1
|
Dericioglu D, Methven L, Shafat A, Clegg ME. Differences in appetite, food intake, and gastric emptying responses to protein intake by older adults varying in level of physical activity: A randomised controlled trial. Appetite 2024:107830. [PMID: 39736413 DOI: 10.1016/j.appet.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Older adults are encouraged to increase their protein intake and engage in more physical activity to preserve muscle mass. However, since protein is considered the most satiating macronutrient, this advice might lead to a decrease in overall energy consumption. Physical activity is also recommended to older adults to enhance appetite, as it has been shown to help regulate appetite in younger adults, yet there is limited evidence to support this in older populations. The objective of this study was to investigate the impact of physical activity and protein on food intake, perceived appetite, and gastric emptying in older adults. Nineteen active and 19 less active older adults completed a single-blind, randomised, crossover trial involving two test days at home. Participants received a standard breakfast, followed by an isovolumetric (250 ml) and isocaloric (∼300 kcal) high- or low-protein preload milkshake (57% versus 17% energy as protein) matched for sensory properties. Three hours after the preload, participants were offered an ad libitum meal. Food intake was weighed, perceived appetite was measured by 100 mm visual analogue scales, and gastric emptying via the 13C-octanoic acid breath test. Higher protein intake did not affect subsequent energy intake or appetite ratings in both active and less active groups. Gastric emptying half time was longer following the high-protein milkshake compared to the low-protein milkshake. The active group had a lower perceived appetite, but faster gastric emptying time compared to the less active group. In conclusion, while higher protein intake slows gastric emptying, it did not reduce appetite or subsequent food intake in older adults, regardless of physical activity level. Additionally, being physically active suppresses perceived appetite and accelerates gastric emptying without affecting food intake.
Collapse
Affiliation(s)
- Dilara Dericioglu
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK
| | - Lisa Methven
- Food Research Group, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK
| | - Amir Shafat
- Physiology, School of Medicine, University of Galway, Galway, H91 W5P7, Ireland
| | - Miriam E Clegg
- School of Food and Nutritional Sciences, University College Cork, Cork, T12 Y337, Ireland.
| |
Collapse
|
2
|
Dagbasi A, Fuller A, Hanyaloglu AC, Carroll B, McLaughlin J, Frost G, Holliday A. The role of nutrient sensing dysregulation in anorexia of ageing: The little we know and the much we don't. Appetite 2024; 203:107718. [PMID: 39423861 DOI: 10.1016/j.appet.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The age-related decline in appetite and food intake - termed "anorexia of ageing" - is implicated in undernutrition in later life and hence provides a public health challenge for our ageing population. Eating behaviour is controlled, in part, by homeostatic mechanisms which sense nutrient status and provide feedback to appetite control regions of the brain. Such feedback signals, propagated by episodic gut hormones, are dysregulated in some older adults. The secretory responses of appetite-related gut hormones to feeding are amplified, inducing a more anorexigenic signal which is associated with reduced appetite and food intake. Such an augmented response would indicate an increase in gut sensitivity to nutrients. Consequently, this review explores the role of gastrointestinal tract nutrient sensing in age-related appetite dysregulation. We review and synthesise evidence for age-related alterations in nutrient sensing which may explain the observed hormonal dysregulation. Drawing on what is known regarding elements of nutrient sensing pathways in animal models, in other tissues of the body, and in certain models of disease, we identify potential causal mechanisms including alterations in enteroendocrine cell number and distribution, dysregulation of cell signalling pathways, and changes in the gut milieu. From identified gaps in evidence, we highlight interesting and important avenues for future research.
Collapse
Affiliation(s)
- Aygul Dagbasi
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Amy Fuller
- Research Centre for Health and Life Sciences, Institute of Health and Wellbeing, Faculty of Health and Life Science, Coventry University, Coventry, CV1 5FB, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bernadette Carroll
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS1 8TD, UK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
3
|
Tzakri T, Senekowitsch S, Wildgrube T, Sarwinska D, Krause J, Schick P, Grimm M, Engeli S, Weitschies W. Impact of advanced age on the gastric emptying of water under fasted and fed state conditions. Eur J Pharm Sci 2024; 201:106853. [PMID: 39033883 DOI: 10.1016/j.ejps.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Although older people are the main users of oral medications, few studies are reported on the influence of advanced age on gastric emptying rate of non-caloric liquids. This study aimed at evaluating the gastric emptying of 240 ml water in healthy older and young adults in fasted and fed state conditions using the established method of salivary caffeine kinetics. The gastric emptying of water was evaluated in 12 healthy older volunteers (mean age: 73 ± 6 years) and 12 healthy younger volunteers (mean age: 25 ± 2 years) with the ingestion of a rapid disintegrating tablet containing 20 mg of 13C3-caffeine. The gastric emptying of water was assessed indirectly by calculating the AUC ratios of salivary caffeine concentrations in specific time segments. Comparison of the AUC ratios showed no statistically significant difference between young and older volunteers in both fasted and fed state conditions (p > 0.05). Advanced age itself seems to have no relevant effect on gastric emptying of water in either fasted or fed state conditions and the phenomenon of Magenstrasse appears to follow a similar pattern in healthy older adults as in healthy younger adults.
Collapse
Affiliation(s)
- Theodora Tzakri
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Toni Wildgrube
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Dorota Sarwinska
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Engeli
- Institute of Pharmacology, Department of Clinical Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany.
| |
Collapse
|
4
|
Ioannidou P, Dóró Z, Schalla J, Wätjen W, Diel P, Isenmann E. Analysis of combinatory effects of free weight resistance training and a high-protein diet on body composition and strength capacity in postmenopausal women - A 12-week randomized controlled trial. J Nutr Health Aging 2024; 28:100349. [PMID: 39232439 DOI: 10.1016/j.jnha.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Menopause has a significant impact on the endocrine system of middle-aged women, resulting in a loss of skeletal muscle mass (SMM), changes in fat mass (FM) and a reduction in strength capacity. Resistance training (RT) and a high-protein diet (HPD) are effective methods for maintaining or increasing SMM. This study aims to determine the effects of HPD and RT on body composition, muscle thickness and strength capacity in postmenopausal women. METHODS In total 55 healthy postmenopausal women (age: 58.2 ± 5.6 years, weight 69.1 ± 9.6 kg, height 166.5 ± 6.5 cm) successfully participated in the study. The women were randomly assigned to either group: training + protein (2.5 g/kg fat-free mass (FFM)) (n = 15; TP); only training (n = 12; T); only protein (2.5 g/kg FFM) (n = 14; CP) or control (n = 14; C). TP and T performed RT for 12 weeks with three training sessions and five exercises each. CP and C were prohibited from training during the period. The main parameters analysed for body composition were FFM, SMM, FM, muscle thickness of the M. rectus femoris, M. biceps femoris, M. triceps brachii and M. biceps brachii muscles. Strength was tested using a dynamometer for grip strength and 1-RM in the squat (BBS) and deadlift (DL). RESULTS The SMM significantly increased by RT (TP: (Δ+1.4 ± 0.9 kg; p < 0.05; d = 0.4; T: Δ+1.2 ± 1.3kg; p < 0.05; d = 0.3) and FM could be reduced only in T: (Δ-2.4 ± 2.9 kg; p < 0.05; d = 0.3). In muscle thickness a significant increase in the M. biceps brachii in both training groups (TP: (Δ+0.4 ± 0.3 cm; p < 0.05; d = 1.6; T: (Δ+0.3 ± 0.3 cm; p < 0.05; d = 0.9) and in M. biceps femoris only in TP (Δ+0.3 ± 0.4 cm; p < 0.05; d = 0.9) were observed. HPD without training does not affect body composition, A significant increase in grip strength (TP: Δ+4.7 ± 2.4 kg; (p < 0.05; d = 1.5; T: (Δ+3.6 ± 3.0 kg; p < 0.05; d = 0.8), in BBS (TP: (Δ+30.0 ± 14.2 kg; p < 0.05; d = 1.5; T: (Δ+34.0 ± 12.0 kg; p < 0.05; d = 2.4) and in DL (TP: (Δ+20.8 ± 10.3 kg; p < 0.05; d = 1.6; T: (Δ+22.1 ± 7.6 kg; p < 0.05; d = 2.0) was observed in both training groups. The CP also recorded a significant increase in the BBS (Δ+7.5 ± 5.4 kg; p < 0.05; d = 0.4) and in DL (Δ+5.5 ± 7.7 kg; p < 0.05; d = 0.5). No significant differences were detected for TP and T for any of the parameters. CONCLUSION The results indicate that RT enhances body composition and strength capacity in postmenopausal women and is a preventive strategy against muscle atrophy. Besides HPD without training has a trivial significant effect on BBS and DL. HPD with RT has no clear additive effect on body composition and strength capacity. Further studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Paulina Ioannidou
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany.
| | - Zsuzsanna Dóró
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jan Schalla
- Department of Fitness and Health, IST University of Applied Sciences, Dusseldorf, Germany
| | - Wim Wätjen
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Patrick Diel
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Eduard Isenmann
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany; Department of Fitness and Health, IST University of Applied Sciences, Dusseldorf, Germany
| |
Collapse
|
5
|
Qian L, Beers JL, Jackson KD, Zhou Z. CBD and THC in Special Populations: Pharmacokinetics and Drug-Drug Interactions. Pharmaceutics 2024; 16:484. [PMID: 38675145 PMCID: PMC11054161 DOI: 10.3390/pharmaceutics16040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabinoid use has surged in the past decade, with a growing interest in expanding cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) applications into special populations. Consequently, the increased use of CBD and THC raises the risk of drug-drug interactions (DDIs). Nevertheless, DDIs for cannabinoids, especially in special populations, remain inadequately investigated. While some clinical trials have explored DDIs between therapeutic drugs like antiepileptic drugs and CBD/THC, more potential interactions remain to be examined. This review summarizes the published studies on CBD and THC-drug interactions, outlines the mechanisms involved, discusses the physiological considerations in pharmacokinetics (PK) and DDI studies in special populations (including pregnant and lactating women, pediatrics, older adults, patients with hepatic or renal impairments, and others), and presents modeling approaches that can describe the DDIs associated with CBD and THC in special populations. The PK of CBD and THC in special populations remain poorly characterized, with limited studies investigating DDIs involving CBD/THC in these populations. Therefore, it is critical to evaluate potential DDIs between CBD/THC and medications that are commonly used in special populations. Modeling approaches can aid in understanding these interactions.
Collapse
Affiliation(s)
- Lixuan Qian
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Zhu Zhou
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| |
Collapse
|
6
|
Fujihira K, Takahashi M, Wang C, Fuke S, Hayashi N. Consumption of hot protein-containing drink accelerates gastric emptying rate and is associated with higher hunger levels in older adults. Temperature (Austin) 2023; 11:52-59. [PMID: 38577300 PMCID: PMC10989700 DOI: 10.1080/23328940.2023.2278410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/27/2023] [Indexed: 04/06/2024] Open
Abstract
Meal temperature is known to affect gastric emptying and appetite. While protein intake is recommended for older age, gastric emptying is delayed with age, resulting in loss of appetite. This study aimed to investigate whether adjusting the temperature of protein-containing drinks could improve gastric emptying and appetite in older individuals. Twenty male and female participants aged 65 years and older underwent three one-day trials in random order. Participants visited the laboratory after a 10-hour fast and consumed 200 mL of protein-containing drink dissolved in 13C-sodium acetate at 4°C, 37°C, or 60°C in a 3-minute period. Then, participants sat in a chair for 90 minutes to measure gastric emptying rate by the 13C-sodium acetate breath test and subjective appetite by a visual analog scale. The results showed that 37°C and 60°C drinks had faster gastric emptying at 5 and 10 min after ingestion than did the 4°C drink (trial-time interaction, p = 0.014). Tmax-calc, an indicator of gastric emptying rate, tended to be faster for the 37°C and 60°C drinks than for the 4°C drink (49.7 ± 17.5 min vs. 44.1 ± 18.5 min vs. 45.3 ± 25.8 min for the 4°C, 37°C, and 60°C, respectively; p = 0.085). There were no significant differences in the change in hunger from baseline among the three different temperature drinks (p > 0.05). Only in the 60°C trial, a shorter gastric emptying time was associated with greater hunger (r=-0.554, p = 0.021). These findings suggest that hot protein-containing drinks may accelerate gastric emptying and contribute to rapid nutrient intake and increased appetite in older adults.
Collapse
Affiliation(s)
- Kyoko Fujihira
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- Department of Social and Human Sciences, Tokyo Institute of Technology, Meguro-ku,Tokyo, Japan
| | - Chunyi Wang
- Department of Social and Human Sciences, Tokyo Institute of Technology, Meguro-ku,Tokyo, Japan
| | - Saeka Fuke
- Department of Social and Human Sciences, Tokyo Institute of Technology, Meguro-ku,Tokyo, Japan
| | - Naoyuki Hayashi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Dericioglu D, Oldham S, Methven L, Shafat A, Clegg ME. Macronutrients effects on satiety and food intake in older and younger adults: A randomised controlled trial. Appetite 2023; 189:106982. [PMID: 37507052 DOI: 10.1016/j.appet.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Older adults are advised to increase their protein intake to maintain their muscle mass. However, protein is considered the most satiating macronutrient and this recommendation may cause a decrease in total energy intake. To date, satiety studies comparing all three macronutrients have been undertaken in young adults, and it is unclear if the same response is seen in older adults. The objective of this study was to compare the effect of preloads high in protein, fat, and carbohydrate but equal in energy (∼300 kcal) and volume (250 ml) on energy intake, perceived appetite, and gastric emptying in younger and older adults. Twenty older and 20 younger adults completed a single-blinded randomised crossover trial involving three study visits. Participants consumed a standard breakfast, followed by a preload milkshake high in either carbohydrate, fat, or protein. Three hours after the preload, participants were offered an ad libitum meal to assess food intake. Visual analogue scales were used to measure perceived appetite and gastric emptying was measured via the 13C-octanoic acid breath test. There was no significant effect of preload type or age on energy intake either at the ad libitum meal, self-recorded food intake for the rest of the test day or subjective appetite ratings. There was a significant effect of preload type on gastric emptying latency phase and ascension time, and an effect of age on gastric emptying latency and lag phase such that older adults had faster emptying. In conclusion, energy intake, and perceived appetite were not affected by macronutrient content of the preloads in both younger and older adults, but gastric emptying times differed.
Collapse
Affiliation(s)
- Dilara Dericioglu
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Stephanie Oldham
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Lisa Methven
- Food Research Group, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| | - Amir Shafat
- Physiology, School of Medicine, University of Galway, Galway, H91 W5P7, Ireland.
| | - Miriam E Clegg
- Hugh Sinclair Human of Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ, UK; Institute of Food, Nutrition and Health, University of Reading, Whiteknights, Reading, RG6 6EU, UK.
| |
Collapse
|
8
|
Shi L, Tianqi F, Zhang C, Deng X, Zhou Y, Wang J, Wang L. High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet-induced nonalcoholic fatty liver disease in mice. J Dairy Sci 2023; 106:5309-5327. [PMID: 37474360 DOI: 10.3168/jds.2022-23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1β, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fang Tianqi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Can Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Stillhart C, Asteriadis A, Bocharova E, Eksteen G, Harder F, Kusch J, Tzakri T, Augustijns P, Matthys C, Vertzoni M, Weitschies W, Reppas C. The impact of advanced age on gastrointestinal characteristics that are relevant to oral drug absorption: An AGePOP review. Eur J Pharm Sci 2023; 187:106452. [PMID: 37098371 DOI: 10.1016/j.ejps.2023.106452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this review is to summarize the current knowledge on three physiological determinants of oral drug absorption, i.e., gastric emptying, volumes and composition of luminal fluids, and intestinal permeability, in the advanced age population, so that potential knowledge gaps and directions for further research efforts are identified. Published data on gastric emptying rates in older people are conflicting. Also, there are significant knowledge gaps, especially on gastric motility and emptying rates of drugs and of non-caloric fluids. Compared with younger adults, volumes of luminal contents seem to be slightly smaller in older people. Our understanding on the impact of advanced age on luminal physicochemical characteristics is, at best, very limited, whereas the impact of (co)morbidities and geriatric syndromes in the advanced age population has not been addressed to date. The available literature on the effect of advanced age on intestinal permeability is limited, and should be approached with caution, primarily due to the limitations of the experimental methodologies used.
Collapse
Affiliation(s)
| | - Adam Asteriadis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Ekaterina Bocharova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Gabriel Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Fritz Harder
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Jonas Kusch
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Tzakri
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Oberoi A, Giezenaar C, Rigda RS, Horowitz M, Jones KL, Chapman I, Soenen S. Effects of co-ingesting glucose and whey protein on blood glucose, plasma insulin and glucagon concentrations, and gastric emptying, in older men with and without type 2 diabetes. Diabetes Obes Metab 2023; 25:1321-1330. [PMID: 36694303 DOI: 10.1111/dom.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
AIM To investigate whether co-ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycaemia in older men with type 2 diabetes (T2D). MATERIALS AND METHODS Blood glucose, plasma insulin and glucagon concentrations were measured for 180 minutes following ingestion of a drink containing 30 g of glucose (G; 120 kcal), 30 g of whey protein (120 kcal), 30 g of glucose plus 30 g of whey protein (GP; 240 kcal), or control (~2 kcal) in older men with T2D (n = 10, 77 ± 1 years; 31 ± 1.7 kg/m2 ) and without T2D (n = 10, 78 ± 2 years; 27 ± 1.4 kg/m2 ). Mixed model analysis was used. RESULTS GP versus G markedly reduced the increase in blood glucose concentrations (P < .001) and had a synergistic effect on the increase in insulin concentrations (P < .001), in men both with and without T2D. Glucose concentrations were higher in men with T2D compared with those without T2D, whereas insulin and glucagon concentrations were largely unaffected by the presence of T2D. Gastric emptying was faster in men with T2D than in those without T2D. CONCLUSIONS The ability of whey protein to reduce carbohydrate-induced, postprandial hyperglycaemia is retained in older men with T2D compared with those without T2D, and whey protein supplementation may be a useful strategy in the prevention and management of T2D in older people.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Caroline Giezenaar
- Food Experience and Sensory Testing (FEAST) Laboratory, School of Food & Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Rachael S Rigda
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
11
|
Personalized Dietary Advice to Increase Protein Intake in Older Adults Does Not Affect the Gut Microbiota, Appetite or Central Processing of Food Stimuli in Community-Dwelling Older Adults: A Six-Month Randomized Controlled Trial. Nutrients 2023; 15:nu15020332. [PMID: 36678203 PMCID: PMC9862486 DOI: 10.3390/nu15020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Expert groups argue to raise the recommended daily allowance for protein in older adults from 0.8 to 1.2 g/kg/day to prevent undernutrition. However, protein is thought to increase satiety, possibly through effects on gut microbiota and central appetite regulation. If true, raising daily protein intake may work counterproductively. In a randomized controlled trial, we evaluated the effects of dietary advice aimed at increasing protein intake to 1.2 g/kg adjusted body weight/day (g/kg aBW/day) on appetite and gut microbiota in 90 community-dwelling older adults with habitual protein intake <1.0 g/kg aBW/day (Nintervention = 47, Ncontrol = 43). Food intake was determined by 24-h dietary recalls and gut microbiota by 16S rRNA sequencing. Functional magnetic resonance imaging (fMRI) scans were performed in a subgroup of 48 participants to evaluate central nervous system responses to food-related stimuli. Both groups had mean baseline protein intake of 0.8 ± 0.2 g/kg aBW/day. At 6 months’ follow-up this increased to 1.2 ± 0.2 g/kg aBW/day for the intervention group and 0.9 ± 0.2 g/kg aBW/day for the control group. Microbiota composition was not affected, nor were appetite or brain activity in response to food-related stimuli. Increasing protein intake in older adults to 1.2 g/kg aBW/day does not negatively impact the gut microbiota or suppress appetite.
Collapse
|
12
|
Chungchunlam SMS, Montoya CA, Stroebinger N, Moughan PJ. Effects of the maize-derived protein zein, and the milk proteins casein, whey, and α-lactalbumin, on subjective measures of satiety and food intake in normal-weight young men. Appetite 2023; 180:106339. [PMID: 36216216 DOI: 10.1016/j.appet.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022]
Abstract
Protein is considered to be the most satiating food macronutrient and the satiating effect may be dependent on the source of the protein. The maize-derived protein zein and milk protein casein have been shown previously to lower stomach emptying rate more than dairy whey protein, but the effect of zein on satiety has not been evaluated. The objective was to compare the satiating effects of zein and casein, with whey protein and its protein component α-lactalbumin. The study was a randomised crossover design with thirteen normal-weight men (mean age 27.8 years and mean BMI 24.4 kg/m2) consuming isoenergetic (∼4000 kJ, ∼990 kcal) preload mixed meals enriched with Zein, Casein, whey protein isolate (Whey), α-lactalbumin (ALac), or maltodextrin carbohydrate (Carb). Consumption of an ad libitum standardised test meal of chicken fried rice and water provided 360 min following ingestion of the preload meal was measured, and subjective feelings of appetite (hunger, fullness, desire to eat, and prospective food consumption) were assessed using 100-mm visual analogue scales (VAS). There were no differences among the five preload mixed meals in the amount of chicken fried rice consumed at the ad libitum test meal (mean ± sem: 531.6 ± 35.0 g, p = 0.47) or total (preload + test meal) energy intakes (mean ± sem: 5780.5 ± 146.0 kJ, p = 0.29). The subjective VAS appetite ratings and total area under the curve responses for hunger, fullness, desire to eat, and prospective food consumption, were not different following consumption of all five preload mixed meals (p > 0.05). The findings indicate that the effects of zein and casein on satiety were not different from the satiating effects of whey protein and α-lactalbumin.
Collapse
Affiliation(s)
| | - Carlos A Montoya
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand; Smart Foods & Bioproducts, AgResearch Limited, Te Ohu Rangahau Kai Facility, Palmerston North, 4474, New Zealand
| | | | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
13
|
Promoting Protein Intake in an Ageing Population: Product Design Implications for Protein Fortification. Nutrients 2022; 14:nu14235083. [PMID: 36501113 PMCID: PMC9735980 DOI: 10.3390/nu14235083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Protein is a macronutrient of interest for an ageing population and intake requirements increase with age. Accordingly, protein is often fortified into products for older adults to help alleviate malnutrition and impede sarcopenia. However, more emphasis needs to be placed upon designing protein-fortified products to ensure suitability for older adults. This study involved a two-stage approach: (1) an initial review of products commonly fortified with protein and (2) two questionnaires for younger and older adults (n = 73; 18-30; 65+) to investigate optimal portion sizes (drinks and cakes) as well as attitudes, consumption habits and preferences towards protein fortification. The initial literature and market review demonstrated protein-fortified products are typically in liquid or snack format; however, there is considerable variability in terms of product types, serving size and protein sources. There were no age-related differences found for ideal cakes portion size whereas there were for liquids. Older adults are typically not consuming protein-fortified products; therefore, more importance should be placed on the consumption moment (breakfast or as snacks between meals) and on cereals, pasta, porridge, cakes, and biscuits. Older adults need increased awareness of, and more education on, the benefits of protein consumption, coupled with products tailored and designed to encourage intake.
Collapse
|
14
|
Comparative Effects of Co-Ingesting Whey Protein and Glucose Alone and Combined on Blood Glucose, Plasma Insulin and Glucagon Concentrations in Younger and Older Men. Nutrients 2022; 14:nu14153111. [PMID: 35956288 PMCID: PMC9370714 DOI: 10.3390/nu14153111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycemia, but its effect in older people, who have an increased predisposition for type 2 diabetes, has not been clarified. Blood glucose, plasma insulin and glucagon concentrations were measured for 180 min following a drink containing either glucose (120 kcal), whey-protein (120 kcal), whey-protein plus glucose (240 kcal) or control (~2 kcal) in healthy younger (n = 10, 29 ± 2 years; 26.1 ± 0.4 kg/m2) and older men (n = 10, 78 ± 2 years; 27.3 ± 1.4 kg/m2). Mixed model analysis was used. In both age groups the co-ingestion of protein with glucose (i) markedly reduced the increase in blood glucose concentrations following glucose ingestion alone (p < 0.001) and (ii) had a synergistic effect on the increase in insulin concentrations (p = 0.002). Peak insulin concentrations after protein were unaffected by ageing, whereas insulin levels after glucose were lower in older than younger men (p < 0.05) and peak insulin concentrations were higher after glucose than protein in younger (p < 0.001) but not older men. Glucagon concentrations were unaffected by age. We conclude that the ability of whey-protein to reduce carbohydrate-induced postprandial hyperglycemia is retained in older men and that protein supplementation may be a useful strategy in the prevention and management of type 2 diabetes in older people.
Collapse
|
15
|
Oberoi A, Giezenaar C, Lange K, Jones KL, Horowitz M, Chapman I, Soenen S. Blood Pressure and Heart Rate Responses following Dietary Protein Intake in Older Men. Nutrients 2022; 14:nu14091913. [PMID: 35565880 PMCID: PMC9101499 DOI: 10.3390/nu14091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
Postprandial hypotension (PPH) occurs frequently in older people >65 years old. Protein-rich supplements, particularly whey protein (WP), are increasingly used by older people for various health benefits. We have reported that 70 g WP drinks cause significant, and in some cases marked, falls in blood pressure (BP) in older men. The effects of lower, more widely used, doses (~30 g) on systolic (SBP) and diastolic (DBP) blood pressure and heart rate (HR) are not known. In a randomized order, eight older men (age: 72 ± 1 years; body mass index (BMI): 25 ± 1 kg/m2) after overnight fast ingested a drink containing (i) a non-caloric control (~2 kcal), (ii) 30 g of whey protein (120 kcal; ‘WP30’), or (iii) 70 g of whey protein (280 kcal; ‘WP70’). The BP and HR were measured in this pilot study with an automated device before and at 3-min intervals for 180 min following drink ingestion. Drink condition effects were determined by repeated-measures ANOVA. The SBP decreased after both WP drinks compared to the control (p = 0.016), particularly between 120 and 180 min, with no difference in the effects of WP30 and WP70. The SBP decreased by ≥20 mmHg in more than 50% of people after both WP drinks (WP30: 63%; WP70: 75%) compared to 38% after the control. The maximum fall in the SBP occurred during the third hour, with the nadir occurring latest after WP70. The DBP decreased non-significantly by several mmHg more after the WP drinks than after the control. The maximum HR increases occurred during the third hour, with the greatest increase after WP70. The SBP decreased after both WP drinks compared to the control, with the effects most evident between 120 and 180 min. Accordingly, ingestion of even relatively modest protein loads in older men has the potential to cause PPH.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5000, Australia; (A.O.); (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Caroline Giezenaar
- Riddett Institute, Massey University, Palmerston North 9430, New Zealand;
| | - Kylie Lange
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5000, Australia; (A.O.); (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Karen L. Jones
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5000, Australia; (A.O.); (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5000, Australia; (A.O.); (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Ian Chapman
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5000, Australia; (A.O.); (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Stijn Soenen
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast 4229, Australia
- Correspondence: ; Tel.: +61-07-55595-1390
| |
Collapse
|
16
|
Crabtree DR, Holliday A, Buosi W, Fyfe CL, Horgan GW, Johnstone AM. The Acute Effects of Breakfast Drinks with Varying Protein and Energy Contents on Appetite and Free-Living Energy Intake in UK Older Adults. Geriatrics (Basel) 2022; 7:geriatrics7010016. [PMID: 35200521 PMCID: PMC8871635 DOI: 10.3390/geriatrics7010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Proposed strategies for preventing protein deficiencies in older patients include increasing protein intake at breakfast. However, protein is highly satiating and the effects of very high protein intakes at breakfast on subsequent appetite and free-living energy intake (EI) in older adults are unclear. This study compared the acute effects of two breakfast drinks varying in protein and energy contents on appetite and free-living EI in healthy older adults using a randomized 2 × 2 crossover design. Participants (n = 48 (20 men, 28 women); mean ± SD age: 69 ± 3 years; BMI: 22.2 ± 2.0 kg·m−2; fat-free mass: 45.5 ± 8.0 kg) consumed two drinks for breakfast (high-protein (30.4 ± 5.3 g), low-energy (211.2 ± 37.1 kcal) content (HPLE) and very high-protein (61.8 ± 9.9 g), fed to energy requirements (428.0 ± 68.9 kcal) (VHPER)) one week apart. Appetite perceptions were assessed for 3 h post-drink and free-living EI was measured for the remainder of the day. Appetite was lower in VHPER than HPLE from 30 min onwards (p < 0.01). Free-living energy and protein intake did not differ between conditions (p = 0.814). However, 24 h EI (breakfast drink intake + free-living intake) was greater in VHPER than HPLE (1937 ± 568 kcal vs. 1705 ± 490 kcal; p = 0.001), as was 24 h protein intake (123.0 ± 26.0 g vs. 88.6 ± 20.9 g; p < 0.001). Consuming a very high-protein breakfast drink acutely suppressed appetite more than a low-energy, high-protein drink in older adults, though free-living EI was unaffected. The long-term effects of adopting such a breakfast strategy in older adults at high risk of energy and protein malnutrition warrants exploration.
Collapse
Affiliation(s)
- Daniel R. Crabtree
- Division of Biomedical Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
- Correspondence: ; Tel.: +44-(0)-1463-279405
| | - Adrian Holliday
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - William Buosi
- The Rowett Institute, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZD, UK; (W.B.); (C.L.F.); (A.M.J.)
| | - Claire L. Fyfe
- The Rowett Institute, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZD, UK; (W.B.); (C.L.F.); (A.M.J.)
| | - Graham W. Horgan
- Biomathematics and Statistics Scotland, Foresterhill Road, Aberdeen AB25 2ZD, UK;
| | - Alexandra M. Johnstone
- The Rowett Institute, University of Aberdeen, Foresterhill Road, Aberdeen AB25 2ZD, UK; (W.B.); (C.L.F.); (A.M.J.)
| | | |
Collapse
|
17
|
Lim JJ, Sequeira IR, Yip WCY, Lu LW, Barnett D, Cameron-Smith D, Poppitt SD. Postprandial glycine as a biomarker of satiety: A dose-rising randomised control trial of whey protein in overweight women. Appetite 2021; 169:105871. [PMID: 34915106 DOI: 10.1016/j.appet.2021.105871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 01/09/2023]
Abstract
This study aimed to identify biomarkers of appetite response, modelled using a dose-rising whey protein preload intervention. Female participants (n = 24) with body mass index (BMI) between 23 and 40 kg/m2 consumed preload beverages (0 g protein water control, WC; 12.5 g low-dose protein, LP; or 50.0 g high-dose protein, HP) after an overnight fast, in a randomised cross over design. Repeated venous blood samples were collected to measure plasma biomarkers of appetite response, including glucose, glucoregulatory peptides, gut peptides, and amino acids (AAs). Appetite was assessed using Visual Analogue Scales (VAS) and ad libitum energy intake (EI). Dose-rising protein beverage significantly changed the postprandial trajectory of almost all biomarkers (treatment*time, p < 0.05), but did not suppress postprandial appetite (treatment*time, p > 0.05) or EI (ANOVA, p = 0.799). Circulating glycine had the strongest association with appetite response. Higher area under the curve (AUC0-240) glycine was associated with lower EI (p = 0.026, trend). Furthermore, circulating glycine was associated with decreased Hunger in all treatment groups, whereas the associations of glucose, alanine and amylin with appetite were dependent on treatment groups. Multivariate models, incorporating multiple biomarkers, improved the estimation of appetite response (marginal R2, range: 0.13-0.43). In conclusion, whilst glycine, both alone and within a multivariate model, can estimate appetite response to both water and whey protein beverage consumption, a large proportion of variance in appetite response remains unexplained. Most biomarkers, when assessed in isolation, are poor predictors of appetite response, and likely of utility only in combination with VAS and EI.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Wilson C Y Yip
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Riddet Institute, Palmerston North, New Zealand; Liggins Institute, University of Auckland, Auckland, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Giezenaar C, Oberoi A, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of age on blood pressure and heart rate responses to whey protein in younger and older men. J Am Geriatr Soc 2021; 69:1291-1299. [PMID: 33675081 DOI: 10.1111/jgs.17083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postprandial falls in blood pressure (BP) are more common in older compared to younger individuals. The effects of protein compared to carbohydrates and fat on postprandial BP, and the relation to gastric emptying rates, are poorly studied. OBJECTIVES To determine the effects of a whey protein compared to a control drink on systolic BP (SBP) and diastolic BP (DBP), and heart rate (HR) in healthy younger and older men, and to relate these effects to gastric emptying. DESIGN A pooled analyses of two randomized, double-blind, cross-over studies. SETTING Two acute clinical intervention studies with identical study design. PARTICIPANTS Nineteen older (age: 74 ± 1 years, body mass index: 26 ± 1 kg/m2 ) and 13 younger (23 ± 1 years, 24 ± 1 kg/m2 ) healthy men. INTERVENTION A 70 g/280 kcal whey-protein or control (water with diet cordial, ~2 kcal) drink (450 ml). MEASUREMENTS BP and HR were assessed with an automated device immediately before and at 3-min intervals after drink ingestion (0-180 min). Gastric emptying of the drinks was measured using 3D ultrasonography (0-180 min). RESULTS Older versus younger men exhibited a greater fall in SBP (-23 ± 2 vs -15 ± 2 mmHg, p = 0.001) after whey-protein versus control, as BP did not change after the two drinks in younger men (p > 0.05). The nadir in SBP occurred later in the older than younger men (114 ± 11 vs 62 ± 14 min; p < 0.001), with SBP still apparently declining 180 min after whey-protein ingestion in the older men. The magnitude of the rise in HR was greater (p < 0.05) in the younger than older men. CONCLUSION Following ingestion of 70 g whey protein, healthy older men exhibited a sustained fall in BP, despite an increase in HR, whereas in younger men there was no change in BP. BP may need to be monitored after high protein meals in older people at risk of postprandial hypotension.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North, New Zealand
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Avneet Oberoi
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ian Chapman
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stijn Soenen
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Chapman I, Oberoi A, Giezenaar C, Soenen S. Rational Use of Protein Supplements in the Elderly-Relevance of Gastrointestinal Mechanisms. Nutrients 2021; 13:nu13041227. [PMID: 33917734 PMCID: PMC8068133 DOI: 10.3390/nu13041227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Protein supplements are increasingly used by older people to maintain nutrition and prevent or treat loss of muscle function. Daily protein requirements in older people are in the range of 1.2 gm/kg/day or higher. Many older adults do not consume this much protein and are likely to benefit from higher consumption. Protein supplements are probably best taken twice daily, if possible soon after exercise, in doses that achieve protein intakes of 30 gm or more per episode. It is probably not important to give these supplements between meals, as we have shown no suppressive effects of 30 gm whey drinks, and little if any suppression of 70 gm given to older subjects at varying time intervals from meals. Many gastrointestinal mechanisms controlling food intake change with age, but their contributions to changes in responses to protein are not yet well understood. There may be benefits in giving the supplement with rather than between meals, to achieve protein intakes above the effective anabolic threshold with lower supplement doses, and have favourable effects on food-induced blood glucose increases in older people with, or at risk of developing, type 2 diabetes mellitus; combined protein and glucose drinks lower blood glucose compared with glucose alone in older people.
Collapse
Affiliation(s)
- Ian Chapman
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (I.C.); (A.O.)
| | - Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (I.C.); (A.O.)
| | - Caroline Giezenaar
- Riddett Institute, Massey University, Palmerston North 9430, New Zealand;
| | - Stijn Soenen
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia
- Correspondence: ; Tel.: +61-07-55595-1390
| |
Collapse
|
20
|
Verreijen AM, van den Helder J, Streppel MT, Rotteveel I, Heman D, van Dronkelaar C, Memelink RG, Engberink MF, Visser M, Tieland M, Weijs PJM. A higher protein intake at breakfast and lunch is associated with a higher total daily protein intake in older adults: a post-hoc cross-sectional analysis of four randomised controlled trials. J Hum Nutr Diet 2021; 34:384-394. [PMID: 33190355 PMCID: PMC8048646 DOI: 10.1111/jhn.12838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND A protein intake of 30-40 g per meal is suggested to maximally stimulate muscle protein synthesis in older adults and could therefore contribute to the prevention of sarcopenia. Protein intake at breakfast and lunch is often low and offers a great opportunity to improve daily protein intake. Protein, however, is known for its satiating effects. Therefore, we explored the association between the amount of protein intake at breakfast and lunch and total daily protein intake in older adults. METHODS Protein intake was assessed by a 3-day food record in 498 community dwelling older adults (≥55 years) participating different lifestyle interventions. Linear mixed model analysis was used to examine the association between protein intake at breakfast or lunch and total daily protein intake, adjusted for sex, age, body mass index, smoking status, study and total energy intake. RESULTS After adjustment for potential confounders, a 10 g higher protein intake at breakfast was associated with a 3.2 g higher total daily protein intake (P = 0.008) for males and a 4.9 g (P < 0.001) higher total daily protein intake for females. A 10 g higher protein intake at lunch was associated with a 3.7 g higher total daily protein intake (P < 0.001) for males, and a 5.8 g higher total daily protein intake (P < 0.001) for females. CONCLUSIONS A higher protein intake at breakfast and lunch is associated with a higher total daily protein intake in community dwelling older adults. Stimulating a higher protein intake at breakfast and lunch might represent a promising nutritional strategy to optimise the amount of protein per meal without compromising total daily protein intake.
Collapse
Affiliation(s)
- A. M. Verreijen
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - J. van den Helder
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - M. T. Streppel
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - I. Rotteveel
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - D. Heman
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - C. van Dronkelaar
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - R. G. Memelink
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - M. F. Engberink
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - M. Visser
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
- Department of Health SciencesFaculty of ScienceVrije UniversiteitAmsterdamThe Netherlands
| | - M. Tieland
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
| | - P. J. M. Weijs
- Faculty of Sports and NutritionCenter of Expertise Urban VitalityAmsterdam University of Applied SciencesAmsterdamThe Netherlands
- Amsterdam Public Health Research InstituteAmsterdamThe Netherlands
- Department of Nutrition and DieteticsAmsterdam University Medical CentersVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
21
|
Norton V, Lignou S, Methven L. Influence of Age and Individual Differences on Mouthfeel Perception of Whey Protein-Fortified Products: A Review. Foods 2021; 10:433. [PMID: 33669435 PMCID: PMC7920461 DOI: 10.3390/foods10020433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein needs are considered to increase with age, with protein consumption being associated with many positive outcomes. Protein-fortified products are often used to improve nutritional status and prevent age-related muscle mass loss in older adults. Accordingly, older adults are commonly provided with products fortified with whey protein; however, such products can cause mouthdrying, limiting consumption and product enjoyment. Currently, the extent to which age and individual differences (e.g., saliva, oral health, food oral processing) influence the perception of whey protein-derived mouthdrying is relatively unclear. Previous research in this area has mainly focused on investigating mouthdrying, without taking into account individual differences that could influence this perception within the target population. Therefore, the main focus of this review is to provide an overview of the relevant individual differences likely to influence mouthfeel perception (specifically mouthdrying) from whey protein-fortified products, thereby enabling the future design of such products to incorporate better the needs of older adults and improve their nutritional status. This review concludes that age and individual differences are likely to influence mouthdrying sensations from whey protein-fortified products. Future research should focus more on the target population and individual differences to maximise the benefits from whey protein fortification.
Collapse
Affiliation(s)
| | | | - Lisa Methven
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (V.N.); (S.L.)
| |
Collapse
|
22
|
Jadczak AD, Visvanathan R, Barnard R, Luscombe-Marsh N. A Randomized Controlled Pilot Exercise and Protein Effectiveness Supplementation Study (EXPRESS) on Reducing Frailty Risk in Community-Dwelling Older People. J Nutr Gerontol Geriatr 2021; 40:26-45. [PMID: 33691612 DOI: 10.1080/21551197.2021.1886222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This pilot study aimed to examine the feasibility and effectiveness of a 6-months multi-component exercise program combined with twice daily consumption of either rice (RicePro) or whey-based (WheyPro) protein supplements (2 × 20 g of protein) on gait speed, grip strength and physical performance in community-dwelling pre-frail and frail older adults. Secondary outcomes included: frailty score, muscle mass, quality of life, nutritional intake, cognitive performance, depression and physical activity levels. A total of 70 participants (mean age 73.34 ± 6.85 years) were randomly allocated to either RicePro (n = 36) or WheyPro (n = 34). No adverse events were reported in regards to the exercise, however, several gastrointestinal symptoms were noted with the whey protein causing two-fold more symptoms compared to the rice protein. No differences were found between the groups (p > 0.05), except the total consumed energy (kJ) (p = 0.014) and fat (g) (p = 0.012) which was significantly lower in WheyPro. The results indicate that the quality of protein may not be as important as long as a sufficient amount is consumed.
Collapse
Affiliation(s)
- Agathe Daria Jadczak
- National Health and Medical Research Council Centre of Research Excellence Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
- Adelaide Geriatrics Training and Research with Aged Care (G-TRAC) Centre, Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renuka Visvanathan
- National Health and Medical Research Council Centre of Research Excellence Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
- Adelaide Geriatrics Training and Research with Aged Care (G-TRAC) Centre, Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Aged and Extended Care Services, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, Australia
| | - Robert Barnard
- Centre for Physical Activity in Ageing (CPAA), Central Adelaide Local Health Network, Adelaide, Australia
| | - Natalie Luscombe-Marsh
- Health and Biosecurity, Commonwealth Scientific Industrial Research Organisation (CSIRO), Adelaide, Australia
| |
Collapse
|
23
|
Appetite Control across the Lifecourse: The Acute Impact of Breakfast Drink Quantity and Protein Content. The Full4Health Project. Nutrients 2020; 12:nu12123710. [PMID: 33266325 PMCID: PMC7759987 DOI: 10.3390/nu12123710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the mechanisms of hunger, satiety and how nutrients affect appetite control is important for successful weight management across the lifecourse. The primary aim of this study was to describe acute appetite control across the lifecourse, comparing age groups (children, adolescents, adults, elderly), weight categories, genders and European sites (Scotland and Greece). Participants (n = 391) consumed four test drinks, varying in composition (15% (normal protein, NP) and 30% (high protein, HP) of energy from protein) and quantity (based on 100% basal metabolic rate (BMR) and 140% BMR), on four separate days in a double-blind randomized controlled study. Ad libitum energy intake (EI), subjective appetite and biomarkers of appetite and metabolism (adults and elderly only) were measured. The adults' appetite was significantly greater than that of the elderly across all drink types (p < 0.004) and in response to drink quantities (p < 0.001). There were no significant differences in EI between age groups, weight categories, genders or sites. Concentrations of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) were significantly greater in the elderly than the adults (p < 0.001). Ghrelin and fasting leptin concentrations differed significantly between weight categories, genders and sites (p < 0.05), while GLP-1 and PYY concentrations differed significantly between genders only (p < 0.05). Compared to NP drinks, HP drinks significantly increased postprandial GLP-1 and PYY (p < 0.001). Advanced age was concomitant with reduced appetite and elevated anorectic hormone release, which may contribute to the development of malnutrition. In addition, appetite hormone concentrations differed between weight categories, genders and geographical locations.
Collapse
|
24
|
Oberoi A, Giezenaar C, Clames A, Bøhler K, Lange K, Horowitz M, Jones KL, Chapman I, Soenen S. Whey Protein Drink Ingestion before Breakfast Suppressed Energy Intake at Breakfast and Lunch, but Not during Dinner, and Was Less Suppressed in Healthy Older than Younger Men. Nutrients 2020; 12:nu12113318. [PMID: 33138061 PMCID: PMC7693940 DOI: 10.3390/nu12113318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Ageing is associated with changes in feeding behavior. We have reported that there is suppression of energy intake three hours after whey protein drink ingestion in young, but not older, men. This study aimed to determine these effects over a time period of 9 h. Fifteen younger (27 ± 1 years, 25.8 ± 0.7 kg/m2) and 15 older (75 ± 2 years, 26.6 ± 0.8 kg/m2) healthy men were studied on three occasions on which they received, in a randomized order, a 30 g/120 kcal, 70 g/280 kcal whey-protein, or control (~2 kcal) drink. Ad-libitum energy intake (sum of breakfast, lunch, and dinner) was suppressed in a protein load responsive fashion (P = 0.001). Suppression was minimal at breakfast, substantial at lunch (~-16%, P = 0.001), no longer present by dinner, and was less in older than younger men (-3 ± 4% vs. -8 ± 4%, P = 0.027). Cumulative protein intake was increased in the younger and older men (+20% and +42%, P < 0.001). Visual analogue scale ratings of fullness were higher and desire to eat and prospective food consumption were lower after protein vs. control, and these effects were smaller in older vs. younger men (interaction effect P < 0.05). These findings support the use of whey-protein drink supplements in older people who aim to increase their protein intake without decreasing their overall energy intake.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North 9430, New Zealand;
| | - Alina Clames
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Kristine Bøhler
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, South-Australia, Australia; (A.O.); (A.C.); (K.B.); (K.L.); (M.H.); (K.L.J.); (I.C.)
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast 4229, Queensland, Australia
- Correspondence: ; Tel.: +61-487-333-418
| |
Collapse
|
25
|
Ben-Harchache S, Roche HM, Corish CA, Horner KM. The Impact of Protein Supplementation on Appetite and Energy Intake in Healthy Older Adults: A Systematic Review with Meta-Analysis. Adv Nutr 2020; 12:490-502. [PMID: 33037427 PMCID: PMC8009738 DOI: 10.1093/advances/nmaa115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Protein supplementation is an attractive strategy to prevent loss of muscle mass in older adults. However, it could be counterproductive due to adverse effects on appetite. This systematic review and meta-analysis aimed to determine the effects of protein supplementation on appetite and/or energy intake (EI) in healthy older adults. MEDLINE, The Cochrane Library, CINAHL, and Web of Science were searched up to June 2020. Acute and longitudinal studies in healthy adults ≥60 y of age that reported effects of protein supplementation (through supplements or whole foods) compared with control and/or preintervention (for longitudinal studies) on appetite ratings, appetite-related peptides, and/or EI were included. Random-effects model meta-analysis was performed on EI, with other outcomes qualitatively reviewed. Twenty-two studies (9 acute, 13 longitudinal) were included, involving 857 participants (331 males, 526 females). In acute studies (n = 8), appetite ratings were suppressed in 7 out of 24 protein arms. For acute studies reporting EI (n = 7, n = 22 protein arms), test meal EI was reduced following protein preload compared with control [mean difference (MD): -164 kJ; 95% CI: -299, -29 kJ; P = 0.02]. However, when energy content of the supplement was accounted for, total EI was greater with protein compared with control (MD: 649 kJ; 95% CI: 438, 861 kJ; P < 0.00001). Longitudinal studies (n = 12 protein arms) showed a higher protein intake (MD: 0.29 g ⋅ kg-1 ⋅ d-1; 95% CI: 0.14, 0.45 g ⋅ kg-1 ⋅ d-1; P < 0.001) and no difference in daily EI between protein and control groups at the end of trials (MD: -54 kJ/d; 95% CI: -300, 193 kJ/d; P = 0.67). While appetite ratings may be suppressed with acute protein supplementation, there is either a positive effect or no effect on total EI in acute and longitudinal studies, respectively. Therefore, protein supplementation may represent an effective solution to increase protein intakes in healthy older adults without compromising EI through appetite suppression. This trial was registered at PROSPERO as https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019125771 (CRD42019125771).
Collapse
Affiliation(s)
- Sana Ben-Harchache
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland,Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland,Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Clare A Corish
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin, Ireland,Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
26
|
Oberoi A, Giezenaar C, Jensen C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute effects of whey protein on energy intake, appetite and gastric emptying in younger and older, obese men. Nutr Diabetes 2020; 10:37. [PMID: 33004790 PMCID: PMC7531014 DOI: 10.1038/s41387-020-00139-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity is becoming more prevalent in older people. A management strategy in obese, young adults is to increase dietary protein relative to other macronutrients. It is not clear if this is effective in obese, older individuals. Obesity may be associated with diminished sensitivity to nutrients. We have reported that a 30-g whey protein drink slows gastric emptying more, and suppresses energy intake less, in older, than younger, non-obese men. The aim of this study was to determine the effect of a 30 g whey protein drink on energy intake, GE and glycaemia in obese, older and younger men. METHODS In randomized, double-blind order, 10 younger (age: 27 ± 2 years; BMI: 36 ± 2 kg/m²), and 10 older (72 ± 1 years; 33 ± 1 kg/m²), obese men were studied twice. After an overnight fast, subjects ingested a test drink containing 30 g whey protein (120 kcal) or control (2 kcal). Postprandial gastric emptying (antral area, 2D Ultrasound) and blood glucose concentrations were measured for 180 min. At t = 180 min subjects were given a buffet meal and ad libitum energy intake was assessed. RESULTS Older subjects ate non-significantly less (~20%) that the younger subjects (effect of age, P = 0.16). Whey protein had no effect on subsequent energy intake (kcal) compared to control in either the younger (decrease 3 ± 8%) or older (decrease 2 ± 8%) obese men (age effect P > 0.05, protein effect P = 0.46, age × protein interaction effect P = 0.84). Whey protein slowed gastric emptying, to a similar degree in both age groups (50% emptying time: control vs. protein young men: 255 ± 5 min vs. 40 ± 7 min; older men: 16 ± 5 min vs. 50 ± 8 min; protein effect P = 0.001, age effect P = 0.93, age × protein interaction effect P = 0.13). CONCLUSIONS Our data suggest that obesity may blunt/abolish the age-related effect of whey protein on suppression of energy intake.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | | | - Caroline Jensen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia.
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia.
| |
Collapse
|
27
|
Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G. The Effects of Cow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients 2020; 12:E2548. [PMID: 32842497 PMCID: PMC7551861 DOI: 10.3390/nu12092548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To review currently available evidence on the effect of cow-milk proteins supplementation (CPS) on health in the elderly. METHODS Five electronic databases (Pubmed, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov) were searched for studies about CPS among older people. All types of publications were included, with the exception of systematic reviews, meta-analyses, opinion letters, editorials, case reports, conference abstracts and comments. An additional search in Google Scholar and a manual review of the reference lists were performed. RESULTS Overall, 103 studies were included. Several studies explored the role of CPS in the preservation or improvement of muscle mass among healthy subjects (40 studies) and pre-frail, frail or sarcopenic patients (14), with evidence of beneficial effects. Other studies assessed the effect of CPS on bones (12), cardiovascular disease (8), inflamm-aging (7), chronic pulmonary disease (4), neurocognitive function (4), and vaccines (2), with weak evidence of positive effects. Seven studies in the field of protein metabolism investigated the role of CPS as an important contributor to nutritional needs. Other investigational areas are considered in the last five studies. CONCLUSIONS The beneficial effects of CPS in achieving aged-related nutritional goals, in preserving muscle mass and in recovering after hospitalization may be particularly relevant in the elderly.
Collapse
Affiliation(s)
- Barbara Zanini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy;
| | - Anna Simonetto
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| | - Matilde Zubani
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| | - Maurizio Castellano
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy;
| | - Gianni Gilioli
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| |
Collapse
|
28
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of Age on Acute Appetite-Related Responses to Whey-Protein Drinks, Including Energy Intake, Gastric Emptying, Blood Glucose, and Plasma Gut Hormone Concentrations-A Randomized Controlled Trial. Nutrients 2020; 12:nu12041008. [PMID: 32268554 PMCID: PMC7231005 DOI: 10.3390/nu12041008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used commonly to increase energy intake in undernourished older people. This study aimed to establish age effects on energy intake, appetite, gastric emptying, blood glucose, and gut hormones in response to protein-rich drinks. In a randomized double-blind, order, 13 older men (age: 75 ± 2 yrs, body mass index (BMI): 26 ± 1 kg/m2) and 13 younger (23 ± 1 yrs, 24 ± 1 kg/m2) men consumed (i) a control drink (~2 kcal) or drinks (450 mL) containing protein/fat/carbohydrate: (ii) 70 g/0 g/0 g (280 kcal/'P280'), (iii) 14 g/12.4 g/28 g (280 kcal/'M280'), (iv) 70 g/12.4 g/28 g (504 kcal/'M504'), on four separate days. Appetite (visual analog scales), gastric emptying (3D ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) concentrations (0-180 min), and ad-libitum energy intake (180-210 min) were determined. Older men, compared to younger men, had higher fasting glucose and CCK concentrations and lower fasting GLP-1 concentrations (all p < 0.05). Energy intake by P280 compared to control was less suppressed in older men (increase: 49 ± 42 kcal) than it was in younger men (suppression: 100 ± 54 kcal, p = 0.038). After the caloric drinks, the suppression of hunger and the desire to eat, and the stimulation of fullness was less (p < 0.05), and the stimulation of plasma GLP-1 was higher (p < 0.05) in older men compared to younger men. Gastric emptying, glucose, insulin, ghrelin, and CCK responses were similar between age groups. In conclusion, ageing reduces the responses of caloric drinks on hunger, the desire to eat, fullness, and energy intake, and protein-rich nutrition supplements may be an effective strategy to increase energy intake in undernourished older people.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand;
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence (C.R.E.) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia 5000, Australia; (K.L.); (K.L.J.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
29
|
Gastrointestinal Sensing of Meal-Related Signals in Humans, and Dysregulations in Eating-Related Disorders. Nutrients 2019; 11:nu11061298. [PMID: 31181734 PMCID: PMC6627312 DOI: 10.3390/nu11061298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
The upper gastrointestinal (GI) tract plays a critical role in sensing the arrival of a meal, including its volume as well as nutrient and non-nutrient contents. The presence of the meal in the stomach generates a mechanical distension signal, and, as gastric emptying progresses, nutrients increasingly interact with receptors on enteroendocrine cells, triggering the release of gut hormones, with lipid and protein being particularly potent. Collectively, these signals are transmitted to the brain to regulate appetite and energy intake, or in a feedback loop relayed back to the upper GI tract to further adjust GI functions, including gastric emptying. The research in this area to date has provided important insights into how sensing of intraluminal meal-related stimuli acutely regulates appetite and energy intake in humans. However, disturbances in the detection of these stimuli have been described in a number of eating-related disorders. This paper will review the GI sensing of meal-related stimuli and the relationship with appetite and energy intake, and examine changes in GI responses to luminal stimuli in obesity, functional dyspepsia and anorexia of ageing, as examples of eating-related disorders. A much better understanding of the mechanisms underlying these dysregulations is still required to assist in the development of effective management and treatment strategies in the future.
Collapse
|
30
|
Assessment and Treatment of the Anorexia of Aging: A Systematic Review. Nutrients 2019; 11:nu11010144. [PMID: 30641897 PMCID: PMC6356473 DOI: 10.3390/nu11010144] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Appetite loss in older people, the ‘Anorexia of Aging’ (AA), is common, associated with under-nutrition, sarcopenia, and frailty and yet receives little attention. This review had two aims: describe interventions for AA and their effectiveness, and identify the methods of appetite assessment. (2) Methods: Study inclusion: participants aged ≥65, intervention for AA, and appetite assessment, any design, and comparator. Exclusion: studies on specific health cohorts. Searches in four databases with hand searching of references and citing works. Two researchers independently assessed eligibility and quality. (3) Results: Authors screened 8729 titles, 46 full texts. Eighteen articles were included describing nine intervention types: education (n = 1), exercise (n = 1), flavor enhancement (n = 2), increased meal variety (n = 1), mealtime assistance (n = 1), fortified food (n = 1), oral nutritional supplement (ONS) (n = 8), amino acids (n = 1), and medication (n = 2). Three studies evaluated combinations: education + exercise, ONS + exercise, and ONS + medication. Five intervention types exhibited favorable effects on appetite but in single datasets or not replicated. Appetite was assessed predominantly by Likert (n = 9), or visual analogue scales (n = 7). (4) Conclusions: A variety of interventions and methods of appetite assessments were used. There was a lack of clarity about whether AA or undernutrition was the intervention target. AA is important for future research but needs standardized assessment so that effectiveness of a range of interventions can be fully explored.
Collapse
|
31
|
Hara LM, Freiria CN, Silva GM, Fattori A, Corona LP. Anorexia of Aging Associated with Nutrients Intake in Brazilian Elderly. J Nutr Health Aging 2019; 23:606-613. [PMID: 31367723 DOI: 10.1007/s12603-019-1224-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study evaluated the association between anorexia of aging and nutrients intake. It was a cross-sectional study with 130 individuals aged 60 years or older, undergoing outpatient care in the city of Campinas, São Paulo. Anorexia of Aging (AA) was assessed using the Simplified Nutrition Appetite Questionnaire (SNAQ), and food consumption was evaluated using the 24-hour recall (24HR). The prevalence of AA was 27.7%, in which 66.7% were women and 38.9% were older than 80 years. Elderly with AA presented lower intake of calories (1172.6 kcal vs 1477.9 kcal; p = 0.003), carbohydrates (158.5 g vs 194.1 g; p = 0.015), proteins (49.9 g vs 68.5 g; p = 0.004) and lipids (34.6 g vs 46.1 g; p = 0.006). They also had lower intake of fibers (12.6 g vs 19.4 g; p < 0.001), iron (6.4 mg vs 8.9 mg; p < 0.001) and zinc (6.0 mg vs 8.5 mg; p = 0.004). Our results show that intake of most nutrients is significantly lower in AA elderly, except carbohydrates, which may point to worse-quality diets. The diagnosis of AA, as well as the evaluation of elderly food intake, are essential to prevent undernutrition, vulnerabilities, and increased morbidity and mortality.
Collapse
Affiliation(s)
- L M Hara
- L. M. Hara, School of Applied Sciences, University of Campinas, St. Pedro Zaccaria, 1300, ZIP code 13484-350, Limeira, SP, Brazil, Tel.: +55 (19) 3701-6758, E-mail:
| | | | | | | | | |
Collapse
|
32
|
Nesti L, Mengozzi A, Tricò D. Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front Endocrinol (Lausanne) 2019; 10:144. [PMID: 30906282 PMCID: PMC6418004 DOI: 10.3389/fendo.2019.00144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Pharmacological and dietary interventions targeting postprandial glycemia have proved effective in reducing the risk for type 2 diabetes and its cardiovascular complications. Besides meal composition and size, the timing of macronutrient consumption during a meal has been recently recognized as a key regulator of postprandial glycemia. Emerging evidence suggests that premeal consumption of non-carbohydrate macronutrients (i.e., protein and fat "preloads") can markedly reduce postprandial glycemia by delaying gastric emptying, enhancing glucose-stimulated insulin release, and decreasing insulin clearance. The same improvement in glucose tolerance is achievable by optimal timing of carbohydrate ingestion during a meal (i.e., carbohydrate-last meal patterns), which minimizes the risk of body weight gain when compared with nutrient preloads. The magnitude of the glucose-lowering effect of preload-based nutritional strategies is greater in type 2 diabetes than healthy subjects, being comparable and additive to current glucose-lowering drugs, and appears sustained over time. This dietary approach has also shown promising results in pathological conditions characterized by postprandial hyperglycemia in which available pharmacological options are limited or not cost-effective, such as type 1 diabetes, gestational diabetes, and impaired glucose tolerance. Therefore, preload-based nutritional strategies, either alone or in combination with pharmacological treatments, may offer a simple, effective, safe, and inexpensive tool for the prevention and management of postprandial hyperglycemia. Here, we survey these novel physiological insights and their therapeutic implications for patients with diabetes mellitus and altered glucose tolerance.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Pisa, Italy
- *Correspondence: Domenico Tricò
| |
Collapse
|
33
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute Effects of Substitution, and Addition, of Carbohydrates and Fat to Protein on Gastric Emptying, Blood Glucose, Gut Hormones, Appetite, and Energy Intake. Nutrients 2018; 10:nu10101451. [PMID: 30301241 PMCID: PMC6213197 DOI: 10.3390/nu10101451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Whey protein, when ingested on its own, load-dependently slows gastric emptying and stimulates gut hormone concentrations in healthy young men. The aim of this study was to determine the effects of substitution, and addition, of carbohydrate (dextrose) and fat (olive oil) to whey protein. In randomized, double-blind order, 13 healthy young men (age: 23 ± 1 years, body mass index: 24 ± 1 kg/m²) ingested a control drink (450 mL; ~2 kcal/'control') or iso-volumetric drinks containing protein/carbohydrate/fat: (i) 14 g/28 g/12.4 g (280 kcal/'M280'), (ii) 70 g/28 g/12.4 g (504kcal/'M504'), and (iii) 70 g/0 g/0 g (280 kcal/'P280'), on 4 separate study days. Gastric emptying (n = 11, 3D-ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) concentrations (0⁻180 min), appetite (visual analogue scales), and ad-libitum buffet-meal energy intake (180⁻210 min) were determined. Substitution of protein with carbohydrate and fat was associated with faster gastric emptying (lower 50% emptying time (T50)), reduced suppression of ghrelin, and stimulation of GLP-1 (all P < 0.001); while the addition of carbohydrate and fat to protein did not affect gastric emptying or gut hormone responses significantly. Total energy intake (i.e., drink plus meal) was greater after all caloric drinks than control (P < 0.001). In conclusion, substitution of whey protein with dextrose and olive oil accelerated gastric emptying. Higher protein content of a mixed macronutrient drink increased gut hormone and insulin responses.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Karen L Jones
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Ian Chapman
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Stijn Soenen
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| |
Collapse
|
34
|
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effect of gender on the acute effects of whey protein ingestion on energy intake, appetite, gastric emptying and gut hormone responses in healthy young adults. Nutr Diabetes 2018; 8:40. [PMID: 30006513 PMCID: PMC6045591 DOI: 10.1038/s41387-018-0048-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Protein supplements, usually drinks rich in whey protein, are used widely for weight loss purposes in overweight adults. Information comparing the effects of whey protein on appetite and energy intake in men and women is limited. The objective was to compare the acute effects of whey-protein intake on energy intake, appetite, gastric emptying and gut hormones in healthy young men and women. SUBJECTS/METHODS Gastric emptying (3D-ultrasonography), blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) concentrations (0-180 min), appetite (visual analogue scales), and ad libitum energy intake from a buffet meal (180-210 min) were determined after ingestion of 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavoured-water control drink (~2 kcal) in 8 healthy young men (25 ± 2 y, 72 ± 3 kg, 23 ± 1 kg/m2) and 8 women (23 ± 1 y, 64 ± 2 kg, 24 ± 0.4 kg/m2). RESULTS There was a protein-load effect on gastric emptying, blood glucose, plasma insulin, glucagon, ghrelin, CCK, GIP and GLP-1 concentrations, and perceptions of hunger, desire to eat and prospective food consumption (P < 0.05). Ad libitum energy intake (average decrease of 206 ± 39 kcal (15 ± 2%) for men and of 46 ± 54 kcal (0 ± 26%) for women for the mean of the intakes after the 30 and 70 g whey-protein loads) and hunger were suppressed more by whey-protein ingestion in men than women (P = 0.046). There was no difference in suppression of energy intake between the 30 and 70 g protein loads (P = 0.75, interaction effect P = 0.19). Consequently, total energy intake (protein drink plus buffet meal) increased more compared to control in women than men (P = 0.010). The drinks emptied more slowly, and plasma glucagon, CCK and GLP-1 increased less after the protein drinks, in women than men (P < 0.05). CONCLUSION The acute effects of whey protein ingestion on appetite, energy intake, gastric emptying and gut hormone responses are influenced by gender in healthy young adults.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide, Australia
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie Lange
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Trygve Hausken
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen L Jones
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
35
|
Lonnie M, Hooker E, Brunstrom JM, Corfe BM, Green MA, Watson AW, Williams EA, Stevenson EJ, Penson S, Johnstone AM. Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults. Nutrients 2018; 10:E360. [PMID: 29547523 PMCID: PMC5872778 DOI: 10.3390/nu10030360] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
With an ageing population, dietary approaches to promote health and independence later in life are needed. In part, this can be achieved by maintaining muscle mass and strength as people age. New evidence suggests that current dietary recommendations for protein intake may be insufficient to achieve this goal and that individuals might benefit by increasing their intake and frequency of consumption of high-quality protein. However, the environmental effects of increasing animal-protein production are a concern, and alternative, more sustainable protein sources should be considered. Protein is known to be more satiating than other macronutrients, and it is unclear whether diets high in plant proteins affect the appetite of older adults as they should be recommended for individuals at risk of malnutrition. The review considers the protein needs of an ageing population (>40 years old), sustainable protein sources, appetite-related implications of diets high in plant proteins, and related areas for future research.
Collapse
Affiliation(s)
- Marta Lonnie
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK.
| | - Emma Hooker
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK.
| | - Jeffrey M Brunstrom
- National Institute for Health Research, Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| | - Bernard M Corfe
- Department of Oncology & Metabolism, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
- Insigneo Institute for in silico medicine, The Pam Liversidge Building, Mappin Street, Sheffield S1 3JD, UK.
| | - Mark A Green
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK.
| | - Anthony W Watson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Medical School, Newcastle University, William Leech Building, Newcastle upon Tyne NE2 4HH, UK.
| | - Elizabeth A Williams
- Department of Oncology & Metabolism, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Emma J Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Medical School, Newcastle University, William Leech Building, Newcastle upon Tyne NE2 4HH, UK.
| | - Simon Penson
- Campden BRI, Station Rd, Chipping Campden, Gloucestershire GL55 6LD, UK.
| | - Alexandra M Johnstone
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
36
|
Giezenaar C, van der Burgh Y, Lange K, Hatzinikolas S, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of Substitution, and Adding of Carbohydrate and Fat to Whey-Protein on Energy Intake, Appetite, Gastric Emptying, Glucose, Insulin, Ghrelin, CCK and GLP-1 in Healthy Older Men-A Randomized Controlled Trial. Nutrients 2018; 10:nu10020113. [PMID: 29360778 PMCID: PMC5852689 DOI: 10.3390/nu10020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely for the management of malnutrition in the elderly. We reported previously that the suppression of energy intake by whey protein is less in older than younger adults. The aim was to determine the effects of substitution, and adding of carbohydrate and fat to whey protein, on ad libitum energy intake from a buffet meal (180-210 min), gastric emptying (3D-ultrasonography), plasma gut hormone concentrations (0-180 min) and appetite (visual analogue scales), in healthy older men. In a randomized, double-blind order, 13 older men (75 ± 2 years) ingested drinks (~450 mL) containing: (i) 70 g whey protein (280 kcal; 'P280'); (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; 'M280'); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; 'M504'); or (iv) control (~2 kcal). The caloric drinks, compared to a control, did not suppress appetite or energy intake; there was an increase in total energy intake (drink + meal, p < 0.05), which was increased most by the M504-drink. P280- and M504-drink ingestion were associated with slower a gastric-emptying time (n = 9), lower ghrelin, and higher cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) than M280 (p < 0.05). Glucose and insulin were increased most by the mixed-macronutrient drinks (p < 0.05). In conclusion, energy intake was not suppressed, compared to a control, and particularly whey protein, affected gastric emptying and gut hormone responses.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Yonta van der Burgh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Kylie Lange
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Seva Hatzinikolas
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Karen L Jones
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| |
Collapse
|
37
|
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Standfield S, Feinle-Bisset C, Horowitz M, Chapman I, Soenen S. Dose-Dependent Effects of Randomized Intraduodenal Whey-Protein Loads on Glucose, Gut Hormone, and Amino Acid Concentrations in Healthy Older and Younger Men. Nutrients 2018; 10:nu10010078. [PMID: 29329233 PMCID: PMC5793306 DOI: 10.3390/nu10010078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely for the prevention and management of malnutrition in older people. We have reported that healthy older, compared to younger, adults have less suppression of energy intake by whey-protein-effects on appetite-related hormones are unknown. The objective was to determine the effects of intraduodenally administered whey-protein on glucose, gut hormone, and amino acid concentrations, and their relation to subsequent ad libitum energy intake at a buffet meal, in healthy older and younger men. Hydrolyzed whey-protein (30 kcal, 90 kcal, and 180 kcal) and a saline control (~0 kcal) were infused intraduodenally for 60 min in 10 younger (19-29 years, 73 ± 2 kg, 22 ± 1 kg/m²) and 10 older (68-81 years, 79 ± 2 kg, 26 ± 1 kg/m²) healthy men in a randomized, double-blind fashion. Plasma insulin, glucagon, gastric inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), and amino acid concentrations, but not blood glucose, increased, while ghrelin decreased during the whey-protein infusions. Plasma GIP concentrations were greater in older than younger men. Energy intake correlated positively with plasma ghrelin and negatively with insulin, glucagon, GIP, GLP-1, PYY, and amino acids concentrations (p < 0.05). In conclusion, intraduodenal whey-protein infusions resulted in increased GIP and comparable ghrelin, insulin, glucagon, GIP, GLP-1, PYY, and amino acid responses in healthy older and younger men, which correlated to subsequent energy intake.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, Adelaide 5000, Australia
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Scott Standfield
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Christine Feinle-Bisset
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide 5000, Australia; (C.G.); (N.D.L.-M.); (A.T.H.); (S.S.); (C.F.-B.); (M.H.); (I.C.)
- Correspondence: ; Tel.: +61-8-8313-3638
| |
Collapse
|
38
|
Giezenaar C, Hutchison AT, Luscombe-Marsh ND, Chapman I, Horowitz M, Soenen S. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion. Nutrients 2017; 10:nu10010002. [PMID: 29267221 PMCID: PMC5793230 DOI: 10.3390/nu10010002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein-although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m²) and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m²) adults were studied on three occasions in which they ingested 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavored-water control drink (~2 kcal). At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, 5000 Adelaide, Australia.
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| |
Collapse
|
39
|
Giezenaar C, Coudert Z, Baqeri A, Jensen C, Hausken T, Horowitz M, Chapman I, Soenen S. Effects of Timing of Whey Protein Intake on Appetite and Energy Intake in Healthy Older Men. J Am Med Dir Assoc 2017; 18:898.e9-898.e13. [PMID: 28804009 DOI: 10.1016/j.jamda.2017.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Protein-rich supplements are used widely to prevent and manage malnutrition in older adults. We previously showed that 30 g whey protein ingestion, 3 hours before a buffet meal, suppressed energy intake in young, but not in older men. Information about the impact of the timing of ingestion of protein drinks on the suppression of energy intake in older adults is lacking. OBJECTIVE The aim of the study was to determine the effect of the timing of whey protein ingestion on appetite and subsequent ad libitum energy intake in healthy older men. DESIGN In a single blind, randomized design, 16 older men were studied on 5 occasions, on which they consumed a whey protein drink (30 g/120 kcal, 140 mL) 3, 2, 1 hour(s), or immediately before a buffet meal, from which ad libitum energy intake was quantified, and isopalatable noncaloric drinks (∼1 kcal) at the remaining time points. On the control day, noncaloric drinks were ingested at all time points. Perceptions of appetite and gastrointestinal symptoms were determined, by visual analog scales, throughout the study days. RESULTS There was no effect of the timing of protein ingestion on perceptions of appetite and gastrointestinal symptoms (P > .05) or energy intake at the buffet meal (3 hours: 888 ± 49 kcal, 2 hours: 879 ± 56 kcal, 1 hours: 909 ± 47 kcal, 0 hour: 892 ± 51 kcal, control: 930 ± 49 kcal, P = .94). Total energy intake (ie, preload + test meal) was higher on the protein days compared with control (82 ± 24 kcal increase, P = .003). CONCLUSIONS In older men, ingestion of 30 g protein increased total energy intake, irrespective of the time of intake in relation to the meal. These observations support the use of "pure" whey protein drinks to increase overall protein and energy intake in older adults at risk of undernutrition.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Zoé Coudert
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Abdul Baqeri
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Caroline Jensen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trygve Hausken
- Section for Neuroendocrine Gastroenterology, Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
40
|
Leidy HJ. Consumption of protein beverages as a strategy to promote increased energy intake in older adults. Am J Clin Nutr 2017; 106:715-716. [PMID: 28793986 DOI: 10.3945/ajcn.117.164160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Heather J Leidy
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
41
|
Giezenaar C, Trahair LG, Luscombe-Marsh ND, Hausken T, Standfield S, Jones KL, Lange K, Horowitz M, Chapman I, Soenen S. Effects of randomized whey-protein loads on energy intake, appetite, gastric emptying, and plasma gut-hormone concentrations in older men and women. Am J Clin Nutr 2017; 106:865-877. [PMID: 28747330 DOI: 10.3945/ajcn.117.154377] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
Background: Protein- and energy-rich supplements are used widely for the management of malnutrition in the elderly. Information about the effects of protein on energy intake and related gastrointestinal mechanisms and whether these differ between men and women is limited.Objective: We determined the effects of whey protein on energy intake, appetite, gastric emptying, and gut hormones in healthy older men and women.Design: Eight older women and 8 older men [mean ± SEM age: 72 ± 1 y; body mass index (in kg/m2): 25 ± 1] were studied on 3 occasions in which they received protein loads of 30 g (120 kcal) or 70 g (280 kcal) or a flavored water control drink (0 kcal). At regular intervals over 180 min, appetite (visual analog scales), gastric emptying (3-dimensional ultrasonography), and blood glucose and plasma gut-hormone concentrations [insulin, glucagon, ghrelin, cholecystokinin, gastric inhibitory polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and peptide tyrosine tyrosine (PYY)] were measured, and ad libitum energy intake was quantified from a buffet meal (180-210 min; energy intake, appetite, and gastric emptying in the men have been published previously).Results: Energy intake at the buffet meal was ∼80% higher in older men than in older women (P < 0.001). Energy intake was not suppressed by protein compared with the control in men or women (P > 0.05). There was no effect of sex on gastric emptying, appetite, gastrointestinal symptoms, glucose, or gut hormones (P > 0.05). There was a protein load-dependent slowing of gastric emptying, an increase in concentrations of insulin, glucagon, cholecystokinin, GIP, GLP-1, and PYY, and an increase in total energy intake (drink plus meal: 12% increase with 30 g and 32% increase with 70 g; P < 0.001). Energy intake at the buffet meal was inversely related to the stomach volume and area under the curve of hormone concentrations (P < 0.05).Conclusion: In older men and women, whey-protein drinks load-dependently slow gastric emptying and alter gut hormone secretion compared with a control but have no suppressive effect on subsequent ad libitum energy intake. This trial was registered at www.anzctr.org.au as ACTRN12612000941864.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Laurence G Trahair
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- The Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Adelaide, South Australia, Australia; and
| | - Trygve Hausken
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Scott Standfield
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie Lange
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia;
| |
Collapse
|
42
|
Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2017; 20:34-40. [PMID: 29072167 DOI: 10.1016/j.clnesp.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
|
43
|
Appleton KM. Limited compensation at the following meal for protein and energy intake at a lunch meal in healthy free-living older adults. Clin Nutr 2017; 37:970-977. [PMID: 28431774 DOI: 10.1016/j.clnu.2017.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
Various interventions have previously been found to increase protein intakes in older adults, but in free-living individuals, compensation for increased intakes at one meal may easily negate these effects resulting in limited long term benefit. This study investigated the impact of adding sauce to an older person's lunch meal on intakes at that meal, at the following meal and overall (lunch + evening meal). Using a repeated measures design, 52 participants consumed both a lunch meal with sauce and the same lunch meal without sauce on two separate occasions, and intake at this meal and at the following meal were measured. In all participants analysed together, the addition of sauce resulted in increased protein intakes at the lunch meal. Individual differences were also found, where for some individuals (n = 26), the addition of sauce resulted in significantly higher protein and energy intakes at the lunch meal (12.3 g protein, 381 kJ) and overall (11 g protein, 420 kJ), compared to the no-sauce condition, while for some individuals (n = 19), the sauce manipulation resulted in lower protein and energy intakes (lunch: 7 g protein, 297 kJ; overall: 7 g protein, 350 kJ). Compensation for earlier intakes was low (0-17%) for both groups. These findings demonstrate the possible value of adding sauce to an older person's meal for increasing intakes, and demonstrate a need for attention to individual differences. This study also confirms previous findings of limited compensation in older adults, but extends earlier studies to demonstrate limited compensation for the protein consumed in a complete meal in healthy older adults.
Collapse
Affiliation(s)
- K M Appleton
- Research Centre for Behaviour Change, Department of Psychology, Bournemouth University, Dorset, UK.
| |
Collapse
|
44
|
Bechshøft RL, Malmgaard-Clausen NM, Gliese B, Beyer N, Mackey AL, Andersen JL, Kjær M, Holm L. Improved skeletal muscle mass and strength after heavy strength training in very old individuals. Exp Gerontol 2017; 92:96-105. [PMID: 28363433 DOI: 10.1016/j.exger.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/12/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
Age-related loss of muscle mass and function represents personal and socioeconomic challenges. The purpose of this study was to determine the adaptation of skeletal musculature in very old individuals (83+ years) performing 12weeks of heavy resistance training (3×/week) (HRT) compared to a non-training control group (CON). Both groups received similar protein supplementations. We studied 26 participants (86.9±3.2 (SD) (83-94, range) years old) per-protocol. Quadriceps cross-sectional area (CSA) differed between groups at post-test (P<0.05) and increased 1.5±0.7cm2 (3.4%) (P<0.05) in HRT only. The increase in CSA is correlated inversely with the baseline level of CSA (R2=0.43, P<0.02). Thigh muscle isometric strength, isokinetic peak torque and power increased significantly only in HRT by 10-15%, whereas knee extension one-repetition maximum (1 RM) improved by 91%. Physical functional tests, muscle fiber type distribution and size did not differ significantly between groups. We conclude that in protein supplemented very old individuals, heavy resistance training can increase muscle mass and strength, and that the relative improvement in mass is more pronounced when initial muscle mass is low.
Collapse
Affiliation(s)
- Rasmus Leidesdorff Bechshøft
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaj Mølkjær Malmgaard-Clausen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bjørn Gliese
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nina Beyer
- Musculoskeletal Rehabilitation Research Unit, Dept. of Physical and Occupational Therapy, Bispebjerg Hospital, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Jesper Løvind Andersen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
45
|
Lancha AH, Zanella R, Tanabe SGO, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 2016; 49:33-47. [PMID: 27807658 DOI: 10.1007/s00726-016-2355-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.
Collapse
Affiliation(s)
- Antonio Herbert Lancha
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil.
| | - Rudyard Zanella
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Stefan Gleissner Ohara Tanabe
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Francois Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France.
| |
Collapse
|