1
|
Djeddi S, Fernandez-Salinas D, Huang GX, Aguiar VRC, Mohanty C, Kendziorski C, Gazal S, Boyce JA, Ober C, Gern JE, Barrett NA, Gutierrez-Arcelus M. Rhinovirus infection of airway epithelial cells uncovers the non-ciliated subset as a likely driver of genetic risk to childhood-onset asthma. CELL GENOMICS 2024; 4:100636. [PMID: 39197446 PMCID: PMC11480861 DOI: 10.1016/j.xgen.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown. We hypothesized that airway epithelial cells could also mediate genetic susceptibility to asthma given they are the first line of defense against respiratory viruses and allergens. We integrated genetic data with transcriptomics of airway epithelial cells subject to different stimuli. We demonstrate that rhinovirus infection significantly upregulates childhood-onset asthma-associated genes, particularly in non-ciliated cells. This enrichment is also observed with influenza infection but not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or cytokine activation. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.
Collapse
Affiliation(s)
- Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Licenciatura en Ciencias Genómicas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - George X Huang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven Gazal
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - James E Gern
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA; Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Noh SS, Shin HJ. RSV Induces Activation of Intracellular EGFR on the Mitochondrial Membrane for Virus Propagation. Int J Mol Sci 2023; 24:17431. [PMID: 38139259 PMCID: PMC10744162 DOI: 10.3390/ijms242417431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects people of all ages and is one of the most common causative agents of lower respiratory tract infections, such as pneumonia, especially in infants under one year of age. However, no direct treatment has been developed for RSV infections. Maintenance of mitochondrial homeostasis and epidermal growth factor receptor (EGFR) activity is important for human cell growth. This study reported that RSV infection maintained the total cellular ATP levels and promoted the intracellular activity of EGFR to replicate RSV. RSV activates the intracellular EGFR-mediated cell survival signaling cascade and maintains mitochondrial EGFR expression for viral production during early events after infection. The approved EGFR inhibitor, vandetanib, markedly reduces RSV propagation, suggesting that EGFR is an attractive host target for RSV therapeutics. Our results suggest that RSV infection maintains cellular ATP levels and promotes the activation of intracellular EGFR in the mitochondrial membrane, significantly contributing to robust RSV propagation.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
3
|
Noh SS, Shin HJ. Role of Virus-Induced EGFR Trafficking in Proviral Functions. Biomolecules 2023; 13:1766. [PMID: 38136637 PMCID: PMC10741569 DOI: 10.3390/biom13121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since its discovery in the early 1980s, the epidermal growth factor receptor (EGFR) has emerged as a pivotal and multifaceted player in elucidating the intricate mechanisms underlying various human diseases and their associations with cell survival, proliferation, and cellular homeostasis. Recent advancements in research have underscored the profound and multifaceted role of EGFR in viral infections, highlighting its involvement in viral entry, replication, and the subversion of host immune responses. In this regard, the importance of EGFR trafficking has also been highlighted in recent studies. The dynamic relocation of EGFR to diverse intracellular organelles, including endosomes, lysosomes, mitochondria, and even the nucleus, is a central feature of its functionality in diverse contexts. This dynamic intracellular trafficking is not merely a passive process but an orchestrated symphony, facilitating EGFR involvement in various cellular pathways and interactions with viral components. Furthermore, EGFR, which is initially anchored on the plasma membrane, serves as a linchpin orchestrating viral entry processes, a crucial early step in the viral life cycle. The role of EGFR in this context is highly context-dependent and varies among viruses. Here, we present a comprehensive summary of the current state of knowledge regarding the intricate interactions between EGFR and viruses. These interactions are fundamental for successful propagation of a wide array of viral species and affect viral pathogenesis and host responses. Understanding EGFR significance in both normal cellular processes and viral infections may not only help develop innovative antiviral therapies but also provide a deeper understanding of the intricate roles of EGFR signaling in infectious diseases.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Sumimoto H, Takano A, Igarashi T, Hanaoka J, Teramoto K, Daigo Y. Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep 2023; 13:5087. [PMID: 36991099 PMCID: PMC10060241 DOI: 10.1038/s41598-023-32177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutated (mt) lung adenocarcinoma (LA) is refractory to immune checkpoint inhibitors (ICIs). However, the mechanisms have not been fully elucidated. CD8+ T cell infiltration was significantly lower in EGFR-mt than in EGFR-wild-type LA, which was associated with suppression of chemokine expression. Since this T cell-deserted tumor microenvironment may lead to the refractoriness of ICIs against EGFR-mt LA, we investigated the mechanism by focusing on the regulation of chemokine expression. The expression of C-X-C motif ligand (CXCL) 9, 10 and 11, which constitute a gene cluster on chromosome 4, was suppressed under EGFR signaling. The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) revealed open chromatin peaks near this gene cluster following EGFR-tyrosine kinase inhibitor (TKI) treatment. The histone deacetylase (HDAC) inhibitor recovered the expression of CXCL9, 10 and 11 in EGFR-mt LA. Nuclear HDAC activity, as well as histone H3 deacetylation, were dependent on oncogenic EGFR signaling. Furthermore, the Cleavage Under Targets and Tagmentation (CUT & Tag) assay revealed a histone H3K27 acetylation peak at 15 kb upstream of CXCL11 after treatment with EGFR-TKI, which corresponded to one of the open chromatin peaks detected by ATAC-seq. The data suggest that EGFR-HDAC axis mediates silencing of the chemokine gene cluster through chromatin conformational change, which might be relevant to the ICI resistance by creating T cell-deserted tumor microenvironment. Targeting this axis may develop a new therapeutic strategy to overcome the ICI resistance of EGFR-mt LA.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Growth Arrest of Alveolar Cells in Response to Cytokines from Spike S1-Activated Macrophages: Role of IFN-γ. Biomedicines 2022; 10:biomedicines10123085. [PMID: 36551841 PMCID: PMC9775973 DOI: 10.3390/biomedicines10123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia and high-permeability pulmonary edema. A hallmark of the disease is the presence of lung inflammation with features of diffuse alveolar damage. The molecular pathogenetic mechanisms of COVID-19-associated ARDS (CARDS), secondary to SARS-CoV-2 infection, are still not fully understood. Here, we investigate the effects of a cytokine-enriched conditioned medium from Spike S1-activated macrophage on alveolar epithelial A549 cells in terms of cell proliferation, induction of autophagy, and expression of genes related to protein degradation. The protective effect of baricitinib, employed as an inhibitor of JAK-STAT, has been also tested. The results obtained indicate that A549 exhibits profound changes in cell morphology associated to a proliferative arrest in the G0/G1 phase. Other alterations occur, such as a blockade of protein synthesis and the activation of autophagy, along with an increase of the intracellular amino acids content, which is likely ascribable to the activation of protein degradation. These changes correlate to the induction of IFN-regulatory factor 1 (IRF-1) due to an increased secretion of IFN-γ in the conditioned medium from S1-activated macrophages. The addition of baricitinib prevents the observed effects. In conclusion, our findings suggest that the IFN-γ-IRF-1 signaling pathway may play a role in the alveolar epithelial damage observed in COVID-19-related ARDS.
Collapse
|
6
|
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9518592. [PMID: 36193076 PMCID: PMC9526641 DOI: 10.1155/2022/9518592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
Aims Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). Results Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. Conclusion In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.
Collapse
Affiliation(s)
- Zachary M. Harris
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Ying Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - John Joerns
- Division of Pulmonary and Critical Care; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brian Clark
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Buqu Hu
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Asawari Korde
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyeon Jun Shin
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Edward P. Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Hyung Chun
- Section of Cardiovascular Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA 06510
| |
Collapse
|
7
|
Du X, Yuan L, Yao Y, Yang Y, Zhou K, Wu X, Wang L, Qin L, Li W, Xiang Y, Qu X, Liu H, Qin X, Yang M, Liu C. ITGB4 Deficiency in Airway Epithelium Aggravates RSV Infection and Increases HDM Sensitivity. Front Immunol 2022; 13:912095. [PMID: 35958591 PMCID: PMC9357881 DOI: 10.3389/fimmu.2022.912095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background The heterogeneity of RSV-infected pathology phenotype in early life is strongly associate with increased susceptibility of asthma in later life. However, the inner mechanism of this heterogeneity is still obscure. ITGB4 is a down-regulated adhesion molecular in the airway epithelia of asthma patients which may participate in the regulation of RSV infection related intracellular pathways. Object This study was designed to observe the involvement of ITGB4 in the process of RSV infection and the effect of ITGB4 deficiency on anti-RSV responses of airway epithelia. Results RSV infection caused a transient decrease of ITGB4 expression both in vitro and in vivo. Besides, ITGB4 deficiency induced not only exacerbated RSV infection, but also enhanced HDM sensitivity in later life. Moreover, IFN III (IFN-λ) was significantly suppressed during RSV infection in ITGB4 deficient airway epithelial cells. Furthermore, the suppression of IFN-λ were regulated by IRF-1 through the phosphorylation of EGFR in airway epithelial cells after RSV infection. Conclusion These results demonstrated the involvement of ITGB4 deficiency in the development of enhance RSV infection in early life and the increased HDM sensitivity in later life by down-regulation of IFN-λ through EGFR/IRF-1 pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Wenkai Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
- *Correspondence: Chi Liu,
| |
Collapse
|
8
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
9
|
Laucirica DR, Schofield CJ, McLean SA, Margaroli C, Agudelo‐Romero P, Stick SM, Tirouvanziam R, Kicic A, Garratt LW. Pseudomonas aeruginosa
modulates neutrophil granule exocytosis in an
in vitro
model of airway infection. Immunol Cell Biol 2022; 100:352-370. [PMID: 35318736 PMCID: PMC9544492 DOI: 10.1111/imcb.12547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022]
Abstract
A population of neutrophils recruited into cystic fibrosis (CF) airways is associated with proteolytic lung damage, exhibiting high expression of primary granule exocytosis marker CD63 and reduced phagocytic receptor CD16. Causative factors for this population are unknown, limiting intervention. Here we present a laboratory model to characterize responses of differentiated airway epithelium and neutrophils following respiratory infection. Pediatric primary airway epithelial cells were cultured at the air–liquid interface, challenged individually or in combination with rhinovirus (RV) and Pseudomonas aeruginosa, then apically washed with medical saline to sample epithelial infection milieus. Cytokine multiplex analysis revealed epithelial antiviral signals, including IP‐10 and RANTES, increased with exclusive RV infection but were diminished if P. aeruginosa was also present. Proinflammatory signals interleukin‐1α and β were dominant in P. aeruginosa infection milieus. Infection washes were also applied to a published model of neutrophil transmigration into the airways. Neutrophils migrating into bacterial and viral–bacterial co‐infection milieus exhibited the in vivo CF phenotype of increased CD63 expression and reduced CD16 expression, while neutrophils migrating into milieus of RV‐infected or uninfected cultures did not. Individually, bacterial products lipopolysaccharide and N‐formylmethionyl‐leucyl‐phenylalanine and isolated cytokine signals only partially activated this phenotype, suggesting that additional soluble factors in the infection microenvironment trigger primary granule release. Findings identify P. aeruginosa as a trigger of acute airway inflammation and neutrophil primary granule exocytosis, underscoring potential roles of airway microbes in prompting this neutrophil subset. Further studies are required to characterize microbes implicated in primary granule release, and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences University of Western Australia Nedlands WA Australia
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Craig J Schofield
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Samantha A McLean
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Camilla Margaroli
- Department of Medicine Division of Pulmonary, Allergy and Critical Care Medicine University of Alabama at Birmingham Birmingham AL USA
- Program in Protease and Matrix Biology University of Alabama at Birmingham Birmingham AL USA
| | - Patricia Agudelo‐Romero
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Stephen M Stick
- Faculty of Health and Medical Sciences University of Western Australia Nedlands WA Australia
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
- Department of Respiratory and Sleep Medicine Perth Children’s Hospital Nedlands WA Australia
| | - Rabindra Tirouvanziam
- Department of Pediatrics Emory University Atlanta GA USA
- Center for CF and Airways Disease Research Children’s Healthcare of Atlanta Atlanta GA USA
| | - Anthony Kicic
- Faculty of Health and Medical Sciences University of Western Australia Nedlands WA Australia
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
- Department of Respiratory and Sleep Medicine Perth Children’s Hospital Nedlands WA Australia
- Occupation and Environment School of Public Health Curtin University Bentley WA Australia
| | - Luke W Garratt
- Wal‐Yan Respiratory Research Centre Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | | | | |
Collapse
|
10
|
Joo J, Himes B. Gene-Based Analysis Reveals Sex-Specific Genetic Risk Factors of COPD. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:601-610. [PMID: 35308900 PMCID: PMC8861659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sex-specific differences have been noted among people with chronic obstructive pulmonary disease (COPD), but whether these differences are attributable to genetic variation is poorly understood. The availability of large biobanks with deeply phenotyped subjects such as the UK Biobank enables the investigation of sex-specific genetic associations that may provide new insights into COPD risk factors. We performed sex-stratified genome-wide association studies (GWAS) of COPD (male: 12,958 cases and 95,631 controls; female: 11,311 cases and 123,714 controls) and found that while most associations were shared between sexes, several regions had sex-specific contributions, including respiratory viral infection-related loci in/near C5orf56 and PELI1. Using the newly developed R package 'snpsettest', we performed gene-based association tests and identified gene-level sex-specific associations, including C5orf56 on 5q31.1, CFDP1/TMEM170A/CHST6 on 16q23.1 and ASTN2/TRIM32 on 9q33.1. Our results identified promising genes to pursue in functional studies to better understand sexual dimorphism in COPD.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol 2022; 15:1363-1374. [PMID: 36038770 PMCID: PMC9705253 DOI: 10.1038/s41385-022-00556-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immune responses that result in asthma exacerbation are associated with allergen or viral exposure. Identification of common immune factors will be beneficial for the development of uniformed targeted therapy. We employed a House Dust Mite (HDM) mouse model of asthma and challenged allergic HDM mice with allergens (HDM, cockroach extract (CRE)) or respiratory syncytial virus (RSV). Purified lung immune cells underwent high-dimensional single-cell RNA deep sequencing (scRNA-seq) to generate an RNA transcriptome. Gene silencing with siRNA was employed to confirm the efficacy of scRNA-seq analysis. scRNA-seq UMAP analysis portrayed an array of cell markers within individual immune clusters. SCENIC R analysis showed an increase in regulon number and activity in CD11b- DC cells. Analysis of conserved regulon factors further identified Creb5 as a shared regulon between the exacerbation groups. Creb5 siRNAs attenuated HDM, CRE or RSV-induced asthma exacerbation. scRNA-seq multidimensional analysis of immune clusters identified gene pathways that were conserved between the exacerbation groups. We propose that these analyses provide a strong framework that could be used to identify specific therapeutic targets in multifaceted pathologies.
Collapse
|
12
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
13
|
Guo R, Zhao M, Liu H, Su R, Mao Q, Gong L, Cao X, Hao Y. Uncovering the pharmacological mechanisms of Xijiao Dihuang decoction combined with Yinqiao powder in treating influenza viral pneumonia by an integrative pharmacology strategy. Biomed Pharmacother 2021; 141:111676. [PMID: 34126353 DOI: 10.1016/j.biopha.2021.111676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Xijiao Dihuang decoction combined with Yinqiao powder (XDD-YQP) is a classical combination formula; however, its therapeutic effects in treating influenza viral pneumonia and the pharmacological mechanisms remain unclear. The therapeutic effect of XDD-YQP in influenza viral pneumonia was evaluated in mice. Subsequently, an everted gut sac model coupled with UPLC/Q-TOF MS were used to screen and identify the active compounds of XDD-YQP. Furthermore, network pharmacological analysis was adopted to probe the mechanisms of the active compounds. Lastly, we verified the targets predicted from network pharmacological analysis by differential bioinformatics analysis. Animal experiments showed that XDD-YQP has a therapeutic effect on influenza viral pneumonia. Moreover, 113 active compounds were identified from intestinal absorbed solutions of XDD-YQP. Using network pharmacological analysis, 90 major targets were selected as critical in the treatment of influenza viral pneumonia through 12 relevant pathways. Importantly, the MAPK signaling pathway was found to be closely associated with the other 11 pathways. Moreover, seven key targets, EGFR, FOS, MAPK1, MAP2K1, HRAS, NRAS, and RELA, which are common targets in the MAPK signaling pathway, were investigated. These seven key targets were identified as differentially expressed genes (DEGs) between influenza virus-infected and uninfected individuals. Hence, the seven key targets in the MAPK signaling pathway may play a vital role in the treatment of influenza viral pneumonia with XDD-YQP. This research may offer an integrative pharmacology strategy to clarify the pharmacological mechanisms of traditional Chinese medicines. The results provide a theoretical basis for a broader clinical application of XDD-YQP.
Collapse
Affiliation(s)
- Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengfan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Su
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Mao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
14
|
Sardar R, Sharma A, Gupta D. Machine Learning Assisted Prediction of Prognostic Biomarkers Associated With COVID-19, Using Clinical and Proteomics Data. Front Genet 2021; 12:636441. [PMID: 34093642 PMCID: PMC8175075 DOI: 10.3389/fgene.2021.636441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
With the availability of COVID-19-related clinical data, healthcare researchers can now explore the potential of computational technologies such as artificial intelligence (AI) and machine learning (ML) to discover biomarkers for accurate detection, early diagnosis, and prognosis for the management of COVID-19. However, the identification of biomarkers associated with survival and deaths remains a major challenge for early prognosis. In the present study, we have evaluated and developed AI-based prediction algorithms for predicting a COVID-19 patient's survival or death based on a publicly available dataset consisting of clinical parameters and protein profile data of hospital-admitted COVID-19 patients. The best classification model based on clinical parameters achieved a maximum accuracy of 89.47% for predicting survival or death of COVID-19 patients, with a sensitivity and specificity of 85.71 and 92.45%, respectively. The classification model based on normalized protein expression values of 45 proteins achieved a maximum accuracy of 89.01% for predicting the survival or death, with a sensitivity and specificity of 92.68 and 86%, respectively. Interestingly, we identified 9 clinical and 45 protein-based putative biomarkers associated with the survival/death of COVID-19 patients. Based on our findings, few clinical features and proteins correlate significantly with the literature and reaffirm their role in the COVID-19 disease progression at the molecular level. The machine learning-based models developed in the present study have the potential to predict the survival chances of COVID-19 positive patients in the early stages of the disease or at the time of hospitalization. However, this has to be verified on a larger cohort of patients before it can be put to actual clinical practice. We have also developed a webserver CovidPrognosis, where clinical information can be uploaded to predict the survival chances of a COVID-19 patient. The webserver is available at http://14.139.62.220/covidprognosis/.
Collapse
Affiliation(s)
- Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Arun Sharma
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
15
|
Respiratory syncytial virus activates Rab5a to suppress IRF1-dependent IFN-λ production, subverting the antiviral defense of airway epithelial cells. J Virol 2021; 95:JVI.02333-20. [PMID: 33504607 PMCID: PMC8103688 DOI: 10.1128/jvi.02333-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited antiviral options and lack of an effective vaccine against human respiratory syncytial virus (RSV) highlight the need for a novel antiviral therapy. One alternative is to identify and target the host factors required for viral infection. Here, using RNA interference to knock down Rab proteins, we provide multiple lines of evidence that Rab5a is required for RSV infection: (a) Rab5a is upregulated both in RSV-A2-infected A549 cells and RSV-A2-challenged BALB/c mice's airway epithelial cells at early infection phase; (b) shRNA-mediated knockdown of Rab5a is associated with reduced lung pathology in RSV A2 challenged mice; (c) Rab5a expression is correlated with disease severity of RSV infection of infants. Knockdown of Rab5a increases IFN-λ (lambda) production by mediating IRF1 nuclear translocation. Our results highlight a new role for Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity, which suggests that Rab5a is a potential target for novel therapeutics against RSV infection.Importance This study highlights the important role of Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity and attenuates inflammation of the airway, which suggests that Rab5a is a powerful potential target for novel therapeutics against RSV infection.
Collapse
|
16
|
Protein Tyrosine Phosphatase SHP2 Suppresses Host Innate Immunity against Influenza A Virus by Regulating EGFR-Mediated Signaling. J Virol 2021; 95:JVI.02001-20. [PMID: 33361428 DOI: 10.1128/jvi.02001-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen, causing acute respiratory illnesses in human beings and animals and frequently giving rise to epidemic outbreaks. Evasion by IAV of host immunity facilitates viral replication and spread, which can be initiated through various mechanisms, including epidermal growth factor receptor (EGFR) activation. However, how EGFR mediates the suppression of antiviral systems remains unclear. Here, we examined host innate immune responses and their relevant signaling to EGFR upon IAV infection. IAV was found to induce the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK) at an early stage of infection. Inhibition of EGFR or ERK suppressed the viral replication but increased the expression of type I and type III interferons (IFNs) and interferon-stimulated genes (ISGs), supporting the idea that IAV escapes from antiviral innate immunity by activating EGFR/ERK signaling. Meanwhile, IAV infection also induced the activation of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Pharmacological inhibition or small interfering RNA (siRNA)-based silencing of SHP2 enhanced the IFN-dependent antiviral activity and reduced virion production. Furthermore, knockdown of SHP2 attenuated the EGFR-mediated ERK phosphorylation triggered by viral infection or EGF stimulation. Conversely, ectopic expression of constitutively active SHP2 noticeably promoted ERK activation and viral replication, concomitant with diminished immune function. Altogether, the results indicate that SHP2 is crucial for IAV-induced activation of the EGFR/ERK pathway to suppress host antiviral responses.IMPORTANCE Viral immune evasion is the most important strategy whereby viruses evolve for their survival. This work shows that influenza A virus (IAV) suppressed the antiviral innate immunity through downregulation of IFNs and ISGs by activating EGFR/ERK signaling. Meanwhile, IAV also induced the activation of protein tyrosine phosphatase SHP2, which was found to be responsible for modulating the EGFR-mediated ERK activity and subsequent antiviral effectiveness both in vitro and in vivo The results suggest that SHP2 is a key signal transducer between EGFR and ERK and plays a crucial role in suppressing host innate immunity during IAV infection. The finding enhances our understanding of influenza immune evasion and provides a new therapeutic approach to viral infection.
Collapse
|
17
|
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77:5059-5077. [PMID: 32462405 PMCID: PMC7252873 DOI: 10.1007/s00018-020-03559-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-β-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Zan J, Xu R, Tang X, Lu M, Xie S, Cai J, Huang Z, Zhang J. RNA helicase DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Exp Cell Res 2020; 396:112332. [PMID: 33065113 DOI: 10.1016/j.yexcr.2020.112332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
DEAD-box (DDX) helicases are critical for recognizing viral nucleic acids to regulate antiviral innate immunity. Although DDX5 has been reported to participate in various virus infection, whether DDX5 regulates innate immune responses and its underlying mechanisms are still unknown. Here, we report that DDX5 is a negative regulator of type I IFN (IFN-I) production in antiviral responses. DDX5 knockdown significantly promoted DNA or RNA virus infection-induced IFN-I production and IFN-stimulated genes (ISGs) expression, while ectopic expression of DDX5 inhibited IFN-I production and promoted viral replication. Furthermore, we found that DDX5 specifically interacted with serine/threonine-protein phosphatase 2 A catalytic subunit beta (PP2A-Cβ) and viral infection enhanced the interaction between DDX5 and PP2A-Cβ. Besides, PP2A-Cβ interacted with IFN regulatory factor 3 (IRF3), and PP2A-Cβ knockdown promoted viral infection-induced IRF3 phosphorylation and IFN-I production. In addition, DDX5 knockdown rendered the mice more resistant to viral infection and enhanced antiviral innate immunity in vivo. Thus, DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Together, these findings identify a negative role of DDX5 on regulating IFN-I signaling in innate immune responses.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xialin Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhi Huang
- Key Laboratory of Endemic and Ethnic Disease, Ministry of Education, Guizhou Medical University, Guiyang, 550002, China; The Infectious Disease Monitoring Laboratory of Guizhou International Travel Heathcare Center, Guiyang, 550002, China.
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
19
|
The Role of Epidermal Growth Factor Receptor Signaling Pathway during Bovine Herpesvirus 1 Productive Infection in Cell Culture. Viruses 2020; 12:v12090927. [PMID: 32846937 PMCID: PMC7552022 DOI: 10.3390/v12090927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating studies have shown that the epidermal growth factor receptor (EGFR) signaling pathway plays an essential role in mediating cellular entry of numerous viruses. In this study, we report that bovine herpesvirus 1 (BoHV-1) productive infection in both the human lung carcinoma cell line A549 and bovine kidney (MDBK) cells leads to activation of EGFR, as demonstrated by the increased phosphorylation of EGFR at Tyr1068 (Y1068), which in turn plays important roles in virus infection. A time-of-addition assay supported that virus replication at post-entry stages was affected by the EGFR specific inhibitor Gefitinib. Interestingly, both phospholipase C-γ1 (PLC-γ1) and Akt, canonical downstream effectors of EGFR, were activated following virus infection in A549 cells, while Gefitinib could inhibit the activation of PLC-γ1 but not Akt. In addition, virus titers in A549 cells was inhibited by chemical inhibition of PLC-γ1, but not by the inhibition of Akt. However, the Akt specific inhibitor Ly294002 could significantly reduce the virus titer in MDBK cells. Taken together, our data suggest that PLC-γ1 is stimulated in part through EGFR for efficient replication in A549 cells, whereas Akt can be stimulated by virus infection independent of EGFR, and is not essential for virus productive infection, indicating that Akt modulates BoHV-1 replication in a cell type-dependent manner. This study provides novel insights on how BoHV-1 infection activates EGFR signaling transduction to facilitate virus replication.
Collapse
|
20
|
Human Papillomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. J Virol 2020; 94:JVI.01582-19. [PMID: 31666385 DOI: 10.1128/jvi.01582-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of stratified epithelia. Long-term persistence of infection is a critical risk factor for the development of HPV-induced malignancies. Through the actions of its oncogenes, HPV evades host immune responses to facilitate its productive life cycle. In this work, we discovered a previously unknown function of the HPV16 E5 oncoprotein in the suppression of interferon (IFN) responses. This suppression is focused on keratinocyte-specific IFN-κ and is mediated through E5-induced changes in growth factor signaling pathways, as identified through phosphoproteomics analysis. The loss of E5 in keratinocytes maintaining the complete HPV16 genome results in the derepression of IFNK transcription and subsequent JAK/STAT-dependent upregulation of several IFN-stimulated genes (ISGs) at both the mRNA and protein levels. We also established a link between the loss of E5 and the subsequent loss of genome maintenance and stability, resulting in increased genome integration.IMPORTANCE Persistent human papillomavirus infections can cause a variety of significant cancers. The ability of HPV to persist depends on evasion of the host immune system. In this study, we show that the HPV16 E5 protein can suppress an important aspect of the host immune response. In addition, we find that the E5 protein is important for helping the virus avoid integration into the host genome, which is a frequent step along the pathway to cancer development.
Collapse
|
21
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
22
|
Mitchell HD, Eisfeld AJ, Stratton KG, Heller NC, Bramer LM, Wen J, McDermott JE, Gralinski LE, Sims AC, Le MQ, Baric RS, Kawaoka Y, Waters KM. The Role of EGFR in Influenza Pathogenicity: Multiple Network-Based Approaches to Identify a Key Regulator of Non-lethal Infections. Front Cell Dev Biol 2019; 7:200. [PMID: 31616667 PMCID: PMC6763731 DOI: 10.3389/fcell.2019.00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene's involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections.
Collapse
Affiliation(s)
- Hugh D Mitchell
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelly G Stratton
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Natalie C Heller
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Lisa M Bramer
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ji Wen
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Lisa E Gralinski
- Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy C Sims
- Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mai Q Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Ralph S Baric
- Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Infectious Diseases, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Katrina M Waters
- Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
23
|
Mukherjee T, Balaji KN. Immunological implications of epidermal growth factor receptor signaling in persistent infections. IUBMB Life 2019; 71:1661-1671. [PMID: 31283086 DOI: 10.1002/iub.2115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/17/2019] [Indexed: 01/18/2023]
Abstract
Infectious diseases account for a large proportion of global health emergencies and are rising more so owing to the paucity of effective vaccination and chemotherapeutic strategies. The severity is compounded by the development of antibiotic resistance among major pathogenic strains, capable of residing in the hostile host microenvironment by hijacking its signaling mechanisms and molecular circuitry. Among such processes, studies on epidermal growth factor receptor (EGFR) have revealed specific contributions of this classical oncogenic signaling axis during distinct infection conditions. Here, we review the current status of EGFR family members in the context of host-pathogen interactions and speculate the possible dimensions of exploration and manipulation of the EGFR pathway for host-directed therapeutic purposes.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
24
|
Linden D, Guo-Parke H, Coyle PV, Fairley D, McAuley DF, Taggart CC, Kidney J. Respiratory viral infection: a potential "missing link" in the pathogenesis of COPD. Eur Respir Rev 2019; 28:28/151/180063. [PMID: 30872396 DOI: 10.1183/16000617.0063-2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third most common cause of global mortality. Acute exacerbations of COPD frequently necessitate hospital admission to enable more intensive therapy, incurring significant healthcare costs. COPD exacerbations are also associated with accelerated lung function decline and increased risk of mortality. Until recently, bacterial pathogens were believed to be responsible for the majority of disease exacerbations. However, with the advent of culture-independent molecular diagnostic techniques it is now estimated that viruses are detected during half of all COPD exacerbations and are associated with poorer clinical outcomes. Human rhinovirus, respiratory syncytial virus and influenza are the most commonly detected viruses during exacerbation. The role of persistent viral infection (adenovirus) has also been postulated as a potential pathogenic mechanism in COPD. Viral pathogens may play an important role in driving COPD progression by acting as triggers for exacerbation and subsequent lung function decline whilst the role of chronic viral infection remains a plausible hypothesis that requires further evaluation. There are currently no effective antiviral strategies for patients with COPD. Herein, we focus on the current understanding of the cellular and molecular mechanisms of respiratory viral infection in COPD.
Collapse
Affiliation(s)
- Dermot Linden
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Peter V Coyle
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Derek Fairley
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Danny F McAuley
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Joe Kidney
- Dept of Respiratory Medicine, Mater Hospital Belfast, Belfast, UK
| |
Collapse
|
25
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Turi KN, Shankar J, Anderson LJ, Rajan D, Gaston K, Gebretsadik T, Das SR, Stone C, Larkin EK, Rosas-Salazar C, Brunwasser SM, Moore ML, Peebles RS, Hartert TV. Infant Viral Respiratory Infection Nasal Immune-Response Patterns and Their Association with Subsequent Childhood Recurrent Wheeze. Am J Respir Crit Care Med 2018; 198:1064-1073. [PMID: 29733679 PMCID: PMC6221572 DOI: 10.1164/rccm.201711-2348oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Recurrent wheeze and asthma are thought to result from alterations in early life immune development following respiratory syncytial virus (RSV) infection. However, prior studies of the nasal immune response to infection have assessed only individual cytokines, which does not capture the whole spectrum of response to infection. OBJECTIVES To identify nasal immune phenotypes in response to RSV infection and their association with recurrent wheeze. METHODS A birth cohort of term healthy infants born June to December were recruited and followed to capture the first infant RSV infection. Nasal wash samples were collected during acute respiratory infection, viruses were identified by RT-PCR, and immune-response analytes were assayed using a multianalyte bead-based panel. Immune-response clusters were identified using machine learning, and association with recurrent wheeze at age 1 and 2 years was assessed using logistic regression. MEASUREMENTS AND MAIN RESULTS We identified two novel and distinct immune-response clusters to RSV and human rhinovirus. In RSV-infected infants, a nasal immune-response cluster characterized by lower non-IFN antiviral immune-response mediators, and higher type-2 and type-17 cytokines was significantly associated with first and second year recurrent wheeze. In comparison, we did not observe this in infants with human rhinovirus acute respiratory infection. Based on network analysis, type-2 and type-17 cytokines were central to the immune response to RSV, whereas growth factors and chemokines were central to the immune response to human rhinovirus. CONCLUSIONS Distinct immune-response clusters during infant RSV infection and their association with risk of recurrent wheeze provide insights into the risk factors for and mechanisms of asthma development.
Collapse
Affiliation(s)
- Kedir N. Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Jyoti Shankar
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | | | - Devi Rajan
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Kelsey Gaston
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | - Cosby Stone
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Emma K. Larkin
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | | | | | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| |
Collapse
|
27
|
Ma W, Concha-Benavente F, Santegoets SJAM, Welters MJP, Ehsan I, Ferris RL, van der Burg SH. EGFR signaling suppresses type 1 cytokine-induced T-cell attracting chemokine secretion in head and neck cancer. PLoS One 2018; 13:e0203402. [PMID: 30192802 PMCID: PMC6128559 DOI: 10.1371/journal.pone.0203402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
Resistance to antitumor immunity can be promoted by the oncogenic pathways operational in human cancers, including the epidermal growth factor receptor (EGFR) pathway. Here we studied if and how EGFR downstream signaling in head and neck squamous cell carcinoma (HNSCC) can affect the attraction of immune cells. HPV-negative and HPV-positive HNSCC cell lines were analyzed in vitro for CCL2, CCL5, CXCL9, CXCL10, IL-6 and IL-1β expression and the attraction of T cells under different conditions, including cetuximab treatment and stimulation with IFNγ and TNFα using qPCR, ELISA and migration experiments. Biochemical analyses with chemical inhibitors and siRNA transfection were used to pinpoint the underlying mechanisms. Stimulation of HNSCC cells with IFNγ and TNFα triggered the production of T-cell attracting chemokines and required c-RAF activation. Blocking of the EGFR with cetuximab during this stimulation increased chemokine production in vitro, and augmented the attraction of T cells. Mechanistically, cetuximab decreased the phosphorylation of MEK1, ERK1/2, AKT, mTOR, JNK, p38 and ERK5. Chemical inhibition of EGFR signaling showed a consistent and pronounced chemokine production with MEK1/2 inhibitor PD98059 and JNK inhibitor SP600125, but not with inhibitors of p38, PI3K or mTOR. Combination treatment with cetuximab and a MEK1/2 or JNK inhibitor induced the highest chemokine expression. In conclusion, overexpression of EGFR results in the activation of multiple downstream signaling pathways that act simultaneously to suppress type 1 cytokine stimulated production of chemokines required to amplify the attraction of T cells.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernando Concha-Benavente
- Department of Otolaryngology, University of Pittsburgh, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | | | - Marij J. P. Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert L. Ferris
- Department of Otolaryngology, University of Pittsburgh, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | - Sjoerd H. van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol 2018; 59:339-344. [PMID: 29292068 DOI: 10.1016/j.pedneo.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
A new population of T cells known as Th22 was described for the first time in 2009. These cells are usually identified by the production of IL-22. However, this cytokine is also secreted by other cells such as Th1, Th2, Th17, natural killers, and innate lymphoid cells. Th22 is known as a pro-inflammatory agent in allergic skin diseases. Recently, more evidence has emerged showing associations between these cells and other diseases. The role of Th22 in asthma and allergic rhinitis is controversial: some authors suggest that Th22 has a pro-inflammatory effect, while others state that Th22 has anti-inflammatory properties. The aim of this article was to review the role of Th22 and IL-22 in allergic airway diseases based on the most recent literature. This review suggests that Th22 plays a significant role in the pathogenesis of allergic airway diseases and has predominantly anti-inflammatory properties. More studies are needed to clarify the role of Th22 in more detail.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
29
|
Li Y, Qiu Q, Fan Z, He P, Chen H, Jiao X. Th17 cytokine profiling of colorectal cancer patients with or without enterovirus 71 antigen expression. Cytokine 2018; 107:35-42. [PMID: 29175261 DOI: 10.1016/j.cyto.2017.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
OBJECT Th17 cytokines have been identified in several types of human cancers. In this pilot study, the expression of Th17 cytokines profiling in enteroviruses 71 (EV71) associated colorectal cancer (CRC) were explored. METHODS 66 patients with CRC were enrolled in this study; immune- histochemical analyses were performed on cancerous tissues and adjacent non- cancerous tissues of the patients. Serum Th17 cytokines of CRC patients and healthy controls were measured using a Luminex 200 analyzer. RESULTS Cancerous tissues had more positive EV71 antigen expression than adjacent non- cancerous tissues. In TNM II-III CRC, 59.9% of cancerous tissues were observed to be EV71 positive; on the contrary, 65.2% of the adjacent non- cancerous epithelium was EV71 negative. In TNM I CRC, all adjacent non- cancerous epithelium was virus negative, but in TNM IV, half of adjacent non- cancerous tissues were virus positive. Serum IL-10 were significantly higher in CRC patients than in healthy controls, and IL-10 concentrations in the EV71 positive group were higher than those of the EV71 negative group, with the highest IL-10 levels being observed in CRC patients with strong positive group (P < 0.05). Similar results were found for IL-21 and IL-23. IL-17 levels were higher in CRC patients than in healthy controls, there was no significant difference in IL-17 between the viral positive and viral negative groups (P > 0.05). CONCLUSION Persistent existing EV71 viral antigens in intestinal tissues are positively associated with TNM III/IV CRC. EV71 latent infection recruits Th17 cells in the colorectal tumor site, stimulating Th17 cytokine production that closely associated with CRC carcinogenesis.
Collapse
Affiliation(s)
- Yazhen Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Qiancheng Qiu
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Ping He
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Huanzhu Chen
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
30
|
Kalinowski A, Galen BT, Ueki IF, Sun Y, Mulenos A, Osafo-Addo A, Clark B, Joerns J, Liu W, Nadel JA, Cruz CSD, Koff JL. Respiratory syncytial virus activates epidermal growth factor receptor to suppress interferon regulatory factor 1-dependent interferon-lambda and antiviral defense in airway epithelium. Mucosal Immunol 2018; 11:958-967. [PMID: 29411775 PMCID: PMC6431552 DOI: 10.1038/mi.2017.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/17/2017] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) persists as a significant human pathogen that continues to contribute to morbidity and mortality. In children, RSV is the leading cause of lower respiratory tract infections, and in adults RSV causes pneumonia and contributes to exacerbations of chronic lung diseases. RSV induces airway epithelial inflammation by activation of the epidermal growth factor receptor (EGFR), a tyrosine kinase receptor. Recently, EGFR inhibition was shown to decrease RSV infection, but the mechanism(s) for this effect are not known. Interferon (IFN) signaling is critical for innate antiviral responses, and recent experiments have implicated IFN-λ (lambda), a type III IFN, as the most significant IFN for mucosal antiviral immune responses to RSV infection. However, a role for RSV-induced EGFR activation to suppress airway epithelial antiviral immunity has not been explored. Here, we show that RSV-induced EGFR activation suppresses IFN regulatory factor (IRF) 1-induced IFN-λ production and increased viral infection, and we implicate RSV F protein to mediate this effect. EGFR inhibition, during viral infection, augmented IRF1, IFN-λ, and decreased RSV titers. These results suggest a mechanism for EGFR inhibition to suppress RSV by activation of endogenous epithelial antiviral defenses, which may be a potential target for novel therapeutics.
Collapse
Affiliation(s)
- April Kalinowski
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Benjamin T. Galen
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Iris F. Ueki
- Division of Pulmonary, Critical Care, Allergy &
Sleep Medicine, University of California San Francisco
| | - Ying Sun
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Arielle Mulenos
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Awo Osafo-Addo
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Brian Clark
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - John Joerns
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Wei Liu
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| | - Jay A. Nadel
- Division of Pulmonary, Critical Care, Allergy &
Sleep Medicine, University of California San Francisco
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University,Department of Microbial Pathogenesis, Yale
University
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Yale University
| |
Collapse
|
31
|
Porcine Epidemic Diarrhea Virus-Induced Epidermal Growth Factor Receptor Activation Impairs the Antiviral Activity of Type I Interferon. J Virol 2018; 92:JVI.02095-17. [PMID: 29386292 DOI: 10.1128/jvi.02095-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute and devastating enteric disease in suckling piglets and results in huge economic losses in the pig industry worldwide. To establish productive infection, viruses must first circumvent the host innate immune response. In this study, we found that PEDV infection stimulated epidermal growth factor receptor (EGFR) activation, which has been linked to not only anticancer therapeutics, but also antiviral signaling. Therefore, we determined whether EGFR activation affected PEDV infection by using an activator or overexpression assay. The data showed that EGFR activation enhanced virus replication in both cases. We also found that specific inhibition of EGFR by either inhibitors or small interfering RNA (siRNA) led to a decrease in virus yields. Further analysis revealed that inhibition of EGFR produced augmentation of type I interferon genes. We next observed that the EGFR downstream cascade STAT3 was also activated upon PEDV infection. Similar to the case of EGFR, specific inhibition of STAT3 by either inhibitor or siRNA increased the antiviral activity of interferon and resulted in decreased PEDV RNA levels, and vice versa. The data on STAT3 depletion in combination with EGFR activation suggest that the attenuation of antiviral activity by EGFR activation requires activation of the STAT3 signaling pathway. Taken together, these data demonstrate that PEDV-induced EGFR activation serves as a negative regulator of the type I interferon response and provides a novel therapeutic target for virus infection.IMPORTANCE EGFR is a transmembrane tyrosine receptor that mediates various cellular events, as well as several types of human cancers. In this study, we investigated for the first time the role of EGFR in PEDV infection. We observed that PEDV infection induced EGFR activation. The role of EGFR activation is to impair the antiviral activity of type I interferon, which requires the involvement of the EGFR downstream signaling cascade STAT3. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response, which might serve as a therapeutic target against virus infection.
Collapse
|
32
|
Kuriakose T, Zheng M, Neale G, Kanneganti TD. IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1489-1495. [PMID: 29321274 DOI: 10.4049/jimmunol.1701538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms, including the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin domain containing 3 (NLRP3) inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. In this study, we demonstrate the role of IFN regulatory factor (IRF)1 in promoting NLRP3 inflammasome activation and cell death during IAV infection. Both inflammasome-dependent responses and induction of apoptosis and necroptosis are reduced in cells lacking IRF1 infected with IAV. The observed reduction in inflammasome activation and cell death in IRF1-deficient cells during IAV infection correlates with reduced levels of Z-DNA binding protein 1 (ZBP1), a key molecule mediating IAV-induced inflammatory and cell death responses. We further demonstrate IRF1 as a transcriptional regulator of ZBP1. Overall, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
33
|
Kersh AE, Ng S, Chang YM, Sasaki M, Thomas SN, Kissick HT, Lesinski GB, Kudchadkar RR, Waller EK, Pollack BP. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol 2018; 58:7-24. [PMID: 29136276 PMCID: PMC5972536 DOI: 10.1002/jcph.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Two pharmacologic approaches that are currently at the forefront of treating advanced cancer are those that center on disrupting critical growth/survival signaling pathways within tumor cells (commonly referred to as "targeted therapies") and those that center on enhancing the capacity of a patient's immune system to mount an antitumor response (immunotherapy). Maximizing responses to both of these approaches requires an understanding of the oncogenic events present in a given patient's tumor and the nature of the tumor-immune microenvironment. Although these 2 modalities were developed and initially used independently, combination regimens are now being tested in clinical trials, underscoring the need to understand how targeted therapies influence immunologic events. Translational studies and preclinical models have demonstrated that targeted therapies can influence immune cell trafficking, the production of and response to chemokines and cytokines, antigen presentation, and other processes relevant to antitumor immunity and immune homeostasis. Moreover, because these and other effects of targeted therapies occur in nonmalignant cells, targeted therapies are being evaluated for use in applications outside of oncology.
Collapse
Affiliation(s)
- Anna E. Kersh
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Spencer Ng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Min Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA
| | | | - Susan N. Thomas
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B. Lesinski
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ragini R. Kudchadkar
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edmund K. Waller
- Emory University Winship Cancer Institute, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian P. Pollack
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Emory University Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
34
|
Ho J, Moyes DL, Tavassoli M, Naglik JR. The Role of ErbB Receptors in Infection. Trends Microbiol 2017; 25:942-952. [PMID: 28522156 PMCID: PMC7126822 DOI: 10.1016/j.tim.2017.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
Members of the epidermal growth factor receptor family (ErbB family) possess a wide distribution and diverse functions ranging from cellular growth to migration and apoptosis. Though highly implicated in a variety of cancers, their involvement in infectious disease is less recognised. A growing body of evidence now highlights the importance of the ErbB family in a variety of infections. Their role as growth factor receptors, along with other characteristics, such as surface expression and continuous intracellular trafficking, make this receptor family ideally placed for exploitation by pathogens. Herein, we review our current understanding of the role of the ErbB family in the context of infectious disease, exploring the mechanisms that govern pathogen exploitation of this system. A wide and diverse variety of microbes have each evolved distinct mechanisms to exploit ErbB receptors, highlighting this receptor kinase family as a critical factor in initiation and maintenance of pathogen infections. ErbB family members are utilised by pathogens attempting to gain cellular entry, subvert immune responses, and manipulate the cell cycle of infected host cells. These events support and are necessary for pathogen persistence. Pathogen-mediated ErbB-exploitation may contribute to cellular transformation and oncogenesis in a variety of cancers. The use of existing FDA-approved drugs that target ErbB receptors and associated signalling components may offer potential future therapies against infection.
Collapse
Affiliation(s)
- Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK.
| | - David L Moyes
- Centre for Host Microbiome interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Mahvash Tavassoli
- Department of Molecular Oncology, Mucosal & Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| |
Collapse
|
35
|
Abstract
Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma.
Collapse
|
36
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
37
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
39
|
Currier MG, Lee S, Stobart CC, Hotard AL, Villenave R, Meng J, Pretto CD, Shields MD, Nguyen MT, Todd SO, Chi MH, Hammonds J, Krumm SA, Spearman P, Plemper RK, Sakamoto K, Peebles RS, Power UF, Moore ML. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathog 2016; 12:e1005622. [PMID: 27152417 PMCID: PMC4859522 DOI: 10.1371/journal.ppat.1005622] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2–20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2–20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2–20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2–20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2–20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease. Respiratory syncytial virus (RSV) is responsible for severe lower respiratory disease in infants and young children. Overabundant airway mucus contributes to airway obstruction in RSV bronchiolitis, and a better understanding of RSV pathogenesis may contribute to needed therapies and vaccines. We reported previously that RSV clinical isolate strain 2–20 induces more airway mucin expression in mice than prototypic RSV strains and that the 2–20 fusion (F) protein mediates mucin induction. Epidermal growth factor receptor (EGFR) has been shown to play a role in lung mucin expression. We identified a functional interaction between 2–20 F and EGFR, in that 2–20 F expression activated EGFR and, reciprocally, EGFR expression increased 2–20 F fusion activity. RSV F and EGFR co-localized in infected cells. EGFR co-immunoprecipitated with RSV F protein from various RSV strains, and the strength of this in vitro interaction correlated with strain-specific airway pathogenicity in mice. EGFR inhibition abrogated 2–20 F-mediated infection in vitro and mucin expression induction in vivo. These data identify EGFR as a novel strain-specific co-factor of RSV infection and suggest EGFR may be a target for ameliorating RSV disease.
Collapse
Affiliation(s)
- Michael G. Currier
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Sujin Lee
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Christopher C. Stobart
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Anne L. Hotard
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Remi Villenave
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
| | - Jia Meng
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Carla D. Pretto
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Michael D. Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Minh Trang Nguyen
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Sean O. Todd
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Michael H. Chi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jason Hammonds
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ultan F. Power
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland
| | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells.
Collapse
Affiliation(s)
- Jin-Ah Park
- Harvard T. H. Chan School of Public Health, Boston, Massachussetts
| | | | - Jeffrey M Drazen
- Harvard T. H. Chan School of Public Health, Boston, Massachussetts
| |
Collapse
|
41
|
Tummers B, Burg SHVD. High-risk human papillomavirus targets crossroads in immune signaling. Viruses 2015; 7:2485-506. [PMID: 26008697 PMCID: PMC4452916 DOI: 10.3390/v7052485] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Persistent infections with a high-risk type human papillomavirus (hrHPV) can progress to cancer. High-risk HPVs infect keratinocytes (KCs) and successfully suppress host immunity for up to two years despite the fact that KCs are well equipped to detect and initiate immune responses to invading pathogens. Viral persistence is achieved by active interference with KCs innate and adaptive immune mechanisms. To this end hrHPV utilizes proteins encoded by its viral genome, as well as exploits cellular proteins to interfere with signaling of innate and adaptive immune pathways. This results in impairment of interferon and pro-inflammatory cytokine production and subsequent immune cell attraction, as well as resistance to incoming signals from the immune system. Furthermore, hrHPV avoids the killing of infected cells by interfering with antigen presentation to antigen-specific cytotoxic T lymphocytes. Thus, hrHPV has evolved multiple mechanisms to avoid detection and clearance by both the innate and adaptive immune system, the molecular mechanisms of which will be dealt with in detail in this review.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Sjoerd H Van Der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
42
|
Ito Y, Correll K, Zemans RL, Leslie CC, Murphy RC, Mason RJ. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1178-88. [PMID: 26033355 PMCID: PMC4451400 DOI: 10.1152/ajplung.00290.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado;
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
43
|
Tummers B, Goedemans R, Pelascini LPL, Jordanova ES, van Esch EMG, Meyers C, Melief CJM, Boer JM, van der Burg SH. The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFκB activation. Nat Commun 2015; 6:6537. [PMID: 26055519 PMCID: PMC4382698 DOI: 10.1038/ncomms7537] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/05/2015] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomaviruses (hrHPVs) infect keratinocytes and successfully evade host immunity despite the fact that keratinocytes are well equipped to respond to innate and adaptive immune signals. Using non-infected and freshly established or persistent hrHPV-infected keratinocytes we show that hrHPV impairs the acetylation of NFκB/RelA K310 in keratinocytes. As a consequence, keratinocytes display a decreased pro-inflammatory cytokine production and immune cell attraction in response to stimuli of the innate or adaptive immune pathways. HPV accomplishes this by augmenting the expression of interferon-related developmental regulator 1 (IFRD1) in an EGFR-dependent manner. Restoration of NFκB/RelA acetylation by IFRD1 shRNA, cetuximab treatment or the HDAC1/3 inhibitor entinostat increases basal and induced cytokine expression. Similar observations are made in IFRD1-overexpressing HPV-induced cancer cells. Thus, our study reveals an EGFR–IFRD1-mediated viral immune evasion mechanism, which can also be exploited by cancer cells. Human papillomavirus employs immune evasion strategies to establish a long-term infection. Here the authors show that the virus in the EGFR-dependent manner induces IFRD1, which blocks NFκB activating acetylation, and that this process can be suppressed by the EGFR inhibitor cetuximab.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Renske Goedemans
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Laetitia P L Pelascini
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Center for Gynaecological Oncology, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Edith M G van Esch
- Department of Gynaecology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Judith M Boer
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|