1
|
Singh R, Sahu N, Tyagi R, Alam P, Akhtar A, Walia R, Chandra A, Madan S. Integrative Network Pharmacology, Molecular Docking, and Dynamics Simulations Reveal the Mechanisms of Cinnamomum tamala in Diabetic Nephropathy Treatment: An In Silico Study. Curr Issues Mol Biol 2024; 46:11868-11889. [PMID: 39590299 PMCID: PMC11592827 DOI: 10.3390/cimb46110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic nephropathy (DN) is a serious diabetes-related complication leading to kidney damage. Cinnamomum tamala (CT), traditionally used in managing diabetes and kidney disorders, has shown potential in treating DN, although its active compounds and mechanisms are not fully understood. This study aims to identify CT's bioactive compounds and explore their therapeutic mechanisms in DN. Active compounds in CT were identified using the Indian Medicinal Plants, Phytochemicals and Therapeutics database, and their potential targets were predicted with PharmMapper. DN-related targets were sourced from GeneCards, and therapeutic targets were identified by intersecting the compound-target and disease-target data. Bioinformatics analyses, including the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment studies, were performed on these targets. A protein-protein interaction network was constructed using STRING and Cytoscape. Molecular docking and dynamics simulations validated the most promising compound-target interactions. Six active compounds in CT were identified, along with 347 potential therapeutic targets, of which 70 were DN-relevant. Key targets like MMP9, EGFR, and AKT1 were highlighted, and the PPAR and PI3K-AKT signaling pathways were identified as the primary mechanisms through which CT may treat DN. CT shows promise in treating DN by modulating key pathways related to cellular development, inflammation, and metabolism.
Collapse
Affiliation(s)
- Rashmi Singh
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
- Metro College of Health Sciences & Research, Greater Noida 201310, Uttar Pradesh, India
| | - Nilanchala Sahu
- Sharda School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (N.S.); (A.C.)
| | - Rama Tyagi
- Galgotias College of Pharmacy, Greater Noida 201310, Uttar Pradesh, India;
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ali Akhtar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ramanpreet Walia
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
| | - Amrish Chandra
- Sharda School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (N.S.); (A.C.)
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
| |
Collapse
|
2
|
Garau Paganella L, Badolato A, Labouesse C, Fischer G, Sänger CS, Kourouklis A, Giampietro C, Werner S, Mazza E, Tibbitt MW. Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels. BIOMATERIALS ADVANCES 2024; 163:213933. [PMID: 38972277 DOI: 10.1016/j.bioadv.2024.213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.
Collapse
Affiliation(s)
- Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Fischer
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catharina S Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
4
|
Chen Y, Peng Y, Li P, Jiang Y, Song D. Ginsenoside Rg3 induces mesangial cells proliferation and attenuates apoptosis by miR-216a-5p/MAPK pathway in diabetic kidney disease. Aging (Albany NY) 2024; 16:9933-9943. [PMID: 38850526 PMCID: PMC11210261 DOI: 10.18632/aging.205907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Ginsenoside Rg3 is an active saponin isolated from ginseng, which can reduce renal inflammation. However, the role and mechanism of Rg3 in diabetic kidney disease (DKD) are far from being studied. METHODS The effects of Rg3 and miR-216a-5p on the proliferation, apoptosis, and MAPK pathway in high glucose (HG)-induced SV40 MES 13 were monitored by CCK-8, TUNEL staining, and western blot. RESULTS Rg3 treatment could accelerate proliferation and suppress apoptosis in HG-induced SV40 MES. Moreover, miR-216a-5p inhibition also could alleviate renal injury, prevent apoptosis, and activate the MAPK pathway in kidney tissues of diabetic model mice. CONCLUSION Rg3 could attenuate DKD progression by downregulating miR-216a-5p, suggesting Rg3 and miR-216a-5p might be the potential drug and molecular targets for DKD therapy.
Collapse
Affiliation(s)
- Yuanzhen Chen
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Yuhuan Peng
- Department of Pharmacy, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Ping Li
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Ying Jiang
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| | - Dan Song
- Department of Nephrology, Shenzhen Guangming District People’s Hospital, Guangming, Shenzhen 518000, China
| |
Collapse
|
5
|
Hell JW. How autoimmune antibodies kindle a firestorm in the brain. EMBO Rep 2024; 25:948-950. [PMID: 38418692 PMCID: PMC10933302 DOI: 10.1038/s44319-024-00094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Patient-derived autoantibodies against NMDARs and GABAaRs show a crossover effect on the opposite receptor’s localization and function dependent on neuronal activity.
Collapse
Affiliation(s)
- Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, 95616-8636, USA.
| |
Collapse
|
6
|
Ghaffari-Nasab A, Ghiasi F, Keyhanmanesh R, Roshangar L, Salmani Korjan E, Nazarpoor N, Mirzaei Bavil F. Bone marrow-derived c-kit positive stem cell administration protects against diabetes-induced nephropathy in a rat model by reversing PI3K/AKT/GSK-3β pathway and inhibiting cell apoptosis. Mol Cell Biochem 2024; 479:603-615. [PMID: 37129768 DOI: 10.1007/s11010-023-04750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3β pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 μl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 μl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 μl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3β proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Rana Keyhanmanesh
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Leila Roshangar
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Elnaz Salmani Korjan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Nazarpoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Muhammed TM, Jalil AT, Taher WM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Effects of Apigenin in the Treatment of Diabetic Nephropathy: A Systematic Review of Non-clinical Studies. Mini Rev Med Chem 2024; 24:341-354. [PMID: 38282447 DOI: 10.2174/1389557523666230811092423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Department of Biotechnology, College of Applied Sciences, University of Fallujah, Al-anbar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Waam Mohammed Taher
- National University of Science and Technology, Thi Qar University, Dhi Qar, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Antioquia, 4440555, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cvenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Zhang L, Zang CS, Chen B, Wang Y, Xue S, Wu MY. Renalase regulates renal tubular injury in diabetic nephropathy via the p38MAPK signaling pathway. FASEB J 2023; 37:e23188. [PMID: 37732586 DOI: 10.1096/fj.202300708r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Diabetic nephropathy (DN) is an important complication of diabetes and the leading cause of end-stage renal disease globally. Renal tubular damage occurs to varying degrees in the early stages of DN prior to glomerular damage. Renalase (RNLS) is an amine oxidase, which is produced and secreted by the renal tubular epithelial cells. RNLS is reportedly closely related to renal tubular injury in acute and chronic kidney diseases. Herein, we aimed to evaluate the changes in tubular RNLS expression in DN and its correlation with DN-associated renal tubular injury. Conditional permanent renal tubular epithelial rat-cell line NRK-52E was transfected with pcDNA3-RNLS plasmid or administered recombinant rat RNLS protein and high glucose (HG) dose. A total of 22 adult Sprague-Dawley rats were randomly divided into the control (CON, n = 10) or diabetic nephrology (DN, n = 12) group. Random blood glucose levels of the rats were measured by sampling of the caudal vein weekly. After 8 weeks, the rat's body weight, 24-h urinary albumin concentration, and right kidney were evaluated. Our study suggested the decreased expression levels of RNLS in renal tissue and renal tubular epithelial cells in DN rats, accompanied by renal tubulointerstitial fibrosis, apoptosis of renal tubular epithelial cells, and activation of the p38MAPK signal pathway. Reversing the low RNLS expression can reduce the level of p38MAPK phosphorylation and delay renal tubular injury. Thus, the reduction of renal tubular RNLS expression in DN mediates tubulointerstitial fibrosis and cell apoptosis via the activation of the p38MAPK signal pathway. RNLS plays a key mediating role in DN-associated tubular injury via p38MAPK, which provides new therapeutic targets and a theoretical basis for early prevention and treatment of DN.
Collapse
Affiliation(s)
- Li Zhang
- Department of Thyroid Surgery, General surgery center, The First Hospital of Jilin University, Changchun, China
| | - Chong-Sen Zang
- Department of Thyroid Surgery, General surgery center, The First Hospital of Jilin University, Changchun, China
| | - Bin Chen
- Department of Thyroid Surgery, General surgery center, The First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Department of Thyroid Surgery, General surgery center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mei-Yan Wu
- Department of Thyroid Surgery, General surgery center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, Sheikh-Hamad D, Basu R, Kumar MNVR. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release 2023; 353:621-633. [PMID: 36503070 PMCID: PMC9904426 DOI: 10.1016/j.jconrel.2022.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Treatments for diabetic kidney disease (DKD) mainly focus on managing hyperglycemia and hypertension, but emerging evidence suggests that inflammation also plays a role in the pathogenesis of DKD. This 10-week study evaluated the efficacy of daily oral nanoparticulate-curcumin (nCUR) together with long-acting insulin (INS) to treat DKD in a rodent model. Diabetic rats were dosed with unformulated CUR alone, nCUR alone or together with INS, or INS alone. The progression of diabetes was reflected by increases in plasma fructosamine, blood urea nitrogen, creatinine, bilirubin, ALP, and decrease in albumin and globulins. These aberrancies were remedied by nCUR+INS or INS but not by CUR or nCUR. Kidney histopathological results revealed additional abnormalities characteristic of DKD, such as basement membrane thickening, tubular atrophy, and podocyte cytoskeletal impairment. nCUR and nCUR+INS mitigated these lesions, while CUR and INS alone were far less effective, if not ineffective. To elucidate how our treatments modulated inflammatory signaling in the liver and kidney, we identified hyperactivation of P38 (MAPK) and P53 with INS and CUR, whereas nCUR and nCUR+INS deactivated both targets. Similarly, the latter interventions led to significant downregulation of renal NLRP3, IL-1β, NF-ĸB, Casp3, and MAPK8 mRNA, indicating a normalization of inflammasome and apoptotic pathways. Thus, we show therapies that reduce both hyperglycemia and inflammation may offer better management of diabetes and its complications.
Collapse
Affiliation(s)
- Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Nikhil K Nuthalapati
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Subhash Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Dianxiong Zou
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Glucosidase inhibitor, Nimbidiol ameliorates renal fibrosis and dysfunction in type-1 diabetes. Sci Rep 2022; 12:21707. [PMID: 36522378 PMCID: PMC9755213 DOI: 10.1038/s41598-022-25848-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-β1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-β/Smad and MAPK signaling pathways in type-1 diabetes.
Collapse
|
11
|
Chen X, Xie H, Liu Y, Ou Q, Deng S. Interference of ALOX5 alleviates inflammation and fibrosis in high glucose‑induced renal mesangial cells. Exp Ther Med 2022; 25:34. [PMID: 36605525 PMCID: PMC9798157 DOI: 10.3892/etm.2022.11733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD), seriously threatening the health of individuals. The 5-lipoxygenase (ALOX5) gene has been reported to be associated with diabetes, but whether it is involved in DN remains unclear. The present study aimed to explore the role of ALOX5 in DN and to clarify the potential mechanism. Mouse renal mesangial cells (SV40 MES-13) were treated with high glucose (HG) to mimic a DN model in vitro. The expression level of ALOX5 was assessed using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 and flow cytometric assays were performed to determine cell proliferation, the cell cycle and apoptosis. Immunofluorescence was carried out to detect the expression of Ki67 and proliferating cell nuclear antigen (PCNA). The inflammatory cytokines were assessed using ELISA. The expression of fibrosis- and NF-κB-related proteins was determined using western blotting. The results revealed that ALOX5 was significantly upregulated in HG-induced SV40 MES-13 cells. Interference of ALOX5 greatly hindered HG-induced cell viability loss, as well as increasing the expression of Ki67 and PCNA. In addition, HG induced cell cycle arrest in the G1 phase and cell apoptosis, which were then partly abolished by interference of ALOX5. Moreover, the elevated production of inflammatory cytokines and upregulated fibrosis-related proteins induced by HG were weakened by interference of ALOX5. Eventually, interference of ALOX5 was found to reduce the activity of NF-κB signaling in HG-induced SV40 MES-13 cells. Collectively, interference of ALOX5 serves as a protective role in HG-induced kidney cell injury, providing a potential therapeutic strategy of DN treatment.
Collapse
Affiliation(s)
- Xiaotao Chen
- Department of Endocrinology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China,Correspondence to: Dr Xiaotao Chen, Department of Endocrinology, Affiliated Hospital of Xiangnan University, 25 Renmin West Road, Beihu, Chenzhou, Hunan 423000, P.R. China
| | - Hongwu Xie
- Department of Endocrinology, The Fourth People's Hospital of Chenzhou, Chenzhou, Hunan 423001, P.R. China
| | - Yun Liu
- Department of Endocrinology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Qiujuan Ou
- Department of Nephrology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Shuaijie Deng
- Century College, Beijing University of Posts and Telecommunications, Beijing 102101, P.R. China
| |
Collapse
|
12
|
Molecular Mechanisms Linking Empagliflozin to Renal Protection in the LLC-PK1 Model of Diabetic Nephropathy. Biomedicines 2022; 10:biomedicines10112983. [PMID: 36428551 PMCID: PMC9687879 DOI: 10.3390/biomedicines10112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Aims: Chronic diabetes complications, including diabetic nephropathy (DN), frequently result in end-stage renal failure. This study investigated empagliflozin (SGLT2i) effects on collagen synthesis, oxidative stress, cell survival, and protein expression in an LLC-PK1 model of DN. Methods: Combinations of high glucose (HG) and increasing empagliflozin concentrations (100 nM and 500 nM), as well as combinations of HG, H2O2, and empagliflozin, were used for cell culture treatment. The cell viability, glutathione (tGSH), ECM expression, and TGF-β1 concentration were measured. In addition, the protein expression of Akt, pAkt, GSK3, pGSK3, pSTAT3, and SMAD7 was determined. Results: The addition of both concentrations of empagliflozin to cells previously exposed to glucose and oxidative stress generally improved cell viability and increased GSH levels (p < 0.001, p < 0.05). In HG30/H2O2/Empa500-treated cells, significant increase in pSTAT3, pGSK3β, GSK3β, SMAD7, and pAKT levels (p < 0.001, p < 0.001, p < 0.05) was observed except for AKT. Lower drug concentrations did not affect the protein expression levels. Furthermore, empagliflozin treatment (100 nM and 500 nM) of HG30/H2O2-injured cells led to a decrease in TGF-β1 levels (p < 0.001). In cells exposed to oxidative stress and hyperglycemia, collagen production remained unchanged. Conclusion: Renoprotective effects of empagliflozin, in this LLC-PK1 cell model of DN, are mediated via activation of the Akt/GSK-3 signalling pathway, thus reducing oxidative stress-induced damage, as well as enhanced SMAD7 expression leading to downregulation of TGF-β1, one of the key mediators of inflammation and fibrosis.
Collapse
|
13
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Hu T, Chen F, Chen D, Liang H. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis. Cell Signal 2022; 96:110352. [PMID: 35523401 DOI: 10.1016/j.cellsig.2022.110352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Renal fibrosis has become one of the major diseases threatening global public health and harming human life and health. PTEN methylation plays an important role in fibrotic diseases of many organs. However, the relationship between PTEN methylation and renal fibrosis is still elusive. METHODS In the present study, we established a unilateral ureteral obstruction (UUO) mouse model in vivo and a transforming growth factor β1 (TGF-β1)-stimulated renal tubular epithelial cell (HK-2) model in vitro. The degree of renal interstitial fibrosis was detected by haematoxylin-eosin (HE) staining and Masson's trichrome staining. Western blot (WB), qRT-PCR, immunohistochemistry (IHC) and methylation-specific PCR (MSP) analyses were used to determine the mechanism by which PTEN methylation regulates renal fibrosis. The α-SMA fibrosis marker was detected by immunofluorescence (IF). Additionally, the relationship of PTEN and DNMT3a in UUO was determined by ChIP-qRT-PCR. RESULTS Our results showed that the promoter region of PTEN was methylated in UUO. Compared to the sham group, the expression of PTEN was significantly reduced in the UUO group. However, the demethylation reagent significantly inhibited epithelial-mesenchymal transition (EMT), which showed increased expression of E-cadherin and decreased expression of α-SMA and fibronectin. Moreover, treatment of HK-2 cells with 5-aza-dc reversed the activation of the TGF-β1-induced PI3K/AKT signalling pathway, which inhibited renal fibrosis. WB analysis demonstrated that TGF-β1 inhibited the PTEN protein expression level and DNMT3a knockdown reversed the inhibitory effect of TGF-β1 on PTEN expression. Furthermore, ChIP-qRT-PCR showed that DNMT3a interacted with PTEN. Finally, we found that DNMT3a negatively regulated PTEN to activate the PI3K/AKT signalling pathway and aggravate renal fibrosis in vitro and in vivo. CONCLUSION In summary, these results indicated that renal fibrosis is related to the downregulation of PTEN. Additionally, DNMT3a negatively regulates PTEN to activate the PI3K/AKT signalling pathway and induce EMT in renal tubular epithelial cells, thereby aggravating renal fibrosis.
Collapse
Affiliation(s)
- Taotao Hu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Fang Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Dan Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Hongqing Liang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China..
| |
Collapse
|
15
|
Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021; 908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.
Collapse
Affiliation(s)
- João Faria
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Karin G F Gerritsen
- Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Tri Q Nguyen
- Dept. Pathology, University Medical Center Utrecht, the Netherlands
| | - Silvia M Mihaila
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands; Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
16
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Disease-Dependent Antiapoptotic Effects of Cannabidiol for Keratinocytes Observed upon UV Irradiation. Int J Mol Sci 2021; 22:ijms22189956. [PMID: 34576119 PMCID: PMC8470797 DOI: 10.3390/ijms22189956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 09/11/2021] [Indexed: 01/14/2023] Open
Abstract
Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. UVB phototherapy is commonly used to treat psoriasis, although this has undesirable side effects, and is often combined with anti-inflammatory compounds. The aim of this study was to analyze if cannabidiol (CBD), a phytocannabinoid that has anti-inflammatory and antioxidant properties, may modify the proapoptotic effects of UVB irradiation in vitro by influencing apoptotic signaling pathways in donor psoriatic and healthy human keratinocytes obtained from the skin of five volunteers in each group. While CBD alone did not have any major effects on keratinocytes, the UVB treatment activated the extrinsic apoptotic pathway, with enhanced caspase 8 expression in both healthy and psoriatic keratinocytes. However, endoplasmic reticulum (ER) stress, characterized by increased expression of caspase 2, was observed in psoriatic cells after UVB irradiation. Furthermore, decreased p-AKT expression combined with increased 15-d-PGJ2 level and p-p38 expression was observed in psoriatic keratinocytes, which may promote both apoptosis and necrosis. Application of CBD partially attenuated these effects of UVB irradiation both in healthy and psoriatic keratinocytes, reducing the levels of 15-d-PGJ2, p-p38 and caspase 8 while increasing Bcl2 expression. However, CBD increased p-AKT only in UVB-treated healthy cells. Therefore, the reduction of apoptotic signaling pathways by CBD, observed mainly in healthy keratinocytes, suggests the need for further research into the possible beneficial effects of CBD.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- LabOS, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence: ; Tel.: +48-857485708
| |
Collapse
|
17
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling. J Cell Sci 2021; 134:jcs255786. [PMID: 34137442 DOI: 10.1242/jcs.255786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/10/2021] [Indexed: 01/19/2023] Open
Abstract
UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro two-dimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects, we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBR-induced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore138648
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
18
|
Duan YR, Chen BP, Chen F, Yang SX, Zhu CY, Ma YL, Li Y, Shi J. LncRNA lnc-ISG20 promotes renal fibrosis in diabetic nephropathy by inducing AKT phosphorylation through miR-486-5p/NFAT5. J Cell Mol Med 2021; 25:4922-4937. [PMID: 33939247 PMCID: PMC8178263 DOI: 10.1111/jcmm.16280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Long non‐coding RNA (lncRNA) lnc‐ISG20 has been found aberrantly up‐regulated in the glomerular in the patients with diabetic nephropathy (DN). We aimed to elucidate the function and regulatory mechanism of lncRNA lnc‐ISG20 on DN‐induced renal fibrosis. Expression patterns of lnc‐ISG20 in kidney tissues of DN patients were determined by RT‐qPCR. Mouse models of DN were constructed, while MCs were cultured under normal glucose (NG)/high glucose (HG) conditions. The expression patterns of fibrosis marker proteins collagen IV, fibronectin and TGF‐β1 were measured with Western blot assay. In addition, the relationship among lnc‐ISG20, miR‐486‐5p, NFAT5 and AKT were analysed using dual‐luciferase reporter assay and RNA immunoprecipitation. The effect of lnc‐ISG20 and miR‐486/NFAT5/p‐AKT axis on DN‐associated renal fibrosis was also verified by means of rescue experiments. The expression levels of lnc‐ISG20 were increased in DN patients, DN mouse kidney tissues and HG‐treated MCs. Lnc‐ISG20 silencing alleviated HG‐induced fibrosis in MCs and delayed renal fibrosis in DN mice. Mechanistically, miR‐486‐5p was found to be a downstream miRNA of lnc‐ISG20, while miR‐486‐5p inhibited the expression of NFAT5 by binding to its 3'UTR. NFAT5 overexpression aggravated HG‐induced fibrosis by stimulating AKT phosphorylation. However, NFAT5 silencing reversed the promotion of in vitro and in vivo fibrosis caused by lnc‐ISG20 overexpression. Our collective findings indicate that lnc‐ISG20 promotes the renal fibrosis process in DN by activating AKT through the miR‐486‐5p/NFAT5 axis. High‐expression levels of lnc‐ISG20 may be a useful indicator for DN.
Collapse
Affiliation(s)
- Yu-Rui Duan
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bao-Ping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Su-Xia Yang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chao-Yang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ya-Li Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
19
|
Guo X, Wu Y, Zhang C, Wu L, Qin L, Liu T. Network Pharmacology Analysis of ZiShenWan for Diabetic Nephropathy and Experimental Verification of Its Anti-Inflammatory Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1577-1594. [PMID: 33883881 PMCID: PMC8055297 DOI: 10.2147/dddt.s297683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The inflammatory response plays a critical role in DN. ZiShenWan (ZSW) is a classical Chinese medicinal formula with remarkable clinical therapeutic effects on DN, but its pharmacological action mechanisms remain unclear. Aim In this study, a network pharmacology approach was applied to investigate the pharmacological mechanisms of ZSW in DN therapy. Based on the results of network analysis, the core targets and signaling pathways related to anti-inflammatory effect were verified via experiments in vivo. Methods The candidate chemical ingredients of ZSW as well as its putative targets and known therapeutic targets of DN were acquired from appropriate databases. The “herb-ingredient-target” network for ZSW in DN treatment was established. The protein–protein interaction (PPI) network of potential targets was constructed to screen the core targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition to biochemical and pathological indicators, the core targets and signaling pathways associated with inflammation were partially validated in db/db mice at molecular level. Results A total of 56 active ingredients in ZSW and 166 DN-related targets were selected from databases. A high proportion of core targets and top signaling pathways participate in inflammation. ZSW markedly alleviated renal injuries pathologically and regulated related biomarkers. In particular, ZSW significantly inhibited the exaggerated release of inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor receptor (TNF)-ɑ, and monocyte chemotactic protein (MCP)-1 as well as regulating p38 mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K)–protein kinase B (Akt) signaling pathways in db/db mice. Conclusion This study first comprehensively investigated the active ingredients, potential targets, and molecular mechanism of ZSW as a therapy for DN. ZSW achieved renoprotective effects in DN via regulation of multiple targets and signaling pathways, especially by alleviating inflammation. Results indicate that ZSW is a promising multi-target therapeutic approach for DN treatment.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Nephrology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
20
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 2020; 38:101813. [PMID: 33279869 PMCID: PMC7718489 DOI: 10.1016/j.redox.2020.101813] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease is known as a major cause of chronic kidney disease and end stage renal disease. Polysulfides, a class of chemical agents with a chain of sulfur atoms, are found to confer renal protective effects in acute kidney injury. However, whether a polysulfide donor, sodium tetrasulfide (Na2S4), confers protective effects against diabetic nephropathy remains unclear. Our results showed that Na2S4 treatment ameliorated renal dysfunctional and histological damage in diabetic kidneys through inhibiting the overproduction of inflammation cytokine and reactive oxygen species (ROS), as well as attenuating renal fibrosis and renal cell apoptosis. Additionally, the upregulated phosphorylation and acetylation levels of p65 nuclear factor κB (p65 NF-κB) and signal transducer and activator of transcription 3 (STAT3) in diabetic nephropathy were abrogated by Na2S4 in a sirtuin-1 (SIRT1)-dependent manner. In renal tubular epithelial cells, Na2S4 directly sulfhydrated SIRT1 at two conserved CXXC domains (Cys371/374; Cys395/398), then induced dephosphorylation and deacetylation of its targeted proteins including p65 NF-κB and STAT3, thereby reducing high glucose (HG)-caused oxidative stress, cell apoptosis, inflammation response and epithelial-to-mesenchymal transition (EMT) progression. Most importantly, inactivation of SIRT1 by a specific inhibitor EX-527, small interfering RNA (siRNA), a de-sulfhydration reagent dithiothreitol (DTT), or mutation of Cys371/374 and Cys395/398 sites at SIRT1 abolished the protective effects of Na2S4 on diabetic kidney insulting. These results reveal that polysulfides may attenuate diabetic renal lesions via inactivation of p65 NF-κB and STAT3 phosphorylation/acetylation through sulfhydrating SIRT1.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Si-Ping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Meng-Yuan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
21
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting p75NTR-Mediated Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5454210. [PMID: 33194004 PMCID: PMC7648709 DOI: 10.1155/2020/5454210] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress and apoptosis play a key role in the pathogenesis of sepsis-associated acute kidney injury (AKI). Dexmedetomidine (DEX) may present renal protective effects in sepsis. Therefore, we studied antioxidant effects and the mechanism of DEX in an inflammatory proximal tubular epithelial cell model and lipopolysaccharide- (LPS-) induced AKI in mice. Methods. We assessed renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)), and apoptosis (TUNEL staining and Cleaved caspase-3) in mice. In vitro experiments including Cleaved caspase-3 and p75NTR/p38MAPK/JNK signaling pathways were evaluated using western blot. Reactive oxidative species (ROS) production and apoptosis were determined using flow cytometry. Results. DEX significantly improved renal function and kidney injury and also revert the substantially increased level of MDA concentrations as well as the reduction of the SOD enzyme activity found in LPS-induced AKI mice. In parallel, DEX treatment also reduced the apoptosis and Cleaved caspase-3 expression evoked by LPS. The expression of p75NTR was increased in kidney tissues of mice with AKI but decreased after treatment with DEX. In cultured human renal tubular epithelial cell line (HK-2 cells), DEX inhibited LPS-induced apoptosis and generation of ROS, but this was reversed by overexpression of p75NTR. Furthermore, pretreatment with DEX significantly downregulated phosphorylation of JNK and p38MAPK in LPS-stimulated HK-2 cells, and this effect was abolished by overexpression of p75NTR. Conclusion. DEX ameliorated AKI in mice with sepsis by partially reducing oxidative stress and apoptosis through regulation of p75NTR/p38MAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiali Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Jin S, Li J, Barati M, Rane S, Lin Q, Tan Y, Zheng Z, Cai L, Rane MJ. Loss of NF-E2 expression contributes to the induction of profibrotic signaling in diabetic kidneys. Life Sci 2020; 254:117783. [PMID: 32413404 DOI: 10.1016/j.lfs.2020.117783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023]
|
24
|
Chen L, Wang Y, Luan H, Ma G, Zhang H, Chen G. DUSP6 protects murine podocytes from high glucose‑induced inflammation and apoptosis. Mol Med Rep 2020; 22:2273-2282. [PMID: 32705203 PMCID: PMC7411363 DOI: 10.3892/mmr.2020.11317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications that can occur in patients with diabetes, and without effective and timely therapeutic intervention, can gradually progress to renal failure. Previous studies have focused on investigating the pathogenesis of DN; however, the role of dual‑specificity phosphatase 6 (DUSP6) in DN is not completely understood. Therefore, the present study aimed to investigate the role of dual‑specificity phosphatase 6 (DUSP6) in DN. DN model mice were established and the expression levels of DUSP6 in the kidney tissues and high glucose (HG)‑induced murine podocytes (MPC5 cells) were determined using immunohistochemistry, reverse transcription‑quantitative PCR and western blotting. In addition, the levels of reactive oxygen species (ROS) and inflammatory cytokines in MPC5 cells were analyzed using commercial assay kits or ELISA kits, respectively, and flow cytometric analysis was performed to analyze the rate of cell apoptosis. The present study indicated that DUSP6 expression levels were significantly decreased in DN model mice compared with control mice, and in HG‑induced MPC5 cells compared with normal glucose‑induced MPC5 cells. DUSP6 overexpression enhanced MPC5 cell viability and increased protein expression levels of cell markers, such as synaptopodin and nephrin, compared with the negative control group. DUSP6 overexpression also reduced the levels of ROS and inflammatory cytokines, including interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α secreted by MPC5 cells under HG conditions. Moreover, compared with the HG group, cell apoptosis was inhibited by DUSP6 overexpression under HG conditions, which was further indicated by decreased expression levels of cleaved caspase‑3 and Bax. Thus, these findings indicated that DUSP6 mediated the protection against HG‑induced inflammatory response.
Collapse
Affiliation(s)
- Liqiang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yaokun Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Haiyan Luan
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Guangyu Ma
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Guang Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
25
|
Xu E, Yin C, Yi X, Liu Y. Knockdown of CTRP6 inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells through regulating the Akt/NF-κB pathway. Clin Exp Pharmacol Physiol 2020; 47:1203-1211. [PMID: 32077518 DOI: 10.1111/1440-1681.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
C1qTNF-related protein 6 (CTRP6) is a member of the CTRP family and exerts a key role in the progression of diabetes mellitus. However, the role of CTRP6 in diabetic nephropathy remains unknown. The present study was designed to examine the roles of CTRP6 in diabetic nephropathy and explore the potential molecular mechanisms. Our results showed that the expression level of CTRP6 was significantly increased in high glucose (HG)-stimulated glomerular mesangial cells (MCs). The following loss/gain-of-function assays demonstrated that CTRP6 knockdown significantly inhibited HG-induced reactive oxygen species (ROS) production in MCs. CTRP6 knockdown caused significant decreases in tumour necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 production levels in HG-induced MCs. Moreover, knockdown of CTRP6 inhibited HG-stimulated extracellular matrix (ECM) accumulation in MCs characterized by decreased expression and production levels of fibronectin (FN) and collagen IV (Col IV). Furthermore, CTRP6 knockdown suppressed HG-induced the activation of Akt/NF-κB pathway in MCs, while overexpression of CTRP6 exhibited the opposite effects. Treatment with LY294002, an inhibitor of Akt, reversed the induction effects of CTRP6 overexpression on ROS production, inflammation and ECM accumulation in MCs. In conclusion, these findings demonstrated that CTRP6 knockdown inhibits HG-induced ROS production, inflammation and ECM accumulation in MCs, which were mediated by the inactivation of the Akt/NF-κB pathway. The roles of CTRP6 in diabetic nephropathy provided evidence for its therapeutic potential for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Erdi Xu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqing Yi
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Aluksanasuwan S, Plumworasawat S, Malaitad T, Chaiyarit S, Thongboonkerd V. High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Sci Rep 2020; 10:5843. [PMID: 32246012 PMCID: PMC7125224 DOI: 10.1038/s41598-020-62665-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction has been thought to play roles in the pathogenesis of diabetic nephropathy (DN). However, precise mechanisms underlying mitochondrial dysfunction in DN remained unclear. Herein, mitochondria were isolated from renal tubular cells after exposure to normal glucose (5.5 mM glucose), high glucose (25 mM glucose), or osmotic control (5.5 mM glucose + 19.5 mM mannitol) for 96 h. Comparative proteomic analysis revealed six differentially expressed proteins among groups that were subsequently identified by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and confirmed by Western blotting. Several various types of post-translational modifications (PTMs) were identified in all of these identified proteins. Interestingly, phosphorylation and oxidation were most abundant in mitochondrial proteins whose levels were exclusively increased in high glucose condition. The high glucose-induced increases in phosphorylation and oxidation of mitochondrial proteins were successfully confirmed by various assays including MS/MS analyses. Moreover, high glucose also increased levels of phosphorylated ezrin, intracellular ATP and ROS, all of which could be abolished by a p38 MAPK inhibitor (SB239063), implicating a role of p38 MAPK-mediated phosphorylation in high glucose-induced mitochondrial dysfunction. These data indicate that phosphorylation and oxidation of mitochondrial proteins are, at least in part, involved in mitochondrial dysfunction in renal tubular cells during DN.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
27
|
Gembillo G, Cernaro V, Siligato R, Curreri F, Catalano A, Santoro D. Protective Role of Vitamin D in Renal Tubulopathies. Metabolites 2020; 10:115. [PMID: 32204545 PMCID: PMC7142711 DOI: 10.3390/metabo10030115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is tightly linked with renal tubular homeostasis: the mitochondria of proximal convoluted tubule cells are the production site of 1α,25-dihydroxyvitamin D3. Patients with renal impairment or tubular injury often suffer from chronic inflammation. This alteration comes from oxidative stress, acidosis, decreased clearance of inflammatory cytokines and stimulation of inflammatory factors. The challenge is to find the right formula for each patient to correctly modulate the landscape of treatment and preserve the essential functions of the organism without perturbating its homeostasis. The complexity of the counter-regulation mechanisms and the different axis involved in the Vitamin D equilibrium pose a major issue on Vitamin D as a potential effective anti-inflammatory drug. The therapeutic use of this compound should be able to inhibit the development of inflammation without interfering with normal homeostasis. Megalin-Cubilin-Amnionless and the FGF23-Klotho axis represent two Vitamin D-linked mechanisms that could modulate and ameliorate the damage response at the renal tubular level, balancing Vitamin D therapy with an effect potent enough to contrast the inflammatory cascades, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| | | | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.C.); (R.S.)
| |
Collapse
|
28
|
Wang L, Chang JH, Buckley AF, Spurney RF. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int 2020; 95:321-332. [PMID: 30665571 DOI: 10.1016/j.kint.2018.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations in TRPC6 cause familial focal segmental glomerulosclerosis, and TRPC6 is upregulated in glomerular diseases including diabetic kidney disease. We studied the effect of systemic TRPC6 knockout in the Akita model of type 1 diabetes. Knockout of TRPC6 inhibited albuminuria in Akita mice at 12 and 16 weeks of age, but this difference disappeared by 20 weeks. Knockout of TRPC6 also reduced tubular injury in Akita mice; however, mesangial expansion was significantly increased. Hyperglycemia and blood pressure were similar between TRPC6 knockout and wild-type Akita mice, but knockout mice were more insulin resistant. In cultured podocytes, knockout of TRPC6 inhibited expression of the calcium/calcineurin responsive gene insulin receptor substrate 2 and decreased insulin responsiveness. Insulin resistance is reported to promote diabetic kidney disease independent of blood glucose levels. While the mechanisms are not fully understood, insulin activates both Akt2 and ERK, which inhibits apoptosis signal regulated kinase 1 (ASK1)-p38-induced apoptosis. In cultured podocytes, hyperglycemia stimulated p38 signaling and induced apoptosis, which was reduced by insulin and ASK1 inhibition and enhanced by Akt or ERK inhibition. Glomerular p38 signaling was increased in TRPC6 knockout Akita mice and was associated with enhanced expression of the p38 gene target cyclooxygenase 2. These data suggest that knockout of TRPC6 in Akita mice promotes insulin resistance and exacerbates glomerular disease independent of hyperglycemia.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Jae-Hyung Chang
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA; Durham VA Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
29
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
30
|
Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019; 11:E2989. [PMID: 31817718 PMCID: PMC6950067 DOI: 10.3390/nu11122989] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several in vitro and in vivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (W.N.B.W.M.T.); (I.O.)
| |
Collapse
|
31
|
Rai U, Kosuru R, Prakash S, Tiwari V, Singh S. Tetramethylpyrazine alleviates diabetic nephropathy through the activation of Akt signalling pathway in rats. Eur J Pharmacol 2019; 865:172763. [PMID: 31682792 DOI: 10.1016/j.ejphar.2019.172763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Abstract
In the whole world, the principal cause of end-stage renal disease is diabetic nephropathy (DN), which is one of the most relentless complications of diabetes. However, there is a shortfall of compelling DN treatments and the mechanism potentially able to alleviate renal injury remains ambiguous. In this experiment, we estimated the preventive actions of tetramethylpyrazine (TMP) on DN in rats and further investigated the underlying mechanism. The different doses of TMP (100 mg/kg, 150 mg/kg and 200 mg/kg) were orally given each day for 8 weeks in streptozotocin (STZ) - nicotinamide (NCT) - induced type-2 diabetic (T2D) rats. The metabolic parameters of diabetes, blood urea nitrogen (BUN), serum creatinine (SCR), urinary protein and oxidative stress parameters were assessed. Microstructural changes in kidney were observed, and the expression of Akt signalling pathway proteins was measured by western blotting. TMP administration in T2D rats improved diabetic condition, as demonstrated by significant (P < 0.05) increase of body weight and fasting serum insulin (FSI) level, reduction of fasting blood glucose (FBG) and glycosylated haemoglobin (HbA1c) level and regulation of lipid profile and oral glucose tolerance in a dose-dependent manner. TMP treatment also reduced BUN, SCR, urinary protein and oxidative stress and prevented renal injury in diabetic rats. TMP activated Akt signalling pathway, increased the levels of p-Akt and Bcl-2, and diminished the expressions of p-GSK-3β, Bax and cleaved caspase-3. In conclusion, TMP ameliorates diabetic nephropathy in T2D rats by initiating the Akt signalling, improving the metabolic markers of diabetes and suppressing oxidative stress.
Collapse
Affiliation(s)
- Uddipak Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ramoji Kosuru
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Swati Prakash
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
32
|
Yang F, Cui Z, Deng H, Wang Y, Chen Y, Li H, Yuan L. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Medicine (Baltimore) 2019; 98:e16225. [PMID: 31277135 PMCID: PMC6635158 DOI: 10.1097/md.0000000000016225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a great contribution to the development of diabetic nephropathy (DN). The aim of this study was to explore potential miRNAs-genes regulatory network and biomarkers for the pathogenesis of DN using bioinformatics methods.Gene expression profiling data related to DN (GSE1009) was obtained from the Gene Expression Omnibus (GEO) database, and then differentially expressed genes (DEGs) between DN patients and normal individuals were screened using GEO2R, followed by a series of bioinformatics analyses, including identifying key genes, conducting pathway enrichment analysis, predicting and identifying key miRNAs, and establishing regulatory relationships between key miRNAs and their target genes.A total of 600 DEGs associated with DN were identified. An additional 7 key DEGs, including 6 downregulated genes, such as vascular endothelial growth factor α (VEGFA) and COL4A5, and 1 upregulated gene (CCL19), were identified in another dataset (GSE30528) from glomeruli samples. Pathway analysis showed that the down- and upregulated DEGs were enriched in 14 and 6 pathways, respectively, with 7 key genes mainly involved in extracellular matrix-receptor interaction, PI3K/Akt signaling, focal adhesion, and Rap1 signaling. The relationships between miRNAs and target genes were constructed, showing that miR-29 targeted COL4A and VEGFA, miR-200 targeted VEGFA, miR-25 targeted ITGAV, and miR-27 targeted EGFR.MiR-29 and miR-200 may play important roles in DN. VEGFA and COL4A5 were targeted by miR-29 and VEGFA by miR-200, which may mediate multiple signaling pathways leading to the pathogenesis and development of DN.
Collapse
|
33
|
Active Vitamin D and Vitamin D Receptor Help Prevent High Glucose Induced Oxidative Stress of Renal Tubular Cells via AKT/UCP2 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9013904. [PMID: 31275989 PMCID: PMC6558621 DOI: 10.1155/2019/9013904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023]
Abstract
Background It has been documented that vitamin D supplementation showed an improvement of symptoms of diabetic nephropathy; however, the underlying mechanisms remain unknown. We here tested the hypothesis that active vitamin D is able to up-regulate AKT/UCP2 signaling to alleviate oxidative stress of renal tubular cell line HK2. Methods There are eight groups in the present study: normal glucose, osmotic control (5.5 mmol/L D-glucose+24.5 mmol/L D-mannitol), NAC control (30 mmol/L D-glucose + 1.0 mmol/L N-Methylcysteine), high glucose, high glucose+VD, high glucose (HG)+VD+siVDR, HG+VD+AKT inhibitor (AI), and high glucose+VD+UCP2 inhibitor (Gelipin). Concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) was analyzed by ELISA. Reactive oxygen species (ROS), mitochondrial membrane potential and apoptosis were measured by flow cytometry. JC-1 was evaluated by flow cytometry. The presence of VDR, AKT, and UCP2 in HK cells was assessed using RT-PCR and western blot analyses. Results VD administration significantly upregulated the SOD activation and downregulated MDA levels compared to HG group. siVDR, AKT inhibitor, and UCP2 inhibitor significantly suppressed the activation of SOD and increased the expression of MDA compared to VD group. ROS generation and apoptosis of HK2 cells in HG+VD group were significantly lower than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. ΔΨm in HG+VD group was obviously higher than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. Decreased mRNA and protein levels of VDR, p-AKT, and UCP2 were observed in HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group compared to those in HG+VD group. Conclusions siVDR, AKT inhibitor, and UCP2 inhibitor elevated the ROS and apoptosis of HK2 cells while attenuating the mitochondrial membrane potential, suggesting that vitamin D protects renal tubular cell from high glucose by AKT/UCP2 signaling pathway.
Collapse
|
34
|
Ying C, Wang S, Lu Y, Chen L, Mao Y, Ling H, Cheng X, Zhou X. Glucose fluctuation increased mesangial cell apoptosis related to AKT signal pathway. Arch Med Sci 2019; 15:730-737. [PMID: 31110541 PMCID: PMC6524177 DOI: 10.5114/aoms.2019.84739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Blood glucose fluctuation is an important factor for the development of diabetic complications. Glucose fluctuation aggravated the renal injury in diabetic nephropathy. In the present study, our aim was to investigate the effects of blood glucose fluctuation on the glomerular mesangal cells and its related mechanism. MATERIAL AND METHODS Mesangial cells were divided into four groups: the normal glucose group (NG) cells were incubated in normal glucose conditions (5.6 mmol/l); the high glucose group (HG) cells were treated with 25 mmol/l; the glucose fluctuation (FG) group received 5.6 mmol/l and 25 mmol/l glucose repeated 3 times; the mannitol group (MG) received 5.6 mmol/l glucose plus 24.4 mmol/l mannitol as a control. Cell viability and apoptosis were detected, reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels were measured. Phosphorylated ser/thr protein kinase (P-AKT, phosphor-Ser473), phosphorylated glycogen synthase kinase-3β (P-GSK-3β, phosphor-Ser9) and cleaved cysteinyl aspartate-specific proteinase-3 (cleaved caspase-3) levels were assessed using western blot. RESULTS Data suggested that mesangial cells in the FG group show higher cell viability in 12 h, and lower cell viability from 48 h. The FG group showed cell apoptosis accompanied by a significant MDA level increase and SOD activity decrease in 48 h. More importantly, glucose fluctuation could aggravate oxidative stress in glomerular mesangial cells. Furthermore, the P-AKT level was lower, and increased P-GSK-3β and cleaved caspase-3 levels were higher in the FG group than in the HG group. CONCLUSIONS Glucose fluctuation aggravates mesangial cell apoptosis, which may be partly induced by activating oxidative stress and inhibiting the AKT signaling pathway.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
35
|
Ni Z, Guo L, Liu F, Olatunji OJ, Yin M. Allium tuberosum alleviates diabetic nephropathy by supressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats. Biomed Pharmacother 2019; 112:108678. [DOI: 10.1016/j.biopha.2019.108678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022] Open
|
36
|
Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Zhou X, Cui W, Miao L. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides 2019; 114:29-37. [PMID: 30959144 DOI: 10.1016/j.peptides.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy is a common complication of diabetes characterized by an increased rate of protein excretion in urine and kidney function loss. Elabela is a newly discovered peptide whose role in the regulation of diabetes is the major focus of this research. We established an in vivo model of Type 1 diabetes mellitus by injecting mice intraperitoneally with streptozotocin. The treatment group was administered Elabela for 6 months. In the present study, Elabela administration under diabetic conditions was found to reduce renal inflammation and fibrosis markers, leading to improvement in renal pathology and kidney dysfunction. Furthermore, Elabela acts through the phosphoinositide 3-kinase /Akt/mammalian target of rapamycin signaling pathway and decreases podocyte apoptosis, thereby exhibiting a nephroprotective effect against diabetic nephropathy. Our findings provide the first evidence that Elabela has a potential renoprotective effect in patients of diabetes.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoxi Zhou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
37
|
Lee JH, Sarker MK, Choi H, Shin D, Kim D, Jun HS. Lysophosphatidic acid receptor 1 inhibitor, AM095, attenuates diabetic nephropathy in mice by downregulation of TLR4/NF-κB signaling and NADPH oxidase. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1332-1340. [PMID: 30763641 DOI: 10.1016/j.bbadis.2019.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy (DN) is one of the major long-term complications of diabetes. Lysophosphatidic acid (LPA) signaling has been implicated in renal fibrosis. In our previous study, we found that the LPA receptor 1/3 (LPAR1/3) antagonist, ki16425, protected against DN in diabetic db/db mice. Here, we investigated the effects of a specific pharmacological inhibitor of LPA receptor 1 (LPA1), AM095, on DN in streptozotocin (STZ)-induced diabetic mice to exclude a possible contribution of LPAR3 inhibition. AM095 treatment significantly reduced albuminuria and the albumin to creatinine ratio and significantly decreased the glomerular volume and tuft area in the treated group compared with the STZ-vehicle group. In the kidney of STZ-induced diabetic mice, the expression of LPAR1 mRNA and protein was positively correlated with oxidative stress. AM095 treatment inhibited LPA-induced reactive oxygen species production and NADPH oxidase expression as well as LPA-induced toll like receptor 4 (TLR4) expression in mesangial cells and in the kidney of STZ-induced diabetic mice. In addition, AM095 treatment suppressed LPA-induced pro-inflammatory cytokines and fibrotic factors expression through downregulation of phosphorylated NFκBp65 and c-Jun N-terminal kinases (JNK) in vitro and in the kidney of STZ-induced diabetic mice. Pharmacological or siRNA inhibition of TLR4 and NADPH oxidase mimicked the effects of AM095 in vitro. In conclusion, AM095 is effective in preventing the pathogenesis of DN by inhibiting TLR4/NF-κB and the NADPH oxidase system, consequently inhibiting the inflammatory signaling cascade in renal tissue of diabetic mice, suggesting that LPAR1 antagonism might provide a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Jong Han Lee
- College of Pharmacy, Gachon University, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Mithun Kumer Sarker
- College of Pharmacy, Gachon University, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hojung Choi
- College of Pharmacy, Gachon University, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, Republic of Korea.
| |
Collapse
|
38
|
A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:49-79. [PMID: 31399961 DOI: 10.1007/978-981-13-8871-2_4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a common kidney disease in people with diabetes, which is also a serious microvascular complication of diabetes and the main cause of end-stage renal disease (ESRD) in developed and developing countries. Renal fibrosis is a finally pathological change in DN. Nevertheless, the relevant mechanism of cause to renal fibrosis in DN is still complex. In this review, we summarized that the role of cell growth factors, epithelial-mesenchymal transition (EMT) in the renal fibrosis of DN, we also highlighted the miRNA and inflammatory cells, such as macrophage, T lymphocyte, and mastocyte modulate the progression of DN. In addition, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules, such as Notch, Wnt, mTOR, Epac-Rap-1 pathway, may play a pivotal role in the modulation of ECM accumulation and renal fibrosis in DN. This review aims to elucidate the mechanism of renal fibrosis in DN and has provided new insights into possible therapeutic interventions to inhibit renal fibrosis and delay the development of DN.
Collapse
|
39
|
Silibinin ameliorates diabetic nephropathy via improving diabetic condition in the mice. Eur J Pharmacol 2018; 845:24-31. [PMID: 30597130 DOI: 10.1016/j.ejphar.2018.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease and one of the most severe diabetic complications. However, there is lack of effective treatments for DN and the underlying mechanisms of the renal injury remain unclear. In current study, we evaluated the effects of silibinin on DN and further explored the underlying mechanisms. We administrated silibinin to db/db mice for 10 weeks. Then we monitored the diabetic metabolic parameters, kidney function, oxidative stress and AKT signaling pathway in db/db mice. Administration of silibinin to db/db mice improved diabetic condition, as evidenced by the decrease of body weight, HbAc1level and serum insulin level in db/db mice. Silibinin prevented kidney injury and attenuated oxidative stress in db/db mice. Silibinin activated AKT signaling pathway and decreased the levels of p-GSK-3β, Bax and cleaved caspase-3. Silibinin ameliorates diabetic nephropathy by activating the AKT signaling pathway.
Collapse
|
40
|
Mou Z, Feng Z, Xu Z, Zhuang F, Zheng X, Li X, Qian J, Liang G. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 508:243-249. [PMID: 30477745 DOI: 10.1016/j.bbrc.2018.11.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients, with inflammation and oxidative stress implicated as crucial pathogenic factors. There is an urgent need to develop effective therapeutic drug. Natural medicines are rich resources for active lead compounds. They would provide new opportunities for the treatment of DN. The present study was designed to investigate the protective effects of Schisandrin B (SchB) on DN and to delineate the underlying mechanism. Oral administration of SchB in the diabetic mouse model significantly alleviated hyperglycemia-induced renal injury, which was accompanied by maintenance of urine creatinine and albumin levels at similar to those of control non-diabetic mice. Histological examination of renal tissue indicated that both development of fibrosis and renal cell apoptosis were dramatically inhibited by SchB. The protective effect of SchB on DN associated with suppression of inflammatory response and oxidative stress. These results strongly suggested that SchB could be a potential therapeutic agent for treatment of DN. Moreover, our findings provided a fuller understanding of the regulatory role of NF-κB and Nrf2 in DN, indicating that they could be important therapeutic targets.
Collapse
Affiliation(s)
- Zhenxin Mou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguo Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Zhuang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Diabetes Center, Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
A Network Pharmacology Approach to Uncover the Mechanisms of Shen-Qi-Di-Huang Decoction against Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7043402. [PMID: 30519269 PMCID: PMC6241231 DOI: 10.1155/2018/7043402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.
Collapse
|
42
|
[Correlation between expressions of VEGF and TRPC6 and their roles in podocyte injury in rats with diabetic nephropathy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29643035 PMCID: PMC6744170 DOI: 10.3969/j.issn.1673-4254.2018.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To analyze the correlation between the expressions of vascular endothelial growth factor (VEGF) and transient receptor potential canonical 6 (TRPC6) and their role in podocyte injury in rats with diabetic nephropathy. METHODS Forty SD rats with diabetic nephropathy induced by intraperitoneal injection of 65 mg/kg streptozotocin were randomized equally into 5 groups, including a diabetic nephropathy model group and 4 treatment groups, with 8 normal SD rats as the normal control group. In the 4 treatment groups, the rats received intraperitoneal injections with SU5416 at 5 mg/kg or 10 mg/kg twice a week or with LY294002 at 1 mg/kg or 2 mg/kg once daily for 8 weeks. Blood glucose, serum creatinine, blood urea nitrogen, and 24-h urinary protein levels of the rats were detected at different time points, and the pathologies in the renal tissue were observed using HE staining, PAS staining and immunohistochemistry. The expressions of VEGF, nephrin, and TRPC6 at mRNA and protein levels were detected using RT-PCR and Western blotting. RESULTS Compared with normal control rats, the diabetic rats showed significantly increased fasting blood glucose, serum creatinine, blood urea nitrogen and 24-h urinary protein levels with decreased expressions of nephrin mRNA and protein (P<0.05) and increased expressions of VEGF and TRPC6 (P<0.05). Compared with the untreated diabetic rats, the rats with SU5416 treatment showed increased 24-h urinary protein, urea nitrogen, and nephrin expression and decreased TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, or VEGF expression. The rats treated with LY294002 showed decreased 24-h urinary protein and TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, urea nitrogen, or expressions of nephrin and VEGF. CONCLUSION The regulatory effect of VEGF on TRPC6 can be blocked by inhibiting VEGFR-2 or blocking PI3K/Akt signaling pathway.
Collapse
|
43
|
Song Y, Wang X, Qin S, Zhou S, Li J, Gao Y. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway. Mol Med Rep 2018; 17:7395-7402. [PMID: 29568860 DOI: 10.3892/mmr.2018.8727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Esculin is a derivative of coumarin, which is also an active ingredient of ash bark, and has antibacterial, anti-inflammatory, anti‑allergy and skin protective effects. The underlying mechanism and protective effects of esculin on cognitive impairment in experimental diabetic nephropathy (DN) was investigated in the present study. Male C57BL/6J 6‑week‑old mice were injected intravenously with a single dose of streptozotocin (STZ; 30 mg/kg). At 2 weeks after the STZ injection, mice received intravenous injection with 5, 10 or 20 mg/kg esculin for 2 weeks. In the present study, the results of the Morris water maze test demonstrated that esculin significantly improved behavior and recognition memory in STZ‑induced diabetic rats. Furthermore, treatment of STZ‑induced diabetic rats with esculin significantly inhibited tumor necrosis factor‑α, interleukin‑6, malondialdehyde, monocyte chemoattractant protein‑1 and intracellular adhesion molecule‑1 activity levels, and increased the activity of superoxide dismutase, in the kidney, which was determined by ELISA. In addition, esculin treatment significantly suppressed the renal protein expression of activator protein 1, phosphorylated (p)‑p38 mitogen activated protein kinase (MAPK) and p‑c‑Jun N‑terminal kinase, and increased p‑extracellular signal regulated kinase 1/2 protein expression, in STZ‑induced diabetic rats, as determined by western blotting. These results indicate that esculin may ameliorate cognitive impairment in experimental DN, and exert anti‑oxidative stress and anti‑inflammatory effects, via the MAPK signaling pathway. Thus, it may serve as a potential target for cognitive impairment of DN in the future.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaochun Wang
- Department of Nursing, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shengkai Qin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Siheng Zhou
- Department of Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiaolun Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yue Gao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
44
|
Chen P, Shi X, Xu X, Lin Y, Shao Z, Wu R, Huang L. Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model. Diabetes Res Clin Pract 2018; 137:173-182. [PMID: 29355652 DOI: 10.1016/j.diabres.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to investigate the effects of liraglutide on renal injury and the renal expression of FoxO1 in type 2 diabetic rats. METHODS Type 2 diabetic rats model was induced by a high-sugar and high-fat diet and intraperitoneal injection of low-dose Streptozotocin (STZ) (30 mg/kg). Five weeks after STZ injection, diabetic rats were randomly treated with or without subcutaneous injection of liraglutide (0.2 mg/kg/12 h) for eight weeks. Diabetes-related physical and biochemical indicators, renal histopathological and ultrastructural changes, the expression of renal transforming growth factor beta-1 (TGF-β1), fibronectin (FN), type IV collagen (Col IV), protein kinase B (Akt), forkhead box protein O1 (FoxO1) and manganese superoxide dismutase (MnSOD) were measured. RESULTS Rats in DN group showed a significant increase in fasting blood glucose, HbA1c, kidney to body weight index, serum creatinine (Scr), blood urea nitrogen (BUN), urinary albumin excretion, mesangial matrix index, glomerular basement membrane (GBM) thickening, podocyte foot process fusion, the mRNA and protein levels of renal TGF-β1, FN and Col IV and a dramatic decrease in the mRNA and protein levels of renal MnSOD, all of which were significantly ameliorated by liraglutide. In addition, liraglutide also increased the expression of FoxO1 mRNA and reduced renal phosphorylation levels of Akt and FoxO1 protein. CONCLUSIONS These results suggest that liraglutide may exert a renoprotective effect by a FoxO1-mediated upregulation of renal MnSOD expression in the early DKD.
Collapse
Affiliation(s)
- Pin Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Xiaozhi Shi
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Xiangjin Xu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China.
| | - Yiyang Lin
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Zhulin Shao
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Rongdan Wu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Lihong Huang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| |
Collapse
|
45
|
Chen P, Yuan Y, Zhang T, Xu B, Gao Q, Guan T. Pentosan polysulfate ameliorates apoptosis and inflammation by suppressing activation of the p38 MAPK pathway in high glucose‑treated HK‑2 cells. Int J Mol Med 2017; 41:908-914. [PMID: 29207166 PMCID: PMC5752165 DOI: 10.3892/ijmm.2017.3290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 11/20/2017] [Indexed: 01/26/2023] Open
Abstract
The apoptosis of tubular epithelial cells in diabetic nephropathy (DN) is commonly observed in human renal biopsies. Inflammation plays a key role in DN, and pentosan polysulfate (PPS) has been shown to largely attenuate the inflammation of nephropathy in aging diabetic mice. p38 mitogen-activated protein kinase (p38 MAPK) plays a crucial role in tissue inflammation and cell apoptosis, and it is activated by hyperglycemia. In the present study, high glucose (HG)-treated human renal proximal tubular epithelial cells (HK-2) were used to examine the protective effects of PPS against HG-stimulated apoptosis and inflammation. The results of the study revealed that PPS markedly suppressed the HG-induced reduction in cell viability. Incubation of HK-2 cells with HG activated the p38 MAPK pathway and, subsequently, as confirmed by western blot analysis and flow cytometry, increased cell apoptosis, which was blocked by PPS. In addition, PPS treatment significantly inhibited HG-stimulated p38 MAPK and nuclear factor-κB activation, and reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6. In conclusion, PPS ameliorates p38 MAPK-mediated renal cell apoptosis and inflammation. The anti-apoptotic actions and anti-inflammatory effects of PPS prompt further investigation of this compound as a promising therapeutic agent against DN.
Collapse
Affiliation(s)
- Ping Chen
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Yuan
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tianying Zhang
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
46
|
Klawitter J, Pennington A, Klawitter J, Thurman JM, Christians U. Mitochondrial cyclophilin D ablation is associated with the activation of Akt/p70S6K pathway in the mouse kidney. Sci Rep 2017; 7:10540. [PMID: 28874678 PMCID: PMC5585384 DOI: 10.1038/s41598-017-10076-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/04/2017] [Indexed: 01/03/2023] Open
Abstract
The mitochondrial matrix protein cyclophilin D (CypD) is an essential component of the mitochondrial permeability transition pore (MPTP). Here we characterized the effects of CypD ablation on bioenergetics in the kidney. CypD loss triggers a metabolic shift in Ppif-/- male and female mouse kidneys towards glycolysis and Krebs cycle activity. The shift is accompanied by increased glucose consumption and a transcriptional upregulation of effectors of glucose metabolism in the kidney. These included activation of Akt, AMPK (only in males) and p70S6K kinases. Gender specific differences between the Ppif-/- male and female mouse kidneys were observed including activation of pro-surviving ERK1/2 kinase and inhibited expression of pro-apoptotic and pro-fibrotic JNK and TGFβ1 proteins in Ppif-/- females. They also showed the highest expression of phosphorylated-ERK1/2 and Akt S473 proteins of all four investigated animal groups. Furthermore, Ppif-/- females showed higher lactate concentrations and ATP/ADP-ratios in the kidney than males. These metabolic and transcriptional modifications could provide an additional level of protection to Ppif-/- females. In summary, loss of mitochondrial CypD results in a shift in bioenergetics and in activation of glucose-metabolism regulating Akt/AMPK/p70S6 kinase pathways that is expected to affect the capability of Ppif-/- mice kidneys to react to stimuli and injury.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA.
- Division of Renal Disease and Hypertension, University of Colorado Denver, Aurora, Colorado, USA.
| | - Alexander Pennington
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Joshua M Thurman
- Division of Renal Disease and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
47
|
Aluksanasuwan S, Khamchun S, Thongboonkerd V. Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
48
|
Liang G, Song L, Chen Z, Qian Y, Xie J, Zhao L, Lin Q, Zhu G, Tan Y, Li X, Mohammadi M, Huang Z. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int 2017; 93:95-109. [PMID: 28750927 DOI: 10.1016/j.kint.2017.05.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/15/2022]
Abstract
Inflammation plays a central role in the etiology of diabetic nephropathy, a global health issue. We observed a significant reduction in the renal expression of fibroblast growth factor 1, a known mitogen and insulin sensitizer, in patients with diabetic nephropathy and in mouse models implying that fibroblast growth factor 1 possesses beneficial anti-inflammatory and renoprotective activities in vivo. To test this possibility, we investigated the effects of chronic intraperitoneal administration of fibroblast growth factor 1 into both the streptozotocin-induced type 1 diabetes and db/db type 2 diabetes models. Indeed, recombinant fibroblast growth factor 1 significantly suppressed renal inflammation (i.e., cytokines, macrophage infiltration), glomerular and tubular damage, and renal dysfunction in both type 1 and type 2 diabetes mice. Fibroblast growth factor 1 was able to correct the elevated blood glucose levels in type 2 but not in type 1 diabetic mice, suggesting that the anti-inflammatory effect of fibroblast growth factor 1 was independent of its glucose-lowering activity. The mechanistic study demonstrated that fibroblast growth factor 1-mediated inhibition of the renal inflammation in vivo was accompanied by attenuation of the nuclear factor κB and c-Jun N-terminal kinase signaling pathways, further validated in vitro using cultured glomerular mesangial cells and podocytes. Thus, fibroblast growth factor 1 holds great promise for developing new treatments for diabetic nephropathy through countering inflammatory signaling cascades in injured renal tissue.
Collapse
Affiliation(s)
- Guang Liang
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zilu Chen
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Qian
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjun Xie
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Longwei Zhao
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanghui Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Zhifeng Huang
- School of Pharmaceutical Sciences and Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
49
|
Wang Y, Zhang J, Zhang L, Gao P, Wu X. Adiponectin attenuates high glucose-induced apoptosis through the AMPK/p38 MAPK signaling pathway in NRK-52E cells. PLoS One 2017; 12:e0178215. [PMID: 28542560 PMCID: PMC5444659 DOI: 10.1371/journal.pone.0178215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Excessive apoptosis of proximal tubule cell is closely related to the development of diabetes. Recent evidence suggests that adiponectin (ADPN) protects cells from high glucose induced apoptosis. However, the precise mechanisms remain poorly understood. We sought to investigate the role of p38 mitogen-activated protein kinase (p38 MAPK) and AMP activated protein kinase (AMPK) in anti-apoptotic of adiponectin under high glucose condition in rat tubular NRK-52E cells. Cells were cultured in constant and oscillating high glucose media with or without recombinant rat adiponectin for 48 h. Cell counting kit-8 (CCK-8) was used to detect cell viability, flow cytometry and Hoechst Staining were applied to investigate cell apoptosis, and western blotting was used to examine protein expression, such as phospho-AMPK and phospho-p38MAPK. Exposure to oscillating high glucose exerted lower cell viability and higher early apoptosis than constant high glucose, which were both partially prevented by adiponectin. Further studies revealed that adiponectin suppressed p38MAPK phosphorylation, but led to an increase in AMPK α phosphorylation. Compared to stable high glucose group, blockage of p38MAPK cascade with SB203580 attenuated apoptosis significantly, but failed to affect the phosphorylation level of AMPK. While AMPK inhibitor, Compound C, increased apoptosis and remarkably inhibited the p38MAPK phosphorylation. Adiponectin exert a crucial protective role against apoptosis induced by high glucose via AMPK/p38MAPK pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lian Zhang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
50
|
Hong JN, Li WW, Wang LL, Guo H, Jiang Y, Gao YJ, Tu PF, Wang XM. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin Med 2017; 12:13. [PMID: 28529539 PMCID: PMC5437490 DOI: 10.1186/s13020-017-0134-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Jiangtang decoction (JTD) is a China patented drug which contains Euphorbia humifusa Willd, Salvia miltiorrhiza Bunge, Astragalus mongholicus Bunge, Anemarrhena asphodeloides Bunge, and Coptis chinensis Franch. For decades, it has also been used clinically to treat diabetic nephropathy (DN) effectively; however, the associated mechanisms remain unknown. Thus, the present study aimed to examine the protective efficacy of JTD in DN and elucidate the underlying molecular mechanisms. Methods A diabetic model using KK-Ay mice received a daily administration of JTD for 12 weeks. Body weight, blood glucose, triglycerides (TGs), total cholesterol (TC), urea nitrogen (UN), creatinine (Cr), and microalbumin/urine creatinine (MA/UCREA) was measured every 4 weeks. Furthermore, on the day of the sacrifice, blood, urine, and kidneys were collected to assess renal function according to general parameters. Pathological staining was performed to evaluate the protective renal effect of JTD. In addition, the levels of inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin [IL]-6 and intercellular adhesion molecule [ICAM]-1), insulin receptor substrate [IRS]-1, advanced glycation end products [AGEs], and receptor of glycation end products [RAGE] were assessed. Finally, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and involvement of nuclear factor-κB (NF-κB) was further analyzed. Results After 12 weeks of metformin and JTD administration, the mice exhibited a significant amelioration in glucose and lipid metabolism dysfunction, reduced morphological changes in the renal tissue, decreased urinary albumin excretion, and normalized creatinine clearance. JTD treatment also reduced the accumulation of AGEs and RAGE, up-regulated IRS-1, and increased the phosphorylation of both PI3K (p85) and Akt, indicating that the activation of the PI3K/Akt signaling pathway was involved. Additionally, JTD administration reduced the elevated levels of renal inflammatory mediators and decreased the phosphorylation of NF-κB p65. Conclusions These results demonstrate that JTD might reduce inflammation in DN through the PI3K/Akt and NF-κB signaling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0134-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Ni Hong
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, People's Republic of China
| | - Wei-Wei Li
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, People's Republic of China
| | - Lin-Lin Wang
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, People's Republic of China
| | - Hao Guo
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yong Jiang
- School of Pharmaceutical Science, Peking University, Beijing, People's Republic of China
| | - Yun-Jia Gao
- School of Pharmaceutical Science, Peking University, Beijing, People's Republic of China
| | - Peng-Fei Tu
- School of Pharmaceutical Science, Peking University, Beijing, People's Republic of China
| | - Xue-Mei Wang
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|