1
|
Sueblinvong V, Fan X, Hart C, Molina S, Koval M, Guidot DM. Ethanol-exposed lung fibroblasts cause airway epithelial barrier dysfunction. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1839-1849. [PMID: 37864530 DOI: 10.1111/acer.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Chronic alcohol ingestion predisposes to lung injury and disrepair during sepsis. Our previous studies outlined roles for transforming growth factor-beta 1 (TGFβ1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in epithelial barrier homeostasis and how alcohol perturbs their expression and signaling. Here we hypothesize that ethanol-exposed lung fibroblasts (LF) are a source of dysregulated TGFβ1 and GM-CSF and thereby alter airway epithelial barrier function. METHODS Human or rat LF were cultured ± ethanol for 2 weeks and then co-cultured with human or rat airway epithelial cells (AEC) seeded on Transwell permeable supports. In selected groups, a TGFβ1 receptor type 1 (TGFβR1) inhibitor (SB431542) or a TGFβ1 neutralizing antibody was applied. Transepithelial electrical resistance (TER) was measured prior to co-culture and on day 5 of co-culture. AEC were then analyzed for the expression of selected tight junction and mesenchymal proteins, and transwell membranes were analyzed by immunofluorescence microscopy for ZO-1 expression and localization. TGFβ1 and GM-CSF levels in conditioned media from the co-cultures were quantified by ELISA. RESULTS AEC co-cultured with ethanol-exposed LF (ELF) showed a significant reduction in TER and corresponding decreases in ZO-1 expression, whereas collagen type 1A1 and α-smooth muscle actin protein expression were increased. In parallel, in conditioned media from the ELF + AEC co-cultures, activated TGFβ1 levels increased and GM-CSF levels decreased. Notably, all the effects of ELF on the AEC were prevented by blocking TGFβ1 activity. CONCLUSIONS Prior ethanol exposure to LF induces barrier dysfunction in naive AEC in a paracrine fashion through activation of TGFβ1 signaling and suppression of GM-CSF. These experimental findings provide a potential mechanism by which chronic alcohol ingestion impairs airway epithelial integrity and renders individuals susceptible to lung injury.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craishun Hart
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samuel Molina
- FUJIFILM Irvine Scientific, Warminster, Pennsylvania, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
3
|
Crotty K, Anton P, Coleman LG, Morris NL, Lewis SA, Samuelson DR, McMahan RH, Hartmann P, Kim A, Ratna A, Mandrekar P, Wyatt TA, Choudhry MA, Kovacs EJ, McCullough R, Yeligar SM. A critical review of recent knowledge of alcohol's effects on the immunological response in different tissues. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:36-44. [PMID: 36446606 PMCID: PMC9974783 DOI: 10.1111/acer.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.
Collapse
Affiliation(s)
- Kathryn Crotty
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Paige Anton
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Leon G Coleman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Niya L Morris
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel H McMahan
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Adam Kim
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anuradha Ratna
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Aurora, Colorado, USA
| | - Rebecca McCullough
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
- Alcohol Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Samantha M Yeligar
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
4
|
Wigger GW, Khani D, Ahmed M, Sayegh L, Auld SC, Fan X, Guidot DM, Staitieh BS. Alcohol impairs recognition and uptake of Mycobacterium tuberculosis by suppressing toll-like receptor 2 expression. Alcohol Clin Exp Res 2022; 46:2214-2224. [PMID: 36281822 PMCID: PMC9772112 DOI: 10.1111/acer.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol impairs pulmonary innate immune function and is associated with an increased risk of tuberculosis (TB). Toll-like receptor 2 (TLR2) is a pattern recognition receptor on alveolar macrophages that recognizes Mycobacterium tuberculosis (Mtb). The expression of TLR2 depends, in part, on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Given our prior work demonstrating the suppression of GM-CSF signaling following chronic alcohol ingestion, we hypothesized that alcohol impairs TLR2 expression via the suppression of GM-CSF and thereby reduces the ability of the macrophage to recognize and phagocytose Mtb. METHODS Primary alveolar macrophages were isolated from control-fed and alcohol-fed rats. Prior to cell isolation, some alcohol-fed rats were treated with intranasal GM-CSF and then endotracheally inoculated with an attenuated strain of Mtb. Primary macrophages were then isolated and immunofluorescence was used to determine phagocytic efficiency and TLR2 expression in the presence and absence of GM-CSF treatment and phagocytic efficiency in the presence and absence of TLR2 neutralization. RESULTS TLR2 expression and phagocytosis of Mtb were significantly lower in the alveolar macrophages of alcohol-fed rats than control-fed rats. In parallel, blocking TLR2 signaling recapitulated this decreased phagocytosis of Mtb. In contrast, intranasal GM-CSF treatment restored TLR2 expression and Mtb phagocytosis in the alveolar macrophages of alcohol-fed rats to levels comparable to those of control-fed rats. CONCLUSIONS Chronic alcohol ingestion reduces TLR2 protein expression and phagocytosis of Mtb, likely due to impaired GM-CSF signaling. GM-CSF restores membrane-bound TLR2 expression and phagocytic function.
Collapse
Affiliation(s)
- Gregory W Wigger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Darya Khani
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mariam Ahmed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Layal Sayegh
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sara C Auld
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
6
|
Wigger GW, Bouton TC, Jacobson KR, Auld SC, Yeligar SM, Staitieh BS. The Impact of Alcohol Use Disorder on Tuberculosis: A Review of the Epidemiology and Potential Immunologic Mechanisms. Front Immunol 2022; 13:864817. [PMID: 35432348 PMCID: PMC9009367 DOI: 10.3389/fimmu.2022.864817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, an estimated 107 million people have an alcohol use disorder (AUD) leading to 2.8 million premature deaths each year. Tuberculosis (TB) is one of the leading causes of death globally and over 8% of global TB cases are estimated to be attributable to AUD. Social determinants of health such as poverty and undernutrition are often shared among those with AUD and TB and could explain the epidemiologic association between them. However, recent studies suggest that these shared risk factors do not fully account for the increased risk of TB in people with AUD. In fact, AUD has been shown to be an independent risk factor for TB, with a linear increase in the risk for TB with increasing alcohol consumption. While few studies have focused on potential biological mechanisms underlying the link between AUD and TB, substantial overlap exists between the effects of alcohol on lung immunity and the mechanisms exploited by Mycobacterium tuberculosis (Mtb) to establish infection. Alcohol misuse impairs the immune functions of the alveolar macrophage, the resident innate immune effector in the lung and the first line of defense against Mtb in the lower respiratory tract. Chronic alcohol ingestion also increases oxidative stress in the alveolar space, which could in turn facilitate Mtb growth. In this manuscript, we review the epidemiologic data that links AUD to TB. We discuss the existing literature on the potential mechanisms by which alcohol increases the risk of TB and review the known effects of alcohol ingestion on lung immunity to elucidate other mechanisms that Mtb may exploit. A more in-depth understanding of the link between AUD and TB will facilitate the development of dual-disease interventions and host-directed therapies to improve lung health and long-term outcomes of TB.
Collapse
Affiliation(s)
- Gregory W Wigger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Tara C Bouton
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Karen R Jacobson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Sara C Auld
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Atlanta VA Medical Center, Atlanta, GA, United States
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Slovinsky WS, Romero F, Sales D, Shaghaghi H, Summer R. The involvement of GM-CSF deficiencies in parallel pathways of pulmonary alveolar proteinosis and the alcoholic lung. Alcohol 2019; 80:73-79. [PMID: 31229291 PMCID: PMC6592783 DOI: 10.1016/j.alcohol.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Chronic alcohol consumption renders the lung more susceptible to infections by disrupting essential alveolar macrophage functions. Emerging evidence suggests that these functional deficits are due, in part, to a suppression of GM-CSF signaling, which is believed to compromise monocyte growth and maturation in the lung. However, in addition to controlling monocyte behaviors, GM-CSF also regulates surfactant homeostasis. For example, mice with targeted deletion of the gene for GM-CSF accumulate large amounts of surfactant phospholipids in their lungs. Moreover, decreased GM-CSF signaling in humans has been linked to the development of pulmonary alveolar proteinosis (PAP), a rare disorder in which surfactant lipids and proteins accumulate in alveolar macrophages and the lung exhibits enhanced susceptibility to infection. Consistent with parallel mechanisms in the PAP and alcoholic lung, we have recently reported that levels of intrapulmonary lipids, specifically triglycerides and free fatty acids, are increased in BAL fluid, whole lung digests and alveolar macrophages of chronically alcohol exposed rats. Additionally, we showed that uptake of saturated fatty acids alone could induce phenotypic and functional changes in alveolar macrophages that mimicked those in the alcohol-exposed rat and human lung. Herein, we discuss the role of GM-CSF in surfactant homeostasis and highlight the evidence that links decreased GM-CSF signaling to alveolar macrophage dysfunction in both the PAP and alcohol-exposed lung. Moreover, we discuss how lipid accumulation itself might contribute to altering alveolar macrophage function and propose how targeting these mechanisms could be employed for reducing the susceptibility to pulmonary infections in alcoholics.
Collapse
Affiliation(s)
- William S Slovinsky
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dominic Sales
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hoora Shaghaghi
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Kukoyi AT, Fan X, Staitieh BS, Hybertson BM, Gao B, McCord JM, Guidot DM. MiR-144 mediates Nrf2 inhibition and alveolar epithelial dysfunction in HIV-1 transgenic rats. Am J Physiol Cell Physiol 2019; 317:C390-C397. [PMID: 31091144 DOI: 10.1152/ajpcell.00038.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic HIV infection causes redox stress and increases the risk of acute and chronic lung injury, even when individuals are adherent to antiretroviral therapy. HIV-1 transgene expression in rats inhibits nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which regulates antioxidant defenses and alveolar epithelial cell (AEC) barrier function, but the mechanism is unknown. In this study, we present novel evidence that these pathological effects of HIV are mediated by microRNA-144 (miR-144). HIV-1 transgene expression in vivo increases the expression of miR-144 in the alveolar epithelium, and this can be replicated by direct exposure of naïve primary AECs to either Tat or gp120 ex vivo. Further, treating naïve primary AECs with a miR-144 mimic decreased the expression and activity of Nrf2 and inhibited their barrier formation. In contrast, treatment with a miR-144 antagomir increased the expression and activity of Nrf2 and improved barrier function in primary AECs isolated from HIV-1 transgenic rats. Importantly, either delivering the miR-144 antagomir intratracheally, or directly activating Nrf2 by dietary treatment with PB123, increased Nrf2 expression and barrier formation in HIV-1 transgenic rat AECs. This study provides new experimental evidence that HIV-induced inhibition of Nrf2 and consequent AEC barrier dysfunction are mediated via miR-144, and that these pathophysiological effects can be mitigated in vivo by either directly antagonizing miR-144 or activating Nrf2. Our findings suggest that targeting the inhibition of Nrf2 in individuals living with HIV could enhance their lung health and decrease the lung-specific morbidity and mortality that persists despite antiretroviral therapy.
Collapse
Affiliation(s)
- Abiodun T Kukoyi
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xian Fan
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joe M McCord
- Pathways Bioscience, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - David M Guidot
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
9
|
Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol 2018; 53:17-27. [PMID: 29168340 PMCID: PMC5938176 DOI: 10.1002/ppul.23681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Premature neonates frequently require oxygen supplementation as a therapeutic intervention that, while necessary, also exposes the lung to significant oxidant stress. We hypothesized that hyperoxia has a deleterious effect on alveolar epithelial barrier function rendering the neonatal lung susceptible to injury and/or bronchopulmonary dysplasia (BPD). MATERIALS AND METHODS We examined the effects of exposure to 85% oxygen on neonatal rat alveolar barrier function in vitro and in vivo. Whole lung was measured using wet-to-dry weight ratios and bronchoalveolar lavage protein content and cultured primary neonatal alveolar epithelial cells (AECs) were measured using transepithelial electrical resistance (TEER) and paracellular flux measurements. Expression of claudin-family tight junction proteins, E-cadherin and the Snail transcription factor SNAI1 were measured by Q-PCR, immunoblot and confocal immunofluorescence microscopy. RESULTS Cultured neonatal AECs exposed to 85% oxygen showed impaired barrier function. This oxygen-induced increase in paracellular leak was associated with altered claudin expression, where claudin-3 and -18 were downregulated at both the mRNA and protein level. Claudin-4 and -5 mRNA were also decreased, although protein expression of these claudins was largely maintained. Lung alveolarization and barrier function in vivo were impaired in response to hyperoxia. Oxygen exposure also significantly decreased E-cadherin expression and induced expression of the SNAI1 transcription factor in vivo and in vitro. CONCLUSIONS These data support a model in which hyperoxia has a direct impact on alveolar tight and adherens junctions to impair barrier function. Strategies to antagonize the effects of high oxygen on alveolar junctions may potentially reverse this deleterious effect.
Collapse
Affiliation(s)
- Shilpa Vyas-Read
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rachel J Vance
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Wenyi Wang
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Lou Ann Brown
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael Koval
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
10
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|
11
|
Overgaard CE, Schlingmann B, Dorsainvil White S, Ward C, Fan X, Swarnakar S, Brown LAS, Guidot DM, Koval M. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1212-23. [PMID: 25888574 DOI: 10.1152/ajplung.00042.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.
Collapse
Affiliation(s)
- Christian E Overgaard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - StevenClaude Dorsainvil White
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christina Ward
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Snehasikta Swarnakar
- Drug Development Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Lou Ann S Brown
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia;
| |
Collapse
|
12
|
Ward C, Schlingmann B, Stecenko AA, Guidot DM, Koval M. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers 2015; 3:e982424. [PMID: 25838984 DOI: 10.4161/21688370.2014.982424] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
NF-κB (p50/p65) is the best characterized transcription factor known to regulate cell responses to inflammation. However, NF-κB is also constitutively expressed. We used inhibitors of the classical NF-κB signaling pathway to determine whether this transcription factor has a role in regulating alveolar epithelial tight junctions. Primary rat type II alveolar epithelial cells were isolated and cultured on Transwell permeable supports coated with collagen for 5 d to generate a model type I cell monolayer. Treatment of alveolar epithelial monolayers overnight with one of 2 different IκB kinase inhibitors (BAY 11-7082 or BMS-345541) resulted in a dose-dependent decrease in TER at concentrations that did not affect cell viability. In response to BMS-345541 treatment there was an increase in total claudin-4 and claudin-5 along with a decrease in claudin-18, as determined by immunoblot. However, there was little effect on the total amount of cell-associated claudin-7, occludin, junctional adhesion molecule A (JAM-A), zonula occludens (ZO)-1 or ZO-2. Moreover, treatment with BMS-345541 resulted in altered tight junction morphology as assessed by immunofluorescence microscopy. Cells treated with BMS-345541 had an increase in claudin-18 containing projections emanating from tight junctions ("spikes") that were less prominent in control cells. There also were several areas of cell-cell contact which lacked ZO-1 and ZO-2 localization as well as rearrangements to the actin cytoskeleton in response to BMS-345541. Consistent with an anti-inflammatory effect, BMS-345541 antagonized the deleterious effects of lipopolysaccharide (LPS) on alveolar epithelial barrier function. However, BMS-345541 also inhibited the ability of GM-CSF to increase alveolar epithelial TER. These data suggest a dual role for NF-κB in regulating alveolar barrier function and that constitutive NF-κB function is required for the integrity of alveolar epithelial tight junctions.
Collapse
Key Words
- ARDS, Acute Respiratory Distress Syndrome
- GM-CSF, Granulocyte Macrophage Colony Stimulating Factor
- IL, interleukin
- IκB, Inhibitor of κB
- JAM-A, junctional adhesion molecule A
- LPS, lipolysaccharide
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PBS, phosphate buffered saline
- TER, transepithelial resistance
- TNF, Tumor Necrosis Factor
- ZO, zonula occludens
- alveolus
- claudin
- lung barrier
- tight junction
Collapse
Affiliation(s)
- Christina Ward
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Barbara Schlingmann
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Arlene A Stecenko
- Department of Pediatrics; Emory University School of Medicine ; Atlanta, GA USA
| | - David M Guidot
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA
| | - Michael Koval
- Pulmonary Division; Department of Medicine; Emory University School of Medicine ; Atlanta, GA USA ; Department of Cell Biology; Emory University School of Medicine ; Atlanta, GA USA
| |
Collapse
|
13
|
Sturrock A, Baker JA, Mir-Kasimov M, Paine R. Contrasting effects of hyperoxia on GM-CSF gene transcription in alveolar epithelial cells and T cells. Physiol Rep 2015; 3:3/3/e12324. [PMID: 25747588 PMCID: PMC4393158 DOI: 10.14814/phy2.12324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF) is critically important for normal pulmonary innate immunity and for functional maturation of alveolar macrophages. Alveolar epithelial cells (AEC) are a major source of GM-CSF in the lung and express this growth factor constitutively, whereas most other cells, including T cells, express GM-CSF following inflammatory stimulation. AEC expression of GM-CSF is suppressed by oxidative stress, at least in part through induction of microRNA leading to increased mRNA turnover. In this report, we compare and contrast the effect of hyperoxia on transcriptional aspects of gene regulation of GM-CSF in lung epithelia and T cells of human and mouse origin. Similar to primary murine AEC, human H820 cells that express multiple characteristics of normal alveolar epithelial cells express GM-CSF constitutively, with decreased expression and increased mRNA turnover following exposure to hyperoxia. In contrast, hyperoxia induces augmented GM-CSF expression in human and murine activated T cells, in association with enhanced GM-CSF mRNA stability. Alveolar epithelial cells demonstrate constitutive transcription, with the proximal promoter in an open configuration in normoxia, without change in hyperoxia. Conversely, in both human and murine T cells, hyperoxia increased GM-CSF gene transcription. The proximal promoter was in a closed configuration in unstimulated T cells but became accessible upon activation and still more accessible in activated T cells exposed to hyperoxia. These fundamental differences in molecular regulation of GM-CSF expression highlight the distinctive niche of alveolar epithelial cell expression of GM-CSF and offer insights into the biology of GM-CSF in the setting of acute lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica A Baker
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mustafa Mir-Kasimov
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert Paine
- Department of Veterans, Affairs Medical Center, Salt Lake City, Utah, USA Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Guidot DM. Donor alcohol abuse and lung injury following allograft transplantation: a cautionary tale but also a call to action. Alcohol Clin Exp Res 2014; 38:2695-6. [PMID: 25421505 DOI: 10.1111/acer.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 11/26/2022]
Affiliation(s)
- David M Guidot
- Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Voelker MT, Fichtner F, Kasper M, Kamprad M, Sack U, Kaisers UX, Laudi S. Characterization of a double-hit murine model of acute respiratory distress syndrome. Clin Exp Pharmacol Physiol 2014; 41:844-53. [DOI: 10.1111/1440-1681.12283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/16/2014] [Accepted: 06/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Theresa Voelker
- Department of Anesthesiology and Intensive Care Medicine; University Hospital of Leipzig; Leipzig Germany
| | - Falk Fichtner
- Department of Anesthesiology and Intensive Care Medicine; University Hospital of Leipzig; Leipzig Germany
| | - Michael Kasper
- Institute of Anatomy, Medical Faculty; Dresden University of Technology; Dresden Germany
| | - Manja Kamprad
- Institute of Clinical Immunology; University Hospital of Leipzig; Leipzig Germany
| | - Ulrich Sack
- Institute of Clinical Immunology; University Hospital of Leipzig; Leipzig Germany
| | - Udo X Kaisers
- Department of Anesthesiology and Intensive Care Medicine; University Hospital of Leipzig; Leipzig Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care Medicine; University Hospital of Leipzig; Leipzig Germany
| |
Collapse
|
16
|
Abstract
Acute respiratory distress syndrome (ARDS) remains a major cause of morbidity and mortality in critically ill patients. Over the past several decades, alcohol abuse and cigarette smoke exposure have been identified as risk factors for the development of ARDS. The mechanisms underlying these relationships are complex and remain under investigation but are thought to involve pulmonary immune impairment and alveolar epithelial and endothelial dysfunction. This review summarizes the epidemiologic data supporting links between these exposures and ARDS susceptibility and outcomes and highlights key mechanistic investigations that provide insight into the pathways by which each exposure is linked to ARDS.
Collapse
Affiliation(s)
- Farzad Moazed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M1097 Box 0111, San Francisco, CA 94143-0111, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, M1097 Box 0111, San Francisco, CA 94143-0111, USA.
| |
Collapse
|
17
|
Cribbs SK, Rimland D. Alcohol and HIV: Experimental and Clinical Evidence of Combined Impact on the Lung. ALCOHOL USE DISORDERS AND THE LUNG 2014. [PMCID: PMC7121129 DOI: 10.1007/978-1-4614-8833-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Despite antiretroviral therapy, lung disease is a leading cause of death in individuals infected with human immunodeficiency virus type 1 (HIV). Individuals infected with HIV are susceptible to serious bacterial and viral infections, such as pneumococcus and influenza, which are particularly problematic for lung health, resulting in lung injury. Additionally, HIV-infected individuals are susceptible to a number of pulmonary diseases for unknown reasons. Alcohol, the most commonly abused drug in the world, continues to exact an enormous toll on morbidity and mortality in individuals living with HIV. Chronic alcohol abuse has been shown to affect lung immunity, resulting in significant lung injury. There is a paucity of literature on the additive effects of HIV and alcohol, two diseases of immune senescence, in the lung. This chapter begins by discussing the latest literature evaluating the epidemiology of HIV, alcohol use, and lung health focusing on two prevalent infections, tuberculosis and pneumococcal pneumonia. In parallel, we discuss the interactions of alcohol and HIV on the risk for acute lung injury and subsequent morbidity and mortality. We then discuss the pathophysiology of how these two diseases of immune dysfunction affect the lung, with a focus on the oxidative stress, alveolar macrophage host immune capacity, and immunomodulatory role of zinc in the airway. Finally, we review the latest literature on how HIV and alcohol affect other pulmonary disorders including chronic obstructive pulmonary disease, pulmonary hypertension, and lung cancer.
Collapse
|
18
|
Arai T, Inoue Y, Sugimoto C, Inoue Y, Nakao K, Takeuchi N, Matsumuro A, Hirose M, Nakata K, Hayashi S. CYFRA 21-1 as a disease severity marker for autoimmune pulmonary alveolar proteinosis. Respirology 2013; 19:246-252. [PMID: 24251830 DOI: 10.1111/resp.12210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/17/2012] [Accepted: 08/28/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Serum markers, including Krebs von den Lungen (KL-6), surfactant protein (SP)-D, SP-A and carcinoembryonic antigen (CEA), are reported to reflect autoimmune pulmonary alveolar proteinosis (APAP) disease severity. We evaluated serum CYFRA21-1 levels as a marker of APAP. METHODS In addition to KL-6, SP-D and CEA, we prospectively measured serum CYFRA 21-1 levels in 48 patients with APAP, consecutively diagnosed between 2002 and 2010. Diagnostic usefulness of CYFRA 21-1 was determined from 68 patients with interstitial lung diseases by receiver operator characteristic curve analysis. We evaluated the association between these serum markers and other disease severity markers, including pulmonary function parameters, alveolar-arterial oxygen gradient, British Medical Research Council score reflecting shortness of breath, and disease severity score. CYFRA 21-1 localization in the lung was examined by immunohistochemistry. RESULTS Receiver operator characteristic curve demonstrated that CYFRA 21-1 effectively identified APAP. Serum CYFRA 21-1 levels at diagnosis were significantly associated with the measured disease severity parameters. Following whole lung lavage (n = 10) and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhalation (n = 20), serum CYFRA 21-1 levels were significantly decreased. Responders (n = 11) to GM-CSF inhalation revealed significantly higher serum CYFRA 21-1 levels than non-responders (n = 9). Serum CYFRA 21-1 appeared to be a significant predictor of effectiveness of GM-CSF based on regression analysis. Immunohistochemistry showed that CYFRA 21-1 was localized on hyperplastic alveolar type II cells and lipoproteinaceous substances in alveoli. CONCLUSIONS Serum CYFRA 21-1 is a sensitive and useful serum marker for diagnosis and evaluation of disease severity of APAP, and may predict the response to GM-CSF inhalation.
Collapse
Affiliation(s)
- Toru Arai
- Department of Respiratory Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan.,Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Yoshikazu Inoue
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Chikatoshi Sugimoto
- Division of Clinical Trial, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Yasushi Inoue
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Keiko Nakao
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Akiko Matsumuro
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Masaki Hirose
- Department of Diffuse Lung Diseases and Respiratory Failure, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Seiji Hayashi
- Department of Internal Medicine, National Hospital Organization, Kinki-Chuo Chest Medical Center, Osaka, Japan
| |
Collapse
|
19
|
Guidot DM, Mehta AJ. Alcohol-Mediated Zinc Deficiency Within the Alveolar Space: A Potential Fundamental Mechanism Underlying Oxidative Stress and Cellular Dysfunction in the Alcoholic Lung. ALCOHOL USE DISORDERS AND THE LUNG 2013; 14. [PMCID: PMC7120872 DOI: 10.1007/978-1-4614-8833-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zinc is one of the most abundant trace elements in the human body, and its presence is essential for numerous biological processes including enzymatic activity, immune function, protein synthesis, and wound healing. Given these important roles, zinc has a sophisticated transport system to regulate its homeostasis. Determination of zinc status, however, is difficult to determine as serum levels are closely maintained and are not an accurate reflection of total body zinc or metabolism at the organ level. Fortunately, the discovery of zinc-specific fluorescent dyes has allowed for a much better assessment of zinc status in the respiratory system and has revealed that alcoholism perturbs this highly developed zinc metabolism such that its distribution to the lung and alveolar space is significantly decreased. As a result, this pulmonary zinc deficiency impairs function in the alveolar macrophage, which is the primary host immune cell within the lower airway. Experimental models have demonstrated that correction of this zinc deficiency restores immune function to the alveolar macrophage as best reflected by improved bacterial clearance in response to infection. While the precise mechanisms underlying alcohol-induced zinc deficiency are still under investigation, there is experimental evidence of several important connections with granulocyte–macrophage colony-stimulating factor and oxidative stress, suggesting that alteration of zinc homeostasis may be a fundamental mechanism underlying the cellular pathology seen in the alcohol lung phenotype. This chapter reviews zinc homeostasis and offers insight into our understanding of zinc deficiency in the setting of alcoholism and the potential of zinc as a therapeutic modality in the vulnerable alcoholic host.
Collapse
Affiliation(s)
- David M. Guidot
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine and the Atlanta VA Medical Center, Atlanta, Georgia USA
| | - Ashish J. Mehta
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine and the Atlanta VA Medical Center, Decatur, Georgia USA
| |
Collapse
|
20
|
Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett 2013; 222:171-9. [PMID: 23892124 DOI: 10.1016/j.toxlet.2013.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway. Alcohol can also be metabolized by cytochrome P450 2E1 (CYP2E1), particularly during chronic alcohol abuse. Both the oxidative pathways, however, are associated with oxidative stress due to the formation of acetaldehyde and/or reactive oxygen species (ROS). Alcohol ingestion is also known to cause endoplasmic reticulum (ER) stress, which can be mediated by oxidative and/or non-oxidative metabolites of ethanol. An acute as well as chronic alcohol ingestions impair protective antioxidants, oxidize reduced glutathione (GSH, cellular antioxidant against ROS and oxidative stress), and suppress innate and adaptive immunity in the lungs. Oxidative stress and suppressed immunity in the lungs of chronic alcohol abusers collectively are considered to be major risk factors for infection and development of pneumonia, and such diseases as ARDS and COPD. Prior human and experimental studies attempted to identify common mechanisms by which alcohol abuse directly causes toxicity to alveolar epithelium and respiratory tract, particularly lungs. In this review, the metabolic basis of lung injury, oxidative and ER stress and immunosuppression in experimental models and alcoholic patients, as well as potential immunomodulatory therapeutic strategies for improving host defenses against alcohol-induced pulmonary infections are discussed.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
21
|
Fan X, Staitieh BS, Jensen JS, Mould KJ, Greenberg JA, Joshi PC, Koval M, Guidot DM. Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats. Am J Physiol Lung Cell Mol Physiol 2013; 305:L267-77. [PMID: 23748533 DOI: 10.1152/ajplung.00288.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who display systemic oxidative stress and glutathione deficiency that can be modeled in transgenic rats where HIV-1-related viral proteins decrease glutathione levels and cause epithelial barrier dysfunction within the alveolar space by as yet unknown mechanisms. We hypothesized that HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby disrupt the normally tight alveolar epithelial barrier. Nrf2 RNA silencing dampened Nrf2/ARE activity, decreased the expression of the tight junction proteins zonula occludens-1, occludin, and claudin-18, increased paracellular permeability of alveolar epithelial monolayers derived from wild-type rats, and therefore reproduced the effects of HIV-1 transgene expression on the epithelial barrier that we had previously described. In contrast, upregulating Nrf2 activity, either by plasmid-mediated overexpression or treatment with the Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxidants, including NAD(P)H dehydrogenase, quinone 1 and glutathione, improved the expression of tight junction proteins, and restored the ability to form tight barriers in alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new findings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity within the alveolar epithelium, which in turn impairs antioxidant defenses and barrier function, thereby rendering the lung susceptible to oxidative stress and injury. Furthermore, this study suggests that activating the Nrf2/ARE pathway with the dietary supplement sulforaphane could augment antioxidant defenses and lung health in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Xian Fan
- Division of Pulmonary, Allergy & Critical Care Medicine, Emory University School of Medicine, 615 Michael St., Ste. 205, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mao Q, Chu S, Ghanta S, Padbury JF, De Paepe ME. Ex vivo expanded human cord blood-derived hematopoietic progenitor cells induce lung growth and alveolarization in injured newborn lungs. Respir Res 2013; 14:37. [PMID: 23522153 PMCID: PMC3610254 DOI: 10.1186/1465-9921-14-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We investigated the capacity of expanded cord blood-derived CD34+ hematopoietic progenitor cells to undergo respiratory epithelial differentiation ex vivo, and to engraft and attenuate alveolar disruption in injured newborn murine lungs in vivo. METHODS Respiratory epithelial differentiation was studied in CD34+ cells expanded in the presence of growth factors and cytokines ("basic" medium), in one group supplemented with dexamethasone ("DEX"). Expanded or freshly isolated CD34+ cells were inoculated intranasally in newborn mice with apoptosis-induced lung injury. Pulmonary engraftment, lung growth and alveolarization were studied at 8 weeks post-inoculation. RESULTS SP-C mRNA expression was seen in 2/7 CD34+ cell isolates expanded in basic media and in 6/7 isolates expanded in DEX, associated with cytoplasmic SP-C immunoreactivity and ultrastructural features suggestive of type II cell-like differentiation. Administration of expanding CD34+ cells was associated with increased lung growth and, in animals treated with DEX-exposed cells, enhanced alveolar septation. Freshly isolated CD34+ cells had no effect of lung growth or remodeling. Lungs of animals treated with expanded CD34+ cells contained intraalveolar aggregates of replicating alu-FISH-positive mononuclear cells, whereas epithelial engraftment was extremely rare. CONCLUSION Expanded cord blood CD34+ cells can induce lung growth and alveolarization in injured newborn lungs. These growth-promoting effects may be linked to paracrine or immunomodulatory effects of persistent cord blood-derived mononuclear cells, as expanded cells showed limited respiratory epithelial transdifferentiation.
Collapse
Affiliation(s)
- Quanfu Mao
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | | | | | | | | |
Collapse
|
23
|
Liang Y, Yeligar SM, Brown LAS. Chronic-alcohol-abuse-induced oxidative stress in the development of acute respiratory distress syndrome. ScientificWorldJournal 2012; 2012:740308. [PMID: 23346021 PMCID: PMC3543796 DOI: 10.1100/2012/740308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS), a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2-4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH), and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40-60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis.
Collapse
Affiliation(s)
- Yan Liang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| | - Samantha M. Yeligar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
- Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, GA 30033, USA
| | - Lou Ann S. Brown
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Sarmiento X, Guardiola JJ, Soler M. [Alcohol and acute respiratory distress syndrome: casuality or causality?]. Med Clin (Barc) 2012. [PMID: 23177306 DOI: 10.1016/j.medcli.2012.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alcohol has been considered an important risk factor for the development of pneumonia since the last century. Nevertheless, it was not thought that it had relevant effects on lung structure and functions until recently. Recent studies have shown that the risk for acute respiratory distress syndrome (ARDS) is 2-4 times higher among alcoholic patients with sepsis or trauma, and that alcoholism can play a roll in more than 50% of cases in the pathogenesis of this syndrome. Although alcoholism per se does not cause acute lung injury it predisposes to pulmonary dysfunction after inflammatory stress, that is present in clinical situations that cause ARDS leading to its development and complicating its outcome. Recent investigations in animals and humans with alcohol abuse have uncovered several alterations currently known as the "alcoholic lung". This revision discusses the association between alcohol abuse and lung injury/ARDS and tries to explain the physiopathology along with possible treatments.
Collapse
Affiliation(s)
- Xavier Sarmiento
- Servicio de Medicina Intensiva, Hospital Germans Trias i Pujol, Badalona, Barcelona, España.
| | | | | |
Collapse
|
25
|
Overgaard CE, Mitchell LA, Koval M. Roles for claudins in alveolar epithelial barrier function. Ann N Y Acad Sci 2012; 1257:167-74. [PMID: 22671603 DOI: 10.1111/j.1749-6632.2012.06545.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Terminal airspaces of the lung, alveoli, are sites of gas exchange that are sensitive to disrupted fluid balance. The alveolar epithelium is a heterogeneous monolayer of cells interconnected by tight junctions at sites of cell-cell contact. Paracellular permeability depends on claudin (cldn)-family tight junction proteins. Of over a dozen alveolar cldns, cldn-3, cldn-4, and cldn-18 are the most highly expressed; other prominent alveolar claudins include cldn-5 and cldn-7. Cldn-3 is primarily expressed by type II alveolar epithelial cells, whereas cldn-4 and cldn-18 are expressed throughout the alveolar epithelium. Lung diseases associated with pulmonary edema, such as alcoholic lung syndrome and acute lung injury, affect alveolar claudin expression, which is frequently associated with impaired fluid clearance due to increased alveolar leak. However, recent studies have identified a role for increased cldn-4 in protecting alveolar barrier function following injury. Thus, alveolar claudins are dynamically regulated, tailoring lung barrier function to control the air-liquid interface.
Collapse
Affiliation(s)
- Christian E Overgaard
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
26
|
Abstract
Lung epithelial cells interconnected by tight junctions provide a barrier to the free diffusion of solutes into airspaces. Transmembrane tight junction proteins known as claudins are essential for epithelial barrier function. Claudins are regulated through interactions with each other that are coordinated with other transmembrane tight junction proteins and cytosolic scaffold proteins. Of the 14 claudins expressed by the alveolar epithelium, claudin-3, claudin-4, and claudin-18 are the most prominent; each confers unique properties to alveolar barrier function. In particular, a protective role for claudin-4 in preventing lung injury has emerged. By contrast, lung diseases that affect claudin expression and impair barrier function, including alcoholic lung syndrome and sepsis, prime the lung for pulmonary edema. Thus, approaches to restore and/or augment lung claudin expression provide potential targets for promoting healthy barrier function.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
27
|
Curry-McCoy TV, Guidot DM, Joshi PC. Chronic alcohol ingestion in rats decreases Krüppel-like factor 4 expression and intracellular zinc in the lung. Alcohol Clin Exp Res 2012; 37:361-71. [PMID: 23013362 DOI: 10.1111/j.1530-0277.2012.01946.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic alcohol ingestion alters the dynamic balance between granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor beta1 (TGFβ1) signaling within the alveolar space and, in parallel, impairs alveolar macrophage and epithelial cell function by inhibiting expression of the zinc importer ZIP4 and decreasing zinc bioavailability in the alveolar compartment. As the transcription factor Krüppel-like factor 4 (KLF4 ) binds to ZIP4 , we hypothesized that alcohol exposure and consequent perturbations in GM-CSF and TGFβ1 signaling could decrease cellular KLF4 expression and/or binding as a mechanism by which it inhibits ZIP4 expression and decreases cellular zinc levels. METHODS AND RESULTS Alcohol exposure in vitro or chronic ingestion in vivo decreased KLF4 expression in alveolar macrophages and epithelial cells. Treatment with GM-CSF or TGFβ1 showed an enhancing or dampening effect on KLF4 expression and binding, respectively. Further, treatment of a rat alveolar macrophage cell line with alcohol in vitro for 4 weeks decreased the expression of the zinc transporters ZIP4 and ZNT1, and of the zinc storage protein metallothionein 1. In parallel, treating these macrophages with KLF4 siRNA decreased ZIP4 expression and decreased cellular zinc and phagocytic capacity to levels equivalent to those following alcohol exposure. In epithelial monolayers, transepithelial electrical resistance (TER) was significantly decreased by alcohol ingestion as compared with control diets, and it was restored by in vitro GM-CSF treatment. In contrast, in vitro TGFβ1 treatment of the epithelial monolayers from control-fed rats significantly decreased TER as compared with untreated control monolayers. CONCLUSIONS Taken together, these results suggest that within the alveolar space, chronic alcohol exposure decreases KLF4 and ZIP4 expression and consequently decreases zinc transport into cells, which, in turn, impairs their function. Furthermore, the dynamic decrease in the relative influence of GM-CSF versus TGFβ1 could mediate the zinc deficiency and consequent cellular dysfunction that characterize the "alcoholic lung" phenotype.
Collapse
Affiliation(s)
- Tiana V Curry-McCoy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
28
|
Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011; 45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
29
|
Mehta AJ, Joshi PC, Fan X, Brown LAS, Ritzenthaler JD, Roman J, Guidot DM. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res 2011; 35:1519-28. [PMID: 21447000 PMCID: PMC3128659 DOI: 10.1111/j.1530-0277.2011.01488.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic alcohol abuse causes oxidative stress, impairs alveolar macrophage immune function, and increases the risk of pneumonia and acute lung injury. Recently we determined that chronic alcohol ingestion in rats decreases zinc levels and macrophage function in the alveolar space; provocative findings in that zinc is essential for normal immune and antioxidant defenses. Alveolar macrophage immune function depends on stimulation by granulocyte/monocyte colony-stimulating factor, which signals via the transcription factor PU.1. In parallel, the antioxidant response element signals via the transcription factor Nrf2. However, the role of zinc bioavailability on these signaling pathways within the alveolar space is unknown. METHODS To determine the efficacy of dietary zinc supplementation on lung bacterial clearance and oxidative stress, we tested 3 different groups of rats: control-fed, alcohol-fed, and alcohol-fed with zinc supplementation. Rats were then inoculated with intratracheal Klebsiella pneumoniae, and lung bacterial clearance was determined 24 hours later. Isolated alveolar macrophages were isolated from uninfected animals and evaluated for oxidative stress and signaling through PU.1 and Nrf2. RESULTS Alcohol-fed rats had a 5-fold decrease in lung bacterial clearance compared to control-fed rats. Dietary zinc supplementation of alcohol-fed rats normalized bacterial clearance and mitigated oxidative stress in the alveolar space, as reflected by the relative balance of the thiol redox pair cysteine and cystine, and increased nuclear binding of both PU.1 and Nrf2 in alveolar macrophages from alcohol-fed rats. CONCLUSIONS Dietary zinc supplementation prevents alcohol-induced alveolar macrophage immune dysfunction and oxidative stress in a relevant experimental model, suggesting that such a strategy could decrease the risk of pneumonia and lung injury in individuals with alcohol use disorders.
Collapse
Affiliation(s)
- Ashish J Mehta
- Atlanta VAMC, Emory University School of Medicine, Atlanta, GA 30033, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Fan X, Joshi PC, Koval M, Guidot DM. Chronic alcohol ingestion exacerbates lung epithelial barrier dysfunction in HIV-1 transgenic rats. Alcohol Clin Exp Res 2011; 35:1866-75. [PMID: 21569054 DOI: 10.1111/j.1530-0277.2011.01531.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol abuse and HIV-1 infection frequently coexist, and these individuals are at high risk for serious lung infections and respiratory failure. Although alcohol ingestion and HIV-1 transgene expression have been shown to independently cause oxidative stress and disrupt alveolar epithelial barrier function in experimental models, their interactive effects have not been examined. METHODS AND RESULTS In this study, we determined that chronic alcohol ingestion (12 weeks) exacerbated the already significant defects in alveolar epithelial paracellular permeability and lung liquid clearance in HIV-1 transgenic rats. Further, immunocytochemical analyses of tight junction protein expression in primary alveolar epithelial cells showed that occludin and zonula occludens-1 localization within the plasma membrane was more disrupted than in either condition alone, consistent with the observed defects in epithelial barrier function. Interestingly, expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), the transcription factor required to activate the antioxidant-response element, was decreased in primary alveolar epithelial cells isolated from HIV-1 transgenic rats. In parallel, exposing lung epithelial cells in vitro to either alcohol or the HIV-related protein gp120 also decreased Nrf2 expression. Importantly, treatment with procysteine, which increases thiol antioxidants including glutathione, improved tight junction protein localization in the plasma membrane and restored alveolar epithelial barrier function in alcohol-fed HIV-1 transgenic rats. CONCLUSIONS These results provide novel evidence that HIV-related proteins and alcohol together causes more barrier dysfunction in the lung epithelium than either stress alone. However, these significant effects on the alveolar barrier can be mitigated by augmenting the thiol antioxidant pool, a strategy with potential clinical applications in subjects who are highly vulnerable to lung disease because of coexistent alcohol abuse and HIV infection.
Collapse
Affiliation(s)
- Xian Fan
- Pulmonary Section, Atlanta VAMC, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
31
|
Bosma KJ, Taneja R, Lewis JF. Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 2010; 70:1255-82. [PMID: 20568833 PMCID: PMC7100688 DOI: 10.2165/10898570-000000000-00000] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The acute respiratory distress syndrome (ARDS) arises from direct and indirect injury to the lungs and results in a life-threatening form of respiratory failure in a heterogeneous, critically ill patient population. Critical care technologies used to support patients with ARDS, including strategies for mechanical ventilation, have resulted in improved outcomes in the last decade. However, there is still a need for effective pharmacotherapies to treat ARDS, as mortality rates remain high. To date, no single pharmacotherapy has proven effective in decreasing mortality in adult patients with ARDS, although exogenous surfactant replacement has been shown to reduce mortality in the paediatric population with ARDS from direct causes. Several promising therapies are currently being investigated in preclinical and clinical trials for treatment of ARDS in its acute and subacute, exudative phases. These include exogenous surfactant therapy, β2-adrenergic receptor agonists, antioxidants, immunomodulating agents and HMG-CoA reductase inhibitors (statins). Recent research has also focused on prevention of acute lung injury and acute respiratory distress in patients at risk. Drugs such as captopril, rosiglitazone and incyclinide (COL-3), a tetracycline derivative, have shown promising results in animal models, but have not yet been tested clinically. Further research is needed to discover therapies to treat ARDS in its late, fibroproliferative phase. Given the vast number of negative clinical trials to date, it is unlikely that a single pharmacotherapy will effectively treat all patients with ARDS from differing causes. Future randomized controlled trials should target specific, more homogeneous subgroups of patients for single or combination therapy.
Collapse
Affiliation(s)
- Karen J Bosma
- Department of Medicine, Division of Respirology, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
32
|
Prout M, Martin GS, Drexler K, Brown LAS, Guidot DM. Alcohol abuse and acute lung injury: can we target therapy? Expert Rev Respir Med 2010; 1:197-207. [PMID: 20477184 DOI: 10.1586/17476348.1.2.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have revealed an important but previously unrecognized association between alcohol abuse and the risk of acute respiratory distress syndrome (ARDS). This devastating form of lung injury strikes individuals of any age following insults, such as major trauma or sepsis, and even with state-of-the-art medical care it has a mortality as high as 50%. Although the precise incidence is unknown, it is estimated that 200,000 individuals develop ARDS each year in the USA alone. Alcohol abuse independently increases the risk approximately two- to fourfold and, therefore, causes tens of thousands of excess deaths annually. When one couples these grim estimates with the well-recognized association between alcohol abuse and severe lung infections, such as bacterial pneumonia and tuberculosis, it is apparent that alcohol-related lung diseases are a major public health problem. Exciting new studies reveal that the alcoholic lung is characterized by discrete changes in cellular function within the lower airways, mediated via oxidant stress and altered signaling pathways and, in experimental models, is highly amenable to targeted therapies. Furthermore, these therapies are already used clinically for other conditions and could readily be tested in clinical studies of alcoholics at high risk for ARDS and/or with severe lung infections. This article focuses on the epidemiology and pathophysiology of alcohol-induced lung dysfunction and discusses potential new treatments that are suggested by recent experimental findings.
Collapse
Affiliation(s)
- Matthew Prout
- Emory University School of Medicine, The Department of Medicine, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
33
|
Boé DM, Vandivier RW, Burnham EL, Moss M. Alcohol abuse and pulmonary disease. J Leukoc Biol 2009; 86:1097-104. [PMID: 19602670 PMCID: PMC4057657 DOI: 10.1189/jlb.0209087] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 12/13/2022] Open
Abstract
ARDS is a severe form of lung injury characterized by increased permeability of the alveolar capillary membrane, diffuse alveolar damage, the accumulation of proteinaceous interstitial and intra-alveolar edema, and the presence of hyaline membranes. These pathological changes are accompanied by physiological alterations, including severe hypoxemia, an increase in pulmonary dead space, and decreased pulmonary compliance. Approximately 200,000 individuals develop ARDS in the United States each year, and nearly 50% of these patients have a history of alcohol abuse. We have identified alcohol abuse as an independent risk factor for the development of ARDS, and more recent studies have validated these findings in patients following lung resection and blood transfusion. In ARDS survivors, alcohol abuse is also associated with an increased duration of mechanical ventilation and prolonged ICU length of stay. Despite studies aimed at improving outcomes in patients with ARDS, the mortality remains high at > 40%]. For those who abuse alcohol, the mortality is even higher, at 65%. In this review, we will discuss the relationship between alcohol abuse and ARDS, the effects of alcohol abuse on pulmonary function, and future directions and potential therapeutic targets for patients at risk for ARDS as a result of alcohol abuse, which impairs immune function, decreases pulmonary antioxidant capacity, decreases alveolar epithelial cell function, alters activation of the renin angiotensin system, and impairs GM-CSF signaling. These pathways represent potential therapeutic targets for patients at risk for ARDS as a result of alcohol abuse.
Collapse
Affiliation(s)
- Darren M Boé
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, 12700 E. 19th Ave., C272, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
34
|
Lassiter C, Fan X, Joshi PC, Jacob BA, Sutliff RL, Jones DP, Koval M, Guidot DM. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction. AIDS Res Ther 2009; 6:1. [PMID: 19193217 PMCID: PMC2644707 DOI: 10.1186/1742-6405-6-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 02/04/2009] [Indexed: 01/05/2023] Open
Abstract
Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.
Collapse
|
35
|
Joshi PC, Mehta A, Jabber WS, Fan X, Guidot DM. Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. Am J Respir Cell Mol Biol 2008; 41:207-16. [PMID: 19109243 DOI: 10.1165/rcmb.2008-0209oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic alcohol abuse impairs both alveolar epithelial and macrophage function, and renders individuals susceptible to acute lung injury, pneumonia, and other serious lung diseases. Zinc deficiency, which is known to impact both epithelial and immune cell functions, is also associated with alcohol abuse. In this study, chronic alcohol ingestion (6 wk) in rats altered expression of key zinc transporters and storage proteins in the small intestine and the lung, and decreased zinc levels in the alveolar compartment. Zinc supplementation of alveolar epithelial monolayers derived from alcohol-fed rats in vitro, or of the diets of alcohol-fed rats in vivo, restored alveolar epithelial barrier function, and these improvements were associated with salutary changes in tight junction protein expression and membrane localization. In parallel, dietary zinc supplementation increased intracellular zinc levels, GM-CSF receptor expression, and bacterial phagocytic capacity in the alveolar macrophages of alcohol-fed rats. Together, these studies implicate zinc deficiency as a novel mechanism mediating alcohol-induced alveolar epithelial and macrophage dysfunction. Importantly, these findings argue that dietary supplementation can overcome alcohol-induced zinc deficiency and restore alveolar epithelial and macrophage function, and therefore could be an effective treatment for the susceptible alcoholic lung phenotype.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Atlanta Veterans Affairs Medical Center-VAMC (151-P), 1670 Clairmont Road, Decatur, GA 30033, USA.
| | | | | | | | | |
Collapse
|
36
|
Mitchell PO, Jensen JS, Ritzenthaler JD, Roman J, Pelaez A, Guidot DM. Alcohol primes the airway for increased interleukin-13 signaling. Alcohol Clin Exp Res 2008; 33:505-13. [PMID: 19120067 DOI: 10.1111/j.1530-0277.2008.00863.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Using an experimental model of airway fibrosis following lung transplantation, we recently showed that chronic alcohol ingestion by donor rats amplifies airway fibrosis in the recipient. Associated with alcohol-mediated amplification of airway fibrosis is increased transforming growth factor beta-1(TGFbeta(1)) and alpha-smooth muscle actin expression. Other studies have shown that interleukin-13 (IL-13) modulates TGFbeta(1) signaling during experimentally-induced airway fibrosis. Therefore, we hypothesized that IL-13 is a component of alcohol-mediated amplification of pro-fibrotic mediators in the alcoholic lung. METHODS To test this hypothesis, we analyzed tracheal epithelial cells and type II alveolar cells from control- or alcohol-fed rats, alcohol-treated mouse lung fibroblasts, and human bronchial epithelial cells in vitro for expression of various components of the IL-13 signaling pathway. Signaling via the IL-13 pathway was assessed by measuring levels of phosphorylated signal transducers and activators of transcription-6 (STAT6). In addition, we performed heterotopic tracheal transplantation using control-fed and alcohol-fed donor rats and analyzed tracheal allografts for expression of components of the IL-13 signaling pathway by RT-PCR and immunocytochemical analyses. RESULTS Interleukin-13 expression was detected in type II alveolar epithelial cells and human bronchial epithelial cells, but not in lung fibroblasts. IL-13 expression was decreased in whole lung and type II cells in response to alcohol exposure. In all cell types analyzed, expression of IL-13 signaling receptor (IL-13R alpha(1)) mRNA was markedly increased. In contrast, mRNA and protein expression of the IL-13 decoy receptor (IL-13R alpha(2)) were decreased in all cells analyzed. Exposure to alcohol also increased STAT6 phosphorylation in response to IL-13 and lipopolysaccharide. CONCLUSIONS Data from multiple cell types in the pulmonary system suggest that IL-13 and its receptors play a role in alcohol-mediated activation of pro-fibrotic pathways. Taken together, these data suggest that alcohol primes the airway for increased IL-13 signaling and subsequent tissue remodeling upon injury such as transplantation.
Collapse
Affiliation(s)
- Patrick O Mitchell
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Choi JC, Jung JW, Kwak HW, Song JH, Jeon EJ, Shin JW, Park IW, Choi BW, Kim JY. Granulocyte macrophage-colony stimulating factor (GM-CSF) augments acute lung injury via its neutrophil priming effects. J Korean Med Sci 2008; 23:288-95. [PMID: 18437014 PMCID: PMC2526424 DOI: 10.3346/jkms.2008.23.2.288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) has immuno-stimulatory effects. We hypothesized that GM-CSF plays an important role both in lipopolysaccharide (LPS)- and hemorrhage-induced acute lung injury (ALI). We also postulated that GM-CSF augments LPS-induced inflammation by priming neutrophils. ALI was induced in GM-CSF-/- or control C57BL mice either by LPS injection or by hemorrhage. Lung inflammation (by lung expression for tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2), interleukin-1beta (IL-1beta), interleukin- 6 (IL-6), and keratinocyte-derived chemokine) and lung injury (by myeloperoxidase and Evans blue dye assay) were evaluated after ALI. Incremental doses of LPS (0, 1, 10, and 100 ng/mL) and GM-CSF (0, 1, 10, and 100 ng/mL) were added to bone marrow neutrophils. The expression of TNF-alpha, MIP-2, and IL-1beta was evaluated with enzyme linked immunosorbent assay. The mRNA expression of three cytokines, and the nuclear translocation of nuclear factor kappa B (NF kappa-B) were evaluated by reverse transcriptase-polymerase chain reaction and electrophoretic mobility shift assay, respectively. GM-CSF -/- mice showed decreased neutrophil infiltration, less leakage, and lower expression of cytokines in the lung after LPS or hemorrhage. GM-CSF augmented LPS-induced protein and mRNA expression of TNF-alpha, MIP-2 and IL-1beta, which was mediated by increased intra-nuclear translocation of NF-kappaB. GM-CSF plays an important role in high-dose LPS and hemorrhage-induced ALI, which appears to be mediated by its priming effect on neutrophils.
Collapse
Affiliation(s)
- Jae Chol Choi
- Department of Internal Medicine, Chung Ang University College of Medicine, 224-1 Heukseok-dong, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Otis JS, Mitchell PO, Kershaw CD, Joshi PC, Guidot DM. Na,K-ATPase expression is increased in the lungs of alcohol-fed rats. Alcohol Clin Exp Res 2008; 32:699-705. [PMID: 18341644 DOI: 10.1111/j.1530-0277.2008.00626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alcohol abuse independently increases the risk of developing the acute respiratory distress syndrome (ARDS), a disease characterized by diffuse alveolar epithelial damage, lung edema, and consequent severe hypoxemia. Chronic alcohol abuse increases alveolar epithelial permeability both in vitro and in vivo, in part due to altered tight junction formation. However, both alcohol-fed animals and otherwise healthy alcoholic humans do not have pulmonary edema at baseline, even though their lungs are highly susceptible to acute edematous injury in response to inflammatory stresses. This suggests that active fluid transport by the alveolar epithelium is preserved or even augmented in the alcoholic lung. Chronic alcohol ingestion increases expression of apical sodium channels in the alveolar epithelium; however, its effects on the Na,K-ATPase complex that drives sodium and fluid transport out of the alveolar space have not been examined. METHODS Age- and gender-matched Sprague-Dawley rats were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 6 weeks. Gene and protein expression of lung Na,K-ATPase alpha1, alpha2, and beta1 subunits were quantified via real-time PCR and immunobiological analyses, respectively. Alcohol-induced, Na,K-ATPase-dependent epithelial barrier dysfunction was determined by calculating lung tissue wet:dry ratios following an ex vivo buffer-perfused challenge for 2 hours in the presence of ouabain (10(-4) M), a Na,K-ATPase inhibitor. RESULTS Chronic alcohol ingestion significantly increased gene and protein expression of each Na,K-ATPase subunit in rat lungs. Immunohistochemical analyses of the alcoholic lung also revealed that protein expression of the Na,K-ATPase alpha1 subunit was increased throughout the alveolar epithelium. Additionally, lungs isolated from alcohol-fed rats developed more edema than comparably treated lungs from control-fed rats, as reflected by increased lung tissue wet:dry ratios. CONCLUSIONS These findings indicate that chronic alcohol ingestion, which is known to increase alveolar epithelial paracellular permeability, actually increases the expression of Na,K-ATPase in the lung as a compensatory mechanism. This provides a potential explanation as to why the otherwise healthy alcoholic does not have evidence of pulmonary edema at baseline.
Collapse
Affiliation(s)
- Jeffrey S Otis
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, and Atlanta VAMC, Decatur, Georgia, USA.
| | | | | | | | | |
Collapse
|
39
|
Joshi PC, Raynor R, Fan X, Guidot DM. HIV-1-transgene expression in rats decreases alveolar macrophage zinc levels and phagocytosis. Am J Respir Cell Mol Biol 2008; 39:218-26. [PMID: 18314538 DOI: 10.1165/rcmb.2007-0344oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV-1 infection impairs alveolar macrophage immune function and renders patients susceptible to pneumonia by poorly understood mechanisms. Alveolar macrophage maturation and function depends on granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced and secreted by the alveolar epithelium. Macrophages respond to GM-CSF through the GM-CSF receptor (GM-CSFR), which has a binding subunit (GM-CSFRalpha) and a signaling subunit (GM-CSFRbeta). In this study, we measured GM-CSFR expression and alveolar macrophage function in a transgene HIV-1 rat model (NL4-3Delta gag/pol); this construct bears a pro-virus with gag and pol deleted, but other HIV-1-related proteins, such as gp120 and Tat, are expressed, and the rats develop an AIDS-like phenotype as they age. We first determined that HIV-1-transgenic expression selectively decreased alveolar macrophage expression of GM-CSFRbeta and impaired bacterial phagocytosis in vitro. Next, we examined the role of zinc (Zn) deficiency as a potential mechanism underlying these effects, and determined that HIV-1-transgenic rats have significantly lower levels of Zn in the alveolar space and macrophages. To test the direct effect of Zn deficiency on macrophage dysfunction, we treated rat alveolar macrophage cell line with a Zn chelator, N,N,N',N'-tetrakis-(2-pyridyl-methyl) ethylenediamine, and this decreased GM-CSFRbeta expression and phagocytosis. In parallel, treatment with Zn acetate in vitro for 48 hours restored intracellular Zn levels and phagocytic function in alveolar macrophages from HIV-1-transgenic rats. Taken together, these data suggest that pulmonary Zn deficiency could be one of the mechanisms by which chronic HIV-1 infection impairs alveolar macrophage immune function and renders these individuals susceptible to serious lung infections.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Department of Medicine, Atlanta Veterans Affairs Medical Center, and Emory University School of Medicine, Atlanta, Georgia 30033, USA.
| | | | | | | |
Collapse
|
40
|
Bosma KJ, Lewis JF. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome. Expert Opin Emerg Drugs 2007; 12:461-77. [PMID: 17874973 DOI: 10.1517/14728214.12.3.461] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening form of respiratory failure that affects a heterogeneous population of critically ill patients. Although overall mortality appears to be decreasing in recent years due to improvements in supportive care, there are presently no proven, effective pharmacological therapies to treat ARDS and prevent its associated complications. The most common cause of death in ARDS is not hypoxemia or pulmonary failure, but rather multiple organ dysfunction syndrome (MODS), suggesting that improving survival in patients with ARDS may be linked to decreasing the incidence or severity of MODS. The key to developing novel treatments depends, in part, on identifying and understanding the mechanisms by which ARDS leads to MODS, although the heterogeneity and complexity of this disorder certainly poses a challenge to investigators. Novel therapies in development for treatment of ALI/ARDS include exogenous surfactant, therapies aimed at modulating neutrophil activity, such as prostaglandin and complement inhibitors, and treatments targeting earlier resolution of ARDS, such as beta-agonists and granulocyte macrophage colony-stimulating factor. From a clinical perspective, identifying subpopulations of patients most likely to benefit from a particular therapy and recognising the appropriate stage of illness in which to initiate treatment could potentially lead to better outcomes in the short term.
Collapse
Affiliation(s)
- Karen J Bosma
- University of Western Ontario, Division of Respirology, London Health Sciences Centre, University Hospital, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | | |
Collapse
|
41
|
Fernandez AL, Koval M, Fan X, Guidot DM. Chronic alcohol ingestion alters claudin expression in the alveolar epithelium of rats. Alcohol 2007; 41:371-9. [PMID: 17889313 PMCID: PMC2048749 DOI: 10.1016/j.alcohol.2007.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/04/2007] [Accepted: 04/09/2007] [Indexed: 12/29/2022]
Abstract
Previously we determined that chronic alcohol ingestion (6 weeks) in rats increases lung epithelial permeability in vivo approximately 5-6-fold and promotes flooding of the alveolar airspaces with proteinaceous fluid in response to stresses such as sepsis. In parallel, alveolar epithelial cells isolated from alcohol-fed rats fail to form tight monolayers in vitro, even when cultured for up to 8 days in the absence of alcohol. However, the molecular mechanisms underlying alcohol-induced permeability are unknown. Claudins are key components of tight junctions that restrict the paracellular movement of water, proteins, and solutes across cellular barriers including the alveolar epithelium. In this study, we examined the expression of multiple members of the claudin protein family in the lungs of alcohol-fed versus control-fed rats (Lieber-DeCarli liquid diet with either 36% of calories as alcohol or an isocaloric substitution with maltin-dextrin for 6 weeks). We determined that chronic alcohol ingestion affected the expression of multiple claudins; most striking were decreases in claudin-1 and claudin-7, and an increase in claudin-5, in the whole lung and in alveolar epithelial monolayers derived from alcohol-fed rats. In parallel, immunocytochemistry of alveolar epithelial monolayers from alcohol-fed rats revealed abnormal intracellular accumulation of claudin-7 protein and relatively decreased localization to cell membranes. Claudin-1 and claudin-7 are relatively specific to alveolar epithelial type I pneumocytes that form the vast majority of the alveolar epithelial barrier in vivo, and increases in claudin-5 have been associated with increased epithelial permeability in other systems. Therefore, these findings suggest that changes in claudin expression in the alveolar epithelium produce a "leakier" phenotype that renders the alcoholic lung susceptible to alveolar flooding during acute inflammatory stresses.
Collapse
Affiliation(s)
- Alberto L. Fernandez
- Atlanta VAMC, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Koval
- Atlanta VAMC, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xian Fan
- Atlanta VAMC, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M. Guidot
- Atlanta VAMC, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Joshi PC, Guidot DM. The alcoholic lung: epidemiology, pathophysiology, and potential therapies. Am J Physiol Lung Cell Mol Physiol 2007; 292:L813-23. [PMID: 17220370 DOI: 10.1152/ajplung.00348.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epidemiological evidence gathered only in the past decade reveals that alcohol abuse independently increases the risk of developing the acute respiratory distress syndrome by as much as three- to fourfold. Experimental models and clinical studies are beginning to elucidate the mechanisms underlying this previously unrecognized association and are revealing for the first time that chronic alcohol abuse causes discrete changes, particularly within the alveolar epithelium, that render the lung susceptible to acute edematous injury in response to sepsis, trauma, and other inflammatory insults. Recent studies in relevant animal models as well as in human subjects are identifying common mechanisms by which alcohol abuse targets both the alveolar epithelium and the alveolar macrophage, such that the risks for acute lung injury and pulmonary infections are inextricably linked. Specifically, chronic alcohol ingestion decreases the levels of the antioxidant glutathione within the alveolar space by as much as 80-90%, and, as a consequence, impairs alveolar epithelial surfactant production and barrier integrity, decreases alveolar macrophage function, and renders the lung susceptible to oxidant-mediated injury. These changes are often subclinical and may not manifest as detectable lung impairment until challenged by an acute insult such as sepsis or trauma. However, even otherwise healthy alcoholics have evidence of severe oxidant stress in the alveolar space that correlates with alveolar epithelial and macrophage dysfunction. This review focuses on the epidemiology and the pathophysiology of alcohol-induced lung dysfunction and discusses potential new treatments suggested by recent experimental findings.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia GA 30033, USA.
| | | |
Collapse
|
43
|
Joshi PC, Applewhite L, Mitchell PO, Fernainy K, Roman J, Eaton DC, Guidot DM. GM-CSF receptor expression and signaling is decreased in lungs of ethanol-fed rats. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1150-8. [PMID: 16877635 DOI: 10.1152/ajplung.00150.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol abuse dramatically increases the risk of acute lung injury. In an experimental rat model of ethanol-mediated susceptibility to lung injury, recombinant granulocyte/macrophage colony-stimulating factor (GM-CSF) restored alveolar epithelial barrier function both in vitro and in vivo, even during acute endotoxemia. These findings suggested that the alveolar epithelium, which secretes GM-CSF into the airway where it is required for alveolar macrophage maturation, likewise responds to GM-CSF priming in a receptor-mediated manner. In this study we determined that both the GM-CSF receptor alpha- and beta-subunits (GM-CSFRalpha and GM-CSFRbeta) are expressed throughout the rat airway epithelium and that this expression was significantly decreased in the alveolar epithelium following chronic ethanol ingestion (6 wk). In parallel, PU.1, the master transcription factor for GM-CSF signaling in hematopoietic cells, is also expressed in alveolar epithelial cells, and ethanol ingestion likewise decreased PU.1 protein expression and nuclear binding in the alveolar epithelium. Finally, GM-CSF signaling as reflected by PU.1 expression and nuclear binding was restored with recombinant GM-CSF treatment in vitro. We conclude that chronic ethanol ingestion decreases GM-CSF receptor expression and signaling in the lung epithelium. Consequently, we speculate that dampening of GM-CSF stimulation of the alveolar epithelium is responsible at least in part for the diverse functional defects that characterize the alcoholic lung and could be a therapeutic target in acute lung injury.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J. Cytokines and alcohol. Alcohol Clin Exp Res 2006; 30:720-30. [PMID: 16573591 DOI: 10.1111/j.1530-0277.2006.00084.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokines are multifunctional proteins that play a critical role in cellular communication and activation. Cytokines have been classified as being proinflammatory (T helper 1, Th1) or anti-inflammatory (T helper 2, Th2) depending on their effects on the immune system. However, cytokines impact a variety of tissues in a complex manner that regulates inflammation, cell death, and cell proliferation and migration as well as healing mechanisms. Ethanol (alcohol) is known to alter cytokine levels in a variety of tissues including plasma, lung, liver, and brain. Studies on human monocyte responses to pathogens reveal ethanol disruption of cytokine production depending upon the pathogen and duration of alcohol consumption, with multiple pathogens and chronic ethanol promoting inflammatory cytokine production. In lung, cytokine production is disrupted by ethanol exacerbating respiratory distress syndrome with greatly increased expression of transforming growth factor beta (TGFbeta). Alcoholic liver disease involves an inflammatory hepatitis and an exaggerated Th1 response with increases in tumor necrosis factor alpha (TNFalpha). Recent studies suggest that the transition from Th1 to Th2 cytokines contribute to hepatic fibrosis and cirrhosis. Cytokines affect the brain and likely contribute to changes in the central nervous system that contribute to long-term changes in behavior and neurodegeneration. Together these studies suggest that ethanol disruption of cytokines and inflammation contribute in multiple ways to a diversity of alcoholic pathologies.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kamat PP, Slutsky A, Zhang H, Bechara RI, Brown LAS, Garcia RC, Joshi PC, Kershaw CD, Guidot DM. Mechanical ventilation exacerbates alveolar macrophage dysfunction in the lungs of ethanol-fed rats. Alcohol Clin Exp Res 2006; 29:1457-65. [PMID: 16131854 DOI: 10.1097/01.alc.0000175010.25558.8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients with alcohol abuse have a two- to three-fold increased risk of acute lung injury and respiratory failure after sepsis or trauma but are also at increased risk of nosocomial pneumonia. Mechanical ventilation exacerbates lung injury during critical illnesses. In this study we tested whether mechanical ventilation of the alcoholic lung promotes on balance a proinflammatory phenotype favoring ventilator-induced lung injury or an immunosuppressive phenotype favoring ventilator-associated pneumonia. METHODS Lungs from rats fed an isocaloric diet with or without ethanol (six weeks) were isolated and ventilated ex vivo with a low-volume (protective) or high-volume (injurious) strategy for two hours with or without prior endotoxemia (two hours). In other experiments, rats were subjected to high-volume ventilation in vivo. Airway levels of the proinflammatory cytokines tumor necrosis factor-alpha, macrophage inflammatory protein-2, and interleukin-1beta were determined after mechanical ventilation ex vivo and compared with edematous lung injury after high-volume ventilation in vivo. In parallel, alveolar macrophage phagocytosis of bacteria and secretion of interleukin-12 during ventilation ex vivo and endotoxin-stimulated alveolar macrophage phagocytosis and tumor necrosis factor-alpha secretion in vitro were determined. RESULTS Ethanol ingestion suppressed the proinflammatory response to injurious mechanical ventilation and did not increase experimental ventilator-induced lung injury. In parallel, ethanol ingestion blunted the innate immune response of alveolar macrophages during injurious ventilation ex vivo and after endotoxin stimulation in vitro. CONCLUSIONS Ethanol ingestion dampens ventilator-induced inflammation but exacerbates macrophage immune dysfunction. These findings could explain at least in part why alcoholic patients are at increased risk of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Pradip P Kamat
- Atlanta Veterans Administration Medical Center and the Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guidot DM, Hart CM. Alcohol abuse and acute lung injury: epidemiology and pathophysiology of a recently recognized association. J Investig Med 2005; 53:235-45. [PMID: 16042957 DOI: 10.2310/6650.2005.53506] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alcohol is the most commonly used and abused drug in the United States. The deleterious health effects of alcohol can be attributed both to its acute intoxicating effects, which result in temporary impairment of judgment and motor skills, and to its more chronic and toxic effects on the liver, pancreas, heart, and brain, all of which may result in irreversible organ damage. Although recognized for more than a century as a major risk factor for pneumonia, alcohol abuse was until recently perceived to have no significant effects on lung structure and/or function. However, within the past decade, epidemiologic studies have revealed that alcohol abuse independently increases the risk of acute respiratory distress syndrome (ARDS) two- to fourfold in patients with sepsis or trauma and may play a role in ARDS pathogenesis in as many as half of all patients with the syndrome. Although alcohol abuse alone does not cause acute lung injury, it renders the lung susceptible to dysfunction in response to the inflammatory stresses of sepsis, trauma, and other clinical conditions recognized to cause ARDS. Recent investigations in both animal models of chronic ethanol ingestion and in human subjects with a history of alcohol abuse have explored this previously unrecognized connection between alcohol and acute lung injury and have uncovered multiple derangements, which we now characterize as the "alcoholic lung." This review summarizes the epidemiologic association between alcohol abuse and acute lung injury and the recent experimental findings that are unraveling the underlying pathophysiology.
Collapse
Affiliation(s)
- David M Guidot
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | | |
Collapse
|
47
|
Johansson ASM, Lidén J, Okret S, Palmblad JEW. Effects of ethanol on cytokine generation and NFκB activity in human lung epithelial cell. Biochem Pharmacol 2005; 70:545-51. [PMID: 15993849 DOI: 10.1016/j.bcp.2005.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Alcohol abuse is associated with enhanced risk for pulmonary infections, but the mechanisms remain obscure. We assessed whether ethanol reduced generation of cytokines from a human lung epithelial cell line (A549) in vitro and if effects on the NFkappaB transcription factor were involved. Exposure of A549 to ethanol (0.1-1%) dose-dependently inhibited (by 15-49%) the release of G-CSF and IL-8, but not of M-CSF, triggered by IL1beta or TNFalpha. Ethanol also inhibited by 49% the IL-1beta stimulated translocation of the p65 subunit of NFkappaB from the cytoplasm into the nucleus. Using a kappaB binding and luciferase coupled construct, transfected into A549 cells, we found that 1% ethanol specifically reduced IL-1beta and TNFalpha induced luciferase activity with 34 and 40%, respectively. Thus, in vitro exposure of lung epithelial cells to ethanol reduced the generation of cytokines, as well as translocation and gene activation by NFkappaB.
Collapse
Affiliation(s)
- Anne-Sofie M Johansson
- Center for Inflammation and Hematology Research at Department of Medicine, CIHF pl 7 KFC NOVUM, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
48
|
|
49
|
Abstract
BACKGROUND Sargramostim, granulocyte-macrophage colony-stimulating factor, a hematopoietic growth factor, stimulates cells of the intestinal innate immune system. Preliminary studies suggest sargramostim may have activity in Crohn's disease. To evaluate this novel therapeutic approach, we conducted a randomized, placebo-controlled trial. METHODS Using a 2:1 ratio, we randomly assigned 124 patients with moderate-to-severe active Crohn's disease to receive 6 mug of sargramostim per kilogram per day or placebo subcutaneously for 56 days. Antibiotics and aminosalicylates were allowed; immunosuppressants and glucocorticoids were prohibited. The primary end point was a clinical response, defined by a decrease from baseline of at least 70 points in the Crohn's Disease Activity Index (CDAI) at the end of treatment (day 57). Other end points included changes in disease severity and the health-related quality of life and adverse events. RESULTS There was no significant difference in the rate of the primary end point of a clinical response defined by a decrease of at least 70 points in the CDAI score on day 57 between the sargramostim and placebo groups (54 percent vs. 44 percent, P=0.28). However, significantly more patients in the sargramostim group than in the placebo group reached the secondary end points of a clinical response defined by a decrease from baseline of at least 100 points in the CDAI score on day 57 (48 percent vs. 26 percent, P=0.01) and of remission, defined by a CDAI score of 150 points or less on day 57 (40 percent vs. 19 percent, P=0.01). The rates of either type of clinical response and of remission were significantly higher in the sargramostim group than in the placebo group on day 29 of treatment and 30 days after treatment. The sargramostim group also had significant improvements in the quality of life. Mild-to-moderate injection-site reactions and bone pain were more common in the sargramostim group, and three patients in this group had serious adverse events possibly or probably related to treatment. CONCLUSIONS This study was negative for the primary end point, but findings for the secondary end points suggest that sargramostim therapy decreased disease severity and improved the quality of life in patients with active Crohn's disease.
Collapse
Affiliation(s)
- Joshua R Korzenik
- Inflammatory Bowel Disease Center, Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | | | | | |
Collapse
|
50
|
Bechara RI, Pelaez A, Palacio A, Joshi PC, Hart CM, Brown LAS, Raynor R, Guidot DM. Angiotensin II mediates glutathione depletion, transforming growth factor-beta1 expression, and epithelial barrier dysfunction in the alcoholic rat lung. Am J Physiol Lung Cell Mol Physiol 2005; 289:L363-70. [PMID: 15908476 DOI: 10.1152/ajplung.00141.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol abuse markedly increases the risk of sepsis-mediated acute lung injury. In a rat model, ethanol ingestion alone (in the absence of any other stress) causes pulmonary glutathione depletion, increased expression of transforming growth factor-beta1 (TGF-beta1), and alveolar epithelial barrier dysfunction, even though the lung appears grossly normal. However, during endotoxemia, ethanol-fed rats release more activated TGF-beta1 into the alveolar space where it can exacerbate epithelial barrier dysfunction and lung edema. Ethanol ingestion activates the renin-angiotensin system, and angiotensin II is capable of inducing oxidative stress and TGF-beta1 expression. We determined that lisinopril, an angiotensin-converting enzyme inhibitor that decreases angiotensin II formation, limited lung glutathione depletion, and treatment with either lisinopril or losartan, a selective angiotensin II type 1 receptor blocker, normalized TGF-beta1 expression. The glutathione precursor procysteine also prevented TGF-beta1 expression, suggesting that TGF-beta1 may be induced indirectly by angiotensin II-mediated oxidative stress and glutathione depletion. Importantly, lisinopril treatment normalized barrier function in alveolar epithelial cell monolayers from ethanol-fed rats, and treatment with either lisinopril or losartan normalized alveolar epithelial barrier function in ethanol-fed rats in vivo, as reflected by lung liquid clearance of an intratracheal saline challenge, even during endotoxemia. In parallel, lisinopril treatment limited TGF-beta1 protein release into the alveolar space during endotoxemia. Together, these results suggest that angiotensin II mediates oxidative stress and the consequent TGF-beta1 expression and alveolar epithelial barrier dysfunction that characterize the alcoholic lung.
Collapse
Affiliation(s)
- Rabih I Bechara
- Atlanta Veterans Affairs Medical Center Pulmonary Section, Decatur, GA 30033, USA
| | | | | | | | | | | | | | | |
Collapse
|