Physiol Heart Circ Physiol 2010; 299:H422-30. [DOI: 10.1152/ajpheart.00256.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in plasma ANG II causes neuronal activation in hypothalamic nuclei and a slow pressor response, presumably by increasing sympathetic drive. We evaluated whether the activation of a neuromodulatory pathway, involving aldosterone and “ouabain,” is involved in these responses. In Wistar rats, the subcutaneous infusion of ANG II at 150 and 500 ng·kg−1·min−1 gradually increased blood pressure up to 60 mmHg at the highest dose. ANG II at 500 ng·kg−1·min−1 increased plasma ANG II by 4-fold, plasma aldosterone by 25-fold, and hypothalamic aldosterone by 3-fold. The intracerebroventricular infusion of an aldosterone synthase (AS) inhibitor prevented the ANG II-induced increase in hypothalamic aldosterone without affecting the increase in plasma aldosterone. Neuronal activity, as assessed by Fra-like immunoreactivity, increased transiently in the subfornical organ (SFO) but progressively in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). The central infusion of the AS inhibitor or a mineralocorticoid receptor blocker markedly attenuated the ANG II-induced neuronal activation in the PVN but not in the SON. Pressor responses to ANG II at 150 ng·kg−1·min−1 were abolished by an intracerebroventricular infusion of the AS inhibitor. Pressor responses to ANG II at 500 ng·kg−1·min−1 were attenuated by the central infusion of the AS inhibitor or the mineralocorticoid receptor blocker by 70–80% and by Digibind (to bind “ouabain”) by 50%. These results suggest a novel central nervous system mechanism for the ANG II-induced slow pressor response, i.e., circulating ANG II activates the SFO, leading to the direct activation of the PVN and SON, and, in addition, via aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
Collapse
Affiliation(s)
- Bing S. Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sara Ahmadi
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Roselyn A. White
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|