1
|
Mondello JE, Gano A, Vore AS, Deak T. Cues associated with repeated ethanol exposure facilitate the corticosterone response to ethanol and immunological challenges in adult male Sprague Dawley rats: implications for neuroimmune regulation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:359-369. [PMID: 36862971 PMCID: PMC10474242 DOI: 10.1080/00952990.2023.2169831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
Background: We previously found a conditioned increase in central neuroinflammatory markers (Interleukin 6; IL-6) following exposure to alcohol-associated cues. Recent studies suggest (unconditioned) induction of IL-6 is entirely dependent on ethanol-induced corticosterone.Objectives: The goals of these present studies were to test whether alcohol-paired cues facilitated the hypothalamic-pituitary-adrenal (HPA) axis response to either a subthreshold priming alcohol dose or an immune or psychological stress challengeMethods: In Experiment 1 (N = 64), adult male Sprague Dawley rats were trained (paired or unpaired, four pairings total) with either vehicle or 2 g/kg alcohol [intragastric (i.g.) or intraperitoneal (i.p.)] injections. In Experiments 2 (N = 28) and 3 (N = 30), male rats were similarly trained but with 4 g/kg alcohol i.g. intubations. On test day, all rats were either administered a 0.5 g/kg alcohol dose (i.p. or i.g. Experiment 1), a 100 µg/kg i.p. lipopolysaccharide (LPS) challenge (Experiment 2), or a restraint challenge (Experiment 3), and exposed to alcohol-associated cues. Blood plasma was collected for analysis.Results: Alcohol-associated cues facilitated the plasma corticosterone response to a subthreshold dose of alcohol (F1,28 = 4.85, p < .05) and an immune challenge (F8,80 = 6.23, p < .001), but not a restraint challenge (F2,27 = 0.18, p > .05).Conclusion: These findings reveal that the impact of the cues associated with alcohol intoxication on the HPA axis may be context-specific. This work illustrates how HPA axis learning processes form in the early stages of alcohol use and has important implications for how the HPA and neuroimmune conditioning may develop in alcohol use disorder in humans and facilitate the response to a later immune challenge.
Collapse
Affiliation(s)
- Jamie E. Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| |
Collapse
|
2
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|
3
|
Figueiredo ACD, Titon SC, Titon Jr. B, Vasconcelos-Teixeira R, Barsotti AM, Gomes FR. Systemic hormonal and immune regulation induced by intraperitoneal LPS injection in bullfrogs (Lithobates catesbeianus). Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110872. [DOI: 10.1016/j.cbpa.2020.110872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
|
4
|
Kosyreva AM, Dzhalilova DS, Makarova OV, Tsvetkov IS, Zolotova NA, Diatroptova MA, Ponomarenko EA, Mkhitarov VA, Khochanskiy DN, Mikhailova LP. Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS. Sci Rep 2020; 10:15884. [PMID: 32985516 PMCID: PMC7522713 DOI: 10.1038/s41598-020-72537-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
It is a common fact, that the content of sex hormones in humans and animals varies in different age periods. The functional state of the immune system also changes with age. However, sex differences studies of inflammatory and immune responses during puberty prevail in literature. Investigation of immune responses to LPS peculiarities in prepubertal females and males may contribute to the development of more effective immunotherapy and minimize side effects of children vaccination. Therefore, the aim of this work was to investigate the LPS-induced SIRS sex differences in prepubertal Wistar rats. Despite the absence of sex differences in estradiol and testosterone levels, LPS-induced inflammatory changes in liver and lungs are more pronounced among males. Males demonstrate the increasing neopterin, corticosterone levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Not less important is that in females, demonstrating less morphological changes in liver and lungs, endotoxin level is tenfold higher, and corticosterone level decreases. Thus, endotoxin cannot be used as a marker of the severity of multiple organ failure in prepubertal period. The LPS-induced immune reactions in females and males are similar and are characterized by immunosuppression. Both females and males have decreased production of cytokines (IL-2, IL-4, TNF-α, TGF-β) and the absolute number of CD3 + and CD3 + CD8 + lymphocytes in blood. The acute atrophy of thymus and apoptosis of thymic cells are revealed in animals of both sexes. However, the number of CD3 + CD4 + T-helpers and CD4 + CD25 + Foxp3 + T-cells decreases only in females with SIRS, and in males there was a decrease of CD45R + B-cells. The least expressed sex differences in immune responses in the prepubertal period can be determined by the low levels of sex steroids and the absence of their immunomodulatory effect. Further studies require the identification of mechanisms, determining the sex differences in the inflammatory and immune responses in prepubertal animals.
Collapse
Affiliation(s)
- Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia. .,Medical Institute of Peoples' Friendship, University of Russia (RUDN University), Moscow, Russia.
| | - Dzhuliia Sh Dzhalilova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Ivan S Tsvetkov
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Natalia A Zolotova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Marina A Diatroptova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Elena A Ponomarenko
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Vladimir A Mkhitarov
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Dmitriy N Khochanskiy
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Liliya P Mikhailova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| |
Collapse
|
5
|
Yousefi M, Jonaidi H, Sadeghi B. Influence of peripheral lipopolysaccharide (LPS) on feed intake, body temperature and hypothalamic expression of neuropeptides involved in appetite regulation in broilers and layer chicks. Br Poult Sci 2020; 62:110-117. [PMID: 32820660 DOI: 10.1080/00071668.2020.1813254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. This study examined the expression of genes related to appetite-regulating neuropeptides in the hypothalamus of broiler and layer chicks (Gallus gallus) after intraperitoneal (IP) injection of lipopolysaccharide (LPS). 2. Both broiler and layer chicks received (n = 10 per group) LPS at doses of 0 and 200 µg and feed intake was measured up to 6 h after injection. In a further experiment, (n = 8 per group) mRNA abundance of some hypothalamic neuropeptides was measured 2 h after injection. The rectal temperature of each chick was measured before and 2 h post-injection. 3. Feed intake was significantly decreased by LPS from 2 h after injection and thereafter, while the rectal temperature did not change. 4. LPS decreased the expression of appetite-enhancing neuropeptides: neuropeptide Y (NPY) and agouti-related peptide (AgRP) in broilers and, NPY in layer chicks. The expression of appetite-suppressing neuropeptides (corticotrophin-releasing factor (CRF), proopiomelanocortin (POMC) and, cocaine and amphetamine regulated-transcript (CART) was not changed in broilers, while CRF tended to decrease and POMC was significantly decreased in layers. The abundance of the cytokine tumour necrosis factor-alpha (TNF-α) did not change in broilers but was decreased in layers. 5. The findings indicated that the reduction in gene expression of hypothalamic appetite-enhancing neuropeptides NPY and AgRP is responsible for anorexia caused by LPS at a dose that did not influence body temperature.
Collapse
Affiliation(s)
- M Yousefi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - H Jonaidi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - B Sadeghi
- Division of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| |
Collapse
|
6
|
LPS-induced sickness behavior is not affected by selenium but is switched off by psychogenic stress in rats. Vet Res Commun 2019; 43:239-247. [PMID: 31760569 DOI: 10.1007/s11259-019-09766-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.
Collapse
|
7
|
Zenz G, Jačan A, Reichmann F, Farzi A, Holzer P. Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Front Neurosci 2019; 13:359. [PMID: 31057355 PMCID: PMC6478699 DOI: 10.3389/fnins.2019.00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Intermitted fasting and other forms of calorie restriction are increasingly demonstrated to exert potential health benefits. Interestingly, restricted feeding is also able to mitigate sickness in response to bacterial factors stimulating Toll-like receptor 4 (TLR4). However, little is known about how fasting modifies the activity of virus-associated molecular patterns. We therefore analyzed the impact of an intermittent fasting (IF) regimen on the immune and behavioral response to the TLR3 agonist and viral mimic polyinosinic:polycytidylic acid [Poly(I:C)] in mice. The effects of intraperitoneally injected Poly(I:C) (12 mg/kg) on plasma and cerebral cytokine expression and behavior (locomotion, exploration, and ingestion) were examined in male C57BL/6N mice under control conditions and following a 9 days period of intermittent (alternate day) fasting (IF). Poly(I:C) increased the circulating levels of cytokines (TNF-α, MCP-1, IL-6, IL-10, IFN-α, IFN-γ), an effect amplified by IF. In addition, IF aggravated sickness behavior in response to Poly(I:C), while cerebral cytokine expression was enhanced by application of Poly(I:C) in the absence of a significant effect of IF. Furthermore, IF augmented the expression of neuropeptide Y (NPY) mRNA in the hypothalamus and increased the plasma levels of corticosterone, while Poly(I:C) had little effect on these readouts. Our data show that IF does not abate, but exaggerates the immune and sickness response to the viral mimic Poly(I:C). This adverse effect of IF occurs despite increased hypothalamic NPY expression and enhanced plasma corticosterone. We therefore propose that the effects of IF on the immune and behavioral responses to viral and bacterial factors are subject to different neuronal and neuroendocrine control mechanisms.
Collapse
Affiliation(s)
- Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
8
|
Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019; 14:e0214317. [PMID: 30921373 PMCID: PMC6438475 DOI: 10.1371/journal.pone.0214317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.
Collapse
|
9
|
Bekhbat M, Howell PA, Rowson SA, Kelly SD, Tansey MG, Neigh GN. Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain Behav Immun 2019; 76:248-257. [PMID: 30550932 PMCID: PMC6886374 DOI: 10.1016/j.bbi.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Adversity during development is a reliable predictor of psychiatric disorders such as depression and anxiety which are increasingly recognized to have an immune component. We have previously demonstrated that chronic adolescent stress (CAS) in rats leads to depressive-like behavior in adulthood along with long-lasting changes to the hypothalamic-pituitary-adrenal axis and pro-inflammatory cytokine induction in the hippocampus. However, the mechanisms by which CAS promotes hippocampal inflammation are not yet defined. Here we tested the hypothesis that a history of CAS exaggerates induction of the pro-inflammatory NFκB pathway in the adult rat hippocampus without compromising the peripheral immune response. We also assessed potential sex differences because it is unclear whether females, who are twice as likely to suffer from mood disorders as males, are disproportionally affected by stress-primed inflammation. Male and female adolescent rats underwent a CAS paradigm or received no stress. Six weeks following the last stressor, all rats received a single systemic injection of either lipopolysaccharide or vehicle to unmask possible immune-priming effects of CAS. An NFκB signaling PCR array demonstrated that CAS exaggerated the expression of NFκB-related genes in the hippocampus of both males and females. Interestingly, targeted qPCR demonstrated that CAS potentiated the induction of hippocampal IL1B and REL mRNA in female rats only, suggesting that some immune effects of CAS are indeed sex-specific. In contrast to the hippocampal findings, indices of peripheral inflammation such as NFκB activity in the spleen, plasma IL-1β, IL-6, TNF-α, and corticosterone were not impacted by CAS in female rats. Despite showing no pro-inflammatory changes to hippocampal mRNA, male CAS rats displayed lower plasma corticosterone response to LPS at 2 h after injection followed by an exaggerated plasma IL-1β response at 4 h. This potentially blunted corticosterone response coupled with excessive innate immune signaling in the periphery is consistent with possible glucocorticoid resistance in males. In contrast, the effects of CAS manifested as excessive hippocampal immune reactivity in females. We conclude that while a history of exposure to chronic adolescent stress enhances adult immune reactivity in both males and females, the mechanism and manifestation of such alterations are sex-specific.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University Graduate Division of Biological Sciences Neuroscience Graduate Program
| | - Paul A. Howell
- Virginia Commonwealth University, Department of Anatomy & Neurobiology
| | - Sydney A. Rowson
- Emory University Graduate Division of Biological Sciences Molecular and Systems Pharmacology Graduate Studies Program
| | | | | | - Gretchen N. Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology,Corresponding Author: Gretchen N. Neigh, PhD, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980709, Richmond, VA 23298, V: 804-628-5152, F: 804-828-9477,
| |
Collapse
|
10
|
Nie W, Wang B, Gao J, Guo Y, Wang Z. Effects of dietary phosphorous supplementation on laying performance, egg quality, bone health and immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. J Anim Sci Biotechnol 2018; 9:53. [PMID: 30123501 PMCID: PMC6088422 DOI: 10.1186/s40104-018-0271-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phosphorus is an essential nutrient to maintain poultry health and performance. The objective of this study was to evaluate the effect of dietary phosphorus levels on egg production, egg quality, bone health, immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. Methods Three hundred laying hens at 28 wk were randomly divided into 2 dietary treatments with 10 replicates of 15 birds. The wheat-soybean based diets contained either 0.12% or 0.4% non-phytate phosphorus (NPP). At 32 wk of age, all the birds of each dietary treatment were injected into the abdomen with 1.5 mg/kg body weight (BW) of either LPS or saline once a day at 24-h intervals for continuous 9 d. The performance of laying hens was evaluated for 9 d. The eggs after the fifth injection were collected to value the egg quality. Three hours after the first injection, blood was collected to measure serum metabolite and immune response associated parameters. Three hours after the fifth injection, the hens were euthanized to obtain tibia, cecal tonsils and jejunum. Results Compared with saline-injected hens, LPS-injected hens had lower feed intake and egg production (P < 0.05). Eggshell thickness, strength, albumin height and Haugh unit were significantly increased in LPS-injected hens compared with saline-injected hens (P < 0.05). Furthermore, laying hens challenged with LPS had lower villious height/ crypt depth ration than those received saline. Serum calcium, phosphorus and SOD activities significantly decreased in the LPS-injected hens compared with the control (P < 0.05). LPS up-regulated expression of IL-1β, IL-6 and IL-10 in cecum, and serum concentration of MDA, IL-1β and IL-6 (P < 0.05), whereas 0.40% dietary non-phytate phosphorus supplementation significantly increased (P < 0.05) villi height/crypt depth ratio, decreased (P < 0.05) serum MDA and IFN-γ concentration compared with the 0.12% non-phytate phosphorus group. Conclusion In summary, this study demonstrates that 0.40% dietary non-phytate phosphorus supplementation significantly increased calcium and phosphorus levels of eggshell, increased villi height/crypt depth ratio, decreased serum MDA and IFN-γ concentration compared with the 0.12% non-phytate phosphorus groups. The results indicate that high level of dietary non-phytate phosphorus exerts a potential effect in alleviating systemic inflammation of LPS-challenged laying hens.
Collapse
Affiliation(s)
- Wei Nie
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Bo Wang
- 2Department of Animal Science, Washington State University, Pullman, Washington USA
| | - Jing Gao
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zhong Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
11
|
Masuda J, Shigehiro T, Matsumoto T, Satoh A, Mizutani A, Umemura C, Saito S, Kijihira M, Takayama E, Seno A, Murakami H, Seno M. Cytokine Expression and Macrophage Localization in Xenograft and Allograft Tumor Models Stimulated with Lipopolysaccharide. Int J Mol Sci 2018; 19:ijms19041261. [PMID: 29690614 PMCID: PMC5979423 DOI: 10.3390/ijms19041261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
T cell-deficient mice such as nude mice are often used to generate tumor xenograft for the development of anticancer agents. However, the functionality of the other immune cells including macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs) in the xenograft are largely unknown. Macrophages and dendritic cells (DCs) acquire functionally distinct properties in response to various environmental stimuli; the interaction of these cells with MDSCs in tumor microenvironments regulates cancer progression. Nude mice are less likely to reject human cancer cells because of major histocompatibility complex (MHC) mismatches. The tumor microenvironment in a xenograft, comprising human and mouse cells, exhibits more complex bidirectional signaling and function than that of allograft. Here, we evaluated the differences of myeloid cells between them. Plasma interferon-γ and interleukin-18 concentrations in the xenograft tumor model after lipopolysaccharide (LPS) administration were significantly higher than those in the allograft tumor model. MHC class I, II, and CD80 expression levels were increased in CD11b+ and MDSC populations after LPS administration in the spleen of a xenograft tumor model but not in that of an allograft tumor model. Additionally, the number of CD80- and mannose receptor C type 1 (MRC1)-expressing cells was decreased upon LPS administration in the tumor of the xenograft tumor. These results suggest that functions of macrophages and DCs are sustained in the xenograft, whereas their functions in response to LPS were suppressed in the allograft. The findings will encourage the consideration of the effects of myeloid cells in the xenograft for drug development.
Collapse
Affiliation(s)
- Junko Masuda
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsukasa Shigehiro
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Takuma Matsumoto
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Ayano Satoh
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Akifumi Mizutani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Chiho Umemura
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Shoki Saito
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Mayumi Kijihira
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan.
| | - Eiji Takayama
- Department of Oral Biochemistry, School of Dentistry, Asahi University, Gifu 501-0223, Japan.
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Hiroshi Murakami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
12
|
Kelly KA, Michalovicz LT, Miller JV, Castranova V, Miller DB, O’Callaghan JP. Prior exposure to corticosterone markedly enhances and prolongs the neuroinflammatory response to systemic challenge with LPS. PLoS One 2018; 13:e0190546. [PMID: 29304053 PMCID: PMC5755880 DOI: 10.1371/journal.pone.0190546] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
Systemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.g., lethargy, anhedonia, anorexia, depression, etc.) termed sickness behavior. Stressors have been shown to interact with and alter neuroinflammatory responses and associated behaviors. Here, we examined the effects of the stress hormone, corticosterone (CORT), as a stressor mimic, on neuroinflammation induced with a single injection (2mg/kg, s.c.) or inhalation exposure (7.5 μg/m3) of LPS or polyinosinic:polycytidylic acid (PIC; 12mg/kg, i.p.) in adult male C57BL/6J mice. CORT was given in the drinking water (200 mg/L) for 1 week or every other week for 90 days followed by LPS. Proinflammatory cytokine expression (TNFα, IL-6, CCL2, IL-1β, LIF, and OSM) was measured by qPCR. The activation of the neuroinflammation downstream signaling activator, STAT3, was assessed by immunoblot of pSTAT3Tyr705. The presence of astrogliosis was assessed by immunoassay of GFAP. Acute exposure to LPS caused brain-wide neuroinflammation without producing astrogliosis; exposure to CORT for 1 week caused marked exacerbation of the LPS-induced neuroinflammation. This neuroinflammatory "priming" by CORT was so pronounced that sub-neuroinflammatory exposures by inhalation instigated neuroinflammation when paired with prior CORT exposure. This effect also was extended to another common inflammagen, PIC (a viral mimic). Furthermore, a single week of CORT exposure maintained the potential for priming for 30 days, while intermittent exposure to CORT for up to 90 days synergistically primed the LPS-induced neuroinflammatory response. These findings highlight the possibility for an isolated inflammatory event to be exacerbated by a temporally distant stressful stimulus and demonstrates the potential for recurrent stress to greatly aggravate chronic inflammatory disorders.
Collapse
Affiliation(s)
- Kimberly A. Kelly
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Lindsay T. Michalovicz
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Julie V. Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Diane B. Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - James P. O’Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
13
|
Cerebral Response to Peripheral Challenge with a Viral Mimetic. Neurochem Res 2015; 41:144-55. [PMID: 26526143 DOI: 10.1007/s11064-015-1746-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
It has been well established that peripheral inflammation resulting from microbial infections profoundly alters brain function. This review focuses on experimental systems that model cerebral effects of peripheral viral challenge. The most common models employ the induction of the acute phase response via intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). The ensuing transient surge of blood-borne inflammatory mediators induces a "mirror" inflammatory response in the brain characterized by the upregulated expression of a plethora of genes encoding cytokines, chemokines and other inflammatory/stress proteins. These inflammatory mediators modify the activity of neuronal networks leading to a constellation of behavioral traits collectively categorized as the sickness behavior. Sickness behavior is an important protective response of the host that has evolved to enhance survival and limit the spread of infections within a population. However, a growing body of clinical data indicates that the activation of inflammatory pathways in the brain may constitute a serious comorbidity factor for neuropathological conditions. Such comorbidity has been demonstrated using the PIC paradigm in experimental models of Alzheimer's disease, prion disease and seizures. Also, prenatal or perinatal PIC challenge has been shown to disrupt normal cerebral development of the offspring resulting in phenotypes consistent with neuropsychiatric disorders, such as schizophrenia and autism. Remarkably, recent studies indicate that mild peripheral PIC challenge may be neuroprotective in stroke. Altogether, the PIC challenge paradigm represents a unique heuristic model to elucidate the immune-to-brain communication pathways and to explore preventive strategies for neuropathological disorders.
Collapse
|
14
|
Miyata S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 2015; 9:390. [PMID: 26578857 PMCID: PMC4621430 DOI: 10.3389/fnins.2015.00390] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of which affect vascular permeability. Thus, recent findings advocate novel concepts for the CVOs, which have the dynamic features of vascular and parenchymal tissues.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
15
|
Michalovicz LT, Lally B, Konat GW. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus. J Neuroimmunol 2015. [PMID: 26198930 DOI: 10.1016/j.jneuroim.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene encoding complement factor B (CfB) exhibited the highest response, and its upregulation was commensurate with the development of hyperexcitability. Collectively, these results suggest that the induction of hippocampal hyperexcitability may be mediated by the alternative complement cascades.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 1 Medical Center Dr., Morgantown, WV 26506-9128, USA
| | - Brent Lally
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 1 Medical Center Dr., Morgantown, WV 26506-9128, USA
| | - Gregory W Konat
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 1 Medical Center Dr., Morgantown, WV 26506-9128, USA.
| |
Collapse
|
16
|
Kirsten TB, Galvão MC, Reis-Silva TM, Queiroz-Hazarbassanov N, Bernardi MM. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats. PLoS One 2015; 10:e0120263. [PMID: 25775356 PMCID: PMC4361539 DOI: 10.1371/journal.pone.0120263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS), an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α), corticosterone, and brain-derived neurotrophic factor (BDNF) plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.
Collapse
Affiliation(s)
- Thiago B. Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Marcella C. Galvão
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Reis-Silva
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Maria M. Bernardi
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
17
|
Doremus-Fitzwater TL, Gano A, Paniccia JE, Deak T. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiol Behav 2015; 148:131-44. [PMID: 25708278 DOI: 10.1016/j.physbeh.2015.02.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31-33days of age) and adult (69-71days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250μg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3h later for measurement of blood ethanol concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. ethanol challenge, IL-6 and IκBα expression was significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS, no corresponding elevations were seen in adolescents after LPS; and (ii) neither adolescents nor adults demonstrated increases in plasma endotoxin concentrations following i.p. or i.g. ethanol administration. Analysis of BECs indicated that, for both routes of exposure, adolescents exhibited lower BECs than adults. Taken together, these data suggest that categorically different mechanisms are involved in the central cytokine response to antigen exposure versus ethanol administration. Furthermore, these findings confirm once again that acute ethanol intoxication is a potent activator of brain cytokines, and calls for future studies to identify the mechanisms underlying age-related differences in the cytokine response observed during ethanol intoxication.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Jacqueline E Paniccia
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| |
Collapse
|
18
|
Farzi A, Reichmann F, Meinitzer A, Mayerhofer R, Jain P, Hassan AM, Fröhlich EE, Wagner K, Painsipp E, Rinner B, Holzer P. Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain Behav Immun 2015; 44:106-20. [PMID: 25218901 PMCID: PMC4295938 DOI: 10.1016/j.bbi.2014.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.
Collapse
Affiliation(s)
- Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Ahmed M. Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E. Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Karin Wagner
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Beate Rinner
- Core Facility Flow Cytometry, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|
19
|
Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C, Cortes PP. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Front Physiol 2014; 5:489. [PMID: 25566088 PMCID: PMC4266021 DOI: 10.3389/fphys.2014.00489] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023] Open
Abstract
Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation.
Collapse
Affiliation(s)
- Ricardo Fernandez
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Gino Nardocci
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Cristina Navarro
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana - Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Paula P Cortes
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile ; BioAdvising Santiago, Chile
| |
Collapse
|
20
|
Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity. J Neuroinflammation 2014; 11:87. [PMID: 24886524 PMCID: PMC4030274 DOI: 10.1186/1742-2094-11-87] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. Methods To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. Results We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Conclusions Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.
Collapse
|
21
|
Michalovicz LT, Konat GW. Peripherally restricted acute phase response to a viral mimic alters hippocampal gene expression. Metab Brain Dis 2014; 29:75-86. [PMID: 24363211 PMCID: PMC4343041 DOI: 10.1007/s11011-013-9471-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/26/2022]
Abstract
We have previously shown that peripherally restricted acute phase response (APR) elicited by intraperitoneal (i.p.) injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), renders the brain hypersusceptible to excitotoxic insult as seen from profoundly exacerbated kainic acid (KA)-induced seizures. In the present study, we found that this hypersusceptibility was protracted for up to 72 h. RT-PCR profiling of hippocampal gene expression revealed rapid upregulation of 23 genes encoding cytokines, chemokines and chemokine receptors generally within 6 h after PIC challenge. The expression of most of these genes decreased by 24 h. However, two chemokine genes, i.e., Ccl19 and Cxcl13 genes, as well as two chemokine receptor genes, Ccr1 and Ccr7, remained upregulated for 72 h suggesting their possible involvement in the induction and sustenance of seizure hypersusceptibility. Also, 12 genes encoding proteins related to glutamatergic and GABAergic neurotransmission featured initial upregulation or downregulation followed by gradual normalization. The upregulation of the Gabrr3 gene remained upregulated at 72 h, congruent with its plausible role in the hypersusceptible phenotype. Moreover, the expression of ten microRNAs (miRs) was rapidly affected by PIC challenge, but their levels generally exhibited oscillating profiles over the time course of seizure hypersusceptibility. These results indicate that protracted seizure susceptibility following peripheral APR is associated with a robust polygenic response in the hippocampus.
Collapse
|
22
|
Kirsten TB, Lippi LL, Bevilacqua E, Bernardi MM. LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Β levels in adult rat offspring: relevance to autism. PLoS One 2013; 8:e82244. [PMID: 24312647 PMCID: PMC3846733 DOI: 10.1371/journal.pone.0082244] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022] Open
Abstract
Maternal immune activation can induce neuropsychiatric disorders, such as autism and schizophrenia. Previous investigations by our group have shown that prenatal treatment of rats on gestation day 9.5 with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally), which mimics infections by gram-negative bacteria, induced autism-like behavior in male rats, including impaired communication and socialization and induced repetitive/restricted behavior. However, the behavior of female rats was unchanged. Little is known about how LPS-induced changes in the pregnant dam subsequently affect the developing fetus and the fetal immune system. The present study evaluated the hypothalamic-pituitary-adrenal (HPA) axis activity, the placental tissue and the reproductive performance of pregnant Wistar rats exposed to LPS. In the adult offspring, we evaluated the HPA axis and pro-inflammatory cytokine levels with or without a LPS challenge. LPS exposure increased maternal serum corticosterone levels, injured placental tissue and led to higher post-implantation loss, resulting in fewer live fetuses. The HPA axis was not affected in adult offspring. However, prenatal LPS exposure increased IL-1β serum levels, revealing that prenatal LPS exposure modified the immune response to a LPS challenge in adulthood. Increased IL-1β levels have been reported in several autistic patients. Together with our previous studies, our model induced autistic-like behavioral and immune disturbances in childhood and adulthood, indicating that it is a robust rat model of autism.
Collapse
Affiliation(s)
- Thiago B. Kirsten
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, São Paulo, Brazil
- * E-mail:
| | - Luciana L. Lippi
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, São Paulo, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, São Paulo, Brazil
| | - Maria M. Bernardi
- Graduate Program of Environmental and Experimental Pathology and Graduate Program of Dentistry, Paulista University, Sao Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Polat H, Mamuk S, Akarsu ES. Hormonal synchronization of lipopolysaccharide-induced hypothermic response in rats. J Endocrinol Invest 2013; 36:816-24. [PMID: 23612418 DOI: 10.3275/8945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent experimental evidence suggests that lipopolysaccharide (LPS)-induced hypothermia is an adaptive thermoregulatory strategy against immunological challenge in rats. We hypothesized that the hormones which are predominantly responsible for energy homeostasis may have efferent signaling roles for development of the hypothermia. AIM The aim of the study was to evaluate the changes of hypothalamic-pituitary-thyroid (HPT) and hypothalamic- pituitary-adrenal (HPA) axis hormones, leptin and erythropoietin at various phases of LPS-induced hypothermia such as the initial phase, nadir and the end of the response in blood sampled rats. MATERIAL AND METHODS Body temperature of adult male albino Wistar rats was recorded by biotelemetry. E. coli O111:B4 LPS (250 μg/kg, ip) was injected alone or with SC-560, a cyclooxygenase-1 selective inhibitor (1 mg/kg, sc). RESULTS Serum FT4 levels elevated at the initial phase, but FT3 levels decreased at nadir and remained low at the end of the response. Meanwhile, no change was observed in TSH levels. Serum adrenocorticotropic hormone (ACTH) levels reduced at the initial phase and serum corticosterone levels decreased at nadir without any change in serum corticotropin-releasing hormone (CRH) levels throughout the hypothermia. Serum leptin levels increased only at the end of the response. No change was observed in the levels of serum erythropoietin. SC-560 treatment abolished both LPS-induced hypothermia and respective hormonal changes. CONCLUSION Data suggest that HPT axis hormones may contribute to development of LPS-induced hypothermia in rats. Data also support the view that leptin may have a role for the recovery of hypothermic response.
Collapse
Affiliation(s)
- H Polat
- Aksaray University, Faculty of Art and Science, Department of Biology, 68100 Aksaray, Turkey.
| | | | | |
Collapse
|
24
|
Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proc Natl Acad Sci U S A 2013; 110:14801-6. [PMID: 23959899 DOI: 10.1073/pnas.1313945110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is central to the course of systemic inflammatory response syndrome or sepsis. The underlying mechanisms, however, are not well understood. Initial activation of adrenocortical hormone production during early sepsis depends on the stimulation of hypothalamus and pituitary mediated by cytokines; in late sepsis, there is a shift from neuroendocrine to local immune-adrenal regulation of glucocorticoid production. Therefore, the modulation of the local immune-adrenal cross talk, and not of the neuroendocrine circuits involved in adrenocorticotropic hormone production, may be more promising in the prevention of the adrenal insufficiency associated with prolonged sepsis. In the present work, we investigated the function of the crucial Toll-like receptor (TLR) adaptor protein myeloid differentiation factor 88 (MyD88) in systemic and local activation of adrenal gland inflammation and glucocorticoid production mediated by lipopolysachharides (LPSs). To this end, we used mice with a conditional MyD88 allele. These mice either were interbred with Mx1 Cre mice, resulting in systemic MyD88 deletion, predominantly in the liver and hematopoietic system, or were crossed with Akr1b7 Cre transgenic mice, resulting thereby in deletion of MyD88, which was adrenocortical-specific. Although reduced adrenal inflammation and HPA-axis activation mediated by LPS were found in Mx1(Cre+)-MyD88(fl/fl) mice, adrenocortical-specific MyD88 deletion did not alter the adrenal inflammation or HPA-axis activity under systemic inflammatory response syndrome conditions. Thus, our data suggest an important role of immune cell rather than adrenocortical MyD88 for adrenal inflammation and HPA-axis activation mediated by LPS.
Collapse
|
25
|
Species-Dependent Blood-Brain Barrier Disruption of Lipopolysaccharide: Amelioration by Colistin In Vitro and In Vivo. Antimicrob Agents Chemother 2013; 57:4336-4342. [PMID: 23796941 DOI: 10.1128/aac.00765-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/20/2013] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to use in vitro and in vivo models to assess the impact of lipopolysaccharide (LPS) from two different bacterial species on blood-brain barrier (BBB) integrity and brain uptake of colistin. Following repeated administration of LPS from Pseudomonas aeruginosa, the brain-to-plasma ratio of [14C]sucrose in Swiss outbred mice was not significantly increased. Furthermore, while the brain uptake of colistin in mice increased 3-fold following administration of LPS from Salmonella enterica, LPS from P. aeruginosa had no significant effect on colistin brain uptake. This apparent species-dependent effect did not appear to correlate with differences in plasma cytokine levels, as the concentrations of tumor necrosis factor alpha and interleukin-6 following administration of each LPS were not different (P > 0.05). To clarify whether this species-specific effect of LPS was due to direct effects on the BBB, human brain capillary endothelial (hCMEC/D3) cells were treated with LPS from P. aeruginosa or S. enterica and claudin-5 expression was measured by Western blotting. S. enterica LPS significantly (P < 0.05) reduced claudin-5 expression at a concentration of 7.5 μg/ml. In contrast, P. aeruginosa LPS decreased (P < 0.05) claudin-5 expression only at the highest concentration tested (i.e., 30 μg/ml). Coadministration of therapeutic concentrations of colistin ameliorated the S. enterica LPS-induced reduction in claudin-5 expression in hCMEC/D3 cells and the perturbation in BBB function in mice. This study demonstrates that BBB disruption induced by LPS is species dependent, at least between P. aeruginosa and S. enterica, and can be ameliorated by colistin.
Collapse
|
26
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
27
|
Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. Time-dependent mediators of HPA axis activation following live Escherichia coli. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1648-57. [PMID: 21917906 DOI: 10.1152/ajpregu.00301.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 10(7) CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE(2) was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE(2) correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 10(8) CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.
Collapse
Affiliation(s)
- Z R Zimomra
- Kent State University, Department of Biological Sciences, Kent, Ohio, USA
| | | | | | | |
Collapse
|
28
|
Fil D, Borysiewicz E, Konat GW. A broad upregulation of cerebral chemokine genes by peripherally-generated inflammatory mediators. Metab Brain Dis 2011; 26:49-59. [PMID: 21258854 DOI: 10.1007/s11011-010-9231-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022]
Abstract
Previously, we have shown that peripheral challenge of mice with double stranded RNA (dsRNA), a viral mimic, evokes global upregulation of cerebral inflammatory genes and, particularly, genes encoding chemokines. Because chemokine networks are potent modulators of brain function, the present study was undertaken to comprehensively characterize the cerebral response of chemokine ligand and receptor genes to peripheral immune system stimulation. Briefly, C57BL/6 mice were intraperitoneally injected with 12 mg/kg of polyinosinic-polycytidylic acid (PIC) and the expression of 39 mouse chemokine ligand and 20 receptor genes was monitored in the cerebellum by real time quantitative RT-PCR within 24 h. Almost half of the ligand genes featured either transient or sustained upregulation from several- to several thousand-fold. Five CXC type genes, i.e., Cxcl9, Cxcl11, Cxcl10, Cxcl2 and Cxcl1, were the most robustly upregulated, and were followed by six CC type genes, i.e., Ccl2, Ccl7, Ccl5, Ccl12, Ccl4 and Ccl11. Seven genes showed moderate upregulation, whereas the remaining genes were unresponsive. Six receptor genes, i.e., Cxcr2, Ccr7, Cxcr5, Ccr6, Ccr1 and Ccr5, featured a several-fold upregulation. Similar chemokine gene response was observed in the forebrain and brainstem. This upregulation of chemokine genes could be induced in naïve mice by transfer of blood plasma from PIC-challenged mice. Employing oligodeoxynucleotide-labeled PIC we further showed that intraperitoneally injected PIC was not transferred to the blood. In conclusion, peripheral PIC challenge elicits a broad upregulation of cerebral chemokine genes, and this upregulation is mediated by blood-borne agents.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 4052 HSN, P.O. Box 9128, Morgantown, WV 26506-9128, USA
| | | | | |
Collapse
|
29
|
Kirschman LT, Borysiewicz E, Fil D, Konat GW. Peripheral immune challenge with dsRNA enhances kainic acid-induced status epilepticus. Metab Brain Dis 2011; 26:91-3. [PMID: 21305346 DOI: 10.1007/s11011-011-9236-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Clinical evidence implicates peripheral inflammatory diseases as comorbid factors in epilepsy. The present study was designed to determine the effect of the acute phase of antiviral response on seizure susceptibility. Young adult mice were intraperitoneally injected with 12 mg/kg of a viral mimic, polyinosinic:polycytidylic acid (PIC). After 48 h, seizures were induced by subcutaneous injection of kainic acid (KA). PIC-pretreatment profoundly enhances vulnerability to excitotoxic insult as evidenced by increased seizure intensity and extended duration of status epilepticus. These results support the notion that peripheral viral infections may alter brain function resulting in enhanced predilection to seizures.
Collapse
Affiliation(s)
- Lindsay T Kirschman
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 4052 HSCN, P.O. Box 9128, Morgantown, WV 26506-9128, USA
| | | | | | | |
Collapse
|
30
|
Goebel M, Stengel A, Wang L, Reeve J, Taché Y. Lipopolysaccharide increases plasma levels of corticotropin-releasing hormone in rats. Neuroendocrinology 2011; 93:165-73. [PMID: 21135542 PMCID: PMC3214810 DOI: 10.1159/000322590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 10/14/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) is expressed in the brain, immune cells and the gut, where gene expression is upregulated by lipopolysaccharide (LPS) 6 h after injection. Whether these changes are reflected by increased circulating levels of CRH and adrenocorticotropic hormone (ACTH) is unknown. METHODS LPS (100 μg/kg) was injected intraperitoneally in conscious rats, and blood processed for CRH using the new RAPID (reduced temperatures, acidification, protease inhibition, isotopic exogenous controls and dilution) method compared with EDTA blood with or without plasma methanol extraction. Hormone levels were measured by commercial radioimmunoassay. RESULTS The RAPID method improved blood recovery of ¹²⁵I-CRH in vitro compared to EDTA only added to the blood without or with methanol extraction (90.8 ± 2.0 vs. 66.9 ± 2.6 and 47.5 ± 2.0%, respectively; p < 0.001 vs. RAPID). Basal CRH levels from blood processed by the RAPID method were 28.9 ± 2.8 pg/ml, and by other methods below the radioimmunoassay detection limit (<10 pg/ml). At 6 h after LPS, CRH plasma levels increased significantly by 2.9 times, and in the proximal colon tended to decrease (-27.6 ± 5.7%; p > 0.05), while circulating levels were unchanged at 3 or 4 h. ACTH levels rose compared to control rats (135.3 ± 13.8 vs. 101.4 ± 6.0 pg/ml; p < 0.05) 30 min after the increase in CRH, while at 3 or 6 h after LPS, the levels were not changed. CONCLUSION Intraperitoneal LPS induces a delayed rise in plasma CRH levels associated with an elevation in ACTH plasma levels 30 min later, suggesting that under conditions of immune challenge, CRH of peripheral origin may also contribute to pituitary activation, as detected using the RAPID method of blood processing, which improves CRH recovery.
Collapse
Affiliation(s)
| | | | | | | | - Yvette Taché
- *Yvette Taché, Center for Neurobiology of Stress, VA Greater Los Angeles Healthcare System, CURE Building 115, Room 117, 11301 Wilshire Boulevard, Los Angeles, CA 90073 (USA), Tel. +1 310 312 9275, Fax +1 310 268 4963, E-Mail
| |
Collapse
|
31
|
Banding or Burdizzo castration and carprofen administration on peripheral leukocyte inflammatory cytokine transcripts. Res Vet Sci 2010; 90:127-32. [PMID: 20493504 DOI: 10.1016/j.rvsc.2010.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 11/21/2022]
Abstract
The objective was to investigate if Banding or Burdizzo castration of bulls would alter the gene expression profile of a range of peripheral leukocyte inflammatory cytokines (IL-1, IL-6, IL-8, IL-10, interferon-γ and tumor necrosis factor-α) and to determine if the administration of carprofen (C) before castration would affect the expression of these genes. Thirty Holstein-Friesian bulls (5.5 months; Mean 191±(SEM) 3.7 kg) were blocked by weight and randomly assigned to one of five treatments: (1) untreated control (CON); (2) Banding castration at 0 min (BAND); (3) BAND following an i.v. injection of 1.4 mg/kg BW of carprofen (C) at -20 min (BAND+C); (4) Burdizzo castration at 0 min (BURD); or (5) BURD following 1.4 mg/kg BW of carprofen at -20 min (BURD+C). Blood samples were collected at 1 h before castration and 6, 24 and 48 h post-castration for routine hematology and quantitative real-time PCR analysis of cytokine gene expression analysis. Generally, there were no differences (P>0.05) among treatment groups in hematological variables following castration. Cortisol concentrations were unchanged throughout the experimental period in CON bulls. BURD animals had greater cortisol concentrations than BAND and CON animals at 6 h post treatment. Transitory effects were observed only in the expression of IL-6 and TNF-α. The relative expression of IL-6 was greater in the BURD than in the BAND treatment (P<0.05) at 24 h post-castration and was greater in the BURD+C group than in the BURD group (P<0.05) at 48 h. The relative expression of TNF-α was greater in BAND than in the BURD group (P<0.05) at 48 h. In conclusion, these findings indicate that Banding or Burdizzo castration did not have any major effect on peripheral leukocyte inflammatory cytokine gene expression; Banding castration caused a greater pro-inflammatory cytokine gene expression reaction than Burdizzo castration and carprofen administration can affect IL-6 gene expression levels in BURD castrated animals.
Collapse
|
32
|
Rorato R, Menezes AM, Giusti-Paiva A, De Castro M, Antunes-Rodrigues J, Elias LLK. Prostaglandin mediates endotoxaemia-induced hypophagia by activation of pro-opiomelanocortin and corticotrophin-releasing factor neurons in rats. Exp Physiol 2009; 94:371-9. [DOI: 10.1113/expphysiol.2008.045435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Folkersma H, Brevé JJP, Tilders FJH, Cherian L, Robertson CS, Vandertop WP. Cerebral microdialysis of interleukin (IL)-1beta and IL-6: extraction efficiency and production in the acute phase after severe traumatic brain injury in rats. Acta Neurochir (Wien) 2008; 150:1277-84; discussion 1284. [PMID: 19031041 DOI: 10.1007/s00701-008-0151-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 03/01/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND As a research tool, cerebral microdialysis might be a useful technique in monitoring the release of cytokines into the extracellular fluid (ECF) following traumatic brain injury (TBI). We established extraction efficiency of Interleukin(IL)-1ss and Interleukin(IL)-6 by an in vitro microdialysis-perfusion system, followed by in vivo determination of the temporal profile of extracellular fluid cytokines after severe TBI in rats. MATERIALS AND METHODS In vitro experiments using a polyether sulfon (PES) microdialysis probe especially developed for recovery of macromolecules such as cytokines, were carried out to establish the extraction efficiency of IL-1ss and IL-6 from artificial cerebrospinal fluid (CSF) with defined IL-1ss and IL-6 concentrations. In vivo experiments in which rats were subjected to TBI or sham and microdialysis samples were collected from the parietal lobe for measurement of cytokines. FINDINGS The extraction efficiency was maximal 6.05% (range, 5.97-6.13%) at 0.5 microl/min(-1) and decreased at higher flow rates. Both cytokines were detectable in the dialysates. Highest IL-1ss levels were found within 200 min, highest IL-6 concentrations were detected at later intervals (200-400 min). No differences were found between the TBI and control groups. CONCLUSIONS Cerebral microdialysis allows measurement of cytokine secretion in the ECF of brain tissue in rats.
Collapse
|
34
|
Zhang H, Ching S, Chen Q, Li Q, An Y, Quan N. Localized inflammation in peripheral tissue signals the CNS for sickness response in the absence of interleukin-1 and cyclooxygenase-2 in the blood and brain. Neuroscience 2008; 157:895-907. [PMID: 18950689 DOI: 10.1016/j.neuroscience.2008.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/19/2008] [Accepted: 09/20/2008] [Indexed: 11/29/2022]
Abstract
The CNS can be activated by both local and systemic inflammation, resulting in the manifestation of sickness symptoms. The pathways by which the CNS is activated under these two conditions, however, may differ. In this study, we injected casein into the peritoneal cavity (i.p.) or into an s.c. air pouch of mice to induce restricted local inflammation. Both routes of casein injection caused fever and reduced locomotor activity. These responses were not accompanied by the statistically significant induction of the inflammatory cytokine interleukin-1 (IL-1) in the blood and brain. Further, these responses were produced without the induction of brain cyclooxygenase-2 (COX-2), which has been implicated as an obligatory step in systemic inflammation-induced activation of the CNS. Induction of IL-1, interleukin-6 (IL-6), and COX-2, however, was found consistently at the sites of casein injection. The local inflammation-induced febrile and locomotor activity responses were blunted in animals deficient in functional Toll-like receptor 4 (TLR4), type I interleukin-1 receptor (IL-1R1), IL-6, or COX-2. Therefore, the observed febrile and locomotor activity effects appear to require local, but not central, IL-1, IL-6, and COX-2. These findings suggest that local inflammation can activate the CNS via pathways distinguishable from those mediating systemic inflammation-induced CNS activation.
Collapse
Affiliation(s)
- H Zhang
- Institute of Behavior Medicine, 3132 Postle Hall, 305 West 12th Avenue, Ohio State University, Columbus, OH 43210-1094, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ballard KA, Pellegrino TC, Alonzo NC, Nugent AL, Bayer BM. Enhanced immune sensitivity to stress following chronic morphine exposure. J Neuroimmune Pharmacol 2007; 1:106-15. [PMID: 18040796 DOI: 10.1007/s11481-005-9008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic administration of escalating doses ofmorphine leads to neuroadaptive changes precipitating development of tolerance to many of the acute effects of morphine, such as analgesia, activation of the hypothalamic-pituitary-adrenal (HPA) axis and suppression of immune cell activities. Interestingly, morphine tolerance has also been shown to be accompanied by heightened immunosuppressive effects of restraint stress using a rodent model. These observations have led to the hypothesis that the altered neuronal state accompanying opioid tolerance may contribute to this enhanced immune sensitivity to stress. To further test this hypothesis using different stressors, Sprague-Dawley rats were treated chronically with morphine for at least 8 days and then challenged with either psychological (water stress) or systemic stressors [morphine withdrawal, lipopolysaccharide (10 mug/kg i.p. challenge)]. It was found that, independent of the type of stress employed, morphine-tolerant animals displayed significantly lower mitogen-stimulated blood lymphocyte responses when compared to the responses of similarly treated saline controls. To determine whether direct activation of central stress pathways may also lead to enhanced immune sensitivity, morphine-tolerant animals were centrally injected with IL-1beta (1 ng/mul i.c.v.), a cytokine that activates the HPA axis by central mechanisms. Similar to the other types of stress, this direct central challenge was also found to be more immunosuppressive in morphine-tolerant animals compared to controls. Collectively, these studies demonstrate that morphine-tolerant animals have an enhanced susceptibility to the debilitating effects of a variety of stressors on immune cell function, an effect that is likely due to the neuroadaptive changes that develop during chronic morphine exposure.
Collapse
Affiliation(s)
- Kimberly A Ballard
- Department of Neuroscience, Georgetown University Medical Center, 3900 Reservoir Road, Washington DC 20007, USA
| | | | | | | | | |
Collapse
|
36
|
Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 2005; 25:7181-92. [PMID: 16055727 PMCID: PMC1190262 DOI: 10.1128/mcb.25.16.7181-7192.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in particular the production of nitric oxide (NO) and reactive oxygen species. Ligation of SIRPalpha by antibodies or soluble CD47 triggers inducible nitric oxide synthase expression and production of NO. This was not caused by blocking negative-regulatory SIRPalpha-CD47 interactions. SIRPalpha-induced NO production was prevented by inhibition of the tyrosine kinase JAK2. JAK2 was found to associate with SIRPalpha in macrophages, particularly after SIRPalpha ligation, and SIRPalpha stimulation resulted in JAK2 and STAT1 tyrosine phosphorylation. Furthermore, SIRPalpha-induced NO production required the generation of hydrogen peroxide (H(2)O(2)) by a NADPH oxidase (NOX) and the phosphatidylinositol 3-kinase (PI3-K)-dependent activation of Rac1, an intrinsic NOX component. Finally, SIRPalpha ligation promoted SHP-1 and SHP-2 recruitment, which was both JAK2 and PI3-K dependent. These findings demonstrate that SIRPalpha ligation induces macrophage NO production through the cooperative action of JAK/STAT and PI3-K/Rac1/NOX/H(2)O(2) signaling pathways. Therefore, we propose that SIRPalpha is able to function as an activating receptor.
Collapse
Affiliation(s)
- Jacqueline Alblas
- Department of Molecular Cell Biology and Immunology, VU Medical Center, MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Nickerson M, Elphick GF, Campisi J, Greenwood BN, Fleshner M. Physical activity alters the brain Hsp72 and IL-1beta responses to peripheral E. coli challenge. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1665-74. [PMID: 16081876 DOI: 10.1152/ajpregu.00601.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Physically active rats have facilitated heat shock protein 72 (Hsp72) responses after stressor exposure in both brain and peripheral tissues compared with sedentary rats. This study verifies that physically active animals do not have elevated Hsp72 levels compared with sedentary animals in the hypothalamus, pituitary, or dorsal vagal complex. We then examined whether 1) physically active rats respond more efficiently than sedentary rats to a bacterial challenge; 2) peripheral immune challenge elicits brain induction of Hsp72; 3) this induction is facilitated by prior freewheel running; and 4) Hsp72 upregulation produced by peripheral immune challenge results in a commensurate decrease in the proinflammatory cytokine IL-1beta. Adult male Fischer 344 rats were housed with either a mobile or locked running wheel. Six weeks later, rats were injected intraperitoneally with saline or Escherichia coli and killed 30 min, 2.5 h, 6 h, and 24 h later. Serum endotoxin and IL-1beta, and peritoneal fluid endotoxin and E. coli colony-forming units (CFUs) were measured. Hsp72 and IL-1beta were measured in hypothalamus, pituitary, and dorsal vagal complex. The results were that physically active rats had a faster reduction in endotoxin and E. coli CFUs and lower levels of circulating endotoxin and cytokines compared with sedentary rats. E. coli challenge elicited significantly greater time-dependent increases of both Hsp72 and IL-1beta in hypothalamus, pituitary, and dorsal vagal complex of physically active animals but not sedentary animals. Contrary to our hypothesis, increases in Hsp72 were positively correlated with IL-1beta. This study extends our findings that physical activity facilitates stress-induced Hsp72 to include immunological stressors such as bacterial challenge and suggests that brain Hsp72 and IL-1beta responses to peripheral immune challenge may contribute to exercise-mediated resistance to long-term sickness.
Collapse
Affiliation(s)
- M Nickerson
- Dept. of Integrative Physiology, Neuroimmunophysiology Laboratory, Univ. of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
38
|
Rummel C, Barth SW, Voss T, Korte S, Gerstberger R, Hübschle T, Roth J. Localized vs. systemic inflammation in guinea pigs: a role for prostaglandins at distinct points of the fever induction pathways? Am J Physiol Regul Integr Comp Physiol 2005; 289:R340-R347. [PMID: 15831768 DOI: 10.1152/ajpregu.00104.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In guinea pigs, dose-dependent febrile responses were induced by injection of a high (100 μg/kg) or a low (10 μg/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. Both LPS doses further induced a pronounced formation of prostaglandin E2 (PGE2) at the site of localized subcutaneous inflammation. Administration of diclofenac, a nonselective cyclooxygenase (COX) inhibitor, at different doses (5, 50, 500, or 5,000 μg/kg) attenuated or abrogated LPS-induced fever and inhibited LPS-induced local PGE2 formation (5 or 500 μg/kg diclofenac). Even the lowest dose of diclofenac (5 μg/kg) attenuated fever in response to 10 μg/kg LPS, but only when administered directly into the subcutaneous chamber, and not into the site contralateral to the chamber. This observation indicated that a localized formation of PGE2 at the site of inflammation mediated a portion of the febrile response, which was induced by injection of 10 μg/kg LPS into the subcutaneous chamber. Further support for this hypothesis derived from the observation that we failed to detect elevated amounts of COX-2 mRNA in the brain of guinea pigs injected subcutaneously with 10 μg/kg LPS, whereas subcutaneous injections of 100 μg/kg LPS, as well as systemic injections of LPS (intra-arterial or intraperitoneal routes), readily caused expression of the COX-2 gene in the guinea pig brain, as demonstrated by in situ hybridization. Therefore, fever in response to subcutaneous injection of 10 μg/kg LPS may, in part, have been evoked by a neural, rather than a humoral, pathway from the local site of inflammation to the brain.
Collapse
Affiliation(s)
- Christoph Rummel
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Pepels PPLM, Bonga SEW, Balm PHM. Bacterial lipopolysaccharide (LPS) modulates corticotropin-releasing hormone (CRH) content and release in the brain of juvenile and adult tilapia (Oreochromis mossambicus; Teleostei). J Exp Biol 2004; 207:4479-88. [PMID: 15557033 DOI: 10.1242/jeb.01316] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAlthough immune endocrine interactions in teleost fish have been shown to involve adrenocorticotropin hormone (ACTH) and cortisol, the involvement of corticotropin-releasing hormone (CRH) has not been demonstrated. The present study investigates whether treatment with bacterial endotoxin(lipopolysaccharide, LPS) modulates brain CRH contents or in vitroCRH release in tilapia (Oreochromis mossambicus). 10 days LPS(Escherichia coli) exposure of juvenile tilapia (4.5 weeks post hatch) via the ambient water increased brain CRH and α-MSH content,whereas cortisol contents were not increased. This indicates that the elevation of brain CRH levels were not secondary to activation of HPI-axis. Adult tilapia were treated for 6 days with LPS (intraperitoneally) and were sampled before and after 24 h of confinement. Overall LPS pre-treatment modified the reaction of tilapia to the additional stressor of 24 h confinement, as interactions between LPS treatment and confinement were observed at the level of the hypothalamus (diencephalic CRH content), the pituitary (CRH and α-MSH content) and in plasma glucose levels. In vitro, LPS pre-treatment abolished CRH release from telencephalic tissues induced by norepinephrine, one of the CRH secretagogues released during stress in vivo. This effect might be a mechanism of action through which LPS in vivo abolished the up-regulation of telencephalic CRH induced by confinement stress. Our results provide evidence that the role of CRH in immune–endocrine interactions is a phylogenetically old mechanism, and we here demonstrate that LPS molecules are able to locally modulate CRH release in the central nervous system.
Collapse
Affiliation(s)
- P P L M Pepels
- Department of Animal Physiology, Faculty of Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
40
|
Rummel C, Hübschle T, Gerstberger R, Roth J. Nuclear translocation of the transcription factor STAT3 in the guinea pig brain during systemic or localized inflammation. J Physiol 2004; 557:671-87. [PMID: 14966301 PMCID: PMC1665088 DOI: 10.1113/jphysiol.2003.058834] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of the present study was to investigate a possible lipopolysaccharide (LPS)-induced activation of brain cells that is mediated by the pleiotropic cytokine interleukin-6 (IL-6) and its transcription factor STAT3 during systemic or localized inflammation. In guinea pigs, intra-arterial (i.a., 10 microg x kg(-1)) or intraperitoneal (i.p., 30 microg x kg(-1)) injections of bacterial LPS cause a systemic inflammatory response which is accompanied by a robust fever. A febrile response can also be induced by administration of LPS into artificial subcutaneously implanted Teflon chambers (s.c. 100 or 10 microg x kg(-1)), which reflects an experimental model that mimics local tissue inflammation. Baseline plasma levels of bioactive IL-6 determined 60 min prior to injections of LPS or vehicle amounted to 35-80 international units (i.u.) ml(-1). Within 90 min of LPS injection, plasma IL-6 rose about 1000-fold in the groups injected i.a. or i.p., about 50-fold in the group injected s.c. with 100 microg x kg(-1) LPS, and only 5-fold in guinea pigs injected with the lower dose of LPS (10 microg x kg(-1)). At this time point, a distinct nuclear translocation pattern of the transcription factor STAT3 became evident in several brain structures. Amongst those, the sensory circumventricular organs known to lack a tight blood-brain barrier such as the area postrema, the vascular organ of the lamina terminalis and the subfornical organ, as well as the hypothalamic supraoptic nucleus showed intense nuclear STAT3 signals in the i.a. or i.p. injected groups. In contrast a moderate (s.c. group, 100 microg x kg(-1)), or even no (s.c. group, 10 microg x kg(-1)), nuclear STAT3 translocation occurred in response to s.c. injections of LPS. These results suggest that STAT3-mediated genomic activation of target gene transcription in brain cells occurred only in those cases in which sufficiently high concentrations of circulating IL-6 were formed during systemic (i.a. and i.p. groups) or localized (s.c. group, 100 microg x kg(-1)) inflammation.
Collapse
Affiliation(s)
- Christoph Rummel
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
41
|
Forsythe P, Ebeling C, Gordon JR, Befus AD, Vliagoftis H. Opposing effects of short- and long-term stress on airway inflammation. Am J Respir Crit Care Med 2003; 169:220-6. [PMID: 14604839 DOI: 10.1164/rccm.200307-979oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Between 20% and 35% of subjects with asthma experience asthma exacerbations during periods of stress. The biological mechanisms underlying these exacerbations are not clearly understood, and the role of psychologic factors in the pathophysiology of asthma remains controversial. We investigated the ability of psychologic stress to modulate airway inflammation and airway hyperresponsiveness (AHR) to methacholine in a murine model of asthma. Animals were exposed to a stressor daily for 3 (short-term stress) or 7 (long-term stress) days. After allergen challenge, AHR was assessed through plethysmography, and bronchoalveolar lavage cells were counted as a measure of inflammation. After short-term stress, inflammatory cell number was decreased compared with unstressed animals, whereas levels of interleukin (IL)-6, IL-9, and IL-13 were increased. Administration of a corticosteroid receptor antagonist, before stress, prevented the decrease in inflammatory cell numbers. In contrast, animals stressed for 7 consecutive days showed a significant increase in inflammatory cell numbers, which was independent of the glucocorticoid response, but no change in cytokine levels. AHR was not altered in stressed animals. Our results indicate that repeated exposure to stress over the long term engages different mechanisms than short-term stress and can exacerbate the chronic inflammatory responses of the airway.
Collapse
Affiliation(s)
- Paul Forsythe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
42
|
Campisi J, Hansen MK, O'Connor KA, Biedenkapp JC, Watkins LR, Maier SF, Fleshner M. Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. J Appl Physiol (1985) 2003; 95:1873-82. [PMID: 12871965 DOI: 10.1152/japplphysiol.00371.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral administration of a variety of inflammatory stimuli, such as endotoxin or cytokines, induces an orchestrated set of brain-mediated events referred to as the sickness response. The mechanism for how immune products signal the brain is not clear, but accumulating evidence supports the existence of neural as well as blood-borne pathways. Although endotoxin or cytokine administration results in sickness responses, few data exist regarding the role of circulating endotoxin or cytokines in the induction of sickness during a real bacterial infection. Thus the present studies examined whether subcutaneously administered Escherichia coli can activate sickness responses and whether circulating endotoxin and/or proinflammatory cytokines are a prerequisite for these responses. Male Sprague-Dawley rats were injected subcutaneously with one of three doses (2.5 x 10(7), 2.5 x 10(8), 2.5 x 10(9) colony-forming units) of replicating E. coli, a ubiquitous bacterial strain, or vehicle. Core body temperature (Tc) and activity were measured for 3 days after the injection. A second set of groups of animals were killed 3, 6, 12, 18, 24, and 48 h after the injection, and blood samples and brains were collected. Injections dose dependently and consistently increased Tc and decreased activity, with increases in Tc beginning 4 h after the injection. In addition, E. coli significantly increased serum interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha and brain IL-1beta levels beginning at the 6-h time point. Corticosterone and endotoxin were first elevated in the circulation at 3 and 18 h after the injection, respectively. Because fever onset preceded brain cytokine induction, we also examined cytokine levels in the serum, brain, and inflammation site 2 and 4 h after injection. Cytokines were elevated at the inflammation site but were not detectable in the serum or brain at 2 and 4 h. We conclude that subcutaneous injection of replicating E. coli induces a consistent and naturalistic infection that includes features of the sickness response as well as increases in circulating, brain, and inflammation site tissue cytokines. In addition, injection of replicating E. coli produces a robust fever and corticosterone response at a time when there are no detectable increases in circulating cytokines or endotoxin. These results suggest that elevated levels of circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response. Therefore, fever, activity reduction, and corticosterone elevation induced by E. coli infection may have been evoked by a neural, rather than a humoral, pathway from the periphery to the brain.
Collapse
Affiliation(s)
- J Campisi
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado 80309-0354, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ross G, Hübschle T, Pehl U, Braun HA, Voigt K, Gerstberger R, Roth J. Fever induction by localized subcutaneous inflammation in guinea pigs: the role of cytokines and prostaglandins. J Appl Physiol (1985) 2003; 94:1395-402. [PMID: 12482772 DOI: 10.1152/japplphysiol.00485.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In guinea pigs, dose-dependent febrile responses can be induced by injection of a high (100 micro g/kg) or low (10 micro g/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. In this fever model, LPS does not enter the systemic circulation from the site of localized tissue inflammation in considerable amounts but causes a local induction of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6), which can be measured in lavage fluid collected from the chamber area. Only in response to the high LPS dose, small traces of TNF are measurable in blood plasma. A moderate increase of circulating IL-6 occurs in response to administration of both LPS doses. To investigate the putative roles of TNF and prostaglandins in this fever model, a neutralizing TNF binding protein (TNF-bp) or a nonselective inhibitor of cyclooxygenases (diclofenac) was injected along with the high or low dose of LPS into the subcutaneous chamber. In control groups, both doses of LPS were administered into the chamber along with the respective vehicles for the applied drugs. The fever response to the high LPS dose remained unimpaired by treatment with TNF-bp despite an effective neutralization of bioactive TNF in the inflamed tissue area. In response to the low LPS dose, there was an accelerated defervescence under the influence of TNF-bp. Blockade of prostaglandin formation with diclofenac completely abolished fever in response to both LPS doses. In conclusion, prostaglandins seem to be essential components for the manifestation of fever in this model.
Collapse
Affiliation(s)
- Gunter Ross
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
It was recently reported that the complement system may be critically involved in the febrile response of guinea pigs to systemic, particularly intraperitoneally (i.p.) injected, lipopolysaccharides (LPS). The present study was designed to identify which component(s) of the complement cascade may be specifically critical. To this end, we used mice with C3, C5, and CR2 gene deletions. To assess preliminarily the suitability of mice for such a study, we replicated our earlier studies with guinea pigs. Thus, to verify initially whether complement is similarly involved in the febrile response of wild-type (C57BL/6J) mice to i.p. LPS (Escherichia coli, 1 microg/mouse), we depleted complement with cobra venom factor (CVF; 7 U/mouse, intravenously [i.v.]). These animals did not develop fever, whereas the core temperature (T(c)) of CVF vehicle-treated controls rose approximately 1 degrees C by 80 min postinjection and then gradually abated over the following 2.5 h, confirming the involvement of complement in fever production after i.p. LPS injection and the suitability of this species for these studies. C3- and C5-sufficient (C3(+/+) and C5(+/+)) mice also developed 1 degrees C fevers within 80 min after i.p. LPS (1 or 2 microg/mouse) injection. These fevers were totally prevented by CVF (10 U/mouse, i.v.) pretreatment. C3- and C5-deficient (C3(-/-) and C5(-/-)) mice were also unable to develop T(c) rises after i.p. LPS. Both CR2(+/+) and CR2(-/-) mice responded normally to i.p. LPS (1 microg/mouse). These data indicate that C5, but not C3d acting through CR2, may play a critical role in the febrile response of mice to i.p. LPS.
Collapse
Affiliation(s)
- S Li
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
45
|
Venihaki M, Dikkes P, Carrigan A, Karalis KP. Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J Clin Invest 2001; 108:1159-66. [PMID: 11602623 PMCID: PMC209527 DOI: 10.1172/jci12869] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by proinflammatory cytokines results in increased release of glucocorticoid that restrains further development of the inflammatory process. IL-6 has been suggested to stimulate the HPA axis during immune activation independent of the input of hypothalamic corticotropin-releasing hormone (CRH). We used the corticotropin-releasing hormone-deficient (Crh(-/-)) mouse to elucidate the effect of CRH deficiency on IL-6 expression and IL-6-induced HPA axis activation during turpentine-induced inflammation. We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise. The paradoxical increase of plasma IL-6 associated with CRH deficiency suggests that IL-6 release during inflammation is CRH-dependent. We also demonstrate that adrenal IL-6 expression is CRH-dependent, as its basal and inflammation-induced expression is blocked by CRH deficiency. Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake. Finally, we confirm that the HPA axis response is defective in Crh(-/-)/IL-6(-/-) mice. These findings, along with the regulation of IL-6 by CRH, support the importance of the interaction between the immune system and the HPA axis in the pathophysiology of inflammatory diseases.
Collapse
Affiliation(s)
- M Venihaki
- Division of Endocrinology, Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
46
|
Bethin KE, Vogt SK, Muglia LJ. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U S A 2000; 97:9317-22. [PMID: 10922080 PMCID: PMC16865 DOI: 10.1073/pnas.97.16.9317] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids play a critical role in control of the cytokine response after immune challenge. Conversely, cytokines modulate glucocorticoid production by the hypothalamic-pituitary-adrenal axis. To define the potency and mechanism of interleukin-6 (IL-6) for augmentation of adrenal function, we exploited mice deficient in corticotropin-releasing hormone (CRH), IL-6, or both. Mice deficient in CRH action demonstrate severely impaired glucocorticoid production in response to psychological and metabolic challenge, but near normal responses to stressors that activate the immune system. In this paper, we demonstrate that IL-6 is essential for activation of the hypothalamic-pituitary-adrenal axis during immunological challenge in the absence of hypothalamic input from CRH. IL-6 receptors are present on pituitary corticotrophs and adrenocortical cells, consistent with the ability of IL-6 to bypass CRH in augmentation of adrenal function. Plasma corticosterone levels after bacterial lipopolysaccharide injection in mice deficient in CRH or IL-6 were significantly lower than in wild-type mice but significantly greater than in mice deficient in both CRH and IL-6. A second model of immune system activation using 2C11, an antibody to the T cell receptor, demonstrated a normal corticosterone response in mice deficient in CRH or IL-6, but a markedly decreased response in mice deficient in both CRH and IL-6. Surprisingly, the relative contribution of IL-6 for modulation of the adrenal response to stress is greater in female than in male mice. This gender-specific difference in IL-6 action in mice suggests the utility of further analysis of IL-6 in determining the female predominance seen in many human inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- K E Bethin
- Departments of Pediatrics, Molecular Biology and Pharmacology, and Obstetrics and Gynecology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
47
|
Shanks N, Windle RJ, Perks P, Wood S, Ingram CD, Lightman SL. The hypothalamic-pituitary-adrenal axis response to endotoxin is attenuated during lactation. J Neuroendocrinol 1999; 11:857-65. [PMID: 10520136 DOI: 10.1046/j.1365-2826.1999.00400.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnancy and lactation are times of prolonged physiological changes affecting the neuroendocrine and immunological systems. One well-characterized change is the neuroendocrine hyporesponsiveness to acute stressful stimuli. We have now designed studies to see whether there is an alteration in the response of the hypothalamic-pituitary-adrenal (HPA) axis to an immunological inflammatory challenge and to ascertain whether lactating animals show altered neural and endocrine responses to inflammatory stimuli. Lactating (day 9-12 postpartum) or virgin control Sprague-Dawley female rats were injected with either 200 microg of endotoxin (lipopolysaccharide, LPS ) or sterile saline given i.p. Trunk blood or jugular blood was collected from the animals at 2 h or hourly over 6 h after injection. Both plasma adrenocorticotropic hormone (ACTH) and corticosterone concentrations were significantly higher in saline treated lactating animals compared with the virgin group. LPS significantly elevated circulating levels of plasma ACTH and corticosterone in both virgin and lactating animals compared with saline controls, however, hormone responses to LPS were significantly reduced in lactating animals relative to virgin controls. Corticosterone-binding globulin concentrations were lower in lactating animals compared to virgin animals and LPS decreased concentrations in virgin, but not lactating rats. Analysis of cfos mRNA in the paraventricular nucleus (PVN) of the hypothalamus revealed that 2 h following injection there was a increase in cfos expression only in the virgin animals treated with LPS, compared to all other treatment conditions. Corticotropin-releasing hormone (CRH) mRNA expression was overall greater in virgin animals, but was increased to similar extent in both virgin and lactating animals treated with LPS. Primary arginine vasopressin (AVP) mRNA transcripts were increased 2 h following LPS injection, but a greater increase in expression was seen in virgin animals. These data demonstrate that there is a lower level of free circulating glucocorticoid in response to inflammatory stimuli and suggests that communication between the immune and endocrine systems may be altered during lactation.
Collapse
Affiliation(s)
- N Shanks
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, Bristol, UK.
| | | | | | | | | | | |
Collapse
|