1
|
Taberner-Cortés A, Aguilar-Ballester M, Jiménez-Martí E, Hurtado-Genovés G, Martín-Rodríguez RM, Herrero-Cervera A, Vinué Á, Martín-Vañó S, Martínez-Hervás S, González-Navarro H. Treatment with 1.25% cholesterol enriched diet produces severe fatty liver disease characterized by advanced fibrosis and inflammation and impaired autophagy in mice. J Nutr Biochem 2024; 134:109711. [PMID: 39111707 DOI: 10.1016/j.jnutbio.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is reaching pandemic proportions due to overnutrition. The understanding of advanced stages that recapitulate the human pathology is of great importance to get a better mechanistic insight. We hypothesized that feeding of WT (C57BL) mice with a diet containing a high content of fat (21%), sugar (41.5%) and 1.25% of cholesterol (called from now on high fat, sucrose and cholesterol diet, HFSCD) will reproduce the characteristics of disease severity. Analysis of 16 weeks HFSCD-fed mice demonstrated increased liver weight and plasmatic liver damage markers compared with control diet (CD)-fed mice. HFSCD-fed mice developed greater hepatic triglyceride, cholesterol and NEFA content, inflammation and NAFLD activity score (NAS) indicating an advanced disease. HFSCD-fed mice displayed augmented hepatic total CD3+ T and Th9 lymphocytes, as well as reduced Th2 lymphocytes and CD206 anti-inflammatory macrophages. Moreover, T cells and anti-inflammatory macrophages correlated positively and inversely, respectively, with intrahepatic cholesterol content. Consistently, circulating cytotoxic CD8+ T lymphocytes, Th1, and B cell levels were elevated in HFSCD-fed WT mice. Hepatic and adipose tissue expression analysis demonstrated changes in fibrotic and metabolic genes related with cholesterol, triglycerides, and fatty acid synthesis in HFSCD-fed WT. These mice also exhibited reduced antioxidant capacity and autophagy and elevated ERK signaling pathway activation and CHOP levels. Our results indicate that the feeding with a cholesterol-enriched diet in WT mice produces an advanced NAFLD stage with fibrosis, characterized by deficient autophagy and ER stress along with inflammasome activation partially via ERK pathway activation.
Collapse
Affiliation(s)
| | | | - Elena Jiménez-Martí
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Gema Hurtado-Genovés
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | | | - Ángela Vinué
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Susana Martín-Vañó
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Sergio Martínez-Hervás
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain; Metabolic Diseases Group, CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Herminia González-Navarro
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain; Metabolic Diseases Group, CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Lana JP, de Oliveira MC, Silveira ALM, Yamada LTP, Costa KA, da Silva SV, de Assis-Ferreira A, Gautier EL, Dussaud S, Pinho V, Teixeira MM, Marcelin G, Clément K, Ferreira AVM. Role of IL-18 in adipose tissue remodeling and metabolic dysfunction. Int J Obes (Lond) 2024; 48:964-972. [PMID: 38459259 DOI: 10.1038/s41366-024-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND/OBJECTIVES Proinflammatory cytokines are increased in obese adipose tissue, including inflammasome key masters. Conversely, IL-18 protects against obesity and metabolic dysfunction. We focused on the IL-18 effect in controlling adipose tissue remodeling and metabolism. MATERIALS/SUBJECTS AND METHODS We used C57BL/6 wild-type (WT) and interleukine-18 deficient (IL-18-/-) male mice fed a chow diet and samples from bariatric surgery patients. RESULTS IL-18-/- mice showed increased adiposity and proinflammatory cytokine levels in adipose tissue, leading to glucose intolerance. IL-18 was widely secreted by stromal vascular fraction but not adipocytes from mice's fatty tissue. Chimeric model experiments indicated that IL-18 controls adipose tissue expansion through its presence in tissues other than bone marrow. However, IL-18 maintains glucose homeostasis when present in bone marrow cells. In humans with obesity, IL-18 expression in omental tissue was not correlated with BMI or body fat mass but negatively correlated with IRS1, GLUT-4, adiponectin, and PPARy expression. Also, the IL-18RAP receptor was negatively correlated with IL-18 expression. CONCLUSIONS IL-18 signaling may control adipose tissue expansion and glucose metabolism, as its absence leads to spontaneous obesity and glucose intolerance in mice. We suggest that resistance to IL-18 signaling may be linked with worse glucose metabolism in humans with obesity.
Collapse
Affiliation(s)
- Jaqueline Pereira Lana
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Letícia Malheiros Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Kátia Anunciação Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Vargas da Silva
- Department of Cellular Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agatha de Assis-Ferreira
- Department of Cellular Biology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geneviève Marcelin
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, Nutriomics, Research Unit, F-75013, Paris, France
- Assistance Publique Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, Nutriomics, Research Unit, F-75013, Paris, France
- Assistance Publique Hôpitaux de Paris, APHP, Nutrition Department, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Adaliene Versiani Matos Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Velickovic K, Leija HAL, Kosic B, Sacks H, Symonds ME, Sottile V. Leptin deficiency impairs adipogenesis and browning response in mouse mesenchymal progenitors. Eur J Cell Biol 2023; 102:151342. [PMID: 37467572 DOI: 10.1016/j.ejcb.2023.151342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Although phenotypically different, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) are able to produce heat through non-shivering thermogenesis due to the presence of mitochondrial uncoupling protein 1 (UCP1). The appearance of thermogenically active beige adipocytes in iWAT is known as browning. Both brown and beige cells originate from mesenchymal stem cells (MSCs), and in culture conditions a browning response can be induced with hypothermia (i.e. 32 °C) during which nuclear leptin immunodetection was observed. The central role of leptin in regulating food intake and energy consumption is well recognised, but its importance in the browning process at the cellular level is unclear. Here, immunocytochemical analysis of MSC-derived adipocytes established nuclear localization of both leptin and leptin receptor suggesting an involvement of the leptin pathway in the browning response. In order to elucidate whether leptin modulates the expression of brown and beige adipocyte markers, BAT and iWAT samples from leptin-deficient (ob/ob) mice were analysed and exhibited reduced brown/beige marker expression compared to wild-type controls. When MSCs were isolated and differentiated into adipocytes, leptin deficiency was observed to induce a white phenotype, especially when incubated at 32 °C. These adaptations were accompanied with morphological signs of impaired adipogenic differentiation. Overall, our results indicate that leptin supports adipocyte browning and suggest a potential role for leptin in adipogenesis and browning.
Collapse
Affiliation(s)
- Ksenija Velickovic
- School of Medicine, The University of Nottingham, UK; Faculty of Biology, The University of Belgrade, Serbia.
| | | | - Bojana Kosic
- Faculty of Biology, The University of Belgrade, Serbia
| | - Harold Sacks
- VA Endocrinology and Diabetes Division, Department of Medicine, University of California, Los Angeles, USA
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, UK; Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, The University of Nottingham, UK.
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, UK; Department of Molecular Medicine, The University of Pavia, Italy.
| |
Collapse
|
4
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
5
|
Mandl M, Viertler HP, Hatzmann FM, Brucker C, Großmann S, Waldegger P, Rauchenwald T, Mattesich M, Zwierzina M, Pierer G, Zwerschke W. An organoid model derived from human adipose stem/progenitor cells to study adipose tissue physiology. Adipocyte 2022; 11:164-174. [PMID: 35297273 PMCID: PMC8932919 DOI: 10.1080/21623945.2022.2044601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We established a functional adipose organoid model system for human adipose stem/progenitor cells (ASCs) isolated from white adipose tissue (WAT). ASCs were forced to self-aggregate by a hanging-drop technique. Afterwards, spheroids were transferred into agar-coated cell culture dishes to avoid plastic-adherence and dis-aggregation. Adipocyte differentiation was induced by an adipogenic hormone cocktail. Morphometric analysis revealed a significant increase in organoid size in the course of adipogenesis until d 18. Whole mount staining of organoids using specific lipophilic dyes showed large multi- and unilocular fat deposits in differentiated cells indicating highly efficient differentiation of ASCs into mature adipocytes. Moreover, we found a strong induction of the expression of key adipogenesis and adipocyte markers (CCAAT/enhancer-binding protein (C/EBP) β, peroxisome proliferator-activated receptor (PPAR) γ, fatty acid-binding protein 4 (FABP4), adiponectin) during adipose organoid formation. Secreted adiponectin was detected in the cell culture supernatant, underscoring the physiological relevance of mature adipocytes in the organoid model. Moreover, colony formation assays of collagenase-digested organoids revealed the maintenance of a significant fraction of ASCs within newly formed organoids. In conclusion, we provide a reliable and highly efficient WAT organoid model, which enables accurate analysis of cellular and molecular markers of adipogenic differentiation and adipocyte physiology.
Collapse
Affiliation(s)
- Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Hans P. Viertler
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Florian M. Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Camille Brucker
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sonja Großmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Marit Zwierzina
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| |
Collapse
|
6
|
Bauzá-Thorbrügge M, Banke E, Chanclón B, Peris E, Wu Y, Musovic S, Jönsson C, Strålfors P, Rorsman P, Olofsson CS, Asterholm IW. Adipocyte-specific ablation of the Ca 2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue. Mol Metab 2022; 63:101535. [PMID: 35760318 PMCID: PMC9287368 DOI: 10.1016/j.molmet.2022.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the ER and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes. METHODS SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology. RESULTS We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in FGF21, increased mitochondrial UCP1 levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls. CONCLUSIONS Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Elin Banke
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Cecilia Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Peter Strålfors
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Patrik Rorsman
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX4 7LE, UK.
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
7
|
Lee S, Lee M. MEK6 Overexpression Exacerbates Fat Accumulation and Inflammatory Cytokines in High-Fat Diet-Induced Obesity. Int J Mol Sci 2021; 22:13559. [PMID: 34948353 PMCID: PMC8709004 DOI: 10.3390/ijms222413559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Obesity is a state of abnormal fat accumulation caused by an energy imbalance potentially caused by changes in multiple factors. MEK6 engages in cell growth, such as inflammation and apoptosis, as one of the MAPK signaling pathways. The MEK6 gene was found to be related to RMR, a gene associated with obesity. Because only a few studies have investigated the correlation between MEK6 and obesity or the relevant mechanisms, we conducted an experiment using a TgMEK6 model with MEK6 overexpression with non-Tg and chow diet as the control to determine changes in lipid metabolism in plasma, liver, and adipose tissue after a 15-week high-fat diet (HFD). MEK6 overexpression in the TgMEK6 model significantly increased body weight and plasma triglyceride and total cholesterol levels. p38 activity declined in the liver and adipose tissues and lowered lipolysis, oxidation, and thermogenesis levels, contributing to decreased energy consumption. In the liver, lipid formation and accumulation increased, and in adipose, adipogenesis and hypertrophy increased. The adiponectin/leptin ratio significantly declined in plasma and adipose tissue of the TgMEK6 group following MEK6 expression and the HFD, indicating the role of MEK6 expression in adipokine regulation. Plasma and bone-marrow-derived macrophages (BMDM) of the TgMEK6 group increased MEK6 expression-dependent secretion of pro-inflammatory cytokines but decreased levels of anti-inflammatory cytokines, further exacerbating the results exhibited by the diet-induced obesity group. In conclusion, this study demonstrated the synergistic effect of MEK6 with HFD in fat accumulation by significantly inhibiting the mechanisms of lipolysis in the adipose and M2 associated cytokines secretion in the BMDM.
Collapse
Affiliation(s)
- Suyeon Lee
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
| | - Myoungsook Lee
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
- Research Institute of Obesity Sciences, Sungshin Women’s University, Seoul 01133, Korea
| |
Collapse
|
8
|
Nguyen NN, Singh RG, Petrov MS. Association between Intrapancreatic Fat Deposition and the Leptin/Ghrelin Ratio in the Fasted and Postprandial States. ANNALS OF NUTRITION AND METABOLISM 2021; 78:14-20. [PMID: 34710871 DOI: 10.1159/000520068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The clinical relevance of excess intrapancreatic fat deposition (IPFD) is increasingly appreciated. Leptin and ghrelin are key players in the regulation of food intake, energy balance, and body fat mass. The aim was to investigate the associations of the leptin/ghrelin ratio and its components with IPFD. METHODS All participants underwent magnetic resonance imaging on a 3T scanner to quantify IPFD. Both fasting and postprandial blood samples were analyzed for leptin and acylated ghrelin. Linear regression analysis was conducted, accounting for visceral/subcutaneous fat volume ratio, glycated hemoglobin, and other covariates. RESULTS A total of 94 participants (32 women) with a median age of 56 (interquartile range 44-66) years were studied. Their median IPFD was 9.6% (interquartile range 8.8-10.4%). In the fasted state, the leptin/ghrelin ratio (β = 0.354; 95% confidence interval 0.044-0.663; p = 0.025, in the most adjusted model) and leptin (β = 0.040; 95% confidence interval 1.003-1.078; p = 0.035, in the most adjusted model) were significantly associated with IPFD. Ghrelin in the fasted state was not significantly associated with IPFD. In the postprandial state, the leptin/ghrelin ratio, leptin, and ghrelin were not significantly associated with IPFD. CONCLUSION Fasting circulating levels of leptin are directly associated with IPFD. Purposely designed mechanistic studies are warranted to determine how high leptin may contribute to excess IPFD.
Collapse
Affiliation(s)
- Ngoc N Nguyen
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Ruma G Singh
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Jeon J, Morris JS, Park K. Toenail mercury levels positively correlate with obesity and abdominal obesity among Korean adults. J Trace Elem Med Biol 2021; 64:126678. [PMID: 33249372 DOI: 10.1016/j.jtemb.2020.126678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although previous studies have shown that short-term exposure to mercury is associated with obesity, it should be noted that mercury is not easily released and that it constantly accumulates in the body. However, few studies have explored the association between chronic mercury exposure and obesity. This study aimed to examine the association between chronic mercury exposure and obesity in Korean adults. METHODS The study used baseline data from the Trace Element Study of Korean Adults in Yeungnam area. A total of 495 participants aged 40-69 years who provided the required information (demographic, diet, lifestyle, toenail mercury levels, and health examination results) were included. Toenail mercury levels were measured using neutron-activation analysis. Body mass index and waist circumference were obtained from medical examination. Multivariable-adjusted logistic regression and restricted cubic spline regression were used in the analysis. RESULTS In the fully adjusted logistic regression models, participants with the highest toenail mercury levels had a higher prevalence of obesity (odds ratio [OR]: 3.26, 95 % confidence interval [CI]: 1.79-5.93) and abdominal obesity (OR: 2.30, 95 % CI: 1.15-4.59). In the cubic spline regression model, linear relationships were confirmed between increased toenail mercury levels and higher prevalence of obesity and abdominal obesity (all p > 0.05 for nonlinearity). CONCLUSIONS In summary, chronic mercury exposure was associated with higher prevalence of obesity and abdominal obesity in Korean adults. Therefore, the development of public health interventions against environmental exposure of foods is required to manage and prevent obesity.
Collapse
Affiliation(s)
- Jimin Jeon
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - J Steven Morris
- Department of Research and Education, University of Missouri Research Reactor, Columbia, MO 65211, USA; Department of Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65205, USA.
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
10
|
Plows JF, Morton-Jones J, Bridge-Comer PE, Ponnampalam A, Stanley JL, Vickers MH, Reynolds CM. Consumption of the Artificial Sweetener Acesulfame Potassium throughout Pregnancy Induces Glucose Intolerance and Adipose Tissue Dysfunction in Mice. J Nutr 2020; 150:1773-1781. [PMID: 32321168 DOI: 10.1093/jn/nxaa106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Sugar-sweetened beverage consumption is associated with metabolic dysfunction. Artificially sweetened beverages (ASBs) are often promoted as an alternative. However, evidence for the safety of ASB consumption during pregnancy is lacking. OBJECTIVES The effects of sugar-sweetened beverage and ASB consumption during pregnancy in mice were examined, and we hypothesized that both sugar-sweetened beverages and ASBs would impair maternal metabolic function. METHODS Pregnant female C57BL/6J mice received control drinking water (CD), high-fructose corn syrup (Fr; 20% kcal intake; 335 mM), or the artificial sweetener acesulfame potassium (AS; 12.5 mM) in their drinking water, from gestational day (GD) 0.5 (n = 8/group). Body weights and food and water intakes were assessed every second day, an oral-glucose-tolerance test (OGTT) was performed at GD 16.5, and mice were culled at GD 18.5. RT-PCR was carried out on adipose tissue, liver, and gut. Adipose tissue morphology was assessed using histological methods. In a separate cohort of animals, pregnancy length was assessed. Repeated-measures ANOVA was performed for the OGTT and weight gain data. All other data were analyzed by 1-way ANOVA. RESULTS Fr and AS significantly impaired glucose tolerance, as demonstrated by OGTT (21% and 24% increase in AUC, respectively; P = 0.0006). Fr and AS reduced expression of insulin receptor (39.5% and 33% reduction, respectively; P = 0.02) and peroxisome proliferator-activated receptor γ (45.2% and 47%, respectively; P = 0.039), whereas Fr alone reduced expression of protein kinase B (36.9% reduction; P = 0.048) and resulted in an increase in adipocyte size and leptin concentrations (40% increase; P = 0.03). AS, but not Fr, reduced male fetal weight (16.5% reduction; P = 0.04) and female fetal fasting blood glucose concentration at cull (20% reduction; P = 0.02) compared with CD. AS significantly reduced the length of pregnancy compared with the CD and Fr groups (1.25 d shorter; P = 0.02). CONCLUSIONS Fr and AS consumption were associated with maternal metabolic dysfunction in mice. AS was also associated with reduced fetal growth and fetal hypoglycemia. Therefore, ASBs may not be a beneficial alternative to sugar-sweetened beverages during pregnancy.
Collapse
Affiliation(s)
- Jasmine F Plows
- The Liggins Institute, University of Auckland, Auckland, New Zealand.,Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA
| | | | | | - Anna Ponnampalam
- The Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Physiology, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, University of Auckland, Auckland, New Zealand
| | - Joanna L Stanley
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Asano M, Nakano F, Nakatsukasa E, Tsuduki T. The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice. Biosci Biotechnol Biochem 2020; 84:1475-1485. [PMID: 32255390 DOI: 10.1080/09168451.2020.1747973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the 1975 type Japanese diet was prepared and its effects and related mechanism were examined in mice. Mice were assigned to three experimental groups, the CD group fed a control diet, the MD group fed a modern Japanese diet (MD), and the JD group fed the 1975 type Japanese diet (JD) for 4 weeks. MD and JD were low protein, high fat, and high carbohydrate diets compared to the CD. Total white adipose tissue weights were significantly increased in the MD group compared to those in the CD group and were decreased in the JD group compared to those in the MD group. In the JD group, adipocyte hypertrophy was inhibited and Hsl mRNA expression was enhanced in epididymal adipose tissue and the number of bacteria associated with the production of short chain fatty acids was increased. Therefore, the JD inhibits lipid accumulation in white adipose tissue. ABBREVIATIONS Actb: β-actin; ALT: alanine aminotransferase; ANOVA: analyses of variance; AST: aspartate aminotransferase; Fas: fatty acid synthase; G6pdx: glucose 6-phosphate dehydrogenase; HE: hematoxylin and eosin; HOMA-IR: Homeostatic model assessment for insulin resistance; Hsl: hormone-sensitive lipase; JD: 1975 type Japanese diet; Leptin: leptin; MD: modern Japanese diet; Me: malic enzyme; NEFA: non-esterified fatty acids; PL: phospholipids; Pparδ: peroxisome proliferator-activated receptor delta; Pparγ: peroxisome proliferator-activated receptor gamma; qRT-PCR: quantitative reverse transcriptase polymerase chain reaction; SAMP8: senescence-accelerated prone 8; SEM: standard error of the mean; Srebp1c: Sterol regulatory element binding protein 1c; TBARS: thiobarbituric acid reactive substance; TC: total cholesterol; TG: Triacylglycerol; V3: variable regions 3.
Collapse
Affiliation(s)
- Masaki Asano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Fumika Nakano
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Eriko Nakatsukasa
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University , Sendai, Japan
| |
Collapse
|
12
|
Gioldasi S, Karvela A, Rojas-Gil AP, Rodi M, de Lastic AL, Thomas I, Spiliotis BE, Mouzaki A. Metabolic Association between Leptin and the Corticotropin Releasing Hormone. Endocr Metab Immune Disord Drug Targets 2020; 19:458-466. [PMID: 30727936 PMCID: PMC7360915 DOI: 10.2174/1871530319666190206165626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/31/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
Abstract
Objective In healthy individuals, leptin is produced from adipose tissue and is secreted into the circulation to communicate energy balance status to the brain and control fat metabolism. Corticotropin-Releasing Hormone (CRH) is synthesized in the hypothalamus and regulates stress responses. Among the many adipokines and hormones that control fat metabolism, leptin and CRH both curb appetite and inhibit food intake. Despite numerous reports on leptin and CRH properties and function, little has been actually shown about their association in the adipose tissue environment. Methods In this article, we summarized the salient information on leptin and CRH in relation to metabolism. We also investigated the direct effect of recombinant CRH on leptin secretion by primary cultures of human adipocytes isolated from subcutaneous abdominal adipose tissue of 7 healthy children and adolescents, and measured CRH and leptin levels in plasma collected from peripheral blood of 24 healthy children and adolescents to assess whether a correlation exists between CRH and leptin levels in the periphery. Results and Conclusion The available data indicate that CRH exerts a role in the regulation of leptin in human adipocytes. We show that CRH downregulates leptin production by mature adipocytes and that a strong negative correlation exists between CRH and leptin levels in the periphery, and suggest the possible mechanisms of CRH control of leptin. Delineation of CRH control of leptin production by adipocytes may explain unknown pathogenic mechanisms linking stress and metabolism.
Collapse
Affiliation(s)
- Sofia Gioldasi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Alexia Karvela
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | | | - Maria Rodi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Iason Thomas
- Department of Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Gougoula C, Bielfeld AP, Pour SJ, Sager M, Krüssel JS, Benten WPM, Baston-Büst DM. Metabolic and behavioral parameters of mice with reduced expression of Syndecan-1. PLoS One 2019; 14:e0219604. [PMID: 31299063 PMCID: PMC6625734 DOI: 10.1371/journal.pone.0219604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
Energy balance is essential for all species. Ligand-receptor interactions mediate processes that regulate body activities like reproduction and metabolism based on the energy status. Such receptors are the heparan sulfate proteoglycans and specifically the family of syndecans. Therefore we investigated the differences of metabolic parameters of heterozygous Syndecan 1 mice (Sdc1+/-) with reduced expression of Sdc1 and the corresponding wild type mice. Sdc1+/- mice have a reduced body weight although they show increased leptin and decreased corticosterone levels. Furthermore, their food and water intake is increased. This is accompanied with less adipose tissue, smaller adipocytes and thus an increased density of adipocytes. For the detailed analysis of the metabolism the automated PhenoMaster system has been used, which allowed continuous and undisturbed recording of food and water intake, energy expenditure and movement. The reason for the lower body weight was the higher energy expenditure of these animals compared to controls. Additionally, female Sdc1+/- mice showed an increased locomotor activity. Referring to organs, the intestine in Sdc1+/- mice was heavier and longer, but no differences at the cellular level could be observed. These findings were independent of normal mating or vice versa embryo transfers of Sdc1+/- and wild type embryos in recipient females of the other genotype. Herein we showed that the reduced expression of Sdc1 led to an altered metabolism on fetal as well as on maternal side, which may play a role in the growth restriction observed in human pregnancy pathologies and in mice lacking Sdc1.
Collapse
Affiliation(s)
- Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | - Sarah Jean Pour
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Jan-Steffen Krüssel
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
| | - Wilhelm Peter M. Benten
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Dunja Maria Baston-Büst
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
14
|
Pothuraju R, Rachagani S, Junker WM, Chaudhary S, Saraswathi V, Kaur S, Batra SK. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:319. [PMID: 30567565 PMCID: PMC6299603 DOI: 10.1186/s13046-018-0963-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is among foremost causes of cancer related deaths worldwide due to generic symptoms, lack of effective screening strategies and resistance to chemo- and radiotherapies. The risk factors associated with PC include several metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (T2DM). Studies have shown that obesity and T2DM are associated with PC pathogenesis; however, their role in PC initiation and development remains obscure. MAIN BODY Several biochemical and physiological factors associated with obesity and/or T2DM including adipokines, inflammatory mediators, and altered microbiome are involved in PC progression and metastasis albeit by different molecular mechanisms. Deep understanding of these factors and causal relationship between factors and altered signaling pathways will facilitate deconvolution of disease complexity as well as lead to development of novel therapies. In the present review, we focuses on the interplay between adipocytokines, gut microbiota, adrenomedullin, hyaluronan, vanin and matrix metalloproteinase affected by metabolic alteration and pancreatic tumor progression. CONCLUSIONS Metabolic diseases, such as obesity and T2DM, contribute PC development through altered metabolic pathways. Delineating key players in oncogenic development in pancreas due to metabolic disorder could be a beneficial strategy to combat cancers associated with metabolic diseases in particular, PC.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Sanguine Diagnostics and Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Viswanathan Saraswathi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 2018; 110:134-140. [PMID: 29343445 PMCID: PMC6277028 DOI: 10.1016/j.bone.2018.01.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Abstract
Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Julie Hardij
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Devika P Bagchi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Holubová M, Hrubá L, Neprašová B, Majerčíková Z, Lacinová Z, Kuneš J, Maletínská L, Železná B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J Mol Endocrinol 2018; 60:85-94. [PMID: 29233862 DOI: 10.1530/jme-17-0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022]
Abstract
The situation following anti-obesity drug termination is rarely investigated, eventhough a decrease in body weight needs to be sustained. Therefore, this study examined the impact of twice-daily peripheral administration of 5 mg/kg [N-palm-γGlu-Lys11] prolactin-releasing peptide 31 (palm11-PrRP31) in mice with diet-induced obesity (DIO from consuming a high-fat diet) after 28 days of treatment (palm11-PrRP31 group) and after 14 days of peptide treatment followed by 14 days of discontinuation (palm11-PrRP31 + saline group). At the end of the treatment, cumulative food intake, body weight and subcutaneous fat weight/body weight ratio and leptin plasma level were reduced significantly in both the palm11-PrRP31 group and the palm11-PrRP31 + saline group compared to the saline control group. This reduction correlated with significantly increased FOSB, a marker of long-term neuronal potentiation, in the nucleus arcuatus and nucleus tractus solitarii, areas known to be affected by the anorexigenic effect of palm11-PrRP31. Moreover, activation of leptin-related hypothalamic signaling was registered through an increase in phosphoinositide-3-kinase, increased phosphorylation of protein kinase B (PKB, AKT) and enhanced extracellular signal-regulated kinase 1/2 phosphorylation. Besides, lowered apoptotic markers c-JUN N-terminal kinase and c-JUN phosphorylation were registered in the hypothalami of both palm11-PrRP31-treated groups. This study demonstrates that palm11-PrRP31 positively affects feeding and leptin-related hypothalamic signaling, not only after 28 days of treatment but even 14 days after the termination of a 14-day long treatment without the yo-yo effect.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
- Institute of PhysiologyThe Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Majerčíková
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Zdeňka Lacinová
- Institute for Clinical and Experimental MedicinePrague, Czech Republic
- First Faculty of MedicineCharles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
- Institute of PhysiologyThe Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| |
Collapse
|
17
|
|
18
|
Yu YH. Making sense of metabolic obesity and hedonic obesity. J Diabetes 2017; 9:656-666. [PMID: 28093902 DOI: 10.1111/1753-0407.12529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/01/2023] Open
Abstract
Body weight is neither stationary nor does it change unidirectionally. Rather, body weight usually oscillates up and down around a set point. Two types of forces determine the direction of weight changes. Forces that push body weight away from the set point are defined as non-homeostatic and are governed by multiple mechanisms, including, but not limited to, hedonic regulation of food intake. Forces that restore the set point weight are defined as homeostatic, and they operate through mechanisms that regulate short-term energy balance driven by hunger and satiation and long-term energy balance driven by changes in adiposity. In the normal physiological state, the deviation of body weight from the set point is usually small and temporary, and is constantly corrected by homeostatic forces. Metabolic obesity develops when body weight set point is shifted to an abnormally high level and the obese body weight becomes metabolically defended. In hedonic obesity, the obese body weight is maintained by consistent overeating due to impairments in the reward system, although the set point is not elevated. Adaptive increases in energy expenditure are elicited in hedonic obesity because body weight is elevated above the set point. Neither subtype of obesity undergoes spontaneous resolution unless the underlying disorders are corrected. In this review, the need for both appropriate patient stratification and tailored treatments is discussed in the context of the new framework of metabolic and hedonic obesity.
Collapse
Affiliation(s)
- Yi-Hao Yu
- Department of Endocrinology, Greenwich Hospital and Northeast Medical Group, Yale-New Haven Health System, Greenwich, Connecticut, USA
| |
Collapse
|
19
|
Rimessi A, Pavan C, Ioannidi E, Nigro F, Morganti C, Brugnoli A, Longo F, Gardin C, Ferroni L, Morari M, Vindigni V, Zavan B, Pinton P. Protein Kinase C β: a New Target Therapy to Prevent the Long-Term Atypical Antipsychotic-Induced Weight Gain. Neuropsychopharmacology 2017; 42:1491-1501. [PMID: 28128334 PMCID: PMC5436118 DOI: 10.1038/npp.2017.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/21/2017] [Indexed: 12/21/2022]
Abstract
Antipsychotic drugs are currently used in clinical practice for a variety of mental disorders. Among them, clozapine is the most effective medication for treatment-resistant schizophrenia and is most helpful in controlling aggression and the suicidal behavior in schizophrenia and schizoaffective disorder. Although clozapine is associated with a low likelihood of extrapyramidal symptoms and other neurological side effects, it is well known for the weight gain and metabolic side effects, which expose the patient to a greater risk of cardiovascular disorders and premature death, as well as psychosocial issues, leading to non-adherence to therapy. The mechanisms underlying these iatrogenic metabolic disorders are still controversial. We have therefore investigated the in vivo effects of the selective PKCβ inhibitor, ruboxistaurin (LY-333531), in a preclinical model of long-term clozapine-induced weight gain. Cell biology, biochemistry, and behavioral tests have been performed in wild-type and PKCβ knockout mice to investigate the contribution of endogenous PKCβ and its pharmacological inhibition to the psychomotor effects of clozapine. Finally, we also shed light on a novel aspect of the mechanism underlying the clozapine-induced weight gain, demonstrating that the clozapine-dependent PKCβ activation promotes the inhibition of the lipid droplet-selective autophagy process. This paves the way to new therapeutic approaches to this serious complication of clozapine therapy.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Chiara Pavan
- Unit of Psychiatry, Department of Neurosciences NPSRR, University of Padua, Padua, Italy
| | - Elli Ioannidi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Nigro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Brugnoli
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Francesco Longo
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Vincenzo Vindigni
- Unit of Plastic Surgery, Department of Neurosciences NPSRR, University of Padua, Padua, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy,Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70 (c/o CUBO), Ferrara 44121, Italy, Tel: +0039 0532455802, Fax: +0039 0532455351, E-mail:
| |
Collapse
|
20
|
Loss of PI3K p110 α in the Adipose Tissue Results in Infertility and Delayed Puberty Onset in Male Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3756089. [PMID: 28357399 PMCID: PMC5357525 DOI: 10.1155/2017/3756089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
Abstract
Deletion of PI3K catalytic subunit p110α in adipose tissue (aP2-Cre/p110αflx/flx, α−/− hereafter) results in increased adiposity, glucose intolerance, and liver steatosis. Because this endocrine organ releases hormones like leptin, which are important in reproductive physiology, we investigated the reproductive phenotype of α−/− males. Compared to controls, α−/− males displayed delayed onset of puberty accompanied by a reduction in plasma LH levels and testicular weight. At postnatal day 30, α−/− mice exhibited normal body weight but elevated fasted plasma leptin levels. Testicular leptin gene expression was increased, whereas expression of the cholesterol transporter StAR and of P450 cholesterol side chain cleavage enzyme was decreased. Adult α−/− males were infertile and exhibited hyperandrogenemia with normal basal LH, FSH, and estradiol levels. However, neither sperm counts nor sperm motility was different between genotypes. The mRNA levels of leptin and of 17-beta-dehydrogenase 3, and enzyme important for testosterone production, were significantly higher in the testis of adult α−/− males. The mRNA levels of ERα, an important regulator of intratesticular steroidogenesis, were lower in the testis of adult and peripubertal α−/− males. We propose that chronic hyperleptinemia contributes to the negative impact that disrupting PI3K signaling in adipocytes has on puberty onset, steroidogenesis, and fertility in males.
Collapse
|
21
|
Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9410954. [PMID: 28168013 PMCID: PMC5266865 DOI: 10.1155/2017/9410954] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/25/2016] [Indexed: 12/15/2022]
Abstract
Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.
Collapse
|
22
|
Silva JC, César FA, de Oliveira EM, Turato WM, Tripodi GL, Castilho G, Machado-Lima A, de Las Heras B, Boscá L, Rabello MM, Hernandes MZ, Pitta MGR, Pitta IR, Passarelli M, Rudnicki M, Abdalla DSP. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr(-/-) mice. Pharmacol Res 2016; 104:49-60. [PMID: 26706782 DOI: 10.1016/j.phrs.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice.
Collapse
Affiliation(s)
- Jacqueline C Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda A César
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Edson M de Oliveira
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Walter M Turato
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo L Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Castilho
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana Machado-Lima
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Beatriz de Las Heras
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Marcelo M Rabello
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Z Hernandes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marina G R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ivan R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM-10), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Balogun KA, Cheema SK. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion. Lipids 2015; 51:25-38. [DOI: 10.1007/s11745-015-4105-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023]
|
24
|
Anastasiou CA, Karfopoulou E, Yannakoulia M. Weight regaining: From statistics and behaviors to physiology and metabolism. Metabolism 2015; 64:1395-407. [PMID: 26362728 DOI: 10.1016/j.metabol.2015.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Achieving maintenance of weight loss is crucial to combat obesity. However, most individuals tend to regain weight. Data from successful maintainers show that they remain vigilant and constantly apply techniques to oppose the course of regaining. On the other hand, current advances in obesity research show that the reduced obese state is a state of altered physiology in terms of energy balance. This review describes the physiological adaptations occurring after weight loss that predispose to regaining. Specifically, changes regarding body composition, hormonal background, energy expenditure and control of food intake are discussed. Moreover, metabolites that can act as regain predictors and dietary techniques to oppose regaining are presented.
Collapse
Affiliation(s)
- Costas A Anastasiou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.
| | - Eleni Karfopoulou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| |
Collapse
|
25
|
Shang Q, Bai Y, Wang G, Song Q, Guo C, Zhang L, Wang Q. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes. Stem Cells Dev 2015; 24:2052-64. [PMID: 25923535 DOI: 10.1089/scd.2014.0557] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Qianwen Shang
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| | - Yang Bai
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| | - Guannan Wang
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| | - Qiang Song
- 2 Department of Radiology, Shandong Chest Hospital , Jinan, China
| | - Chun Guo
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| | - Lining Zhang
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| | - Qun Wang
- 1 Department of Immunology, Shandong University School of Medicine , Jinan, China
| |
Collapse
|
26
|
Abstract
Stress is defined as a state that can threaten homeostasis in an organism to initiate the adaptive process. Stress mediators, which include the classic neuroendocrine hormones and a number of neurotransmitters, cytokines, and growth factors, regulate both basal and threatened homeostasis to help control the stress. Severity of stress, as well as malfunctioning of stress pathways, may impair its controllability, leading to the pathogenesis of psychiatric illnesses including depression. Leptin was initially identified as an antiobesity hormone, acting as a negative feedback adiposity signal to control energy homeostasis by binding to its receptors in the hypothalamus. Accumulating evidence has expanded the function of leptin from the control of energy balance to the regulation of other physiological and psychological processes. The aim of this paper is to evaluate the potential role of leptin in stress controllability. To this end, studies on the role of leptin in stress-induced activation of the hypothalamus-pituitary-adrenocortical axis, feeding behavior, learned helplessness, and other depression models have been accumulated. The knowledge accumulated in this article may facilitate the development of alternative treatment strategies, beyond serotonin and noradrenaline reuptake inhibition, for psychiatric care and stress-related disorders.
Collapse
|
27
|
Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev 2015; 16:234-47. [PMID: 25588316 PMCID: PMC5053237 DOI: 10.1111/obr.12246] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/01/2023]
Abstract
Body weight is determined via both metabolic and hedonic mechanisms. Metabolic regulation of body weight centres around the 'body weight set point', which is programmed by energy balance circuitry in the hypothalamus and other specific brain regions. The metabolic body weight set point has a genetic basis, but exposure to an obesogenic environment may elicit allostatic responses and upward drift of the set point, leading to a higher maintained body weight. However, an elevated steady-state body weight may also be achieved without an alteration of the metabolic set point, via sustained hedonic over-eating, which is governed by the reward system of the brain and can override homeostatic metabolic signals. While hedonic signals are potent influences in determining food intake, metabolic regulation involves the active control of both food intake and energy expenditure. When overweight is due to elevation of the metabolic set point ('metabolic obesity'), energy expenditure theoretically falls onto the standard energy-mass regression line. In contrast, when a steady-state weight is above the metabolic set point due to hedonic over-eating ('hedonic obesity'), a persistent compensatory increase in energy expenditure per unit metabolic mass may be demonstrable. Recognition of the two types of obesity may lead to more effective treatment and prevention of obesity.
Collapse
Affiliation(s)
- Y-H Yu
- Weight Loss and Diabetes Center, Greenwich Hospital, Greenwich, CT, USA; Endocrinology Associates of Greenwich, Northeast Medical Group, Yale New-Haven Health System, Greenwich, CT, USA
| | | | | | | | | | | |
Collapse
|
28
|
Interrelationship between lymphocytes and leptin in fat depots of obese mice revealed by changes in nutritional status. J Physiol Biochem 2015; 71:497-507. [PMID: 25670497 DOI: 10.1007/s13105-015-0388-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 01/17/2023]
Abstract
The mechanisms underlying the relationships between nutritional status and immunity remain to be fully characterized. The present study was undertaken to analyze by flow cytometry, in the context of diet-induced obesity, the status of immune cells in subcutaneous, and epididymal fat depots in wild-type and immunodeficient Rag2-/- mice submitted to nutritional challenge, i.e., 48-h fasting and 1-week refeeding. In parallel, the responsiveness of mature adipocytes and immune cells in bone marrow, lymph node, and liver were also analyzed. The results show that fasting in obese wild-type mice induces a prominent lipolysis in epididymal AT and immunosuppression restricted to both subcutaneous and epididymal AT, characterized by reduced number of CD4+ T and B lymphocytes and M1/M2 macrophages associated with reduced leptin and increased FGF21 expression in mature adipocytes. One-week refeeding was sufficient to reverse the fasting-induced effects. Obese immunodeficient mice under nutritional challenge exhibited no changes in adipocyte leptin expression and no marked trafficking of AT macrophages or NK cells, while the fasted-induced upregulation of FGF21 expression was maintained as well as the lipolytic responses. The present results demonstrate that, in a context of diet-induced obesity, fasting-induced immunosuppression is restricted to fat depots in immunocompetent mice. Lack of adipocyte leptin regulation and fasting-induced immunosuppression in obese immunodeficient mice strongly suggests that lymphocytes are involved in the modulation of adipocyte leptin expression on one hand and on the other that leptin is involved in the immune changes in AT according to nutritional status.
Collapse
|
29
|
Araujo HN, Valgas da Silva CP, Sponton ACS, Clerici SP, Davel APC, Antunes E, Zanesco A, Delbin MA. Perivascular adipose tissue and vascular responses in healthy trained rats. Life Sci 2015; 125:79-87. [PMID: 25637684 DOI: 10.1016/j.lfs.2014.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 12/30/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Hygor N Araujo
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Carmem P Valgas da Silva
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Amanda C S Sponton
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stefano P Clerici
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana P C Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
30
|
Abstract
Mammals regulate fat mass so that increases or reductions in adipose tissue mass activate responses that favor return to one's previous weight. A reduction in fat mass activates a system that increases food intake and reduces energy expenditure; conversely, overfeeding and rapid adipose tissue expansion reduces food intake and increases energy expenditure. With the identification of leptin nearly two decades ago, the central circuit that defends against reductions in body fat was revealed. However, the systems that defend against rapid expansion of fat mass remain largely unknown. Here we review the physiology of the overfed state and evidence for a distinct regulatory system, which unlike the leptin-mediated system, we propose primarily measures a functional aspect of adipose tissue and not total mass per se.
Collapse
Affiliation(s)
- Yann Ravussin
- Department of Medicine, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA; Department of Pediatrics, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA
| | - Anthony W Ferrante
- Department of Medicine, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA; Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032, USA.
| |
Collapse
|
31
|
Rather SA, Pothuraju R, Sharma RK, De S, Mir NA, Jangra S. Anti-obesity effect of feeding probiotic dahi containingLactobacillus caseiNCDC 19 in high fat diet-induced obese mice. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sarver A Rather
- Division of Animal Biochemistry; Karnal 132001 Haryana India
| | | | | | - Sachinandan De
- Animal Biotechnology Centre; Karnal 132001 Haryana India
| | - Nazir A Mir
- Dairy Cattle Physiology; Karnal 132001 Haryana India
| | - Surender Jangra
- Division of Animal Biochemistry; Karnal 132001 Haryana India
| |
Collapse
|
32
|
Bil-Lula I, Sochocka M, Zatońska K, Szuba A, Sawicki G, Woźniak M. Adenovirus type 9 enhances differentiation and decreases cytokine release from preadipocytes. J Med Virol 2014; 87:230-9. [DOI: 10.1002/jmv.24009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
| | - Marta Sochocka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Science; Wroclaw Poland
| | - Katarzyna Zatońska
- Department of Social Medicine; Wroclaw Medical University; Wroclaw Poland
| | - Andrzej Szuba
- Department of Clinical Nursing; Wroclaw Medical University; Wroclaw Poland
| | - Grzegorz Sawicki
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| | - Mieczysław Woźniak
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| |
Collapse
|
33
|
Zhang Y, Zitsman JL, Hou J, Fennoy I, Guo K, Feinberg J, Leibel RL. Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 2014; 22:691-7. [PMID: 23804589 PMCID: PMC3823663 DOI: 10.1002/oby.20528] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To understand the regulation of adipocyte size and adipokine expression in relation to gender, anatomic location, adiposity, and metabolic risk factors in adolescents with morbid obesity. METHODS Adipocyte size and adipokine expression in paired abdominal subcutaneous (SAT) and omental (VAT) surgical adipose tissues were related to gender, anatomic location, adiposity, and metabolic risk factors in a group of morbidly obese adolescents. RESULTS Significant depot- and/or gender-related differences in adipocyte size and adipokine expression were detected. Adjusted for body mass index, adipocyte size in both depots was larger in males than in females and was a major predictor of mRNA levels of leptin, plasminogen activator inhibitor-1, and adiponectin. Gender, but not adipocyte size, was significantly correlated with proinflammatory cytokine expression. Body mass index and waist circumference were correlated positively with VAT adipocyte size and negatively with SAT adipocyte size. VAT adiponectin and interleukin-6 expression levels were major predictors of high-density lipoprotein cholesterol concentrations, independent of gender, adiposity, and insulin sensitivity. CONCLUSIONS Adipose tissue morphology and function in obese adolescents are influenced by gender and anatomic location; the pattern of gender- and depot-related differences in adipocyte size and adipokine expression suggests that adolescent males, relative to the females, are at increased risk for obesity-related metabolic comorbidities.
Collapse
Affiliation(s)
- Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, USA; Naomi Berrie Diabetes Center, Columbia University, College of Physicians and Surgeons, New York, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kalashikam RR, Inagadapa PJN, Thomas AE, Jeyapal S, Giridharan NV, Raghunath M. Leptin gene promoter DNA methylation in WNIN obese mutant rats. Lipids Health Dis 2014; 13:25. [PMID: 24495350 PMCID: PMC3922147 DOI: 10.1186/1476-511x-13-25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. METHODS Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. RESULTS Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. CONCLUSION The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains.
Collapse
Affiliation(s)
- Rajender Rao Kalashikam
- Molecular Genetics, National Center for Laboratory Animal Sciences, National Institute of Nutrition, Jamai Osmania P O, Hyderabad 500 007, India.
| | | | | | | | | | | |
Collapse
|
35
|
Gu L, Xu T, Huang W, Xie M, Sun S, Hou S. Identification and profiling of microRNAs in the embryonic breast muscle of pekin duck. PLoS One 2014; 9:e86150. [PMID: 24465928 PMCID: PMC3900480 DOI: 10.1371/journal.pone.0086150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by fully or partially binding to complementary sequences and play important roles in skeletal muscle development. However, the roles of miRNAs in embryonic breast muscle of duck are unclear. In this study, we analyzed the miRNAs profiling in embryonic breast muscle of Pekin duck at E13 (the 13(th) day of hatching), E19, and E27 by high-throughput sequencing. A total of 382 miRNAs including 359 preciously identified miRNAs 23 novel miRNA candidates were obtained. The nucleotide bias analysis of identified miRNAs showed that the miRNAs in Pekin duck was high conserved. The expression of identified miRNAs were significantly different between E13 and E19 as well as between E27 and E19. Fifteen identified miRNAs validated using stem-loop qRT-PCR can be divided into three groups: those with peak expression at E19, those with minimal expression at E19, and those with continuous increase from E11 to E27. Considering that E19 is the fastest growth stage of embryonic Pekin duck breast muscle, these three groups of miRNAs might be the potential promoters, the potential inhibitors, and the potential sustainer for breast muscle growth. Among the 23 novel miRNAs, novel-miRNA-8 and novel-miRNA-14 had maximal expression at some stages. The stem-loop qRT-PCR analysis of the two novel miRNAs and their two targets (MAP2K1 and PPARα) showed that the expression of novel-mir-8 and PPARα reached the lowest points at E19, while that of novel-mir-14 and MAP2K1 peaked at E19, suggesting novel-miRNA-8 and novel-miRNA-14 may be a potential inhibitor and a potential promoter for embryonic breast muscle development of duck. In summary, these results not only provided an overall insight into the miRNAs landscape in embryonic breast muscle of duck, but also a basis for the further investigation of the miRNAs roles in duck skeletal muscle development.
Collapse
Affiliation(s)
- Lihong Gu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Tieshan Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Wei Huang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Ming Xie
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Shiduo Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Shuisheng Hou
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| |
Collapse
|
36
|
Sanyal AJ. An integrated view of liver injury and disease progression in nonalcoholic steatohepatitis. Hepatol Int 2013. [PMID: 26202294 DOI: 10.1007/s12072-013-9479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common cause of chronic liver disease globally. NAFLD represents a host of pathophysiologic mechanisms that culminate in the accumulation of fat, in a predominantly macrovesicular pattern, in the liver along with varying degrees of inflammation, hepatocellular injury, apoptosis and fibrosis. The most common mechanism for the development of NAFLD is insulin resistance. Insulin resistance is commonly associated with obesity, although it can develop in individuals who do not have obesity. A consequence of insulin resistance is increased peripheral lipolysis and increased delivery of free fatty acids to the liver. The concept of lipotoxicity emerged as the mechanisms by which fatty acids produce cell injury, promote apoptosis and activate inflammatory pathways were elucidated. While much work has been done mainly in cell culture models, the free fatty acid concentration in the liver is not significantly changed in NAFLD. Recently, the focus has shifted to alterations in other lipid metabolic pathways that appear to play an important role in the genesis of nonalcoholic steatohepatitis, the aggressive form of NAFLD. The innate immune system and the intestinal microbiota have been implicated in the development of NAFLD. These mechanisms are reviewed in this article.
Collapse
Affiliation(s)
- Arun J Sanyal
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, MCV Box 980342, Richmond, VA, 23298-0342, USA.
| |
Collapse
|
37
|
Immunomodulatory Role of an Ayurvedic Formulation on Imbalanced Immunometabolics during Inflammatory Responses of Obesity and Prediabetic Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:795072. [PMID: 24302970 PMCID: PMC3835817 DOI: 10.1155/2013/795072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/13/2013] [Indexed: 12/15/2022]
Abstract
Kal-1 is a polyherbal decoction of seven different natural ingredients, traditionally used in controlling sugar levels, inflammatory conditions particularly regulating metabolic and immunoinflammatory balance which are the major factors involved in obesity and related diseases. In the present study, we aimed to investigate the effect of Kal-1 (an abbreviation derived from the procuring source) on diet-induced obesity and type II diabetes using C57BL/6J mice as a model. The present study was performed with two experimental groups involving obese and prediabetic mice as study animals. In one, the mice were fed on high-fat with increased sucrose diet, and different amounts (5, 20, and 75 μL) of Kal-1 were administered with monitoring of disease progression over a period of 21 weeks whereas in the second group the mice were first put on the same diet for 21 weeks and then treated with the same amounts of Kal-1. A significant reduction in body weight, fat pads, fasting blood glucose levels, insulin levels, biochemical parameters, immunological parameters, and an array of pro- and anticytokines was observed in obese and diabetic mice plus Kal-1 than control (lean) mice fed on normal diet. In conclusion, Kal-1 has immunomodulatory potential for diet-induced obesity and associated metabolic disorders.
Collapse
|
38
|
te Pas MFW, Koopmans SJ, Kruijt L, Calus MPL, Smits MA. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model. PLoS One 2013; 8:e73087. [PMID: 24086269 PMCID: PMC3781149 DOI: 10.1371/journal.pone.0073087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.
Collapse
Affiliation(s)
- Marinus F. W. te Pas
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Sietse-Jan Koopmans
- Department of Animal Sciences, Adaptation Physiology Group of Wageningen University, AH Wageningen, The Netherlands
| | - Leo Kruijt
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Mario P. L. Calus
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Mari A. Smits
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| |
Collapse
|
39
|
Gogga P, Karbowska J, Kochan Z, Meissner W. Circulating leptin levels do not reflect the amount of body fat in the dunlin Calidris alpina during migration. Gen Comp Endocrinol 2013; 187:74-8. [PMID: 23583518 DOI: 10.1016/j.ygcen.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
Leptin is a peptide hormone that plays an important role in the regulation of energy homeostasis. Studies in mammals have shown that circulating leptin levels reflect adiposity and that this adipocyte-derived cytokine acts as an afferent satiety signal to the brain, decreasing food intake and increasing energy expenditure. Since leptin has been found in the liver and adipose tissue of migratory birds that are able to accumulate fat reserves as endogenous fuel for flight, we hypothesized that individuals with higher fat score would have higher plasma leptin levels, as it had been found previously in mammals. The aim of this study was to determine if circulating leptin levels correlate with the amount of body fat in a migratory bird, the dunlin Calidris alpina. Adult dunlins were caught during autumn migration on the Baltic coast, and their fat score was determined. Blood samples from 150 birds were used to assess the levels of circulating leptin. We did not find any statistical differences between dunlins with various fat scores. In fact, plasma leptin levels tended to be lower in fat birds than in lean individuals. Our data indicate that in wild birds in migration mode leptin does not reflect the amount of accumulated fat. It suggests that leptin in birds during migration is neither involved in the regulation of energy homeostasis nor acts as a signal to control the amount of body fat.
Collapse
Affiliation(s)
- Patrycja Gogga
- Avian Ecophysiology Unit, Department of Vertebrate Ecology and Zoology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | | | | | |
Collapse
|
40
|
Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1842:414-23. [PMID: 23685313 DOI: 10.1016/j.bbadis.2013.05.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, USA.
| |
Collapse
|
41
|
Sakurai T, Ogasawara J, Kizaki T, Sato S, Ishibashi Y, Takahashi M, Kobayashi O, Oh-ishi S, Nagasawa J, Takahashi K, Ishida H, Izawa T, Ohno H. The effects of exercise training on obesity-induced dysregulated expression of adipokines in white adipose tissue. Int J Endocrinol 2013; 2013:801743. [PMID: 24369466 PMCID: PMC3867917 DOI: 10.1155/2013/801743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 01/03/2023] Open
Abstract
Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor- α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT.
Collapse
Affiliation(s)
- Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
- *Takuya Sakurai:
| | - Junetsu Ogasawara
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shogo Sato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yoshinaga Ishibashi
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Osamu Kobayashi
- Department of Nursing, Kyorin University, Faculty of Health Science, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shuji Oh-ishi
- Department of Respiratory Medicine, Hachioji Medical Center, Tokyo Medical University, 1163 Tatemachi, Hachioji, Tokyo 193-0998, Japan
| | - Junichi Nagasawa
- Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Kazuto Takahashi
- Third Department of Internal Medicine, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hitoshi Ishida
- Third Department of Internal Medicine, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Tetsuya Izawa
- Department of Sports Biochemistry, Faculty of Health and Sport Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hideki Ohno
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
42
|
Altered polarization, morphology, and impaired innate immunity germane to resident peritoneal macrophages in mice with long-term type 2 diabetes. J Biomed Biotechnol 2012; 2012:867023. [PMID: 23093868 PMCID: PMC3469280 DOI: 10.1155/2012/867023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/13/2012] [Accepted: 06/29/2012] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM) on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs) from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice) obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.
Collapse
|
43
|
Barbosa-da-Silva S, Fraulob-Aquino JC, Lopes JR, Mandarim-de-Lacerda CA, Aguila MB. Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One 2012; 7:e39837. [PMID: 22848362 PMCID: PMC3405086 DOI: 10.1371/journal.pone.0039837] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/28/2012] [Indexed: 01/13/2023] Open
Abstract
Background Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC). Methods In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF) diet with standard chow (SC). Results The body mass (BM) grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months), more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. Conclusion In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.
Collapse
Affiliation(s)
- Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
44
|
Abstract
The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. In a recent published study, we pursued a strategy integrating BAC transgenic reporter mice, in vitro reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the LEP gene in human fat cells. Quantitative proteomics (stable isotope labeling by amino acids in cell culture, SILAC) with affinity enrichment of protein-DNA complexes identified the transcription factor FOSL2 as a specific binder to the identified region. We confirmed that FOSL2 is an important regulator of LEP gene expression in vitro and in vivo using cell culture models and genetic mouse models. In this commentary, we discuss the transcriptional regulation of LEP gene expression, our strategy to identify an adipocyte-specific cis-regulatory element and the transcription factor(s) responsible for LEP gene expression. We also discuss our data on FOSL2 and leptin levels in physiology and pathophysiology. We speculate on unanswered questions and future directions.
Collapse
|
45
|
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63:97-110. [PMID: 22710442 DOI: 10.1016/j.neuropharm.2012.04.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Exposure to stress is inevitable, and it may occur, to varying degrees, at different phases throughout the lifespan. The impact of stress experienced in later life has been well documented as many populations in modern society experience increasing socio-economic demands. The effects of stress early in life are less well known, partly as the impact of an early exposure may be difficult to quantify, however emerging evidence shows it can impact later in life. One of the major impacts of stress besides changes in psychosocial behaviour is altered feeding responses. The system that regulates stress responses, the hypothalamo-pituitary-adrenal axis, also regulates feeding responses because the neural circuits that regulate food intake converge on the paraventricular nucleus, which contains corticotrophin releasing hormone (CRH), and urocortin containing neurons. In other words the systems that control food intake and stress responses share the same anatomy and thus each system can influence each other in eliciting a response. Stress is known to alter feeding responses in a bidirectional pattern, with both increases and decreases in intake observed. Stress-induced bidirectional feeding responses underline the complex mechanisms and multiple contributing factors, including the levels of glucocorticoids (dependent on the severity of a stressor), the interaction between glucocorticoids and feeding related neuropeptides such as neuropeptide Y (NPY), alpha-melanocyte stimulating hormone (α-MSH), agouti-related protein (AgRP), melanocortins and their receptors, CRH, urocortin and peripheral signals (leptin, insulin and ghrelin). This review discusses the neuropeptides that regulate feeding behaviour and how their function can be altered through cross-talk with hormones and neuropeptides that also regulate the hypothalamo-pituitary-adrenal axis. In addition, long-term stress induced alterations in feeding behaviour, and changes in gene expression of neuropeptides regulating stress and food intake through epigenetic modifications will be discussed. This article is part of a Special Issue entitled 'SI: Central Control of Food Intake'.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
46
|
Schlitt JM, Schulz LC. The source of leptin, but not leptin depletion in response to food restriction, changes during early pregnancy in mice. Endocrine 2012; 41:227-35. [PMID: 22042484 PMCID: PMC3291745 DOI: 10.1007/s12020-011-9548-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
Maternal food restriction during pregnancy results in adverse consequences for offspring, including obesity and cardiovascular disease. Early pregnancy is a critical period for this programming effect. Leptin is a regulator of energy homeostasis that also affects placental and fetal development. As food restriction results in decreased serum leptin levels, at least in non-pregnant animals, leptin depletion may be one mechanism by which food restriction affects development. The objective of this study was to test whether moderate food restriction affects serum leptin concentrations during the first half of pregnancy. We found that restriction to 50% of ad libitum consumption levels resulted in a significant decrease in serum leptin concentrations in both pregnant and non-pregnant female mice. There was no significant difference in serum leptin concentrations between non-pregnant females and at pregnancy day 11.5 when fed ad libitum. However, there was a difference in the source of leptin during pregnancy, with greater production in visceral fat in pregnant mice, and greater production in subcutaneous fat in non-pregnant mice. Leptin concentrations were dependent on time of day and time of sampling relative to feeding, particularly in restricted mice. There was a significant difference in serum leptin concentrations between fed and restricted mice when they were fed and sampled in afternoon, but not when they were fed and sampled in morning. We conclude that food restriction results in a significant decrease in leptin concentration during the first half of pregnancy in mice, but that detection of this relationship is subject to experimental design considerations.
Collapse
Affiliation(s)
| | - Laura C. Schulz
- Corresponding author ADDRESS: Dept. of Obstetrics, Gynecology and Women’s Health, University of Missouri, N625 Health Sciences Center, 1 Hospital Drive, Columbia, MO 65212, , Phone: (573)-884-1408, Fax (573)882-9010
| |
Collapse
|
47
|
Abstract
In vertebrates, adipose tissue is the main storage site for lipids within specialized lipid-laden mature adipocytes. While many species have evolved cells capable of lipid storage, the adipocyte represents a unique specialized cell involved in fuel storage, endocrine, nervous and immune function. However, the adipocytes are not the only cell type in mammals that can accumulate lipid droplets. The ectopic accumulation of lipid in non-adipose tissues including the liver, skeletal muscle, bone, pancreas, and heart in combination with its excessive accumulation in adipose tissue contributes to metabolic disease. Determining the lipid processing components that are necessary and sufficiently for lipid accumulation in adipose and non-adipose tissues, in addition to endocrine function, will lead to a clearer definition of an adipocyte.
Collapse
|
48
|
Voinot F, Fischer C, Bœuf A, Schmidt C, Delval-Dubois V, Reichardt F, Liewig N, Chaumande B, Ehret-Sabatier L, Lignot JH, Angel F. Effects of controlled ingestion of kaolinite (5%) on food intake, gut morphology and in vitro motility in rats. Fundam Clin Pharmacol 2011; 26:565-76. [DOI: 10.1111/j.1472-8206.2011.00978.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
O’Gorman CW, Stanko RL, Keisler DH, Garcia MR. Effects of acute fasting and age on leptin and peroxisome proliferator-activated receptor gamma production relative to fat depot in immature and mature pigs. J Anim Physiol Anim Nutr (Berl) 2010; 94:e266-76. [DOI: 10.1111/j.1439-0396.2009.00968.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Pereira-Lancha LO, Coelho DF, de Campos-Ferraz PL, Lancha AH. Body Fat Regulation: Is It a Result of a Simple Energy Balance or a High Fat Intake? J Am Coll Nutr 2010; 29:343-51. [DOI: 10.1080/07315724.2010.10719850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|