1
|
Cook TM, Fuller KNZ, Sandoval DA. Insights into the neurobiology of weight loss after bariatric surgery and GLP-1R agonists. Neuropharmacology 2025; 265:110269. [PMID: 39675463 PMCID: PMC11702201 DOI: 10.1016/j.neuropharm.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Obesity and its related complications are growing in prevalence worldwide, with increasing impact to individuals and healthcare systems alike. Currently, the leading treatment approaches for effective and sustained weight loss are bariatric surgery and gut peptide therapeutics. At a high level, both treatment strategies work by hijacking gut-brain axis signaling to reduce food intake. However, we predict that each modality has distinct neuronal mechanisms that are responsible for their success and complications. This review compares the neurobiology of feeding behavior between these two weight loss strategies via a discussion of both clinical and pre-clinical data. The most compelling evidence points to signaling within the hindbrain, hypothalamus, and reward circuits contributing to weight loss. Considerations for treatment, including differing complications between the two treatment approaches, will also be discussed. Based on the data, we pose the hypothesis that these two interventions are acting via distinct mechanisms to induce weight loss. Both interventions have variable degrees of weight loss across the patient population, thus, understanding these distinct mechanisms could help drive individualized medicine to optimize weight loss. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Tyler M Cook
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Hankir MK, Lutz TA. Novel neural pathways targeted by GLP-1R agonists and bariatric surgery. Pflugers Arch 2025; 477:171-185. [PMID: 39644359 PMCID: PMC11761532 DOI: 10.1007/s00424-024-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide has revolutionized the treatment of obesity, with other gut hormone-based drugs lined up that show even greater weight-lowering ability in obese patients. Nevertheless, bariatric surgery remains the mainstay treatment for severe obesity and achieves unparalleled weight loss that generally stands the test of time. While their underlying mechanisms of action remain incompletely understood, it is clear that the common denominator between GLP-1R agonists and bariatric surgery is that they suppress food intake by targeting the brain. In this Review, we highlight recent preclinical studies using contemporary neuroscientific techniques that provide novel concepts in the neural control of food intake and body weight with reference to endogenous GLP-1, GLP-1R agonists, and bariatric surgery. We start in the periphery with vagal, intestinofugal, and spinal sensory nerves and then progress through the brainstem up to the hypothalamus and finish at non-canonical brain feeding centers such as the zona incerta and lateral septum. Further defining the commonalities and differences between GLP-1R agonists and bariatric surgery in terms of how they target the brain may not only help bridge the gap between pharmacological and surgical interventions for weight loss but also provide a neural basis for their combined use when each individually fails.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
4
|
Smits MM, Holst JJ. Endogenous glucagon-like peptide (GLP)-1 as alternative for GLP-1 receptor agonists: Could this work and how? Diabetes Metab Res Rev 2023; 39:e3699. [PMID: 37485788 DOI: 10.1002/dmrr.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023]
Abstract
In recent years, we have witnessed the many beneficial effects of glucagon-like peptide (GLP)-1 receptor agonists, including the reduction in cardiovascular risk in patients with type 2 diabetes, and the reduction of body weight in those with obesity. Increasing evidence suggests that these agents differ considerably from endogenous GLP-1 when it comes to their routes of action, although their clinical effects appear to be the same. Given the limitations of the GLP-1 receptor agonists, could it be useful to develop agents which stimulate GLP-1 release? Here we will discuss the differences and similarities between GLP-1 receptor agonists and endogenous GLP-1, and will detail how endogenous GLP-1-when stimulated appropriately-could have clinically relevant effects.
Collapse
Affiliation(s)
- Mark M Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hankir MK. Gut microbiota turn up the heat after bariatric surgery. Cell Stress 2023; 7:90-94. [PMID: 37693093 PMCID: PMC10485695 DOI: 10.15698/cst2023.10.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023] Open
Abstract
Bariatric surgeries like vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) cause well-established shifts in the gut microbiota, but how this contributes to their unique metabolic benefits is poorly understood. Jin et al and Yadav et al now provide two complementary lines of evidence suggesting that gut microbiota-derived metabolites after VSG and RYGB activate thermogenesis in fat through distinct mechanisms, to in turn promote weight loss and/or improvements in glycemic control.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Chichura KS, Elfers CT, Salameh TS, Kamat V, Chepurny OG, McGivney A, Milliken BT, Holz GG, Applebey SV, Hayes MR, Sweet IR, Roth CL, Doyle RP. A peptide triple agonist of GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors promotes glycemic control and weight loss. Sci Rep 2023; 13:9554. [PMID: 37308546 PMCID: PMC10261008 DOI: 10.1038/s41598-023-36178-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.
Collapse
Affiliation(s)
- Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Therese S Salameh
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Varun Kamat
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Aelish McGivney
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah V Applebey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian R Sweet
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA.
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
7
|
Brzozowska MM, Isaacs M, Bliuc D, Baldock PA, Eisman JA, White CP, Greenfield JR, Center JR. Effects of bariatric surgery and dietary intervention on insulin resistance and appetite hormones over a 3 year period. Sci Rep 2023; 13:6032. [PMID: 37055514 PMCID: PMC10102182 DOI: 10.1038/s41598-023-33317-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
To examine an impact of three types of bariatric surgery compared with dietary intervention (DIET), on concurrent changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and appetite hormones over 3 years. Fifty-five adults were studied during phase of weight loss (0-12 months) and during weight stability (12-36 months) post intervention. Measurements of HOMA-IR, fasting and postprandial PYY and GLP1, adiponectin, CRP, RBP4, FGF21 hormones and dual-Xray absorptiometry were performed throughout the study. All surgical groups achieved significant reductions in HOMA-IR with greatest difference between Roux-en-Y gastric bypass and DIET (- 3.7; 95% CI - 5.4, - 2.1; p = 0.001) at 12-36 months. Initial (0-12 months) HOMA-IR values were no different to DIET after adjustment for the lost weight. During 12-36 months, after controlling for treatment procedure and weight, for every twofold increase in postprandial PYY and adiponectin, HOMA-IR decreased by 0.91 (95% CI - 1.71, - 0.11; p = 0.030) and by 0.59 (95% CI - 1.10, - 0.10; p = 0.023) respectively. Initial, non-sustained changes in RBP4 and FGF21 were not associated with HOMA-IR values. While initial rapid weight loss reduces insulin resistance, the enhanced secretions of PYY and adiponectin may contribute to weight-independent improvements in HOMA-IR during weight stability.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12613000188730.
Collapse
Affiliation(s)
- Malgorzata M Brzozowska
- Endocrinology, The Sutherland Hospital, Caringbah, Australia.
- Faculty of Medicine, UNSW Sydney, Sydney, Australia.
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia.
| | - Michelle Isaacs
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Endocrinology, St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Dana Bliuc
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia
| | - Paul A Baldock
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia
- School of Medicine, The University of Notre Dame Australia, Darlinghurst, Australia
| | - John A Eisman
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia
- Endocrinology, St Vincent's Hospital Sydney, Darlinghurst, Australia
- School of Medicine, The University of Notre Dame Australia, Darlinghurst, Australia
| | - Chris P White
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Prince of Wales Hospital, NSW Health Pathology, Randwick, Australia
- Endocrinology, Prince of Wales Hospital, Randwick, Australia
| | - Jerry R Greenfield
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia
- Endocrinology, St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jacqueline R Center
- Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, Australia
- Endocrinology, St Vincent's Hospital Sydney, Darlinghurst, Australia
- School of Medicine, The University of Notre Dame Australia, Darlinghurst, Australia
| |
Collapse
|
8
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Regulation of Pancreatic TXNIP-Insulin Expression Levels after Bariatric Surgery Using Diabetic Rodent Model. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9563359. [PMID: 36733403 PMCID: PMC9889143 DOI: 10.1155/2023/9563359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023]
Abstract
Purpose The purpose of this study was to investigate the effect of bariatric surgery on pancreatic thioredoxin-interacting protein (TXNIP) and insulin expression levels. The research question is does bariatric surgery induce changes in the pancreatic TXNIP level, given that TXNIP has been proposed as a key glucose control factor? Methods Using nondiabetic and diabetic rats, we investigated whether our streptozotocin-induced diabetic rat models exhibited changes in pancreatic TXNIP regulation. Following this confirmation, we randomly divided the diabetic rats into the following three groups: the gastric bypass group (n = 16), pair-fed group (n = 10), and sham group (n = 10). Preoperatively and 3 weeks postoperatively, all the rats underwent an oral glucose tolerance test, insulin tolerance test, and blood sampling procedures for hormonal analysis. Results The TXNIP messenger ribonucleic acid (mRNA) and protein expression levels were significantly lower in the gastric bypass group than in the other groups. Regarding the gastric bypass group, the pancreatic mRNA expression levels of microRNA-204 (miR-204) and MafA were significantly lower and higher, respectively, than in the other groups. Furthermore, the levels of pancreatic insulin expression at the mRNA and protein levels were also significantly higher in the gastric bypass group than in the other groups. Conclusion Bariatric surgery significantly improved glucose control and regulated the pancreatic insulin production pathways of TXNIP, miR-204, and MafA. The regulation of TXNIP, miR-204, and MafA might play an important role in the mechanism of diabetes remission following bariatric surgery.
Collapse
|
10
|
Dischinger U, Kötzner L, Kovatcheva-Datchary P, Kleinschmidt H, Haas C, Perez J, Presek C, Koschker AC, Miras AD, Hankir MK, Vogel J, Germer CT, Fassnacht M, Herrmann MJ, Seyfried F. Hypothalamic integrity is necessary for sustained weight loss after bariatric surgery: A prospective, cross-sectional study. Metabolism 2023; 138:155341. [PMID: 36341838 DOI: 10.1016/j.metabol.2022.155341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The hypothalamus is the main integrator of peripheral and central signals in the control of energy homeostasis. Its functional relevance for the effectivity of bariatric surgery is not entirely elucidated. Studying the effects of bariatric surgery in patients with hypothalamic damage might provide insight. SUMMARY BACKGROUND DATA Prospective study to analyze the effects of bariatric surgery in patients with hypothalamic obesity (HO) vs. matched patients with common obesity (CO) with and without bariatric surgery. METHODS 65 participants were included (HO-surgery: n = 8, HO-control: n = 10, CO-surgery: n = 12, CO-control: n = 12, Lean-control: n = 23). Body weight, levels of anorexic hormones, gut microbiota, as well as subjective well-being/health status, eating behavior, and brain activity (via functional MRI) were evaluated. RESULTS Patients with HO lost significantly less weight after bariatric surgery than CO-participants (total body weight loss %: 5.5 % vs. 26.2 %, p = 0.0004). After a mixed meal, satiety and abdominal fullness tended to be lowest in HO-surgery and did not correlate with levels of GLP-1 or PYY. Levels of PYY (11,151 ± 1667 pmol/l/h vs. 8099 ± 1235 pmol/l/h, p = 0.028) and GLP-1 (20,975 ± 2893 pmol/l/h vs. 13,060 ± 2357 pmol/l/h, p = 0.009) were significantly higher in the HO-surgery vs. CO-surgery group. Abundance of Enterobacteriaceae and Streptococcus was increased in feces of HO and CO after bariatric surgery. Comparing HO patients with lean-controls revealed an increased activation in insula and cerebellum to viewing high-caloric foods in left insula and cerebellum in fMRI. CONCLUSIONS Hypothalamic integrity is necessary for the effectiveness of bariatric surgery in humans. Peripheral changes after bariatric surgery are not sufficient to induce satiety and long-term weight loss in patients with hypothalamic damage.
Collapse
Affiliation(s)
- Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany.
| | - Laura Kötzner
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | | | - Helena Kleinschmidt
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Christina Haas
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Jose Perez
- Department of Neurosurgery, University Hospital, University of Würzburg, Germany
| | - Cornelius Presek
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, Germany
| | - Ann-Cathrin Koschker
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom
| | - Mohammed K Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| |
Collapse
|
11
|
Mercado A, Pham A, Wang Z, Huang W, Chan P, Ibrahim H, Gogineni H, Huang Y, Wang J. Effects of bariatric surgery on drug pharmacokinetics-Preclinical studies. Front Pharmacol 2023; 14:1133415. [PMID: 37089960 PMCID: PMC10113450 DOI: 10.3389/fphar.2023.1133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
With the rising worldwide obesity rates, bariatric surgeries are increasing. Although the surgery offers an effective treatment option for weight loss, the procedure causes dramatic physiological and metabolic changes. Animal models in rodents provide a valuable tool for studying the systemic effects of the surgery. Since the surgery may significantly influence the pharmacokinetic properties of medications, animal studies should provide essential insight into mechanisms underlying changes in how the body handles the drug. This review summarizes research work in rodents regarding the impact of standard bariatric procedures on pharmacokinetics. A qualitative literature search was conducted via PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE. Studies that examined bariatric surgery's effects on drug pharmacokinetics in rodent models were included. Clinical studies and studies not involving drug interventions were excluded. A total of 15 studies were identified and assessed in this review. These studies demonstrate the possible impact of bariatric surgery on drug absorption, distribution, metabolism, excretion, and potential mechanisms. Pharmacokinetic changes exhibited in the limited pre-clinical studies highlight a need for further investigation to fully understand the impact and mechanism of bariatric surgery on drug responses.
Collapse
Affiliation(s)
- Angela Mercado
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Anna Pham
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Zhijun Wang
- College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Patrick Chan
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | | | - Hyma Gogineni
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Ying Huang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| | - Jeffrey Wang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Ying Huang, ; Jeffrey Wang,
| |
Collapse
|
12
|
The Neural Code for Taste in the Nucleus of the Solitary Tract of Rats with Obesity Following Roux-En-Y Gastric Bypass Surgery. Nutrients 2022; 14:nu14194129. [PMID: 36235781 PMCID: PMC9570596 DOI: 10.3390/nu14194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Previous work has shown that taste responses in the nucleus tractus solitarius (NTS; the first central relay for gustation) are blunted in rats with diet-induced obesity (DIO). Here, we studied whether these effects could be reversed by Roux-en-Y gastric bypass (RYGB) surgery, an effective treatment for obesity. Rats were fed a high energy diet (60% kcal fat; HED) both before and after undergoing RYGB. Electrophysiological responses from NTS cells in unrestrained rats were recorded as they licked tastants from a lick spout. Sweet, salty, and umami tastes, as well as their naturalistic counterparts, were presented. Results were compared with those of lean rats from a previous study. As with DIO rats, NTS cells in RYGB rats were more narrowly tuned, showed weaker responses, and less lick coherence than those in lean rats. Both DIO and RYGB rats licked at a slower rate than lean rats and paused more often during a lick bout. However, unlike DIO rats, the proportion of taste cells in RYGB rats was similar to that in lean rats. Our data show that, despite being maintained on a HED after surgery, RYGB can induce a partial recovery of the deficits seen in the NTS of DIO rats.
Collapse
|
13
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
14
|
Fries CM, Haange SB, Rolle-Kampczyk U, Till A, Lammert M, Grasser L, Medawar E, Dietrich A, Horstmann A, von Bergen M, Fenske WK. Metabolic Profile and Metabolite Analyses in Extreme Weight Responders to Gastric Bypass Surgery. Metabolites 2022; 12:metabo12050417. [PMID: 35629921 PMCID: PMC9147451 DOI: 10.3390/metabo12050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Roux-en-Y gastric bypass (RYGB) surgery belongs to the most frequently performed surgical therapeutic strategies against adiposity and its comorbidities. However, outcome is limited in a substantial cohort of patients with inadequate primary weight loss or considerable weight regain. In this study, gut microbiota composition and systemically released metabolites were analyzed in a cohort of extreme weight responders after RYGB. Methods: Patients (n = 23) were categorized based on excess weight loss (EWL) at a minimum of two years after RYGB in a good responder (EWL 93 ± 4.3%) or a bad responder group (EWL 19.5 ± 13.3%) for evaluation of differences in metabolic outcome, eating behavior and gut microbiota taxonomy and metabolic activity. Results: Mean BMI was 47.2 ± 6.4 kg/m2 in the bad vs. 26.6 ± 1.2 kg/m2 in the good responder group (p = 0.0001). We found no difference in hunger and satiety sensation, in fasting or postprandial gut hormone release, or in gut microbiota composition between both groups. Differences in weight loss did not reflect in metabolic outcome after RYGB. While fecal and circulating metabolite analyses showed higher levels of propionate (p = 0.0001) in good and valerate (p = 0.04) in bad responders, respectively, conjugated primary and secondary bile acids were higher in good responders in the fasted (p = 0.03) and postprandial state (GCA, p = 0.02; GCDCA, p = 0.02; TCA, p = 0.01; TCDCA, p = 0.02; GDCA, p = 0.05; GUDCA, p = 0.04; TLCA, p = 0.04). Conclusions: Heterogenous weight loss response to RYGB surgery separates from patients’ metabolic outcome, and is linked to unique serum metabolite signatures post intervention. These findings suggest that the level of adiposity reduction alone is insufficient to assess the metabolic success of RYGB surgery, and that longitudinal metabolite profiling may eventually help us to identify markers that could predict individual adiposity response to surgery and guide patient selection and counseling.
Collapse
Affiliation(s)
- Charlotte M. Fries
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
- Correspondence:
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
| | - Andreas Till
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
| | - Mathis Lammert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Linda Grasser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Arne Dietrich
- Department of Visceral and Metabolic Surgery, University Hospital Leipzig, Liebigstraße 18, 04103 Leipzig, Germany;
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Wiebke K. Fenske
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
| |
Collapse
|
15
|
Mukorako P, Lemoine N, Biertho L, Lebel S, Roy MC, Plamondon J, Tchernof A, Varin TV, Anhê FF, St-Pierre DH, Marette A, Richard D. Consistent gut bacterial and short-chain fatty acid signatures in hypoabsorptive bariatric surgeries correlate with metabolic benefits in rats. Int J Obes (Lond) 2022; 46:297-306. [PMID: 34686781 DOI: 10.1038/s41366-021-00973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The study aimed at comparing how changes in the gut microbiota are associated to the beneficial effects of the most clinically efficient hypoabsorptive bariatric procedures, namely Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). METHODS Diet-induced obese (DIO) male Wistar rats were divided into seven groups. In addition to the groups subjected to RYGB, BPD-DS and SADI-S, the following four control groups were included: SHAM-operated rats fed a high-fat diet (SHAM HF), SHAM fed a low-fat diet (SHAM LF), SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW) and sleeve-gastrectomy (SG) rats. Body weight, food intake, glucose tolerance, insulin sensitivity/resistance, and L-cell secretion were assessed. The gut microbiota (16 S ribosomal RNA gene sequencing) as well as the fecal and cæcal contents of short-chain fatty acids (SCFAs) were also analyzed prior to, and after the surgeries. RESULTS The present study demonstrates the beneficial effect of RYGB, BPD-DS and SADI-S on fat mass gain and glucose metabolism in DIO rats. These benefits were proportional to the effect of the surgeries on food digestibility (BPD-DS > SADI-S > RYGB). Notably, hypoabsorptive surgeries led to consonant microbial signatures characterized by decreased abundance of the Ruminococcaceae (Oscillospira and Ruminococcus), Oscillospiraceae (Oscillibacter) and Christensenellaceae, and increased abundance of the Clostridiaceae (Clostridium), Sutterellaceae (Sutterella) and Enterobacteriaceae. The gut bacteria following hypoabsorptive surgeries were associated with higher fecal levels of propionate, butyrate, isobutyrate and isovalerate. Increases in the fecal SCFAs were in turn positively and strongly correlated with the levels of peptide tyrosine-tyrosine (PYY) and with the beneficial effects of the surgery. CONCLUSION The present study emphasizes the consistency with which the three major hypoabsorptive bariatric procedures RYGB, BPD-DS and SADI-S create a gut microbial environment capable of producing a SCFA profile favorable to the secretion of PYY and to beneficial metabolic effects.
Collapse
Affiliation(s)
- Paulette Mukorako
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Natacha Lemoine
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Laurent Biertho
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Stéfane Lebel
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Marie-Claude Roy
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - Julie Plamondon
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | - André Tchernof
- Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada
| | | | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute and Center for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - David H St-Pierre
- Institute of Nutrition and Functional Foods, Québec, QC, Canada.,Department of Exercise Sciences, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.,Institute of Nutrition and Functional Foods, Québec, QC, Canada
| | - Denis Richard
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada. .,Québec Heart and Lung Institute, Chemin Sainte-Foy, Québec, QC, Canada.
| |
Collapse
|
16
|
Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev 2022; 43:19-34. [PMID: 34363458 PMCID: PMC8755990 DOI: 10.1210/endrev/bnab022] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore.,University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland.,Diabetes Research Group, School of Biomedical Science, Ulster University, Belfast, UK
| |
Collapse
|
17
|
Liang Y, Yu R, He R, Sun L, Luo C, Feng L, Chen H, Yin Y, Zhang W. Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass. Front Endocrinol (Lausanne) 2022; 13:891379. [PMID: 36082078 PMCID: PMC9445200 DOI: 10.3389/fendo.2022.891379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Roux-en-Y gastric bypass is an effective intervention for metabolic disorder. We aim to elucidate whether ghrelin contributes to weight reduction, and glycemic and lipid control after Roux-en-Y gastric bypass (RYGB). DESIGN Four-week-old WT and Ghrl-TSC1-/- mice were fed high fat diet for 12 weeks before surgery, and continued to be on the same diet for 3 weeks after surgery. Body weight, food intake, glycemic and lipid metabolism were analyzed before and after surgery. RESULTS Gastric and circulating ghrelin was significantly increased in mice with RYGB surgery. Hypoghrelinemia elicited by deletion of TSC1 to activate mTOR signaling in gastric X/A like cells demonstrated no effect on weight reduction, glycemic and lipid control induced by Roux-en-Y gastric bypass surgery. CONCLUSION Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Pathology, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Roux-en-Y Gastric Bypass and Caloric Restriction but Not Gut Hormone-Based Treatments Profoundly Impact the Hypothalamic Transcriptome in Obese Rats. Nutrients 2021; 14:nu14010116. [PMID: 35010991 PMCID: PMC8746874 DOI: 10.3390/nu14010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. METHODS Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. RESULTS While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. CONCLUSIONS Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.
Collapse
|
19
|
Dreyfuss JM, Yuchi Y, Dong X, Efthymiou V, Pan H, Simonson DC, Vernon A, Halperin F, Aryal P, Konkar A, Sebastian Y, Higgs BW, Grimsby J, Rondinone CM, Kasif S, Kahn BB, Foster K, Seeley R, Goldfine A, Djordjilović V, Patti ME. High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nat Commun 2021; 12:6951. [PMID: 34845204 PMCID: PMC8630169 DOI: 10.1038/s41467-021-27289-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR's mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.Trial Registration: Clinicaltrials.gov NCT01073020.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yixing Yuchi
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Xuehong Dong
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Vissarion Efthymiou
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Donald C Simonson
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ashley Vernon
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Florencia Halperin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Form Health, Boston, MA, USA
| | - Pratik Aryal
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anish Konkar
- MedImmune, Gaithersburg, MD, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Joseph Grimsby
- MedImmune, Gaithersburg, MD, USA
- AstraZeneca, Gaithersburg, MD, USA
| | | | - Simon Kasif
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Barbara B Kahn
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathleen Foster
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Randy Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Allison Goldfine
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Mary Elizabeth Patti
- Harvard Medical School, Boston, MA, USA.
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
20
|
Kirwan JP, Axelrod CL, Kullman EL, Malin SK, Dantas WS, Pergola K, del Rincon JP, Brethauer SA, Kashyap SR, Schauer PR. Foregut Exclusion Enhances Incretin and Insulin Secretion After Roux-en-Y Gastric Bypass in Adults With Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e4192-e4201. [PMID: 33870426 PMCID: PMC8475221 DOI: 10.1210/clinem/dgab255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Patients with type 2 diabetes experience resolution of hyperglycemia within days after Roux-en-Y gastric bypass (RYGB) surgery. This is attributed, in part, to enhanced secretion of hindgut factors following exclusion of the gastric remnant and proximal intestine during surgery. However, evidence of the mechanisms of remission remain limited due to the challenges of metabolic evaluation during the early postoperative period. The purpose of this investigation was to determine the role of foregut exclusion in the resolution of type 2 diabetes after RYGB. METHODS Patients with type 2 diabetes (n = 15) undergoing RYGB had a gastrostomy tube (G-tube) placed in their gastric remnant at time of surgery. Patients were randomized to receive a mixed meal tolerance test via oral or G-tube feeding immediately prior to and 2 weeks after surgery in a repeated measures crossover design. Plasma glucose, insulin, C-peptide, incretin responses, and indices of meal-stimulated insulin secretion and sensitivity were determined. RESULTS Body weight, fat mass, fasting glucose and insulin, and circulating lipids were significantly decreased 2 weeks after surgery. The glycemic response to feeding was reduced as a function of total area under the curve but not after adjustment for the reduction in fasting glucose. Oral feeding significantly enhanced insulin and incretin secretion after RYGB, which was entirely ablated by G-tube feeding. CONCLUSION Foregut exclusion accounts for the rise in incretin and insulin secretion but may not fully explain the early improvements in glucose metabolism after RYGB surgery.
Collapse
Affiliation(s)
- John P Kirwan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,USA
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA,USA
- Bariatric and Metabolic Institute, Pennington Biomedical Research Center, Baton Rouge, LA,USA
- Correspondence: John P. Kirwan, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, Location: L-4030, USA.
| | - Christopher L Axelrod
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,USA
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA,USA
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA,USA
- Bariatric and Metabolic Institute, Pennington Biomedical Research Center, Baton Rouge, LA,USA
| | - Emily L Kullman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,USA
| | - Steven K Malin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA,USA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA,USA
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA,USA
| | - Juan Pablo del Rincon
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,USA
| | - Stacy A Brethauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, Ohio,USA
| | - Sangeeta R Kashyap
- Department of Endocrinology and Metabolism, Cleveland Clinic, Cleveland, Ohio,USA
| | - Philip R Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, Ohio,USA
- Bariatric and Metabolic Institute, Pennington Biomedical Research Center, Baton Rouge, LA,USA
| |
Collapse
|
21
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
22
|
Ratner C, Shin JH, Dwibedi C, Tremaroli V, Bjerregaard A, Hartmann B, Bäckhed F, Leinninger G, Seeley RJ, Holst B. Anorexia and Fat Aversion Induced by Vertical Sleeve Gastrectomy Is Attenuated in Neurotensin Receptor 1-Deficient Mice. Endocrinology 2021; 162:6311588. [PMID: 34190328 PMCID: PMC8294690 DOI: 10.1210/endocr/bqab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 12/25/2022]
Abstract
Neurotensin (NT) is an anorexic gut hormone and neuropeptide that increases in circulation following bariatric surgery in humans and rodents. We sought to determine the contribution of NT to the metabolic efficacy of vertical sleeve gastrectomy (VSG). To explore a potential mechanistic role of NT in VSG, we performed sham or VSG surgeries in diet-induced obese NT receptor 1 (NTSR1) wild-type and knockout (ko) mice and compared their weight and fat mass loss, glucose tolerance, food intake, and food preference after surgery. NTSR1 ko mice had reduced initial anorexia and body fat loss. Additionally, NTSR1 ko mice had an attenuated reduction in fat preference following VSG. Results from this study suggest that NTSR1 signaling contributes to the potent effect of VSG to initially reduce food intake following VSG surgeries and potentially also on the effects on macronutrient selection induced by VSG. However, maintenance of long-term weight loss after VSG requires signals in addition to NT.
Collapse
Affiliation(s)
- Cecilia Ratner
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Cecilia Ratner, University of Copenhagen: Kobenhavns Universitet, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. E-mail:
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chinmay Dwibedi
- Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anette Bjerregaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Birgitte Holst, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
23
|
Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Gallie A, Wretlind A, Legido-Quigley C, Leclerc I, Salem V, Rutter GA. Intravital imaging of islet Ca 2+ dynamics reveals enhanced β cell connectivity after bariatric surgery in mice. Nat Commun 2021; 12:5165. [PMID: 34453049 PMCID: PMC8397709 DOI: 10.1038/s41467-021-25423-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on β cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on β cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented β cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the β cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in β cell function and intra-islet connectivity which are likely to contribute to diabetes remission.
Collapse
Affiliation(s)
- Elina Akalestou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Kinga Suba
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Livia Lopez-Noriega
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eleni Georgiadou
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Pauline Chabosseau
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alasdair Gallie
- grid.413629.b0000 0001 0705 4923Central Biological Services (CBS) Hammersmith Hospital Campus, London, UK
| | - Asger Wretlind
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- grid.419658.70000 0004 0646 7285Systems Medicine, Steno Diabetes Center, Gentofte, Copenhagen, Denmark
| | - Isabelle Leclerc
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Victoria Salem
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.413629.b0000 0001 0705 4923Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A. Rutter
- grid.413629.b0000 0001 0705 4923Section of Cell Biology and Functional Genomics, Imperial College London, Hammersmith Hospital Campus, London, UK ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore ,grid.14848.310000 0001 2292 3357Centre de Recherches du CHUM, University of Montreal, Montreal, QC Canada
| |
Collapse
|
24
|
Weight loss from caloric restriction vs Roux-en-Y gastric bypass surgery differentially regulates systemic and portal vein GDF15 levels in obese Zucker fatty rats. Physiol Behav 2021; 240:113534. [PMID: 34303715 DOI: 10.1016/j.physbeh.2021.113534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Weight loss from caloric restriction (i.e. dieting) tends to be modest and short-lived, whereas from bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) is pronounced and generally sustained. The reasons behind these opposing outcomes between interventions remain unclear, but likely involve differential effects on gut-brain communication. Growth differentiation factor 15 (GDF15) is a ubiquitously-induced, centrally-acting, anorexigenic cytokine whose systemic levels are elevated under a variety of conditions associated with a negative energy balance, including in patients following RYGB. We therefore asked whether systemic and portal vein GDF15 levels differ between obese Zucker fatty rats that experienced similar weight loss from RYGB or from forced caloric restriction (CR). Compared with ad libitum fed (ALF) controls, body weight, visceral adiposity and food intake of RYGB and CR rats were markedly lower during the postoperative observation period. Both systemic and portal vein GDF15 levels in RYGB rats at postoperative day 28 were higher compared with ALF rats and particularly compared with CR rats. Further, systemic and portal vein GDF15 levels negatively correlated with body weight and food intake specifically in RYGB rats. These findings provide evidence that, unlike dieting, RYGB might achieve sustained weight loss and appetite suppression partly through increased GDF15 release from epithelial cells of the gastrointestinal tract.
Collapse
|
25
|
Leptin Receptors Are Not Required for Roux-en-Y Gastric Bypass Surgery to Normalize Energy and Glucose Homeostasis in Rats. Nutrients 2021; 13:nu13051544. [PMID: 34064308 PMCID: PMC8147759 DOI: 10.3390/nu13051544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats, their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential contribution to the improvements in liver health postoperatively merits further investigation.
Collapse
|
26
|
Arora T, Vanslette AM, Hjorth SA, Bäckhed F. Microbial regulation of enteroendocrine cells. MED 2021; 2:553-570. [DOI: 10.1016/j.medj.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
|
27
|
Faramia J, Hao Z, Mumphrey MB, Townsend RL, Miard S, Carreau AM, Nadeau M, Frisch F, Baraboi ED, Grenier-Larouche T, Noll C, Li M, Biertho L, Marceau S, Hould FS, Lebel S, Morrison CD, Münzberg H, Richard D, Carpentier AC, Tchernof A, Berthoud HR, Picard F. IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Rep Med 2021; 2:100248. [PMID: 33948578 PMCID: PMC8080239 DOI: 10.1016/j.xcrm.2021.100248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-binding protein (IGFBP)-2 is a circulating biomarker of cardiometabolic health. Here, we report that circulating IGFBP-2 concentrations robustly increase after different bariatric procedures in humans, reaching higher levels after biliopancreatic diversion with duodenal switch (BPD-DS) than after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). This increase is closely associated with insulin sensitization. In mice and rats, BPD-DS and RYGB operations also increase circulating IGFBP-2 levels, which are not affected by SG or caloric restriction. In mice, Igfbp2 deficiency significantly impairs surgery-induced loss in adiposity and early improvement in insulin sensitivity but does not affect long-term enhancement in glucose homeostasis. This study demonstrates that the modulation of circulating IGFBP-2 may play a role in the early improvement of insulin sensitivity and loss of adiposity brought about by bariatric surgery.
Collapse
Affiliation(s)
- Justine Faramia
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Zheng Hao
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Michael B. Mumphrey
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | - Anne-Marie Carreau
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Nadeau
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Elena-Dana Baraboi
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Thomas Grenier-Larouche
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Meng Li
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Laurent Biertho
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Simon Marceau
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Frédéric-Simon Hould
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Stéfane Lebel
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Denis Richard
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André Tchernof
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Frédéric Picard
- Centre de recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| |
Collapse
|
28
|
Camacho-Ramírez A, Prada-Oliveira JA, Ribelles-García A, Almorza-Gomar D, Pérez-Arana GM. The Leading Role of Peptide Tyrosine Tyrosine in Glycemic Control After Roux-en-Y Gastric Bypass in Rats. Obes Surg 2021; 30:697-706. [PMID: 31701411 DOI: 10.1007/s11695-019-04239-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Roux-en-Y gastric bypass (RYGB) is one of the most effective surgical therapies for the rapid resolution of type 2 diabetes. However, the mechanisms underlying the entero-hormonal response after surgery and the role of peptide tyrosine tyrosine (PYY) in the restoration of normoglycemia are still not clear. METHODS We reproduced the RYGB technique in Wistar and Goto-Kakizaki rats and performed serum hormonal, histological, and hormonal-infusion test. RESULTS Using the diabetic Goto-Kakizaki (GK) rat model, we demonstrated that PYY plasma levels showed a remarkable peak approximately 30 min earlier than GLP-1 or GIP after mixed-meal administration in RYGB-operated rats with PYY. The GLP-1 and GIP areas under the curve (AUCs) increased after RYGB in GK rats. Additionally, the findings suggested that PYY (3-36) infusion led to increased GLP-1 and GIP plasma levels close to those obtained after a meal. Finally, the number of GLP-1-positive cells appeared to increase in the three segments of the small intestine in GK-RYGB-operated rats beyond the early presence of nutrient stimulation in the ileum. Nevertheless, PYY-positive cell numbers appeared to increase only in the ileum. CONCLUSION At least in rats, these data demonstrate an earlier essential role for PYY in gut hormone regulation after RYGB. We understand that PYY contributes to GLP-1 and GIP release and there must be the existence of enteroendocrine communication routes between the distal and proximal small intestine.
Collapse
Affiliation(s)
- Alonso Camacho-Ramírez
- Puerta del Mar Hospital, University of Cadiz, Cadiz, Spain.,Asociación Gaditana de Apoyo al Investigador, Cadiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), University of Cadiz, Cadiz, Spain
| | - J Arturo Prada-Oliveira
- Asociación Gaditana de Apoyo al Investigador, Cadiz, Spain.,Biomedical Science Research and Innovation Institute (INIBICA), University of Cadiz, Cadiz, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Plaza Fragela s/n, 11003, Cadiz, Spain
| | - Antonio Ribelles-García
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Plaza Fragela s/n, 11003, Cadiz, Spain.,Sustainable Social Development Research Institute (INDESS), University of Cadiz, Cadiz, Spain
| | - David Almorza-Gomar
- Biomedical Science Research and Innovation Institute (INIBICA), University of Cadiz, Cadiz, Spain.,Operative Statistic and Research Department, University of Cadiz, Cadiz, Spain
| | - Gonzalo M Pérez-Arana
- Asociación Gaditana de Apoyo al Investigador, Cadiz, Spain. .,Biomedical Science Research and Innovation Institute (INIBICA), University of Cadiz, Cadiz, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, Plaza Fragela s/n, 11003, Cadiz, Spain.
| |
Collapse
|
29
|
Berthoud HR, Seeley RJ, Roberts SB. Physiology of Energy Intake in the Weight-Reduced State. Obesity (Silver Spring) 2021; 29 Suppl 1:S25-S30. [PMID: 33759396 DOI: 10.1002/oby.23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
Physiological adaptations to intentional weight loss can facilitate weight regain. This review summarizes emerging findings on hypothalamic and brainstem circuitry in the regulation of body weight and identifies promising areas for research to improve therapeutic interventions for sustainable weight loss. There is good evidence that body weight is actively regulated in a homeostatic fashion similar to other physiological parameters. However, the defended level of body weight is not fixed but rather depends on environmental conditions and genetic background in an allostatic fashion. In an environment with plenty of easily available energy-dense food and low levels of physical activity, prone individuals develop obesity. In a majority of individuals with obesity, body weight is strongly defended through counterregulatory mechanisms, such as hunger and hypometabolism, making weight loss challenging. Among the options for treatment or prevention of obesity, those directly changing the defended body weight would appear to be the most effective ones. There is strong evidence that the mediobasal hypothalamus is a master sensor of the metabolic state and an integrator of effector actions responsible for the defense of adequate body weight. However, other brain areas, such as the brainstem and limbic system, are also increasingly implicated in body weight defense mechanisms and may thus be additional targets for successful therapies.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan B Roberts
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Lafferty RA, Flatt PR, Irwin N. Established and emerging roles peptide YY (PYY) and exploitation in obesity-diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:253-261. [PMID: 33395088 DOI: 10.1097/med.0000000000000612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The antiobesity effects of activation of hypothalamic neuropeptide Y2 receptors (NPYR2) by the gut-derived hormone, peptide YY (PYY), are established. However, more recent insight into the biology of PYY has demonstrated remarkable benefits of sustained activation of pancreatic beta-cell NPYR1, that promises to open a new therapeutic avenue in diabetes. RECENT FINDINGS The therapeutic applicability of NPYR2 agonists for obesity has been considered for many years. An alternative pathway for the clinical realisation of PYY-based drugs could be related to the development of NPYR1 agonists for treatment of diabetes. Thus, although stimulation of NPYR1 on pancreatic beta-cells has immediate insulinostatic effects, prolonged activation of these receptors leads to well defined beta-cell protective effects, with obvious positive implications for the treatment of diabetes. In this regard, NPYR1-specific, long-acting enzyme resistant PYY analogues, have been recently developed with encouraging preclinical effects observed on pancreatic islet architecture in diabetes. In agreement, the benefits of certain types of bariatric surgeries on beta-cell function and responsiveness have also been linked to elevated PYY secretion and NPY1 receptor activation. SUMMARY Enzymatically stable forms of PYY, that selectively activate NPYR1, may have significant potential for preservation of beta-cell mass and the treatment of diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | | | | |
Collapse
|
31
|
Hindsø M, Svane MS, Hedbäck N, Holst JJ, Madsbad S, Bojsen-Møller KN. The role of GLP-1 in postprandial glucose metabolism after bariatric surgery: a narrative review of human GLP-1 receptor antagonist studies. Surg Obes Relat Dis 2021; 17:1383-1391. [PMID: 33771461 DOI: 10.1016/j.soard.2021.01.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) bariatric procedures lead to remission or improvement of type 2 diabetes. A weight loss-independent augmentation of postprandial insulin secretion contributes to the improvement in glycemic control after RYGB and is associated with a ∼10-fold increase in plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the physiologic importance of the markedly increased postprandial GLP-1 secretion after RYGB has been much debated. The effect of GLP-1 receptor blockade after RYGB has been investigated in 12 studies. The studies indicate a shift toward a more prominent role for GLP-1 in postprandial β-cell function after RYGB. The effect of GLP-1 receptor antagonism on glucose tolerance after RYGB is more complex and is associated with important methodological challenges. The postprandial GLP-1 response is less enhanced after SG compared with RYGB. However, the effect of GLP-1 receptor blockade after SG has been examined in 1 study only and needs further investigation.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen and Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
32
|
Miskelly MG, Shcherbina L, Thorén Fischer AH, Abels M, Lindqvist A, Wierup N. GK-rats respond to gastric bypass surgery with improved glycemia despite unaffected insulin secretion and beta cell mass. Peptides 2021; 136:170445. [PMID: 33197511 DOI: 10.1016/j.peptides.2020.170445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and results in rapid remission of type 2 diabetes (T2D), before significant weight loss occurs. The underlying mechanisms for T2D remission are not fully understood. To gain insight into these mechanisms we used RYGB-operated diabetic GK-rats and Wistar control rats. Twelve adult male Wistar- and twelve adult male GK-rats were subjected to RYGB- or sham-operation. Oral glucose tolerance tests (OGTT) were performed six weeks after surgery. RYGB normalized fasting glucose levels in GK-rats, without affecting fasting insulin levels. In both rat strains, RYGB caused increased postprandial responses in glucose, GLP-1, and GIP. RYGB caused elevated postprandial insulin secretion in Wistar-rats, but had no effect on insulin secretion in GK-rats. In agreement with this, RYGB improved HOMA-IR in GK-rats, but had no effect on HOMA-β. RYGB-operated GK-rats had an increased number of GIP receptor and GLP-1 receptor immunoreactive islet cells, but RYGB had no major effect on beta or alpha cell mass. Furthermore, in RYGB-operated GK-rats, increased Slc5a1, Pck2 and Pfkfb1 and reduced Fasn hepatic mRNA expression was observed. In summary, our data shows that RYGB induces T2D remission and enhanced postprandial incretin hormone secretion in GK-rats, without affecting insulin secretion or beta cell mass. Thus our data question the dogmatic view of how T2D remission is achieved and instead point at improved insulin sensitivity as the main mechanism of remission.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Disease Models, Animal
- Gastric Bypass
- Gastric Inhibitory Polypeptide/genetics
- Glucagon-Like Peptide 1/genetics
- Glucose Tolerance Test
- Humans
- Insulin/genetics
- Insulin/metabolism
- Insulin Secretion/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Obesity, Morbid/genetics
- Obesity, Morbid/metabolism
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Rats
- Rats, Wistar
- Weight Loss/genetics
- Weight Loss/physiology
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Liliya Shcherbina
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Mia Abels
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
33
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
34
|
Zhou W, Shao W, Zhang Y, Liu D, Liu M, Jin T. Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. Am J Physiol Endocrinol Metab 2020; 319:E568-E578. [PMID: 32723174 PMCID: PMC7839242 DOI: 10.1152/ajpendo.00292.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repurposing clinically used drugs is among the important strategies in drug discovery. Glucagon-like peptide-1 (GLP-1) and its diabetes-based drugs, such as liraglutide, possess a spectrum of extra-pancreatic functions, while GLP-1 receptor (GLP-1R) is most abundantly expressed in the lung. Recent studies have suggested that GLP-1-based drugs exert beneficial effects in chronic, as well as acute, lung injury rodent models. Here, we show that liraglutide pretreatment reduced LPS induced acute lung injury in mice. It significantly reduced lung injury score, wet/dry lung weight ratio, bronchoalveolar lavage fluid immune cell count and protein concentration, and cell apoptosis in the lung, and it was associated with reduced lung inflammatory cytokine and chemokine gene expression. Importantly, these effects were virtually absent in GLP-1R-/- mice. A well-known function of GLP-1 and GLP-based drugs in pancreatic β-cells is the attenuation of high-glucose stimulated expression of thioredoxin-interacting protein (TxNIP), a key component of inflammasome. LPS-challenged lungs showed elevated TxNIP mRNA and protein expression, which was attenuated by liraglutide treatment in a GLP-1R-dependent manner. Hence, our observations suggest that GLP-1R is essential in mediating beneficial effects of liraglutide in acute lung injury, with the inflammasome component TxNIP as a potential target.
Collapse
Affiliation(s)
- Wenyong Zhou
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weijuan Shao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dinghui Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingyao Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
The Unconventional Role for Gastric Volume in the Response to Bariatric Surgery for Both Weight Loss and Glucose Lowering. Ann Surg 2020; 271:1102-1109. [PMID: 30817350 DOI: 10.1097/sla.0000000000003240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To study the relationship between the amount of surgery-induced gastric volume reduction and long-term weight loss and glucose tolerance. BACKGROUND DATA Vertical sleeve gastrectomy (VSG) has recently surpassed gastric bypass to become the most popular surgical intervention to induce sustained weight loss. Besides inducing significant weight loss, VSG also improves glucose tolerance. Although no clear correlation has been observed between the size of the residual stomach and sustained weight loss, this begs the question whether less aggressive gastric volume reduction may provide sufficient efficacy when weight loss is not the major goal of the surgical intervention. METHODS A series of strategies to reduce gastric volume were developed and tested in Long Evans male rats, namely: VSG, Fundal (F)-Resection, Gastric Sleeve Plication (GSP), Fundal-Plication, and Fundal-Constrained. RESULTS All surgical interventions resulted in a reduction of gastric volume relative to sham, but none of the interventions were as effective as the VSG. Gastric volume was linearly correlated to increased gastric emptying rate as well as increased GLP-1 response. Overall, cumulative food intake was the strongest correlate to weight loss and was logarithmically related to gastric volume. Regression modeling revealed a nonlinear inverse relation between body weight reduction and gastric volume, confirming that VSG is the only effective long-term weight loss strategy among the experimental operations tested. CONCLUSIONS The data suggest a minimum threshold volume of the residual stomach that is necessary to induce sustained weight loss. Although all gastric volume interventions increased the GLP-1 response, none of the interventions, except VSG, significantly improved glucose tolerance. In conclusion, if weight loss is the primary goal of surgical intervention, significant volume reduction is required, and this most likely requires excising gastric tissue.
Collapse
|
36
|
Berthoud HR, Morrison CD, Münzberg H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol Behav 2020; 222:112959. [PMID: 32422162 DOI: 10.1016/j.physbeh.2020.112959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Ever since the pioneering discoveries in the mid nineteen hundreds, the hypothalamus was recognized as a crucial component of the neural system controlling appetite and energy balance. The new wave of neuron-specific research tools has confirmed this key role of the hypothalamus and has delineated many other brain areas to be part of an expanded neural system sub serving these crucial functions. However, despite significant progress in defining this complex neural circuitry, many questions remain. One of the key questions is why the sophisticated body weight regulatory system is unable to prevent the rampant obesity epidemic we are experiencing. Why are pathologically obese body weight levels defended, and what can we do about it? Here we try to find answers to these questions by 1) reminding the reader that the neural controls of ingestive behavior have evolved in a demanding, restrictive environment and encompass much of the brain's major functions, far beyond the hypothalamus and brainstem, 2) hypothesizing that the current obesogenic environment impinges mainly on a critical pathway linking hypothalamic areas with the motivational and reward systems to produce uncompensated hyperphagia, and 3) proposing adequate strategies for prevention and treatment.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
37
|
Hankir MK, Seyfried F. Do Bariatric Surgeries Enhance Brown/Beige Adipose Tissue Thermogenesis? Front Endocrinol (Lausanne) 2020; 11:275. [PMID: 32425889 PMCID: PMC7203442 DOI: 10.3389/fendo.2020.00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgeries induce marked and durable weight loss in individuals with morbid obesity through powerful effects on both food intake and energy expenditure. While alterations in gut-brain communication are increasingly implicated in the improved eating behavior following bariatric surgeries, less is known about the mechanistic basis for energy expenditure changes. Brown adipose tissue (BAT) and beige adipose tissue (BeAT) have emerged as major regulators of whole-body energy metabolism in humans as well as in rodents due to their ability to convert the chemical energy in circulating glucose and fatty acids into heat. In this Review, we critically discuss the steadily growing evidence from preclinical and clinical studies suggesting that Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), the two most commonly performed bariatric surgeries, enhance BAT/BeAT thermogenesis. We address the documented mechanisms, highlight study limitations and finish by outlining unanswered questions in the subject. Further understanding how and to what extent bariatric surgeries enhance BAT/BeAT thermogenesis may not only aid in the development of improved obesity pharmacotherapies that safely and optimally target both sides of the energy balance equation, but also in the development of novel hyperglycemia and/or hyperlipidemia pharmacotherapies.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
38
|
Li K, Zou J, Li S, Guo J, Shi W, Wang B, Han X, Zhang H, Zhang P, Miao Z, Li Y. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol Metab 2020; 37:100980. [PMID: 32305491 PMCID: PMC7182762 DOI: 10.1016/j.molmet.2020.100980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Objective Roux-en-Y gastric bypass surgery (RYGB) can achieve long-term remission of type 2 diabetes. However, the specific molecular mechanism through which this occurs has remained largely elusive. Bile acid signaling through the nuclear hormone receptor farnesoid X receptor (FXR) exerts beneficial effects after sleeve gastrectomy (VSG), which has similar effects to RYGB. Therefore, we investigated whether FXR signaling is necessary to mediate glycemic control after RYGB. Methods RYGB or sham surgery was performed in high-fat diet-induced obese FXR−/− (knockout) and FXR+/+ (wild type) littermates. Sham-operated mice were fed ad libitum (S-AL) or by weight matching (S-WM) to RYGB mice via caloric restriction. Body weight, body composition, food intake, energy expenditure, glucose tolerance tests, insulin tolerance tests, and homeostatic model assessment of insulin resistance were performed. Results RYGB surgery decreases body weight and fat mass in WT and FXR-KO mice. RYGB surgery has similar effects on food intake and energy expenditure independent of genotype. In addition, body weight-independent improvements in glucose control were attenuated in FXR −/− relative to FXR +/+ mice after RYGB. Furthermore, pharmacologic blockade of the glucagon-like peptide-1 receptor (GLP-1R) blunts the glucoregulatory effects of RYGB in FXR +/+ but not in FXR −/− mice at 4 weeks after surgery. Conclusions These results suggest that FXR signaling is not required for the weight loss up to 16 weeks after RYGB. Although most of the improvements in glucose homeostasis are secondary to RYGB-induced weight loss in wild type mice, FXR signaling contributes to glycemic control after RYGB in a body weight-independent manner, which might be mediated by an FXR-GLP-1 axis during the early postoperative period. The reduction in body weight after RYGB is independent of FXR, which is mainly due to a decrease in net energy intake. RYGB prevents the weight loss-induced decrease observed in nonsurgical weight-matched mice in both genotypes. FXR signaling contributes to glycemic control after RYGB in a body weight-independent manner. The early body weight-independent improvements in glucose homeostasis after RYGB might be mediated by an FXR-GLP-1 axis.
Collapse
Affiliation(s)
- Kun Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Jianan Zou
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Song Li
- School of Basic Medicine, Shandong First Medical University, Tai'an, 271000, PR China
| | - Jing Guo
- Discipline Planning Department, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Wentao Shi
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Bing Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Xiaodong Han
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Hongwei Zhang
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Pin Zhang
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Zengmin Miao
- School of Life Sciences, Shandong First Medical University, Tai'an, 271000, PR China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
39
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Dischinger U, Hasinger J, Königsrainer M, Corteville C, Otto C, Fassnacht M, Hankir M, Seyfried FJD. Toward a Medical Gastric Bypass: Chronic Feeding Studies With Liraglutide + PYY 3-36 Combination Therapy in Diet-Induced Obese Rats. Front Endocrinol (Lausanne) 2020; 11:598843. [PMID: 33551994 PMCID: PMC7862770 DOI: 10.3389/fendo.2020.598843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Combination therapies of anorectic gut hormones partially mimic the beneficial effects of bariatric surgery. Thus far, the effects of a combined chronic systemic administration of Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine 3-36 (PYY3-36) have not been directly compared to Roux-en-Y gastric bypass (RYGB) in a standardized experimental setting. METHODS High-fat diet (HFD)-induced obese male Wistar rats were randomized into six treatment groups: (1) RYGB, (2) sham-operation (shams), (3) liraglutide, (4) PYY3-36, (5) PYY3-36+liraglutide (6), saline. Animals were kept on a free choice high- and low-fat diet. Food intake, preference, and body weight were measured daily for 4 weeks. Open field (OP) and elevated plus maze (EPM) tests were performed. RESULTS RYGB reduced food intake and achieved sustained weight loss. Combined PYY3-36+liraglutide treatment led to similar and plateaued weight loss compared to RYGB. Combined PYY3-36+liraglutide treatment was superior to PYY3-36 (p ≤ 0.0001) and liraglutide (p ≤ 0.05 or p ≤ 0.01) mono-therapy. PYY3-36+liraglutide treatment and RYGB also reduced overall food intake and (less pronounced) high-fat preference compared to controls. The animals showed no signs of abnormal behavior in OF or EPM. CONCLUSIONS Liraglutide and PYY3-36 combination therapy vastly mimics reduced food intake, food choice and weight reducing benefits of RYGB.
Collapse
Affiliation(s)
- Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- *Correspondence: Ulrich Dischinger,
| | - Julia Hasinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Malina Königsrainer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Carolin Corteville
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mohamed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Florian Johannes David Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
42
|
Contreras RE, Schriever SC, Pfluger PT. Physiological and Epigenetic Features of Yoyo Dieting and Weight Control. Front Genet 2019; 10:1015. [PMID: 31921275 PMCID: PMC6917653 DOI: 10.3389/fgene.2019.01015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity and being overweight have become a worldwide epidemic affecting more than 1.9 billion adults and 340 million children. Efforts to curb this global health burden by developing effective long-term non-surgical weight loss interventions continue to fail due to weight regain after weight loss. Weight cycling, often referred to as Yoyo dieting, is driven by physiological counter-regulatory mechanisms that aim at preserving energy, i.e. decreased energy expenditure, increased energy intake, and impaired brain-periphery communication. Models based on genetically determined set points explained some of the weight control mechanisms, but exact molecular underpinnings remained elusive. Today, gene–environment interactions begin to emerge as likely drivers for the obesogenic memory effect associated with weight cycling. Here, epigenetic mechanisms, including histone modifications and DNA methylation, appear as likely factors that underpin long-lasting deleterious adaptations or an imprinted obesogenic memory to prevent weight loss maintenance. The first part summarizes our current knowledge on the physiology of weight cycling by discussing human and murine studies on the Yoyo-dieting phenomenon and physiological adaptations associated with weight loss and weight re-gain. The second part provides an overview on known associations between obesity and epigenetic modifications. We further interrogate the roles of epigenetic mechanisms in the CNS control of cognitive functions as well as reward and addictive behaviors, and subsequently discuss whether such mechanisms play a role in weight control. The final two parts describe major opportunities and challenges associated with studying epigenetic mechanisms in the CNS with its highly heterogenous cell populations, and provide a summary of recent technological advances that will help to delineate whether an obese memory is based upon epigenetic mechanisms.
Collapse
Affiliation(s)
- Raian E Contreras
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW We seek to characterize the impact of bariatric surgery on diabetes mellitus by recalling its history, examining the clinical data, exploring the putative mechanisms of action, and anticipating its future. RECENT FINDINGS Results of clinical trials reveal that bariatric surgery induces remission of diabetes in 33-90% of individuals at 1-year post-treatment versus 0-39% of medically managed. Remission rates decrease over time but remain higher in surgically treated individuals. Investigations have revealed numerous actions of surgery including effects on intestinal physiology, neuronal signaling, incretin hormone secretion, bile acid metabolism, and microbiome changes. Bariatric surgery improves control of diabetes through both weight-dependent and weight-independent actions. These various mechanisms help explain the difference between individuals treated surgically vs. medically. They also explain differing effects of various bariatric surgery procedure types. Understanding how surgery affects diabetes will help optimize utilization of the therapy for both disease prevention and treatment.
Collapse
Affiliation(s)
- Alison H Affinati
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Lobby G, Suite 1500, Ann Arbor, MI, 48106-0482, USA
| | - Nazanene H Esfandiari
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Lobby G, Suite 1500, Ann Arbor, MI, 48106-0482, USA
| | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Lobby G, Suite 1500, Ann Arbor, MI, 48106-0482, USA
| | - Andrew T Kraftson
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Lobby G, Suite 1500, Ann Arbor, MI, 48106-0482, USA.
| |
Collapse
|
44
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1087] [Impact Index Per Article: 181.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
45
|
Barataud A, Vily-Petit J, Goncalves D, Zitoun C, Duchampt A, Philippe E, Gautier-Stein A, Mithieux G. Metabolic benefits of gastric bypass surgery in the mouse: The role of fecal losses. Mol Metab 2019; 31:14-23. [PMID: 31918916 PMCID: PMC6880100 DOI: 10.1016/j.molmet.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Roux-en-Y gastric surgery (RYGB) promotes a rapid and sustained weight loss and amelioration of glucose control in obese patients. A high number of molecular hypotheses were previously tested using duodenal-jejunal bypass (DJB) performed in various genetic models of mice with knockouts for various hormones or receptors. The data were globally negative or inconsistent. Therefore, the mechanisms remained elusive. Intestinal gluconeogenesis is a gut function that has been suggested to contribute to the metabolic benefits of RYGB in obese patients. Methods We studied the effects of DJB on body weight and glucose control in obese mice fed a high fat-high sucrose diet. Wild type mice and mice with a genetic suppression of intestinal gluconeogenesis were studied in parallel using glucose- and insulin-tolerance tests. Fecal losses, including excretion of lipids, were studied from the feces recovered in metabolic cages. Results DJB induced a dramatic decrease in body weight and improvement in glucose control (glucose- and insulin-tolerance) in obese wild type mice fed a high calorie diet, for 25 days after the surgery. The DJB-induced decrease in food intake was transient and resumed to normal in 7–8 days, suggesting that decreased food intake could not account for the benefits. Total fecal losses were about 5 times and lipid losses 7 times higher in DJB-mice than in control (sham-operated and pair-fed) mice, and could account for the weight loss of mice. The results were comparable in mice with suppression of intestinal gluconeogenesis. There was no effect of DJB on food intake, body weight or fecal loss in lean mice fed a normal chow diet. Conclusions DJB in obese mice fed a high calorie diet promotes dramatic fecal loss, which could account for the dramatic weight loss and metabolic benefits observed. This could dominate the effects of the mouse genotype/phenotype. Thus, fecal energy loss should be considered as an essential process contributing to the metabolic benefits of DJB in obese mice. Duodenal-jejunal bypass (DJB) promotes weight loss in mice fed a high calorie diet. DJB induces dramatic fecal energy losses in mice fed a high calorie diet. DJB has no effect in mice fed a control (starch-based) diet. There is no fecal losses in DJB-mice fed a control diet. Fecal energy loss is a cause of body weight loss in DJB-mice fed high calorie diet.
Collapse
Affiliation(s)
- Aude Barataud
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Justine Vily-Petit
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Daisy Goncalves
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Adeline Duchampt
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Erwann Philippe
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France.
| |
Collapse
|
46
|
Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss. Sci Rep 2019; 9:16161. [PMID: 31695063 PMCID: PMC6834618 DOI: 10.1038/s41598-019-52257-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.
Collapse
|
47
|
Du J, Hu C, Bai J, Peng M, Wang Q, Zhao N, Wang Y, Wang G, Tao K, Wang G, Xia Z. Intestinal Glucose Absorption Was Reduced by Vertical Sleeve Gastrectomy via Decreased Gastric Leptin Secretion. Obes Surg 2019; 28:3851-3861. [PMID: 29915972 DOI: 10.1007/s11695-018-3351-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The unique effects of gastric resection after vertical sleeve gastrectomy (VSG) on type 2 diabetes mellitus remain unclear. This work aimed to investigate the effects of VSG on gastric leptin expression and intestinal glucose absorption in high-fat diet-induced obesity. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. HFD mice were randomized into VSG and sham-operation groups, and the relevant parameters were measured at 8 weeks postoperation. RESULTS Higher gastric leptin expression and increased intestinal glucose transport were observed in the HFD mice. Furthermore, VSG reduced gastric leptin expression and the intestinal absorption of alimentary glucose. Both exogenous leptin replenishment during the oral glucose tolerance test (OGTT) and the addition of leptin into the everted isolated jejunum loops in vitro restored the glucose transport capacity in VSG-operated mice, and this effect was abolished when the glucose transporter GLUT2 was blocked with phloretin. Moreover, phloretin almost completely suppressed glucose transport in the HFD mice. Intestinal immunohistochemistry in the obese mice showed increased GLUT2 and diminished sodium glucose co-transporter 1 (SGLT-1) in the apical membrane of enterocytes. Decreased GLUT2 and enhanced SGLT1 were observed following VSG. VSG also reduced the phosphorylation status of protein kinase C isoenzyme β II (PKCβ II) in the jejunum, which was stimulated by the combination of leptin and glucose. CONCLUSION Our data demonstrated that the decreased secretion of gastric leptin in VSG results in a decrease in intestinal glucose absorption via modulation of GLUT2 translocation.
Collapse
Affiliation(s)
- Jinpeng Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chaojie Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qingbo Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Zefeng Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
48
|
GLP-1 and PYY3-36 reduce high-fat food preference additively after Roux-en-Y gastric bypass in diet-induced obese rats. Surg Obes Relat Dis 2019; 15:1483-1492. [DOI: 10.1016/j.soard.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 01/16/2023]
|
49
|
Zhang C, Rigbolt K, Petersen SL, Biehl Rudkjær LC, Schwahn U, Fernandez-Cachon ML, Bossart M, Falkenhahn M, Theis S, Hübschle T, Schmidt T, Just Larsen P, Vrang N, Jelsing J. The preprohormone expression profile of enteroendocrine cells following Roux-en-Y gastric bypass in rats. Peptides 2019; 118:170100. [PMID: 31212005 DOI: 10.1016/j.peptides.2019.170100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.
Collapse
Affiliation(s)
| | | | | | | | - Uwe Schwahn
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Martin Bossart
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Stefan Theis
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Stefater MA. Comment on: GLP-1 and PYY 3-36 reduce high-fat food preference additively after Roux-en-Y gastric bypass in diet-induced obese rats. Surg Obes Relat Dis 2019; 15:1492-1493. [PMID: 31262647 DOI: 10.1016/j.soard.2019.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Margaret A Stefater
- Division of Endocrinology, Boston Children's Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|