1
|
Lin X, Bai H, Barravecchia M, Norman R, Schiralli Lester GM, Kottmann RM, Leonard A, Rahman A, Young JL, Dean DA. Occludin Is Essential to Maintain Normal Alveolar Barrier Integrity and Its Protective Role During ARDS Progression. Int J Mol Sci 2024; 25:11595. [PMID: 39519146 PMCID: PMC11546927 DOI: 10.3390/ijms252111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has previously been deemed redundant in some tissues. The aim of the present study is to determine whether occludin is required for lung function by controlling alveolar barrier integrity in mouse models. Immunofluorescence staining of lungs from ARDS patients revealed a significant decrease in occludin expression compared to controls. Gene delivery of shRNA against occludin in the mouse lung reduced occludin levels and induced lung injury, as assessed by wet-to-dry-ratio, histology, and cellularity and protein content of bronchial alveolar lavage fluid. Conversely, gene delivery of an occludin-expressing plasmid increased occludin expression and dampened endotoxin-induced lung injury. In primary rat alveolar epithelial cells, occludin levels were positively correlated with barrier integrity, as well as membrane localization of claudin-18, another tight junction protein. Collectively, our data demonstrate that occludin plays a significant role in alveolar barrier function and that targeting occludin may provide a new therapeutic approach for ARDS.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Haiqing Bai
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Rosemary Norman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - R. Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Antony Leonard
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Arshad Rahman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Jennifer L. Young
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - David A. Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| |
Collapse
|
2
|
Vazquez Cegla AJ, Jones KT, Cui G, Cottrill KA, Koval M, McCarty NA. Effects of hyperglycemia on airway epithelial barrier function in WT and CF 16HBE cells. Sci Rep 2024; 14:25095. [PMID: 39443580 PMCID: PMC11500396 DOI: 10.1038/s41598-024-76526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis related diabetes (CFRD), the main co-morbidity in cystic fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells, we studied the effects of hyperglycemia in airway epithelial barrier function. Results show increased paracellular dye flux in CF cells in response to insulin under hyperglycemia. Gene expression experiments identified claudin-4 (CLDN4) as a key tight junction protein dysregulated in CF cells. CLDN4 protein localization by confocal microscopy showed that CLDN4 was tightly localized at tight junctions in WT cells, which did not change under hyperglycemia. ln contrast, CLDN4 was less well-localized in CF cells at normal glucose and localization was worsened under hyperglycemia. Treatment with highly effective modulator compounds (ETI) reversed this trend, and CFTR rescue was not affected by insulin or hyperglycemia. Bulk RNA sequencing showed differences in transcriptional responses in CF compared to WT cells under normal or high glucose, highlighting promising targets for future investigation. One of these targets is protein tyrosine phosphatase receptor type G (PTPRG), which has been previously found to play a role in defective Akt signaling and insulin resistance.
Collapse
Affiliation(s)
- Analia J Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kymry T Jones
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Michael Koval
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
3
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
4
|
Nevo S, Frenkel N, Kadouri N, Gome T, Rosenthal N, Givony T, Avin A, Peligero Cruz C, Kedmi M, Lindzen M, Ben Dor S, Damari G, Porat Z, Haffner-Krausz R, Keren-Shaul H, Yarden Y, Munitz A, Leshkowitz D, Goldfarb Y, Abramson J. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci Immunol 2024; 9:eabq6930. [PMID: 38215193 DOI: 10.1126/sciimmunol.abq6930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Frenkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Rosenthal
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Avin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Peligero Cruz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Merav Kedmi
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben Dor
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Munitz
- Department of Microbiology and Clinical Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Ren Q, Xu Y, Xu L, Lu Y, Zheng Y. Hypoxic bone marrow mesenchymal stem cell-derived exosomal lncRNA XIST attenuates lipopolysaccharide-induced acute lung injury via the miR-455-3p/Claudin-4 axis. Int Immunopharmacol 2023; 125:111066. [PMID: 37866316 DOI: 10.1016/j.intimp.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Mesenchymal stem cell-derived exosomes and long non-coding RNAs (lncRNAs) have been identified to play a role in acute lung injury (ALI). In this study, we investigated whether exosomal lncRNAs could regulate ALI and the underlying mechanisms. Bone marrow mesenchymal stem cells (BM-MSCs) were pretreated with hypoxia or normoxia, and exosomes were subsequently extracted from normoxic BM-MSCs (Nor-exos) and hypoxic BM-MSCs (Hypo-exos). A rat model of ALI was established via an airway perfusion of lipopolysaccharide (LPS). Exosomes were administered via the tail vein to evaluate the in vivo effect of exosomes in ALI. LPS-exposed RLE-6TN cells were incubated with exosomes to explore their in vitro effect in ALI. A luciferase reporter assay was used to evaluate the interaction between lncRNA XIST and miR-455-3p, as well as miR-455-3p and Claudin-4. We found that the exosomes attenuated LPS-induced ALI and Hypo-Exos exerted a greater therapeutic effect compared with Nor-exos both in vitro and in vivo. Moreover, an abundance of lncRNA XIST was observed in Hypo-exos compared with Nor-exos. Mechanistically, LncRNA XIST functioned as a miR-455-3p sponge and targeted Claudin-4 in ALI. Our results provide novel insight into the role of exosomal lncRNA XIST for the treatment of ALI. Thus, hypoxic pretreatment may represent an effective method for improving the therapeutic effects of exosomes.
Collapse
Affiliation(s)
- Qinghuan Ren
- Alberta College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingge Xu
- Emergency & Intensive Care Unit Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liming Xu
- Emergency & Intensive Care Unit Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yueliang Zheng
- Emergency & Intensive Care Unit Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; The First People's Hospital of Aksu District in Xinjiang, Aksu, Xinjiang, China.
| |
Collapse
|
6
|
Levai E, Marinovic I, Bartosova M, Zhang C, Schaefer B, Jenei H, Du Z, Drozdz D, Klaus G, Arbeiter K, Romero P, Schwenger V, Schwab C, Szabo AJ, Zarogiannis SG, Schmitt CP. Human peritoneal tight junction, transporter and channel expression in health and kidney failure, and associated solute transport. Sci Rep 2023; 13:17429. [PMID: 37833387 PMCID: PMC10575882 DOI: 10.1038/s41598-023-44466-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Next to the skin, the peritoneum is the largest human organ, essentially involved in abdominal health and disease states, but information on peritoneal paracellular tight junctions and transcellular channels and transporters relative to peritoneal transmembrane transport is scant. We studied their peritoneal localization and quantity by immunohistochemistry and confocal microscopy in health, in chronic kidney disease (CKD) and on peritoneal dialysis (PD), with the latter allowing for functional characterizations, in a total of 93 individuals (0-75 years). Claudin-1 to -5, and -15, zonula occludens-1, occludin and tricellulin, SGLT1, PiT1/SLC20A1 and ENaC were consistently detected in mesothelial and arteriolar endothelial cells, with age dependent differences for mesothelial claudin-1 and arteriolar claudin-2/3. In CKD mesothelial claudin-1 and arteriolar claudin-2 and -3 were more abundant. Peritonea from PD patients exhibited increased mesothelial and arteriolar claudin-1 and mesothelial claudin-2 abundance and reduced mesothelial and arteriolar claudin-3 and arteriolar ENaC. Transperitoneal creatinine and glucose transport correlated with pore forming arteriolar claudin-2 and mesothelial claudin-4/-15, and creatinine transport with mesothelial sodium/phosphate cotransporter PiT1/SLC20A1. In multivariable analysis, claudin-2 independently predicted the peritoneal transport rates. In conclusion, tight junction, transcellular transporter and channel proteins are consistently expressed in peritoneal mesothelial and endothelial cells with minor variations across age groups, specific modifications by CKD and PD and distinct associations with transperitoneal creatinine and glucose transport rates. The latter deserve experimental studies to demonstrate mechanistic links.Clinical Trial registration: The study was performed according to the Declaration of Helsinki and is registered at www.clinicaltrials.gov (NCT01893710).
Collapse
Affiliation(s)
- Eszter Levai
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
- HUNREN SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Iva Marinovic
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Conghui Zhang
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Betti Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Hanna Jenei
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Zhiwei Du
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Dorota Drozdz
- Jagiellonian University Medical College, Krakow, Poland
| | | | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Philipp Romero
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, Germany
| | | | - Attila J Szabo
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
- HUNREN SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Sotirios G Zarogiannis
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Mukohda M, Yano T, Matsui T, Nakamura S, Miyamae J, Toyama K, Mitsui R, Mizuno R, Ozaki H. Treatment with Ligilactobacillus murinus lowers blood pressure and intestinal permeability in spontaneously hypertensive rats. Sci Rep 2023; 13:15197. [PMID: 37709803 PMCID: PMC10502128 DOI: 10.1038/s41598-023-42377-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023] Open
Abstract
One feature of hypertension is a microbial imbalance with increased intestinal permeability. In this study, we examined whether an alteration in the microbiota affects blood pressure and intestinal permeability in spontaneously hypertensive rats (SHRs). We performed a 16S metagenome analysis of feces from 10- to 15-week-old SHRs using a synthetic long-read sequencing approach, and found a candidate for the microbiome treatment, Ligilactobacillus murinus (L. murinus), that was robustly decreased. Oral administration of L. murinus to SHRs for 2 weeks significantly inhibited blood pressure elevation and improved endothelium-dependent vasodilation but did not attenuate enhanced vascular contraction in SHR mesenteric arteries. The proximal colon of SHRs exhibited increased intestinal permeability with decreased levels of the tight junction protein claudin 4, morphological changes such as decreased intestinal crypts and elevated TNF-α levels, which was reversed by treatment with L. murinus. Consistent with these intestinal phenotypes, plasma lipopolysaccharides levels were elevated in SHR but decreased following L. murinus administration. We concluded that oral administration of L. murinus to SHRs exerts protective effects on intestinal permeability via restoration of claudin 4 expression and reversal of morphologic disorder, which may improve low-grade endotoxemia and thus reduce development of hypertension via recovery of endothelial vasodilating functions.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan.
| | - Takanori Yano
- Laboratory of Applied Microbiology, Faculty of Life Science, Okayama University of Science, Okayama, 7000005, Japan
| | - Toshiyasu Matsui
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Ehime, 7948555, Japan
| | - Sho Nakamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 4648601, Japan
| | - Jiro Miyamae
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Ehime, 7948555, Japan
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan
| | - Ryoji Mitsui
- Laboratory of Applied Microbiology, Faculty of Life Science, Okayama University of Science, Okayama, 7000005, Japan
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 7948555, Japan
| |
Collapse
|
8
|
He T, Jin Z, Hu W, Xia X, Li D, Yao W, Li G, Zhou X, Song G. Tetrahydrocurcumin (THC) enhanced the clearance of Cryptococcus deneoformans during infection in vivo. Antonie Van Leeuwenhoek 2023; 116:565-576. [PMID: 37186068 DOI: 10.1007/s10482-023-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Cryptococcal species often cause lung infections and are the main cause of fungal meningitis. Claudin-4 appears to be a major structural component that maintains a tight alveolar barrier and prevents fluid and electrolyte leakage into the alveolar space. We aimed to determine whether S7-tetrahydrocurcumin (THC) could clearance of C. deneoformans and regulate claudin-4 expression during C. deneoformans infection. We investigated the effect of THC on C. deneoformans infection and its possible mechanism in vivo. Transmission electron microscopy was used to observe the ultrastructure of the lung tissue and the invasion of Cryptococcus. To clarify the effect of THC, we examined claudin-4, c-Jun, and Smad2 expression. We also measured claudin-4 expression in pulmonary specimens from clinical patients. THC reduced cryptococcal cell invasion in the lungs, improved alveolar exudation, and reduced inflammation. Pretreatment with THC suppressed c-Jun and Smad2 expression, resulting in significantly increased claudin-4 levels. In contrast, the expression of claudin-4 in clinical specimens from patients with cryptococcal infection was higher than that in normal specimens. THC enhanced the clearance of C. deneoformans during infection in vivo. We investigated the expression of claudin-4 and the possible mechanism of THC against C. deneoformans infection.
Collapse
Affiliation(s)
- Tianli He
- Department of Radiotherapy, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Zhiran Jin
- Department of Surgery, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Wei Hu
- Department of Radiotherapy, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Xiaoxue Xia
- Department of Infectious Diseases Department of Respiratory, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou , 313100, Zhejiang, China
| | - Donghui Li
- Department of Neurology, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Weiyun Yao
- Department of Surgery, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Guangnan Li
- Department of Respiratory Medicine, Changxing County Hospital of Traditional Chinese Medicine, Huzhou, 313100, Zhejiang, China
- Department of Respiratory Medicine, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Xuefeng Zhou
- Department of Respiratory Medicine, Changxing People's Hospital, No. 66, Taihu Road, Changxing, Huzhou, 313100, Zhejiang, China
| | - Guoqiang Song
- Department of Respiratory Medicine, Changxing County Hospital of Traditional Chinese Medicine, Huzhou, 313100, Zhejiang, China.
| |
Collapse
|
9
|
Abtahi S, Sailer A, Roland JT, Haest X, Chanez-Paredes SD, Ahmad K, Sadiq K, Iqbal NT, Ali SA, Turner JR. Intestinal Epithelial Digestive, Transport, and Barrier Protein Expression Is Increased in Environmental Enteric Dysfunction. J Transl Med 2023; 103:100036. [PMID: 36870290 PMCID: PMC10121737 DOI: 10.1016/j.labinv.2022.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Environmental enteric dysfunction (EED) is characterized by malabsorption and diarrhea that result in irreversible deficits in physical and intellectual growth. We sought to define the expression of transport and tight junction proteins by quantitative analysis of duodenal biopsies from patients with EED. Biopsies from Pakistani children with confirmed EED diagnoses were compared to those from age-matched North American healthy controls, patients with celiac disease, and patients with nonceliac disease with villous atrophy or intraepithelial lymphocytosis. Expression of brush border digestive and transport proteins and paracellular (tight junction) proteins was assessed by quantitative multiplex immunofluorescence microscopy. EED was characterized by partial villous atrophy and marked intraepithelial lymphocytosis. Epithelial proliferation and enteroendocrine, tuft, and Paneth cell numbers were unchanged, but there was significant goblet cell expansion in EED biopsies. Expression of proteins involved in nutrient and water absorption and that of the basolateral Cl- transport protein NKCC1 were also increased in EED. Finally, the barrier-forming tight junction protein claudin-4 (CLDN4) was significantly upregulated in EED, particularly within villous enterocytes. In contrast, expression of CFTR, CLDN2, CLDN15, JAM-A, occludin, ZO-1, and E-cadherin was unchanged. Upregulation of a barrier-forming tight junction protein and brush border and basolateral membrane proteins that support nutrient and water transport in EED is paradoxical, as their increased expression would be expected to be correlated with increased intestinal barrier function and enhanced absorption, respectively. These data suggest that EED activates adaptive intestinal epithelial responses to enhance nutrient absorption but that these changes are insufficient to restore health.
Collapse
Affiliation(s)
- Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center; Nashville, Tennessee
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kumail Ahmad
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - S Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pathology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Su M, Qi H, Huang Q, Wang L, Guo X, Wang Q. Acute arsenic exposure exacerbates lipopolysaccharide-induced lung injury possibly by compromising the integrity of the lung epithelial barrier in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159561. [PMID: 36265643 DOI: 10.1016/j.scitotenv.2022.159561] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Inhalation of large amounts of arsenic can damage the respiratory tract and may exacerbate the development of bacterial pneumonia, but the exact mechanism remains unclear. In this study, male Wistar rats were randomly divided into control, arsenic trioxide (16.0 μg/kg ATO), lipopolysaccharide (0.5 mg/kg LPS), and ATO combined with LPS (16.0 μg/kg ATO + 0.5 mg/kg LPS) groups. Blood and lung tissue samples were collected from each group 12 h after exposure. The results showed that exposure to ATO or LPS alone produced different effects on leukocytes and inflammatory factors, while combined exposure significantly increased serum interleukin-6, interleukin-10, lung water content, lung lavage fluid protein, and p38 protein phosphorylation levels. Alveolar interstitial thickening, alveolar membrane edema, alveolar type I and II cell matrix vacuolization, and nuclear pyknosis were observed in rats exposed to either ATO or LPS. More severe ultrastructural changes were found in the combined exposure group, and chromatin splitting was observed in alveolar type I cells. Lanthanum nitrate particles leaked from the alveolar vascular lumen in the ATO-exposed group, whereas in the combined exposure group, Evans Blue levels were increased and lanthanum nitrate particles were present in the lung parenchyma. Claudin-3 protein expression increased and claudin-4 expression decreased after ATO or LPS exposure, while claudin-18 expression was unchanged. The changes in claudin-3 and claudin-4 protein expression were further exacerbated by combined exposure. In conclusion, these results suggest that inhalation of ATO may exacerbate the development of bacterial pneumonia and that common mechanisms may exist to synergistically disrupt epithelial barrier integrity.
Collapse
Affiliation(s)
- Mingxing Su
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China; The Northern District of PLA General Hospital, Beijing 100094, China
| | - Huixiu Qi
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China; School of Public Health, Hebei University, Baoding 071000, China
| | - Qingzhen Huang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Lili Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Xueqi Guo
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing 100071, China.
| |
Collapse
|
11
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
12
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
13
|
Beier LS, Waldow A, Khomeijani Farahani S, Mannweiler R, Vidal-Y-Sy S, Brandner JM, Piontek J, Günzel D. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis. Ann N Y Acad Sci 2022; 1517:251-265. [PMID: 35994210 DOI: 10.1111/nyas.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman Mannweiler
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Hao S, Yang C, Song P, Shi H, Zou Y, Chen M, Wu X, Yin Y, Yu Z, Zhu W, Li M. CLDN4 promotes growth of acute myeloid leukemia cells via regulating AKT and ERK1/2 signaling. Biochem Biophys Res Commun 2022; 619:137-143. [PMID: 35760010 DOI: 10.1016/j.bbrc.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia affecting adults. The tight junction protein CLDN4 is closely related to the development of various epithelial cell carcinomas. However, whether CLDN4 contributes to AML development remains unclear. For the first time, we found that expression of CLDN4 is aberrantly up-regulated in AML cells. Knockdown of CLDN4 expression resulted in a dramatic decreased cell growth, elevated apoptosis of AML cells. Further, we revealed that knockdown of CLDN4 inhibits mRNA expression of PIK3R3 and MAP2K2, thus suppresses activation of AKT and ERK1/2. More importantly, activating AKT branch by SC79 partially compromised CLDN4 knockdown induced cell viability inhibition. In addition, we found that higher expression of CLDN4 is connected to worse survival and is an independent indicator of shorter disease free survival (DFS) in AML patients. Together, our results indicate that CLDN4 contributes to AML pathogenesis, and suggests that targeting CLDN4 is a promising option for AML treatment.
Collapse
Affiliation(s)
- Shiyu Hao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Chunyan Yang
- The School of Dental Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Peng Song
- Institute of Integrated Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Hewen Shi
- Institute of Integrated Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Ying Zou
- Institute of Integrated Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Meiyang Chen
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Xingli Wu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Zhenhai Yu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| | - Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
15
|
Napolioni V, Bianconi F, Potenza R, Carpi FM, Ludovini V, Picciolini M, Tofanetti FR, Bufalari A, Pallotti S, Poggi C, Anile M, Daddi N, Venuta F, Puma F, Vannucci J. Genome-wide expression of the residual lung reacting to experimental Pneumonectomy. BMC Genomics 2021; 22:881. [PMID: 34872491 PMCID: PMC8650537 DOI: 10.1186/s12864-021-08171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background Acute or chronic irreversible respiratory failure may occur in patients undergoing pneumonectomy. Aim of this study was to determine transcriptome expression changes after experimental pneumonectomy in swine model. Experimental left pneumonectomy was performed in five pigs under general anaesthesia. Both the resected and the remaining lung, after 60 post-operative completely uneventful days, underwent genome-wide bulk RNA-Sequencing (RNA-Seq). Results Histological analysis showed dilation of air spaces and rupture of interalveolar septa. In addition, mild inflammation, no fibrosis, radial stretch of the bronchus, strong enlargement of airspaces and thinning of the blood supply were observed. Bioinformatic analyses of bulk RNA-Seq data identified 553 Differentially Expressed Genes (DEGs) at adjusted P-value below 0.001, between pre- and post-pneumonectomy. The top 10 up-regulated DEGs were Edn1, Areg, Havcr2, Gadd45g, Depp1, Cldn4, Atf3, Myc, Gadd45b, Socs3; the top 10 down-regulated DEGs were Obscn, Cdkn2b, ENSSSCG00000015738, Prrt2, Amer1, Flrt3, Efnb2, Tox3, Znf793, Znf365. Leveraging digital cytometry tools, no difference in cellular abundance was found between the two experimental groups, while the analysis of cell type-specific gene expression patterns highlighted a striking predominance of macrophage-specific genes among the DEGs. DAVID-based gene ontology analysis showed a significant enrichment of “Extrinsic apoptotic signaling pathway” (FDR q = 7.60 × 10− 3) and “Response to insulin” (FDR q = 7.60 × 10− 3) genes, along with an enrichment of genes involved as “Negative regulators of DDX58/IFIH1 signaling” (FDR q = 7.50 × 10− 4) found by querying the REACTOME pathway database. Gene network analyses indicated a general dysregulation of gene inter-connections. Conclusion This translational genomics study highlighted the existence both of individual genes, mostly dysregulated in certain cellular populations (e.g., macrophages), and gene-networks involved in pulmonary reaction after left pneumonectomy. Their involvement in lung homeostasis is largely supported by previous studies, carried out both in humans and in other animal models (under homeostatic or disease-related conditions), that adopted candidate-gene approaches. Overall, the present findings represent a preliminary assessment for future, more focused, studies on compensatory lung adaptation, pulmonary regeneration and functional reload. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08171-3.
Collapse
Affiliation(s)
- Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Rossella Potenza
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Francesca R Tofanetti
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Stefano Pallotti
- Genetics and Animal Breeding Group, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Camilla Poggi
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Anile
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Niccolò Daddi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
16
|
Sato K, Matsumoto I, Suzuki K, Tamura A, Shiraishi A, Kiyonari H, Kasamatsu J, Yamamoto H, Miyasaka T, Tanno D, Miyahara A, Zong T, Kagesawa T, Oniyama A, Kawamura K, Kitai Y, Umeki A, Kanno E, Tanno H, Ishii K, Tsukita S, Kawakami K. Deficiency of lung-specific claudin-18 leads to aggravated infection with Cryptococcus deneoformans through dysregulation of the microenvironment in lungs. Sci Rep 2021; 11:21110. [PMID: 34702961 PMCID: PMC8548597 DOI: 10.1038/s41598-021-00708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koya Suzuki
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Research Institute for Diseases of Old Age and Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute of Research Promotion, Niigata University, Niigata, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Park S, Lee PH, Baek AR, Park JS, Lee J, Park SW, Kim DJ, Jang AS. Association of the Tight Junction Protein Claudin-4 with Lung Function and Exacerbations in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2735-2740. [PMID: 34675499 PMCID: PMC8502106 DOI: 10.2147/copd.s330674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) imposes a major healthcare burden. A tight junction protein, claudin-4 (CLDN4), may play a protective role in acute lung injury, but its role in COPD is unclear. To investigate the relationship between CLDN4 and COPD, we evaluated the association of CLDN4 with the clinical parameters of COPD, including exacerbations. Patients and Methods We analyzed a cohort of 30 patients with COPD and 25 healthy controls and evaluated their clinical parameters, including lung function. The plasma CLDN4 level in stable and exacerbated COPD was measured. Results The COPD patients were all males and predominantly smokers; their initial lung function was poorer than the healthy controls. The mean CLDN4 plasma level was 0.0219 ± 0.0205 ng/mg in the control group, 0.0086 ± 0.0158 ng/mg in the stable COPD group (COPD-ST) and 0.0917 ± 0.0871 ng/mg in the exacerbated COPD (COPD-EXA) group. The plasma CLDN4 level was significantly lower in the COPD-ST than the control group, but was significantly elevated in the COPD-EXA group. The plasma CLDN4 level was inversely correlated with forced vital capacity and forced expiratory volume in 1 second in the COPD-EXA group (r=0.506, P=0.001 and r=0.527, P<0.001, respectively). Conclusion The plasma CLDN4 level is closely correlated with COPD exacerbations and decreased lung function. This suggests that CLDN4 has potential as a severity marker for COPD.
Collapse
Affiliation(s)
- Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Pureun-Haneul Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
18
|
Mannweiler R, Bergmann S, Vidal‐y‐Sy S, Brandner JM, Günzel D. Direct assessment of individual skin barrier components by electrical impedance spectroscopy. Allergy 2021; 76:3094-3106. [PMID: 33844311 DOI: 10.1111/all.14851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/17/2021] [Accepted: 03/07/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Expression of the tight junction proteins Cldn1 and 4 is altered in skin diseases such as atopic dermatitis, and Cldn1 deficiency affects skin barrier formation. Impedance spectroscopy (IS) has been proven to allow detection of alterations in the skin barrier but is currently unable to separate effects on viable epidermis (VE) and stratum corneum (SC). METHODS Effects of siRNA-mediated Cldn1 and 4 knockdown in reconstructed human epidermis (RHE) on VE and SC barrier function were investigated with Ussing chamber-based IS. Barrier components were sequentially altered, employing iron oxide nanoparticles and EGTA, to identify their contribution to the impedance spectrum. Resistance changes due to apically applied hyperosmolar electrolyte were used to identify barrier defects non-invasively. RESULTS IS of RHE yielded two relaxation frequencies, representing the barrier properties of the SC (~1000 Hz) and VE (~100 Hz). As proof of concept, it was shown that the Cldn1 knockdown-induced resistance drop arises from the impairment of both SC and VE, indicated by a shift of both relaxation frequencies. Hyperosmolar electrolyte penetration allowed non-invasive detection of Cldn1 knockdown via time-dependent frequency shifts. The absence of Cldn4 knockdown-induced changes revealed the weaknesses of transepithelial electrical resistance analysis. CONCLUSION In conclusion, the present technique allows to separately measure the barrier properties of SC and VE and further evaluate the Cldn1 and 4 knockdown impact on the skin barrier. As the measurement with agarose-embedded electrolyte allowed non-invasive identification of the Cldn1 knockdown, this opens the way to detailed in vivo skin barrier assessment.
Collapse
Affiliation(s)
- Roman Mannweiler
- Institute of Clinical Physiology/Nutritional Medicine Medical Department Division of Gastroenterology, Infectiology, Rheumatology Charité – Universitätsmedizin Berlin Berlin Germany
| | - Sophia Bergmann
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Sabine Vidal‐y‐Sy
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology University Hospital Hamburg‐Eppendorf Hamburg Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine Medical Department Division of Gastroenterology, Infectiology, Rheumatology Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
19
|
Kojima T, Shindo Y, Konno T, Kodera Y, Arai W, Miyakawa M, Ohwada K, Tanaka H, Tsujiwaki M, Sakuma Y, Kikuchi S, Ohkuni T, Takano K, Watanabe A, Kohno T. Dysfunction of epithelial permeability barrier induced by HMGB1 in 2.5D cultures of human epithelial cells. Tissue Barriers 2021; 10:1972760. [PMID: 34538217 DOI: 10.1080/21688370.2021.1972760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Airway and intestinal epithelial permeability barriers are crucial in epithelial homeostasis. High mobility group box 1 (HMGB1), increased by various stimuli, is involved in the induction of airway inflammation, as well as the pathogenesis of inflammatory bowel disease. HMGB1 enhances epithelial hyperpermeability. Two-and-a-half dimensional (2.5D) culture assays are experimentally convenient and induce cells to form a more physiological tissue architecture than 2D culture assays for molecular transfer mechanism analysis. In 2.5D culture, treatment with HMGB1 induced permeability of FITC-dextran into the lumen formed by human lung, nasal and intestinal epithelial cells. The tricellular tight junction molecule angulin-1/LSR is responsible for the epithelial permeability barrier at tricellular contacts and contributes to various human airway and intestinal inflammatory diseases. In this review, we indicate the mechanisms including angulin-1/LSR and multiple signaling in dysfunction of the epithelial permeability barrier induced by HMGB1 in 2.5D culture of human airway and intestinal epithelial cells.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Kodera
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Arai
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyakawa
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,IBD Hospital, Sapporo, Japan
| | - Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Heymans C, Delcorte O, Spourquet C, Villacorte-Tabelin M, Dupasquier S, Achouri Y, Mahibullah S, Lemoine P, Balda MS, Matter K, Pierreux CE. Spatio-temporal expression pattern and role of the tight junction protein MarvelD3 in pancreas development and function. Sci Rep 2021; 11:14519. [PMID: 34267243 PMCID: PMC8282860 DOI: 10.1038/s41598-021-93654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.
Collapse
Affiliation(s)
| | - Ophélie Delcorte
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | | | - Mylah Villacorte-Tabelin
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
- PRISM, MSU-IIT, Iligan City, Philippines
| | | | | | - Siam Mahibullah
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | - Pascale Lemoine
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | | | | | | |
Collapse
|
22
|
Zhang Y, Zhang L, Chen W, Zhang Y, Wang X, Dong Y, Zhang W, Lin X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicol Lett 2021; 350:62-70. [PMID: 34252507 DOI: 10.1016/j.toxlet.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
The impact of fine particulate matter (PM2.5) on public health has received increasing attention. Through various biochemical mechanisms, PM2.5 alters the normal structure and function of the airway epithelium, causing epithelial barrier dysfunction. Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) has been implicated in various respiratory diseases; however, its role in PM2.5-induced epithelial barrier dysfunction remains unclear. Herein, we assessed the regulatory effects of Shp2 on PM2.5-mediated epithelial barrier function and tight junction (TJ) protein expression in both mice and human pulmonary epithelial (16HBE) cells. We observed that Shp2 levels were upregulated and claudin-4 levels were downregulated after PM2.5 stimulation in vivo and in vitro. Mice were exposed to PM2.5 to induce acute lung injury, and disrupted epithelial barrier function, with decreased transepithelial electrical resistance (TER) and increased paracellular flux that was observed in 16HBE cells. In contrast, the selective inhibition or knockdown of Shp2 retained airway epithelial barrier function and reversed claudin-4 downregulation that triggered by PM2.5, and these effects may occur through the ERK1/2 MAPK signaling pathway. These data highlight an important role of Shp2 in PM2.5-induced airway epithelial barrier dysfunction and suggest a possible new course of therapy for PM2.5-induced respiratory diseases.
Collapse
Affiliation(s)
- Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Likang Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wanwan Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
23
|
Pao HP, Liao WI, Tang SE, Wu SY, Huang KL, Chu SJ. Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression. Front Immunol 2021; 12:674316. [PMID: 34122432 PMCID: PMC8194262 DOI: 10.3389/fimmu.2021.674316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress that disrupts ER function can occur in response to a wide variety of cellular stress factors leads to the accumulation of unfolded and misfolded proteins in the ER. Many studies have shown that ER stress amplified inflammatory reactions and was involved in various inflammatory diseases. However, little is known regarding the role of ER stress in hyperoxia-induced acute lung injury (HALI). This study investigated the influence of ER stress inhibitor, 4-phenyl butyric acid (4-PBA), in mice with HALI. Treatment with 4-PBA in the hyperoxia groups significantly prolonged the survival, decreased lung edema, and reduced the levels of inflammatory mediators, lactate dehydrogenase, and protein in bronchoalveolar lavage fluid, and increased claudin-4 protein expression in lung tissue. Moreover, 4-PBA reduced the ER stress-related protein expression, NF-κB activation, and apoptosis in the lung tissue. In in vitro study, 4-PBA also exerted a similar effect in hyperoxia-exposed mouse lung epithelial cells (MLE-12). However, when claudin-4 siRNA was administrated in mice and MLE-12 cells, the protective effect of 4-PBA was abrogated. These results suggested that 4-PBA protected against hyperoxia-induced ALI via enhancing claudin-4 expression.
Collapse
Affiliation(s)
- Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Kim YH, Kim KJ, D’Argenio DZ, Crandall ED. Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. MEMBRANES 2021; 11:331. [PMID: 33946241 PMCID: PMC8145727 DOI: 10.3390/membranes11050331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Primary rat alveolar epithelial cell monolayers (RAECM) were grown without (type I cell-like phenotype, RAECM-I) or with (type II cell-like phenotype, RAECM-II) keratinocyte growth factor to assess passive transport of 11 hydrophilic solutes. We estimated apparent permeability (Papp) in the absence/presence of calcium chelator EGTA to determine the effects of perturbing tight junctions on "equivalent" pores. Papp across RAECM-I and -II in the absence of EGTA are similar and decrease as solute size increases. We modeled Papp of the hydrophilic solutes across RAECM-I/-II as taking place via heterogeneous populations of equivalent pores comprised of small (0.41/0.32 nm radius) and large (9.88/11.56 nm radius) pores, respectively. Total equivalent pore area is dominated by small equivalent pores (99.92-99.97%). The number of small and large equivalent pores in RAECM-I was 8.55 and 1.29 times greater, respectively, than those in RAECM-II. With EGTA, the large pore radius in RAECM-I/-II increased by 1.58/4.34 times and the small equivalent pore radius increased by 1.84/1.90 times, respectively. These results indicate that passive diffusion of hydrophilic solutes across an alveolar epithelium occurs via small and large equivalent pores, reflecting interactions of transmembrane proteins expressed in intercellular tight junctions of alveolar epithelial cells.
Collapse
Affiliation(s)
- Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1111, USA;
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9037, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - David Z. D’Argenio
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1111, USA;
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA; (Y.H.K.); (K.-J.K.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-0906, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9092, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-1211, USA
| |
Collapse
|
25
|
Schilpp C, Lochbaum R, Braubach P, Jonigk D, Frick M, Dietl P, Wittekindt OH. TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Arch 2021; 473:287-311. [PMID: 33386991 PMCID: PMC7835204 DOI: 10.1007/s00424-020-02501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/31/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
TGF-β1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-β1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-β1 activates TGF-β1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-β1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-β1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-β1 sensing and showed that TGF-β1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.
Collapse
Affiliation(s)
- Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
26
|
Geng P, Yu F, Tan D, Xu J, Yang Y, Xu M, Wang H, Ling B. Involvement of claudin-5 in H 2S-induced acute lung injury. J Toxicol Sci 2020; 45:293-304. [PMID: 32404561 DOI: 10.2131/jts.45.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acute exposure to hydrogen sulfide (H2S) can cause fatal acute lung injury (ALI). However, the mechanisms of H2S-induced ALI are still not fully understood. This study aims to investigate the role of the tight junction protein claudin-5 in H2S-induced ALI. In our study, Sprague-Dawley (SD) rats were exposed to H2S to establish the ALI model, and in parallel, human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor) to establish a cell model. Lung immunohistochemistry and electron microscopy assays were used to identify H2S-induced ALI, and the expression of claudin-5, p-AKT/t-AKT and p-FoxO1/t-FoxO1 was detected. Our results show that H2S promoted the formation of ALI by morphological investigation and decreased claudin-5 expression. Dexamethasone (Dex) could partly attenuate NaHS-mediated claudin-5 downregulation, and the protective effects of Dex could be partially blocked by LY294002, a PI3K/AKT/FoxO1 pathway antagonist. Moreover, as a consequence of the altered phosphorylation of AKT and FoxO1, a change in claudin-5 with the same trend was observed. Therefore, the tight junction protein claudin-5 might be considered a therapeutic target for the treatment of ALI induced by H2S and other hazardous gases.
Collapse
Affiliation(s)
- Ping Geng
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Fen Yu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Dingyu Tan
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Jiyang Xu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Yan Yang
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Min Xu
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Huihui Wang
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| | - Bingyu Ling
- Department of Emergency Medicine, Northern Jiangsu People's Hospital, Yangzhou University College of Clinical Medicine, China
| |
Collapse
|
27
|
Luna-Flores A, Olmos-Zuñiga JR, Jasso-Victoria R, Gaxiola-Gaxiola M, Aguirre-Pérez T, Ruiz V, García-Torrentera R, Silva-Martínez M, Zenteno E, Gutierrez-Ospina G, Santillan-Doherty P. Expression of Claudin-4 in Lung Ischemia-Reperfusion Injury in Experimental Lung Transplantation. J INVEST SURG 2020; 35:191-200. [PMID: 32900258 DOI: 10.1080/08941939.2020.1815253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To assess the presence of CLDN4 in bronchoalveolar lavage fluid (BALF) and pulmonary tissue as an early indicator of LIRI and its relationship with changes in pulmonary physiology, edema formation and histology in an experimental porcine model of LTx with CIT of 50 min or 6 h. METHODS In 12 pigs, LIRI was produced by: group I (n = 6) LTx with 50 min of CIT (LTx-50 min-CIT); and group II (n = 6) LTx with 6 h of CIT (LTx-6h-CIT). The lung function, edema formation, macroscopic and microscopic changes were assessed. CLDN4 expression in BALF and pulmonary tissue were determined. RESULTS Both groups presented similar clinical, edema, and histological damage, as well as similar expression of CLDN4 in BALF and tissue (p > 0.05, RM-ANOVA). CONCLUSION CLDN4 expressed in BALF and the pulmonary tissue during the first 5 h within 72 h of the PGD window are not associated by the deterioration of lung function, edema and lung histological injury, in LTx with CIT 50 min or 6 h, CLDN4 does not seem to be a valuable indicator of LIRI.
Collapse
Affiliation(s)
- Antonia Luna-Flores
- Lung Transplantation Research Unit, Department of Surgical Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - J Raúl Olmos-Zuñiga
- Lung Transplantation Research Unit, Department of Surgical Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rogelio Jasso-Victoria
- Department of Surgical Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Miguel Gaxiola-Gaxiola
- Department of Morphology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Teresa Aguirre-Pérez
- Bronchoscopy and Endoscopy Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Victor Ruiz
- Molecular Biology Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rogelio García-Torrentera
- Respiratory Emergency Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Mariana Silva-Martínez
- Lung Transplantation Research Unit, Department of Surgical Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Edgar Zenteno
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gabriel Gutierrez-Ospina
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Patricio Santillan-Doherty
- Medical Direction, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
28
|
Baumholtz AI, De Marco P, Capra V, Ryan AK. Functional Validation of CLDN Variants Identified in a Neural Tube Defect Cohort Demonstrates Their Contribution to Neural Tube Defects. Front Neurosci 2020; 14:664. [PMID: 32760237 PMCID: PMC7372130 DOI: 10.3389/fnins.2020.00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that affect 1–2 individuals per 2,000 births. Their etiology is complex and involves both genetic and environmental factors. Our recent discovery that simultaneous removal of Cldn3, -4, and -8 from tight junctions results in cranial and spinal NTDs in both chick and mouse embryos suggests that claudins play a conserved role in neural tube closure in vertebrates. To determine if claudins were associated with NTDs in humans, we used a Fluidigm next generation sequencing approach to identify genetic variants in CLDN loci in 152 patients with spinal NTDs. We identified eleven rare and four novel missense mutations in ten CLDN genes. In vivo validation of variant pathogenicity using a chick embryo model system revealed that overexpression of four variants caused a significant increase in NTDs: CLDN3 A128T, CLDN8 P216L, CLDN19 I22T, and E209G. Our data implicate rare missense variants in CLDN genes as risk factors for spinal NTDs and suggest a new family of proteins involved in the pathogenesis of these malformations.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patrizia De Marco
- Laboratorio di Neurogenetica e Neuroscienze, Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- U.O. Neurochirurgia, Istituto Giannina Gaslini, Genoa, Italy
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
30
|
Zou J, Li Y, Yu J, Dong L, Husain AN, Shen L, Weber CR. Idiopathic pulmonary fibrosis is associated with tight junction protein alterations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183205. [DOI: 10.1016/j.bbamem.2020.183205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
|
31
|
Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, Kook S, Polosukhin VV, Haake SM, Guttentag SH, Young LR, Pozzi A, Blackwell TS, Zent R. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5:129259. [PMID: 31873073 PMCID: PMC7098727 DOI: 10.1172/jci.insight.129259] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Scott M. Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | - Lisa R. Young
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ambra Pozzi
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Molecular Physiology and Biophysics, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
33
|
Kage H, Flodby P, Zhou B, Borok Z. Dichotomous roles of claudins as tumor promoters or suppressors: lessons from knockout mice. Cell Mol Life Sci 2019; 76:4663-4672. [PMID: 31332482 PMCID: PMC6858953 DOI: 10.1007/s00018-019-03238-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/29/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Claudins are a family of integral tight junction proteins that regulate paracellular permeability in polarized epithelia. Overexpression or reduction of claudins can both promote and limit cancer progression, revealing complex dichotomous roles for claudins depending on cellular context. In contrast, recent studies demonstrating tumor formation in claudin knockout mouse models indicate a role for several claudin family members in suppressing tumor initiation. For example, intestine-specific claudin-7 knockout mice spontaneously develop atypical hyperplasia and intestinal adenomas, while claudin-18 knockout mice develop carcinomas in the lung and stomach. Claudin-4, -11, and -15 knockout mice show increased cell proliferation and/or hyperplasia in urothelium, Sertoli cells, and small intestinal crypts, respectively, possibly a precursor to cancer development. Pathways implicated in both cell proliferation and tumorigenesis include Yap/Taz and insulin-like growth factor-1 receptor (IGF-1R)/Akt pathways, among others. Consistent with the tumor suppressive role of claudins shown in mice, in humans, claudin-low breast cancer has been described as a distinct entity with a poor prognosis, and claudin-18-Rho GTPase activating protein 26 (CLDN18-ARHGAP26) fusion protein as a driver gene aberration in diffuse-type gastric cancer due to effects on RhoA. Paradoxically, claudins have also garnered interest as targets for therapy, as they are sometimes aberrantly expressed in cancer cells, which may or may not promote cancer progression. For example, a chimeric monoclonal antibody which targets cells expressing claudin-18.2 through antibody-dependent cell-mediated cytotoxicity has shown promise in multiple phase II studies. In this review, we focus on new findings supporting a tumor suppressive role for claudins during cancer initiation.
Collapse
Affiliation(s)
- Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, IRD 620, M/C 9520, Los Angeles, CA, 90089-9520, USA.
| |
Collapse
|
34
|
Li H, Neelankal John A, Nagatake T, Hamazaki Y, Jiang FX. Claudin 4 in pancreatic β cells is involved in regulating the functional state of adult islets. FEBS Open Bio 2019; 10:28-40. [PMID: 31562747 PMCID: PMC6943228 DOI: 10.1002/2211-5463.12735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 01/23/2023] Open
Abstract
The functional state (FS) of adult pancreatic islets is regulated by a large array of regulatory molecules including numerous transcription factors. Whether any islet structural molecules play such a role has not been well understood. Here, multiple technologies including bioinformatics analyses were used to explore such molecules. The tight junction family molecule claudin 4 (Cldn4) was the highest enriched amongst over 140 structural genes analysed. Cldn4 expression was ~75-fold higher in adult islets than in exocrine tissues and was mostly up-regulated during functional maturation of developing islet cells. Cldn4 was progressively down-regulated in functionally compromised, dedifferentiating insulin-secreting β cells and in db/db type 2 diabetic islets. Furthermore, the genetic deletion of Cldn4 impaired significantly the FS without apparently affecting pancreas morphology, islet architectural structure and cellular distribution, and secretion of enteroendocrine hormones. Thus, we suggest a previously unidentified role for Cldn4 in regulating the FS of islets, with implications in translational research for better diabetes therapies.
Collapse
Affiliation(s)
- Hongtu Li
- Islet Cell Development Program, Faculty of Medical Science, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Abraham Neelankal John
- Islet Cell Development Program, Faculty of Medical Science, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Takahiro Nagatake
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Fang-Xu Jiang
- Islet Cell Development Program, Faculty of Medical Science, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
35
|
Schmidt H, Braubach P, Schilpp C, Lochbaum R, Neuland K, Thompson K, Jonigk D, Frick M, Dietl P, Wittekindt OH. IL-13 Impairs Tight Junctions in Airway Epithelia. Int J Mol Sci 2019; 20:ijms20133222. [PMID: 31262043 PMCID: PMC6651493 DOI: 10.3390/ijms20133222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin-13 (IL-13) drives symptoms in asthma with high levels of T-helper type 2 cells (Th2-cells). Since tight junctions (TJ) constitute the epithelial diffusion barrier, we investigated the effect of IL-13 on TJ in human tracheal epithelial cells. We observed that IL-13 increases paracellular permeability, changes claudin expression pattern and induces intracellular aggregation of the TJ proteins zonlua occludens protein 1, as well as claudins. Furthermore, IL-13 treatment increases expression of ubiquitin conjugating E2 enzyme UBE2Z. Co-localization and proximity ligation assays further showed that ubiquitin and the proteasomal marker PSMA5 co-localize with TJ proteins in IL-13 treated cells, showing that TJ proteins are ubiquitinated following IL-13 exposure. UBE2Z upregulation occurs within the first day after IL-13 exposure. Proteasomal aggregation of ubiquitinated TJ proteins starts three days after IL-13 exposure and transepithelial electrical resistance (TEER) decrease follows the time course of TJ-protein aggregation. Inhibition of JAK/STAT signaling abolishes IL-13 induced effects. Our data suggest that that IL-13 induces ubiquitination and proteasomal aggregation of TJ proteins via JAK/STAT dependent expression of UBE2Z, resulting in opening of TJs. This may contribute to barrier disturbances in pulmonary epithelia and lung damage of patients with inflammatory lung diseases.
Collapse
Affiliation(s)
- Hanna Schmidt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kathrin Neuland
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kristin Thompson
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 130625 Hannover, Germany
- German Center of Lung Research (DZL), Partnersite BREATH, 306245 Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Breed C, Hicks DA, Webb PG, Galimanis CE, Bitler BG, Behbakht K, Baumgartner HK. Ovarian Tumor Cell Expression of Claudin-4 Reduces Apoptotic Response to Paclitaxel. Mol Cancer Res 2019; 17:741-750. [PMID: 30606772 DOI: 10.1158/1541-7786.mcr-18-0451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
A significant factor contributing to poor survival rates for patients with ovarian cancer is the insensitivity of tumors to standard-of-care chemotherapy. In this study, we investigated the effect of claudin-4 expression on ovarian tumor cell apoptotic response to cisplatin and paclitaxel. We manipulated claudin-4 gene expression by silencing expression [short hairpin RNA (shRNA)] in cells with endogenously expressed claudin-4 or overexpressing claudin-4 in cells that natively do not express claudin-4. In addition, we inhibited claudin-4 activity with a claudin mimic peptide (CMP). We monitored apoptotic response by caspase-3 and Annexin V binding. We examined proliferation rate by counting the cell number over time as well as measuring the number of mitotic cells. Proximity ligation assays, immunoprecipitation (IP), and immunofluorescence were performed to examine interactions of claudin-4. Western blot analysis of tubulin in cell fractions was used to determine the changes in tubulin polymerization with changes in claudin-4 expression. Results show that claudin-4 expression reduced epithelial ovarian cancer (EOC) cell apoptotic response to paclitaxel. EOCs without claudin-4 proliferated more slowly with enhanced mitotic arrest compared with the cells expressing claudin-4. Furthermore, our results indicate that claudin-4 interacts with tubulin, having a profound effect on the structure and polymerization of the microtubule network. In conclusion, we demonstrate that claudin-4 reduces the ovarian tumor cell response to microtubule-targeting paclitaxel and disrupting claudin-4 with CMP can restore apoptotic response. IMPLICATIONS: These results suggest that claudin-4 expression may provide a biomarker for paclitaxel response and can be a target for new therapeutic strategies to improve response.
Collapse
Affiliation(s)
- Christopher Breed
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Douglas A Hicks
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Patricia G Webb
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Carly E Galimanis
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Kian Behbakht
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Heidi K Baumgartner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado. .,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
37
|
Kersbergen A, Best SA, Dworkin S, Ah-Cann C, de Vries ME, Asselin-Labat ML, Ritchie ME, Jane SM, Sutherland KD. Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2) transcriptional programs. Dev Biol 2018; 443:1-9. [DOI: 10.1016/j.ydbio.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
|
38
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
39
|
Zhang L, Feng T, Spicer LJ. The role of tight junction proteins in ovarian follicular development and ovarian cancer. Reproduction 2018; 155:R183-R198. [PMID: 29374086 DOI: 10.1530/rep-17-0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) are protein structures that control the transport of water, ions and macromolecules across cell layers. Functions of the transmembrane TJ protein, occluding (OCLN) and the cytoplasmic TJ proteins, tight junction protein 1 (TJP1; also known as zona occludens protein-1), cingulin (CGN) and claudins (CLDN) are reviewed, and current evidence of their role in the ovarian function is reviewed. Abundance of OCLN, CLDNs and TJP1 mRNA changed during follicular growth. In vitro treatment with various growth factors known to affect ovarian folliculogenesis indicated that CGN, OCLN and TJP1 are hormonally regulated. The summarized studies indicate that expression of TJ proteins (i.e., OCLN, CLDN, TJP1 and CGN) changes with follicle size in a variety of vertebrate species but whether these changes in TJ proteins are increased or decreased depends on species and cell type. Evidence indicates that autocrine, paracrine and endocrine regulators, such as fibroblast growth factor-9, epidermal growth factor, androgens, tumor necrosis factor-α and glucocorticoids may modulate these TJ proteins. Additional evidence presented indicates that TJ proteins may be involved in ovarian cancer development in addition to normal follicular and luteal development. A model is proposed suggesting that hormonal downregulation of TJ proteins during ovarian follicular development could reduce barrier function (i.e., selective permeability of molecules between theca and granulosa cells) and allow for an increase in the volume of follicular fluid as well as allow additional serum factors into the follicle that may directly impact granulosa cell functions.
Collapse
Affiliation(s)
- Lingna Zhang
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Leon J Spicer
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
40
|
Lewis JB, Jimenez FR, Merrell BJ, Kimbler B, Arroyo JA, Reynolds PR. The expression profile of Claudin family members in the developing mouse lung and expression alterations resulting from exposure to secondhand smoke (SHS). Exp Lung Res 2018; 44:13-24. [DOI: 10.1080/01902148.2017.1409846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joshua B. Lewis
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Felix R. Jimenez
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Brigham J. Merrell
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Brent Kimbler
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Juan A. Arroyo
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Lung and Placenta Research Laboratory, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
41
|
Lee PH, Kim BG, Lee SH, Lee JH, Park SW, Kim DJ, Park CS, Leikauf GD, Jang AS. Alteration in Claudin-4 Contributes to Airway Inflammation and Responsiveness in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:25-33. [PMID: 29178675 PMCID: PMC5705480 DOI: 10.4168/aair.2018.10.1.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Claudin-4 has been reported to function as a paracellular sodium barrier and is one of the 3 major claudins expressed in lung alveolar epithelial cells. However, the possible role of claudin-4 in bronchial asthma has not yet been fully studied. In this study, we aimed to elucidate the role of claudin-4 in the pathogenesis of bronchial asthma. METHODS We determined claudin-4 levels in blood from asthmatic patients. Moreover, using mice sensitized and challenged with OVA, as well as sensitized and challenged with saline, we investigated whether claudin-4 is involved in the pathogenesis of bronchial asthma. Der p1 induced the inflammatory cytokines in NHBE cells. RESULTS We found that claudin-4 in blood from asthmatic patients was increased compared with that from healthy control subjects. Plasma claudin-4 levels were significantly higher in exacerbated patients than in control patients with bronchial asthma. The plasma claudin-4 level was correlated with eosinophils, total IgE, FEV1% pred, and FEV1/FVC. Moreover, lung tissues from the OVA-OVA mice showed significant increases in transcripts and proteins of claudin-4 as well as in TJ breaks and the densities of claudin-4 staining. When claudin-4 was knocked down by transfecting its siRNA, inflammatory cytokine expressions, which were induced by Der p1 treatment, were significantly increased. CONCLUSIONS These findings thus raise the possibility that regulation of lung epithelial barrier proteins may constitute a therapeutic approach for asthma.
Collapse
Affiliation(s)
- Pureun Haneul Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Byeong Gon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sun Hye Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - June Hyuck Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
42
|
Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol 2018; 53:17-27. [PMID: 29168340 PMCID: PMC5938176 DOI: 10.1002/ppul.23681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Premature neonates frequently require oxygen supplementation as a therapeutic intervention that, while necessary, also exposes the lung to significant oxidant stress. We hypothesized that hyperoxia has a deleterious effect on alveolar epithelial barrier function rendering the neonatal lung susceptible to injury and/or bronchopulmonary dysplasia (BPD). MATERIALS AND METHODS We examined the effects of exposure to 85% oxygen on neonatal rat alveolar barrier function in vitro and in vivo. Whole lung was measured using wet-to-dry weight ratios and bronchoalveolar lavage protein content and cultured primary neonatal alveolar epithelial cells (AECs) were measured using transepithelial electrical resistance (TEER) and paracellular flux measurements. Expression of claudin-family tight junction proteins, E-cadherin and the Snail transcription factor SNAI1 were measured by Q-PCR, immunoblot and confocal immunofluorescence microscopy. RESULTS Cultured neonatal AECs exposed to 85% oxygen showed impaired barrier function. This oxygen-induced increase in paracellular leak was associated with altered claudin expression, where claudin-3 and -18 were downregulated at both the mRNA and protein level. Claudin-4 and -5 mRNA were also decreased, although protein expression of these claudins was largely maintained. Lung alveolarization and barrier function in vivo were impaired in response to hyperoxia. Oxygen exposure also significantly decreased E-cadherin expression and induced expression of the SNAI1 transcription factor in vivo and in vitro. CONCLUSIONS These data support a model in which hyperoxia has a direct impact on alveolar tight and adherens junctions to impair barrier function. Strategies to antagonize the effects of high oxygen on alveolar junctions may potentially reverse this deleterious effect.
Collapse
Affiliation(s)
- Shilpa Vyas-Read
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rachel J Vance
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Wenyi Wang
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Lou Ann Brown
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael Koval
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
43
|
Abstract
The claudin family of tetraspan transmembrane proteins is essential for tight junction formation and regulation of paracellular transport between epithelial cells. Claudins also play a role in apical-basal cell polarity, cell adhesion and link the tight junction to the actin cytoskeleton to exert effects on cell shape. The function of claudins in paracellular transport has been extensively studied through loss-of-function and gain-of-function studies in cell lines and in animal models, however, their role in morphogenesis has been less appreciated. In this review, we will highlight the importance of claudins during morphogenesis by specifically focusing on their critical functions in generating epithelial tubes, lumens, and tubular networks during organ formation.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Indra R Gupta
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| | - Aimee K Ryan
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| |
Collapse
|
44
|
Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN, Sawai S, Flodby P, Crandall ED, Borok Z, Sofroniew MV, Chapouly C, John GR. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 2017; 127:3136-3151. [PMID: 28737509 DOI: 10.1172/jci91301] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Lesions and neurologic disability in inflammatory CNS diseases such as multiple sclerosis (MS) result from the translocation of leukocytes and humoral factors from the vasculature, first across the endothelial blood-brain barrier (BBB) and then across the astrocytic glia limitans (GL). Factors secreted by reactive astrocytes open the BBB by disrupting endothelial tight junctions (TJs), but the mechanisms that control access across the GL are unknown. Here, we report that in inflammatory lesions, a second barrier composed of reactive astrocyte TJs of claudin 1 (CLDN1), CLDN4, and junctional adhesion molecule A (JAM-A) subunits is induced at the GL. In a human coculture model, CLDN4-deficient astrocytes were unable to control lymphocyte segregation. In models of CNS inflammation and MS, mice with astrocyte-specific Cldn4 deletion displayed exacerbated leukocyte and humoral infiltration, neuropathology, motor disability, and mortality. These findings identify a second inducible barrier to CNS entry at the GL. This barrier may be therapeutically targetable in inflammatory CNS disease.
Collapse
Affiliation(s)
- Sam Horng
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Anthony Therattil
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Sarah Moyon
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexandra Gordon
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Karla Kim
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Azeb Tadesse Argaw
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Yuko Hara
- Friedman Brain Institute.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John N Mariani
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Setsu Sawai
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael V Sofroniew
- Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Candice Chapouly
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Gareth R John
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| |
Collapse
|
45
|
Tokumasu R, Tamura A, Tsukita S. Time- and dose-dependent claudin contribution to biological functions: Lessons from claudin-1 in skin. Tissue Barriers 2017. [PMID: 28650689 DOI: 10.1080/21688370.2017.1336194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There are many types of biologic compartments in the body. Tight junctions (TJs) function to create a dynamic paracellular barrier to separate these compartments and maintain homeostasis. The TJ component claudin-1 is the major transmembrane protein responsible for forming the paracellular barrier in the epidermis; other claudins in the epidermis include claudin-3, -4, -12, -23 and -25. Accumulating evidence points to a relationship between claudin-1 and skin diseases; for example, a decrease in claudin-1 is reported in human atopic dermatitis. However, how claudin-1 directly or indirectly contributes to disease in the context of the paracellular barrier is poorly understood. We recently established several mouse lines in which the claudin-1 expression was systematically regulated, and showed that claudin-1 time- and dose-dependently regulates epidermis function and disease in vivo. In this commentary, we will discuss recent progress on this topic, including our latest findings, and remaining or newly arisen issues.
Collapse
Affiliation(s)
- Reitaro Tokumasu
- a Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine , Osaka University , Suita , Osaka , Japan
| | - Atsushi Tamura
- a Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine , Osaka University , Suita , Osaka , Japan
| | - Sachiko Tsukita
- a Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine , Osaka University , Suita , Osaka , Japan
| |
Collapse
|
46
|
Baumgartner HK, Rudolph MC, Ramanathan P, Burns V, Webb P, Bitler BG, Stein T, Kobayashi K, Neville MC. Developmental Expression of Claudins in the Mammary Gland. J Mammary Gland Biol Neoplasia 2017; 22:141-157. [PMID: 28455726 PMCID: PMC5488167 DOI: 10.1007/s10911-017-9379-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Claudins are a large family of membrane proteins whose classic function is to regulate the permeability of tight junctions in epithelia. They are tetraspanins, with four alpha-helices crossing the membrane, two extracellular loops, a short cytoplasmic N-terminus and a longer and more variable C-terminus. The extracellular ends of the helices are known to undergo side-to-side (cis) interactions that allow the formation of claudin polymers in the plane of the membrane. The extracellular loops also engage in head-to-head (trans) interactions thought to mediate the formation of tight junctions. However, claudins are also present in intracellular structures, thought to be vesicles, with less well-characterized functions. Here, we briefly review our current understanding of claudin structure and function followed by an examination of changes in claudin mRNA and protein expression and localization through mammary gland development. Claudins-1, 3, 4, 7, and 8 are the five most prominent members of the claudin family in the mouse mammary gland, with varied abundance and intracellular localization during the different stages of post-pubertal development. Claudin-1 is clearly localized to tight junctions in mammary ducts in non-pregnant non-lactating animals. Cytoplasmic puncta that stain for claudin-7 are present throughout development. During pregnancy claudin-3 is localized both to the tight junction and basolaterally while claudin-4 is found only in sparse puncta. In the lactating mouse both claudin-3 and claudin-8 are localized at the tight junction where they may be important in forming the paracellular barrier. At involution and under challenge by lipopolysaccharide claudins -1, -3, and -4 are significantly upregulated. Claudin-3 is still colocalized with tight junction molecules but is also distributed through the cytoplasm as is claudin-4. These largely descriptive data provide the essential framework for future mechanistic studies of the function and regulation of mammary epithelial cell claudins.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, CO 80045 USA
| | - Palaniappian Ramanathan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555 USA
| | - Valerie Burns
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
| | - Patricia Webb
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
| | - Torsten Stein
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ken Kobayashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Margaret C. Neville
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045 USA
- Department of Physiology and Biophysics, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045 USA
- 6561 Glencoe St., Centennial, CO 80121 USA
| |
Collapse
|
47
|
Baumholtz AI, Simard A, Nikolopoulou E, Oosenbrug M, Collins MM, Piontek A, Krause G, Piontek J, Greene NDE, Ryan AK. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure. Dev Biol 2017; 428:25-38. [PMID: 28545845 PMCID: PMC5523803 DOI: 10.1016/j.ydbio.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 11/29/2022]
Abstract
During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects. Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8. Removal of Cldn3, −4 and −8 prevents convergent extension. Apical constriction to form the median hinge point requires Cldn3, −4 and −8. Claudins localize polarity complex components to the apical surface.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Annie Simard
- Department of Experimental Medicine, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Evanthia Nikolopoulou
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | - Marcus Oosenbrug
- Department of Anatomy and Cell Biology, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Michelle M Collins
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Berlin, Germany.
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Berlin, Germany.
| | - Jörg Piontek
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Nicholas D E Greene
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Canada; Department of Experimental Medicine, McGill University, Canada; Department of Pediatrics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
48
|
Peter A, Fatykhova D, Kershaw O, Gruber AD, Rueckert J, Neudecker J, Toennies M, Bauer TT, Schneider P, Schimek M, Eggeling S, Suttorp N, Hocke AC, Hippenstiel S. Localization and pneumococcal alteration of junction proteins in the human alveolar-capillary compartment. Histochem Cell Biol 2017; 147:707-719. [PMID: 28247028 DOI: 10.1007/s00418-017-1551-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 02/03/2023]
Abstract
Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal-to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.
Collapse
Affiliation(s)
- Andrea Peter
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department for Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Diana Fatykhova
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jens Rueckert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Mario Toennies
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstrasse 11, 14165, Berlin, Germany
| | - Torsten T Bauer
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstrasse 11, 14165, Berlin, Germany
| | - Paul Schneider
- Department for General and Thoracic Surgery, DRK Clinics, Drontheimer Strasse 39-40, 13359, Berlin, Germany
| | - Maria Schimek
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin, Rudower Straße 48, 12351, Berlin, Germany
| | - Stephan Eggeling
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin, Rudower Straße 48, 12351, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
49
|
Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch 2017; 469:135-147. [PMID: 27921210 PMCID: PMC5203840 DOI: 10.1007/s00424-016-1917-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
Inflammatory lung diseases like asthma bronchiale, chronic obstructive pulmonary disease and allergic airway inflammation are widespread public diseases that constitute an enormous burden to the health systems. Mainly classified as inflammatory diseases, the treatment focuses on strategies interfering with local inflammatory responses by the immune system. Inflammatory lung diseases predispose patients to severe lung failures like alveolar oedema, respiratory distress syndrome and acute lung injury. These life-threatening syndromes are caused by increased permeability of the alveolar and airway epithelium and exudate formation. However, the mechanism underlying epithelium barrier breakdown in the lung during inflammation is elusive. This review emphasises the role of the tight junction of the airway epithelium as the predominating structure conferring epithelial tightness and preventing exudate formation and the impact of inflammatory perturbations on their function.
Collapse
Affiliation(s)
- Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
50
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|