1
|
Knight R, Kilpatrick LE, Hill SJ, Stocks MJ. Design, Synthesis, and Evaluation of a New Chemotype Fluorescent Ligand for the P2Y 2 Receptor. ACS Med Chem Lett 2024; 15:1127-1135. [PMID: 39015271 PMCID: PMC11247638 DOI: 10.1021/acsmedchemlett.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
The P2Y2 receptor (P2Y2R) is a target for diseases including cancer, idiopathic pulmonary fibrosis, and atherosclerosis. However, there are insufficient P2Y2R antagonists available for validating P2Y2R function and future drug development. Evaluation of how (R)-5-(7-chloro-2-((2-ethoxyethyl)amino)-4H-benzo[5,6]cyclohepta[1,2-d]thiazol-4-yl)-1-methyl-4-thioxo-3,4-dihydropyrimidin-2(1H)-one, a previously published thiazole-based analogue of AR-C118925, binds in a P2Y2R homology model was used to design new P2Y2R antagonist scaffolds. One P2Y2R antagonist scaffold retained millimolar affinity for the P2Y2R and upon further functionalization with terminal carboxylic acid groups affinity was improved over 100-fold. This functionalized P2Y2R antagonist scaffold was employed to develop new chemotype P2Y2R fluorescent ligands, that were attainable in a convergent five-step synthesis. One of these fluorescent ligands demonstrated micromolar affinity (pK d = 6.02 ± 0.12, n = 5) for the P2Y2R in isolated cell membranes and distinct pharmacology from an existing P2Y2R fluorescent antagonist, suggesting it may occupy a different binding site on the P2Y2R.
Collapse
Affiliation(s)
- Rebecca Knight
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
| | - Laura E. Kilpatrick
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
| | - Stephen J. Hill
- Centre
of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands NG7 2UH, U.K.
- Division
of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Michael J. Stocks
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Himmel NJ, Rogers RT, Redd SK, Wang Y, Blount MA. Purinergic signaling is enhanced in the absence of UT-A1 and UT-A3. Physiol Rep 2021; 9:e14636. [PMID: 33369887 PMCID: PMC7769175 DOI: 10.14814/phy2.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
ATP is an important paracrine regulator of renal tubular water and urea transport. The activity of P2Y2 , the predominant P2Y receptor of the medullary collecting duct, is mediated by ATP, and modulates urinary concentration. To investigate the role of purinergic signaling in the absence of urea transport in the collecting duct, we studied wild-type (WT) and UT-A1/A3 null (UT-A1/A3 KO) mice in metabolic cages to monitor urine output, and collected tissue samples for analysis. We confirmed that UT-A1/A3 KO mice are polyuric, and concurrently observed lower levels of urinary cAMP as compared to WT, despite elevated serum vasopressin (AVP) levels. Because P2Y2 inhibits AVP-stimulated transport by dampening cAMP synthesis, we suspected that, similar to other models of AVP-resistant polyuria, purinergic signaling is increased in UT-A1/A3 KO mice. In fact, we observed that both urinary ATP and purinergic-mediated prostanoid (PGE2 ) levels were elevated. Collectively, our data suggest that the reduction of medullary osmolality due to the lack of UT-A1 and UT-A3 induces an AVP-resistant polyuria that is possibly exacerbated by, or at least correlated with, enhanced purinergic signaling.
Collapse
Affiliation(s)
- Nathaniel J. Himmel
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Richard T. Rogers
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Sara K. Redd
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Yirong Wang
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Mitsi A. Blount
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of PhysiologyEmory University School of MedicineAtlantaGAUSA
| |
Collapse
|
3
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
5
|
Rafehi M, Neumann A, Baqi Y, Malik EM, Wiese M, Namasivayam V, Müller CE. Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y 2 Receptor. J Med Chem 2017; 60:8425-8440. [PMID: 28938069 DOI: 10.1021/acs.jmedchem.7b00854] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A homology model of the nucleotide-activated P2Y2R was created based on the X-ray structures of the P2Y1 receptor. Docking studies were performed, and receptor mutants were created to probe the identified binding interactions. Mutation of residues predicted to interact with the ribose (Arg110) and the phosphates of the nucleotide agonists (Arg265, Arg292) or that contribute indirectly to binding (Tyr288) abolished activity. The Y114F, R194A, and F261A mutations led to inactivity of diadenosine tetraphosphate and to a reduced response of UTP. Significant reduction in agonist potency was observed for all other receptor mutants (Phe111, His184, Ser193, Phe261, Tyr268, Tyr269) predicted to be involved in agonist recognition. An ionic lock between Asp185 and Arg292 that is probably involved in receptor activation interacts with the phosphate groups. The antagonist AR-C118925 and anthraquinones likely bind to the orthosteric site. The updated homology models will be useful for virtual screening and drug design.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University , PO Box 36, Postal Code 123, Muscat, Oman
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| | - Michael Wiese
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany.,PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn , 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn , 53121 Bonn, Germany
| |
Collapse
|
6
|
Rafehi M, Burbiel JC, Attah IY, Abdelrahman A, Müller CE. Synthesis, characterization, and in vitro evaluation of the selective P2Y 2 receptor antagonist AR-C118925. Purinergic Signal 2016; 13:89-103. [PMID: 27766552 DOI: 10.1007/s11302-016-9542-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023] Open
Abstract
The Gq protein-coupled, ATP- and UTP-activated P2Y2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Joachim C Burbiel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany. .,Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
7
|
Fröhlich L, Hartmann K, Sautter-Louis C, Dorsch R. Postobstructive diuresis in cats with naturally occurring lower urinary tract obstruction: incidence, severity and association with laboratory parameters on admission. J Feline Med Surg 2016; 18:809-17. [PMID: 26179575 PMCID: PMC11112202 DOI: 10.1177/1098612x15594842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objectives of this retrospective study were to investigate the actual incidence of postobstructive diuresis after relief of urethral obstruction in cats, as well as to identify changes in blood and urine parameters that might be associated with postobstructive diuresis (POD), and to assess the impact of fluid therapy. METHODS The medical records of 57 male cats with urethral obstruction that were treated with an indwelling urinary catheter were retrospectively analysed. Absolute urine output in ml/kg/h every 4 h and the incidence of cats with polyuria (urine volume >2 ml/kg/h) at any time point over a 48 h period after the re-establishment of urine flow were investigated. In addition, postobstructive diuresis in relation to fluid therapy (PODFR) was defined as urine output greater than the administered amount of intravenous fluids on at least two subsequent time points. Polyuria and PODFR were investigated for their association with blood and urine laboratory parameters. RESULTS After 4 h, 74.1% (40/54) of the cats had polyuria, with a urine output of >2 ml/kg/h. Metabolic acidosis was present in 46.2% of the cats. Venous blood pH and bicarbonate were inversely correlated with urine output in ml/kg/h after 4 h. The overall incidence of POD within 48 h of catheterisation was 87.7%. There was a significant correlation between intravenous fluid rate at time point x and urine output at time point x + 1 at all the time points except for the fluid rate at time point 0 and the urine output after 4 h. PODFR was seen in 21/57 cats (36.8%). CONCLUSIONS AND RELEVANCE POD is a frequent finding in cats treated for urethral obstruction, and can be very pronounced. Further studies are required to determine whether or not a change in venous blood pH actually interferes with renal concentrating ability. The discrepancy between the frequency of cats with polyuria and PODFR (87.7% vs 36.8%) in the present study indicates that administered intravenous fluid therapy might be the driving force for the high incidence of polyuria in some cats with naturally occurring obstructive feline lower urinary tract disease.
Collapse
Affiliation(s)
- Laura Fröhlich
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | - Carola Sautter-Louis
- Clinic for Ruminants with Ambulatory and Herd Health Services, LMU Munich, Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Renal collecting ducts maintain NaCl homeostasis by fine-tuning urinary excretion to balance dietary salt intake. This review focuses on recent studies on transcellular Cl secretion by collecting ducts, its regulation and its role in cyst growth in autosomal dominant polycystic kidney disease (ADPKD). RECENT FINDINGS Lumens of nonperfused rat medullary collecting ducts collapse in control media but expand with fluid following treatment with cAMP, demonstrating the capacity for both salt absorption and secretion. Recently, inhibition of apical epithelial Na channels (ENaC) unmasked Cl secretion in perfused mouse cortical collecting ducts (CCDs), involving Cl uptake by basolateral NKCC1 and efflux through apical Cl channels. AVP, the key hormone for osmoregulation, promotes cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl secretion. In addition, prostaglandin E2 stimulates Cl secretion through both CFTR and Ca-activated Cl channels. SUMMARY Renal Cl secretion has been commonly overlooked because of the overwhelming capacity for the nephron to reabsorb NaCl from the glomerular filtrate. In ADPKD, Cl secretion plays a central role in the accumulation of cyst fluid and the remarkable size of the cystic kidneys. Investigation of renal Cl secretion may provide a better understanding of NaCl homeostasis and identify new approaches to reduce cyst growth in PKD.
Collapse
|
10
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
11
|
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 2015; 11:451-64. [PMID: 25870007 PMCID: PMC4539141 DOI: 10.1038/nrneph.2015.39] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| |
Collapse
|
12
|
Kishore BK, Carlson NG, Ecelbarger CM, Kohan DE, Müller CE, Nelson RD, Peti-Peterdi J, Zhang Y. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus. Acta Physiol (Oxf) 2015; 214:176-88. [PMID: 25877068 PMCID: PMC4430398 DOI: 10.1111/apha.12507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action.
Collapse
Affiliation(s)
- B. K. Kishore
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - N. G. Carlson
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Neurobiology and Anatomy, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. M. Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
- Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, District of Columbia, USA
| | - D. E. Kohan
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - R. D. Nelson
- Department of Paediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - J. Peti-Peterdi
- Department of Physiology and Biophysics, and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Y. Zhang
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
14
|
Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Cornière N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R. Renal β-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 2013; 123:4219-31. [PMID: 24051376 DOI: 10.1172/jci63492] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/28/2013] [Indexed: 12/11/2022] Open
Abstract
Inactivation of the B1 proton pump subunit (ATP6V1B1) in intercalated cells (ICs) leads to type I distal renal tubular acidosis (dRTA), a disease associated with salt- and potassium-losing nephropathy. Here we show that mice deficient in ATP6V1B1 (Atp6v1b1-/- mice) displayed renal loss of NaCl, K+, and water, causing hypovolemia, hypokalemia, and polyuria. We demonstrated that NaCl loss originated from the cortical collecting duct, where activity of both the epithelial sodium channel (ENaC) and the pendrin/Na(+)-driven chloride/bicarbonate exchanger (pendrin/NDCBE) transport system was impaired. ENaC was appropriately increased in the medullary collecting duct, suggesting a localized inhibition in the cortex. We detected high urinary prostaglandin E2 (PGE2) and ATP levels in Atp6v1b1-/- mice. Inhibition of PGE2 synthesis in vivo restored ENaC protein levels specifically in the cortex. It also normalized protein levels of the large conductance calcium-activated potassium channel and the water channel aquaporin 2, and improved polyuria and hypokalemia in mutant mice. Furthermore, pharmacological inactivation of the proton pump in β-ICs induced release of PGE2 through activation of calcium-coupled purinergic receptors. In the present study, we identified ATP-triggered PGE2 paracrine signaling originating from β-ICs as a mechanism in the development of the hydroelectrolytic imbalance associated with dRTA. Our data indicate that in addition to principal cells, ICs are also critical in maintaining sodium balance and, hence, normal vascular volume and blood pressure.
Collapse
|
15
|
Potthoff SA, Stegbauer J, Becker J, Wagenhaeuser PJ, Duvnjak B, Rump LC, Vonend O. P2Y2 receptor deficiency aggravates chronic kidney disease progression. Front Physiol 2013; 4:234. [PMID: 24065922 PMCID: PMC3776930 DOI: 10.3389/fphys.2013.00234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
Purinergic signaling is involved in a variety of physiological states. P2 receptors are mainly activated by adenosine triphosphate (ATP). Activation of specific P2Y receptor subtypes might influence progression of kidney disease. To investigate the in vivo effect of a particular P2 receptor subtype on chronic kidney disease progression, subtotal nephrectomy was performed on wild type (WT) and P2Y2 receptor knockout (KO) mice. During the observational period of 56 ± 2 days, survival of KO mice was inferior compared to WT mice after SNX. Subtotal nephrectomy reduced creatinine clearance in both groups of mice, but the decrease was significantly more pronounced in KO compared to WT mice (53.9 ± 7.7 vs. 84.3 ± 8.7μl/min at day 56). The KO mice also sustained a greater increase in systolic blood pressure after SNX compared to WT mice (177 ± 2 vs. 156 ± 7 mmHg) and a 2.5-fold increase in albuminuria compared to WT. In addition, WT kidneys showed a significant increase in remnant kidney mass 56 days after SNX, but significant attenuation of hypertrophy in KO mice was observed. In line with the observed hypertrophy in WT SNX mice, a significant dose-dependent increase in DNA synthesis, a marker of proliferation, was present in cultured WT glomerular epithelial cells upon ATP stimulation. Markers for tissue damage (TGF-β 1, PAI-1) and proinflammatory target genes (MCP1) were significantly upregulated in KO mice after SNX compared to WT SNX mice. In summary, deletion of the P2Y2 receptor leads to greater renal injury after SNX compared to WT mice. Higher systolic blood pressure and inability of compensatory hypertrophy in KO mice are likely causes for the accelerated progression of chronic kidney disease.
Collapse
Affiliation(s)
- Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Duesseldorf Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Park S, Sung B, Jang EJ, Kim DH, Park CH, Choi YJ, Ha YM, Kim MK, Kim ND, Yu BP, Chung HY. Inhibitory action of salicylideneamino-2-thiophenol on NF-κB signaling cascade and cyclooxygenase-2 in HNE-treated endothelial cells. Arch Pharm Res 2013; 36:880-9. [DOI: 10.1007/s12272-013-0116-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 01/04/2023]
|
17
|
Kishore BK, Ecelbarger CM. Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol 2013; 304:F1139-49. [PMID: 23408166 DOI: 10.1152/ajprenal.00718.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By virtue of its unique interactions with kidney cells, lithium became an important research tool in renal physiology and pathophysiology. Investigators have uncovered the intricate relationships of lithium with the vasopressin and aldosterone systems, and the membrane channels or transporters regulated by them. While doing so, their work has also led to 1) questioning the role of adenylyl cyclase activity and prostaglandins in lithium-induced suppression of aquaporin-2 gene transcription; 2) unraveling the role of purinergic signaling in lithium-induced polyuria; and 3) highlighting the importance of the epithelial sodium channel (ENaC) in lithium-induced nephrogenic diabetes insipidus (NDI). Lithium-induced remodeling of the collecting duct has the potential to shed new light on collecting duct remodeling in disease conditions, such as diabetes insipidus. The finding that lithium inhibits glycogen synthase kinase-3β (GSK3β) has opened an avenue for studies on the role of GSK3β in urinary concentration, and GSK isoforms in renal development. Finally, proteomic and metabolomic profiling of the kidney and urine in rats treated with lithium is providing insights into how the kidney adapts its metabolism in conditions such as acquired NDI and the multifactorial nature of lithium-induced NDI. This review provides state-of-the-art knowledge of lithium as a versatile tool for understanding the molecular physiology of the kidney, and a comprehensive view of how this tool is challenging some of our long-standing concepts in renal physiology, often with paradigm shifts, and presenting paradoxical situations in renal pathophysiology. In addition, this review points to future directions in research where lithium can lead the renal community.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Nephrology Research (151M) VA SLC Health Care System, 500 Foothill Dr, Salt Lake City, UT 84148, USA.
| | | |
Collapse
|
18
|
Abstract
Cellular release of nucleotides is of physiological importance to regulate and maintain cell function and integrity. Also in the tubular and collecting duct system of the kidney, nucleotides are released in response to changes in cell volume or luminal flow rate and act in a paracrine and autocrine way on basolateral and luminal P2Y receptors. Recent studies using gene knockout mice assigned a prominent role to G protein-coupled P2Y(2) receptors, which are activated by both ATP and UTP. The antidiuretic hormone, arginine-vasopressin (AVP), and possibly an increase in collecting duct cell volume induce ATP release. The subsequent activation of P2Y(2) receptors inhibits AVP-induced cAMP formation and water reabsorption, which stabilizes cell volume and facilitates water excretion. An increase in NaCl intake enhances luminal release of ATP and UTP in the aldosterone-sensitive distal nephron which by activating apical P2Y(2) receptors and phospholipase C lowers the open probability of the epithelial sodium channel ENaC, thereby facilitating sodium excretion. Thus, the renal ATP/UTP/P2Y(2) receptor system not only serves to preserve cell volume and integrity but is also regulated by stimuli that derive from body NaCl homeostasis. The system also inhibits ENaC activity during aldosterone escape, i.e. when sodium reabsorption via ENaC is inappropriately high. The P2Y(2) receptor tone inhibits the expression and activity of the Na-K-2Cl cotransporter NKCC2 in the thick ascending limb and mediates vasodilation. While the role of other P2Y receptors in the kidney is less clear, the ATP/UTP/P2Y(2) receptor system regulates NaCl and water homeostasis and blood pressure.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA; VA San Diego Healthcare System, San Diego California, San Diego, CA 92161, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
19
|
Limami Y, Pinon A, Leger DY, Pinault E, Delage C, Beneytout JL, Simon A, Liagre B. The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 2012; 94:1754-63. [PMID: 22521508 DOI: 10.1016/j.biochi.2012.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/03/2012] [Indexed: 12/26/2022]
Abstract
One of the hallmarks of cancer is resistance to apoptosis. Elucidating the mechanisms of how cancer cells evade or delay apoptosis should lead to novel therapeutic strategies. Previously, we showed that HT-29 colorectal cancer cells undergoing apoptosis overexpressed cyclooxygenase-2 (COX-2), in a p38 dependent pathway, to delay ursolic acid-induced apoptosis. Here, we focused on elucidating the upstream signaling pathways regulating this resistance mechanism. The role of ATP as an extracellular signaling molecule took a long time to be accepted. In recent years, ATP and its analogs, via the activation of specific purinergic receptors, have been implicated in many biological processes including cell proliferation, differentiation and apoptosis. In the present report, we have demonstrated a novel role involving purinergic receptors and particularly the P2Y(2) receptor in resistance to ursolic acid-induced apoptosis in both colorectal HT-29 and prostate DU145 cancer cells. We found that ursolic acid induced an increase in intracellular ATP and P2Y(2) transcript levels. Upon activation, P2Y(2) activated Src which in turn phosphorylated p38 leading to COX-2 overexpression which induced resistance to apoptosis in both HT-29 and DU145 cells. Furthermore, Ca(2+)-independent PLA(2) (iPLA(2)) and Ca(2+)-dependent secretory PLA(2) (sPLA(2)) were responsible for arachidonic acid release, the substrate of COX-2. Our findings document that apoptosis triggering was dependent on protein kinase C (PKC) activation in both cell lines after ursolic acid treatment.
Collapse
Affiliation(s)
- Youness Limami
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, Faculté de Pharmacie, 2 rue du Docteur Marcland, FR 3503 GEIST, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kutuzova GD, Gabelt BT, Kiland JA, Hennes-Beann EA, Kaufman PL, DeLuca HF. 1α,25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), suppress intraocular pressure in non-human primates. Arch Biochem Biophys 2011; 518:53-60. [PMID: 22198282 DOI: 10.1016/j.abb.2011.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/29/2011] [Indexed: 01/16/2023]
Abstract
Ocular hypertension is the greatest known risk factor for glaucoma that affects an estimated 70 million people worldwide. Lowering intraocular pressure (IOP) remains the mainstay of therapy in the management of glaucoma. By means of microarray analysis, we have discovered that 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)) regulates genes that are known to be involved in the determination of intraocular pressure (IOP). Topical administration of 1α,25-(OH)(2)D(3) or its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), markedly reduces IOP in non-human primates. The reduction in IOP is not the result of reduced aqueous humor formation, while a 35% increase in aqueous humor drainage by 1α,25-(OH)(2)D(3) was found but this increase did not achieve significance. Nevertheless, our results suggest that 1α,25-(OH)(2)D(3), or an analog thereof, may present a new approach to the treatment of glaucoma.
Collapse
Affiliation(s)
- Galina D Kutuzova
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, United States
| | | | | | | | | | | |
Collapse
|
21
|
Purinergic activation of Ca2+-permeable TRPV4 channels is essential for mechano-sensitivity in the aldosterone-sensitive distal nephron. PLoS One 2011; 6:e22824. [PMID: 21850238 PMCID: PMC3151261 DOI: 10.1371/journal.pone.0022824] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022] Open
Abstract
Mechanical forces are known to induce increases of [Ca2+]i in the aldosterone-sensitive distal nephron (ASDN) cells to regulate epithelial transport. At the same time, mechanical stress stimulates ATP release from ASDN cells. In this study, we combined ratiometric Fura-2 based monitoring of [Ca2+]i in freshly isolated split-opened ASDN with targeted deletion of P2Y2 and TRPV4 in mice to probe a role for purinergic signaling in mediating mechano-sensitive responses in ASDN cells. ATP application causes a reproducible transient Ca2+ peak followed by a sustained plateau. Individual cells of the cortical collecting duct (CCD) and the connecting tubule (CNT) respond to purinergic stimulation with comparative elevations of [Ca2+]i. Furthermore, ATP-induced Ca2+-responses are nearly identical in both principal (AQP2-positive) and intercalated (AQP2-negative) cells as was confirmed using immunohistochemistry in split-opened ASDN. UTP application produces elevations of [Ca2+]i similar to that observed with ATP suggesting a dominant role of P2Y2-like receptors in generation of [Ca2+]i response. Indeed, genetic deletion of P2Y2 receptors decreases the magnitude of ATP-induced and UTP-induced Ca2+ responses by more than 70% and 90%, respectively. Both intracellular and extracellular sources of Ca2+ appeared to contribute to the generation of ATP-induced Ca2+ response in ASDN cells. Importantly, flow- and hypotonic-induced Ca2+ elevations are markedly blunted in P2Y2 −/− mice. We further demonstrated that activation of mechano-sensitive TRPV4 channel plays a major role in the sustained [Ca2+]i elevation during purinergic stimulation. Consistent with this, ATP-induced Ca2+ plateau are dramatically attenuated in TRV4 −/− mice. Inhibition of TRPC channels with 10 µM BTP2 also decreased ATP-induced Ca2+ plateau whilst to a lower degree than that observed with TRPV4 inhibition/genetic deletion. We conclude that stimulation of purinergic signaling by mechanical stimuli leads to activation of TRPV4 and, to a lesser extent, TRPCs channels, and this is an important component of mechano-sensitive response of the ASDN.
Collapse
|
22
|
Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011; 301:F463-75. [PMID: 21715471 DOI: 10.1152/ajprenal.00236.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California San Diego, 92161, USA.
| | | |
Collapse
|
23
|
Zhang Y, Listhrop R, Ecelbarger CM, Kishore BK. Renal sodium transporter/channel expression and sodium excretion in P2Y2 receptor knockout mice fed a high-NaCl diet with/without aldosterone infusion. Am J Physiol Renal Physiol 2011; 300:F657-68. [PMID: 21190950 PMCID: PMC4068121 DOI: 10.1152/ajprenal.00549.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022] Open
Abstract
The P2Y(2) receptor (P2Y2-R) antagonizes sodium reabsorption in the kidney. Apart from its effect in distal nephron, hypothetically, P2Y(2)-R may modulate activity/abundances of sodium transporters/channel subunits along the nephron via antagonism of aldosterone or vasopressin or interaction with mediators such as nitric oxide (NO), and prostaglandin E(2) (PGE(2)) or oxidative stress (OS). To determine the extent of the regulatory role of P2Y(2)-R in renal sodium reabsorption, in study 1, we fed P2Y(2)-R knockout (KO; n = 5) and wild-type (WT; n = 5) mice a high (3.15%)-sodium diet (HSD) for 14 days. Western blotting revealed significantly higher protein abundances for cortical and medullary bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), medullary α-1-subunit of Na-K-ATPase, and medullary α-subunit of the epithelial sodium channel (ENaC) in KO vs. WT mice. Molecular analysis of urine showed increased excretion of nitrates plus nitrites (NOx), PGE(2), and 8-isoprostane in the KO, relative to WT mice, supporting a putative role for these molecules in determining alterations of proteins involved in sodium transport along the nephron. To determine whether genotype differences in response to aldosterone might have played a role in these differences due to HSD, in study 2 aldosterone levels were clamped (by osmotic minipump infusion). Clamping aldosterone (with HSD) led to significantly impaired natriuresis with elevated Na/H exchanger isoform 3 in the cortex, and NKCC2 in the medulla, and modest but significantly lower levels of NKCC2, and α- and β-ENaC in the cortex of KO vs. WT mice. This was associated with significantly reduced urinary NOx in the KO, although PGE(2) and 8-isoprostane remained significantly elevated vs. WT mice. Taken together, our results suggest that P2Y(2)-R is an important regulator of sodium transporters along the nephron. Pre- or postreceptor differences in the response to aldosterone, perhaps mediated via prostaglandins or changes in NOS activity or OS, likely play a role.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Departments of Medicine Georgetown University, Washington, District of Columbia, USA
| | | | | | | |
Collapse
|
24
|
Boone M, Kortenoeven MLA, Robben JH, Tamma G, Deen PMT. Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action. Am J Physiol Renal Physiol 2011; 300:F761-71. [PMID: 21209006 DOI: 10.1152/ajprenal.00247.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Water homeostasis is regulated by a wide variety of hormones. When in need for water conservation, vasopressin, released from the brain, binds renal principal cells and initiates a signaling cascade resulting in the insertion of aquaporin-2 (AQP2) water channels in the apical membrane and water reabsorption. Conversely, hormones, including extracellular purines and dopamine, antagonize AVP-induced water permeability, but their mechanism of action is largely unknown, which was investigated here. Addition of these hormones to mpkCCD cells decreased total and plasma membrane abundance of AVP-induced AQP2, partly by increasing its internalization to vesicles and lysosomal degradation. This internalization was ubiquitin dependent, because the hormones increased AQP2 ubiquitination, and the plasma membrane localization of AQP2-K270R, which cannot be monoubiquitinated, was unaffected by these hormones. Both hormones also increased AQP2 phosphorylation at S261, which followed ubiquitination, but was not essential for hormone-induced AQP2 degradation. A similar process occurs in vivo, as incubation of dDAVP-treated kidney slices with both hormones also resulted in the internalization and S261 phosphorylation of AQP2. Both hormones also reduced cAMP and AQP2 mRNA levels, suggesting an additional effect on AQP2 gene transcription. Interestingly, phorbol esters only reduced AQP2 through the first pathway. Together, our results indicate that ATP and dopamine counteract AVP-induced water permeability by increasing AQP2 degradation in lysosomes, preceded by ubiquitin-dependent internalization, and by decreasing AQP2 gene transcription by reducing the AVP-induced cAMP levels.
Collapse
Affiliation(s)
- Michelle Boone
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
25
|
Praetorius HA, Leipziger J. Intrarenal purinergic signaling in the control of renal tubular transport. Annu Rev Physiol 2010; 72:377-93. [PMID: 20148681 DOI: 10.1146/annurev-physiol-021909-135825] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula densa. This review describes the relevant aspects of local, intrarenal purinergic signaling and outlines its integrative concepts.
Collapse
Affiliation(s)
- Helle A Praetorius
- Department of Physiology and Biophysics, The Water and Salt Research Center, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
26
|
Zhang Y, Kohan DE, Nelson RD, Carlson NG, Kishore BK. Potential involvement of P2Y2 receptor in diuresis of postobstructive uropathy in rats. Am J Physiol Renal Physiol 2009; 298:F634-42. [PMID: 20007349 DOI: 10.1152/ajprenal.00382.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AVP resistance of the medullary collecting duct (mCD) in postobstructive uropathy (POU) has been attributed to increased production of PGE2. P2Y2 receptor activation causes production of PGE2 by the mCD. We hypothesize that increased P2Y2 receptor expression and/or activity may contribute to the diuresis of POU. Sprague-Dawley rats were subjected to bilateral ureteral obstruction for 24 h followed by release (BUO/R, n = 17) or sham operation (SHM/O, n = 15) and euthanized after 1 wk or 12 days. BUO/R rats developed significant polydipsia, polyuria, urinary concentration defect, and increased urinary PGE2 and decreased aquaporin-2 protein abundance in the inner medulla compared with SHM/O rats. After BUO/R, the relative mRNA expression of P2Y2 and P2Y6 receptors was increased by 2.7- and 4.9-fold, respectively, without significant changes in mRNA expression of P2Y1 or P2Y4 receptor. This was associated with a significant 3.5-fold higher protein abundance of the P2Y2 receptor in BUO/R than SHM/O rats. When freshly isolated mCD fractions were challenged with different types of nucleotides (ATPgammaS, ADP, UTP, or UDP), BUO/R and SHM/O rats responded to only ATPgammaS and UTP and released PGE2, consistent with involvement of the P2Y2, but not P2Y6, receptor. ATPgammaS- or UTP-stimulated increases in PGE2 were much higher in BUO/R (3.20- and 2.28-fold, respectively, vs. vehicle controls) than SHM/O (1.68- and 1.30-fold, respectively, vs. vehicle controls) rats. In addition, there were significant 2.4- and 2.1-fold increases in relative mRNA expression of prostanoid EP1 and EP3 receptors, respectively, in the inner medulla of BUO/R vs. SHM/O rats. Taken together, these data suggest that increased production of PGE2 by the mCD in POU may be due to increased expression and activity of the P2Y2 receptor. Increased mRNA expression of EP1 and EP3 receptors in POU may also help accentuate PGE2-induced signaling in the mCD.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148, USA
| | | | | | | | | |
Collapse
|
27
|
Degagné E, Grbic DM, Dupuis AA, Lavoie EG, Langlois C, Jain N, Weisman GA, Sévigny J, Gendron FP. P2Y2 receptor transcription is increased by NF-kappa B and stimulates cyclooxygenase-2 expression and PGE2 released by intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4521-9. [PMID: 19734210 DOI: 10.4049/jimmunol.0803977] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory stresses associated with inflammatory bowel diseases up-regulate P2Y(2) mRNA receptor expression in the human colon adenocarcinoma cell line Caco-2, the noncancerous IEC-6 cells and in colonic tissues of patient suffering from Crohn's disease and ulcerative colitis. However, the transcriptional events regulating P2Y(2) receptor (P2Y(2)R) expression are not known. We have identified a putative transcription start site in the P2Y(2)R gene and demonstrated acetylation of Lys(14) on histone H3 and Lys(8) on histone H4, thus suggesting that the chromatin associated with the P2Y(2) promoter is accessible to transcription factors. We also showed that the transcription factor NF-kappaB p65 regulates P2Y(2)R transcription under both proinflammatory and basal conditions. A NF-kappaB-responsive element was identified at -181 to -172 bp in the promoter region of P2Y(2). Hence, activation of P2Y(2)R by ATP and UTP stimulated cyclooxygenase-2 expression and PGE(2) secretion by intestinal epithelial cells. These findings demonstrate that P2Y(2)R expression is regulated during intestinal inflammation through an NF-kappaB p65-dependent mechanism and could contribute not only to inflammatory bowel disease but also to other inflammatory diseases by regulating PG release.
Collapse
Affiliation(s)
- Emilie Degagné
- Canadian Institutes of Health Research Team on the Digestive Epithelium, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wildman SSP, Boone M, Peppiatt-Wildman CM, Contreras-Sanz A, King BF, Shirley DG, Deen PMT, Unwin RJ. Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J Am Soc Nephrol 2009; 20:1480-90. [PMID: 19423692 DOI: 10.1681/asn.2008070686] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vasopressin regulates water reabsorption in the collecting duct, but extracellular nucleotides modulate this regulation through incompletely understood mechanisms. We investigated these mechanisms using immortalized mouse collecting duct (mpkCCD) cells. Basolateral exposure to dDAVP induced AQP2 localization to the apical membrane, but co-treatment with ATP internalized AQP2. Because plasma membrane-bound P2 receptors (P2R) mediate the effects of extracellular nucleotides, we examined the abundance and localization of P2R in mpkCCD cells. In the absence of dDAVP, P2Y(1) and P2Y(4) receptors localized to the apical membrane, whereas P2X(2), P2X(4), P2X(5), P2X(7), P2Y(2), P2Y(11), and P2Y(12) receptors localized to the cytoplasm. dDAVP induced gene expression of P2X(1), which localized to the apical domain, and led to translocation of P2X(2) and P2Y(2) to the apical and basolateral membranes, respectively. In co-expression experiments, P2R activation decreased membrane AQP2 and AQP2-mediated water permeability in Xenopus oocytes expressing P2X(2), P2Y(2,) or P2Y(4) receptors, but not in oocytes expressing other P2R subtypes. In summary, these data suggest that AQP2-mediated water transport is downregulated not only by basolateral nucleotides, mediated by P2Y(2) receptors, but also by luminal nucleotides, mediated by P2X(2) and/or P2Y(4) receptors.
Collapse
Affiliation(s)
- Scott S P Wildman
- Urinary System Physiology Unit, Department of Veterinary Basic Sciences, Royal Veterinary College, Camden Campus, Royal College Street, London NW1 0TU, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kishore BK, Nelson RD, Miller RL, Carlson NG, Kohan DE. P2Y(2) receptors and water transport in the kidney. Purinergic Signal 2009; 5:491-9. [PMID: 19319665 DOI: 10.1007/s11302-009-9151-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 04/04/2008] [Indexed: 01/07/2023] Open
Abstract
The kidneys play a critical role in the maintenance of water homeostasis. This is achieved by the inherent architecture of the nephron along with the expression of various membrane transporters and channels that are responsible for the vectorial transport of salt and water. The collecting duct has become a focus of attention by virtue of its ability to transport water independent of solutes (free-water transport), and its apparent involvement in various water balance disorders. It was originally believed that the water transport capability of the collecting duct was solely under the influence of the circulating hormone, arginine vasopressin (AVP). However, during the past decade, locally produced autocrine and/or paracrine factors have emerged as potent modulators of transport of water by the collecting duct. Recently, much attention has been focused on the purinergic regulation of renal water transport. This review focuses on the role of the P2Y(2) receptor, the predominant purinergic receptor expressed in the collecting duct, in the modulation of water transport in physiological and pathophysiological conditions, and its therapeutic potential as a drug target to treat water balance disorders in the clinic. Studies carried out by us and other investigators are unravelling potent interactions among AVP, prostanoid and purinergic systems in the medullary collecting duct, and the perturbations of these interactions in water balance disorders such as acquired nephrogenic diabetes insipidus. Future studies should address the potential therapeutic benefits of modulators of P2Y(2) receptor signalling in water balance disorders, which are extremely prevalent in hospitalised patients irrespective of the underlying pathology.
Collapse
Affiliation(s)
- Bellamkonda K Kishore
- Nephrology Research (151M), VA SLC Health Care System, 500 Foothill Drive, Salt Lake City, UT, 84148, USA,
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, Nelson RD, Carlson NG, Kamerath CD, Kohan DE, Kishore BK. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2009; 296:F1194-201. [PMID: 19244398 DOI: 10.1152/ajprenal.90774.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E(2). Previously we reported that extracellular nucleotides (ATP/UTP), acting through P(2y2) receptor in rat medullary collecting duct (mCD), produce and release PGE(2). Hence we hypothesized that increased production of PGE(2) in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for 14 or 21 days. Li feeding resulted in marked polyuria and polydipsia associated with a decrease in aquaporin (AQP)2 protein abundance in inner medulla ( approximately 20% of controls) and a twofold increase in urinary PGE(2). When acutely challenged ex vivo with adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), UTP, or ADP, mCD of Li-fed rats showed significantly higher increases (50-130% over control diet-fed rats) in PGE(2) production, indicating that more than one subtype of P(2y) receptor is involved. This was associated with a 3.4-fold increase in P(2y4), but not P(2y2), receptor mRNA expression in the inner medulla of Li-fed rats compared with control diet-fed rats. Confocal laser immunofluorescence microscopy revealed predominant localization of both P(2y2) and P(2y4) receptors in the mCD of control or Li diet-fed rats. Together, these data indicate that in Li-induced NDI 1) purinergic signaling in the mCD is sensitized with increased production of PGE(2) and 2) P(2y2) and/or P(2y4) receptors may be involved in the enhanced purinergic signaling. Our study also reveals the potential beneficial effects of P(2y) receptor antagonists in the treatment and/or prevention of Li-induced NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research (151M VA SCL Health Care System, 500 Foothill Dr., Salt Lake City, UT 84148. )
| | | | | | | | | | | |
Collapse
|
31
|
Rieg T, Vallon V. ATP and adenosine in the local regulation of water transport and homeostasis by the kidney. Am J Physiol Regul Integr Comp Physiol 2008; 296:R419-27. [PMID: 19020292 DOI: 10.1152/ajpregu.90784.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of body water homeostasis is critically dependent on the kidney and under the control of AVP, which is released from the neurohypophysis. In the collecting duct (CD) of the kidney, AVP activates adenylyl cyclase via vasopressin V2 receptors. cAMP-dependent activation of protein kinase A phosphorylates the water channel aquaporin-2 and increases water permeability by insertion of aquaporin-2 into the apical cell membrane. However, local factors modulate the effects of AVP to fine tune its effects, accelerate responses, and potentially protect the integrity of CD cells. Nucleotides like ATP belong to these local factors and act in an autocrine and paracrine way to activate P2Y2 receptors on CD cells. Extracellular breakdown of ATP and cAMP forms adenosine, the latter also induces specific effects on the CD by activation of adenosine A1 receptors. Activation of both receptor types can inhibit the cAMP-triggered activation of protein kinase A and reduce water permeability and transport. This review focuses on the role and potential interactions of the ATP and adenosine system with regard to the regulation of water transport in the CD. We address the potential stimuli and mechanisms involved in nucleotide release and adenosine formation, and discuss the corresponding signaling cascades that are activated. Potential interactions between the ATP and adenosine system, as well as other factors involved in the regulation of CD function, are outlined. Data from pharmacological studies and gene-targeted mouse models are presented to demonstrate the in vivo relevance to water transport and homeostasis.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, Division of Nephrology and Hypertension, University of California San Diego, 3350 La Jolla Village Dr., La Jolla, CA 92161, USA.
| | | |
Collapse
|
32
|
Zhang Y, Sands JM, Kohan DE, Nelson RD, Martin CF, Carlson NG, Kamerath CD, Ge Y, Klein JD, Kishore BK. Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. Am J Physiol Renal Physiol 2008; 295:F1715-24. [PMID: 18829742 DOI: 10.1152/ajprenal.90311.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osmotic reabsorption of water through aquaporin-2 (AQP2) in the inner medulla is largely dependent on the urea concentration gradients generated by urea transporter (UT) isoforms. Vasopressin (AVP) increases expression of both AQP2 and UT-A isoforms. Activation of the P2Y2 receptor (P2Y2-R) in the medullary collecting duct inhibits AVP-induced water flow. To gain further insights into the overarching effect of purinergic signaling on urinary concentration, we compared the protein abundances of AQP2 and UT-A isoforms between P2Y2-R knockout (KO) and wild-type (WT) mice under basal conditions and following AVP administration. Under basal conditions (a gel diet for 10 days), KO mice concentrated urine to a significantly higher degree, with 1.8-, 1.66-, and 1.29-fold higher protein abundances of AQP2, UT-A1, and UT-A2, respectively, compared with WT, despite comparable circulating AVP levels in both groups. Infusion of 1-desamino-8-d-arginine vasopressin (dDAVP; desmopressin; 1 ng/h sc) for 5 days resulted in 2.14-, 2.6-, and 2.22-fold higher protein abundances of AQP2, AQP3, and UT-A1, respectively, in the inner medullas of KO mice compared with WT mice. In response to acute (45 min) stimulation by AVP (0.2 unit/mouse sc), UT-A1 protein increased by 1.39- and 1.54-fold in WT and KO mice, respectively. These data suggest that genetic deletion of P2Y2-R results in increased abundances of key proteins involved in urinary concentration in the inner medulla, both under basal conditions and following AVP administration. Thus purinergic regulation may play a potential overarching role in balancing the effect of AVP on the urinary concentration mechanism.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research (151M VA SLC Health Care System, 500 Foothill Dr., Salt Lake City, UT 84148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 2008; 456:1005-24. [PMID: 18431594 PMCID: PMC2518081 DOI: 10.1007/s00424-008-0498-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 01/06/2023]
Abstract
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease.
Collapse
Affiliation(s)
- Michelle Boone
- Department of Physiology (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 2007; 21:3717-26. [PMID: 17575258 DOI: 10.1096/fj.07-8807com] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular nucleotides (e.g., ATP) regulate many physiological and pathophysiological processes through activation of nucleotide (P2) receptors in the plasma membrane. Here we report that gene-targeted (knockout) mice that lack P2Y2 receptors have salt-resistant arterial hypertension in association with an inverse relationship between salt intake and heart rate, indicating intact baroreceptor function. Knockout mice have multiple alterations in their handling of salt and water: these include suppressed plasma renin and aldosterone concentrations, lower renal expression of the aldosterone-induced epithelial sodium channel alpha-ENaC, greater medullary expression of the Na-K-2Cl-cotransporter NKCC2, and greater furosemide-sensitive Na+ reabsorption in association with greater renal medullary expression of aquaporin-2 and vasopressin-dependent renal cAMP formation and water reabsorption despite similar vasopressin levels compared with wild type. Of note, smaller increases in plasma aldosterone were required to adapt renal Na+ excretion to restricted intake in knockout mice, suggesting a facilitation in renal Na+ retention. The results thus identify a previously unrecognized role for P2Y2 receptors in blood pressure regulation that is linked to an inhibitory influence on renal Na+ and water reabsorption. Based on these findings in knockout mice, we propose that a blunting in P2Y2 receptor expression or activity is a new mechanism for salt-resistant arterial hypertension.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Shimamoto C, Nakanishi Y, Katsu KI, Nakano T, Kubota T, Mori H, Nakahari T. Prostaglandin E2release in gastric antral mucosa of guinea-pigs: basal PGE2release by cyclo-oxygenase 2 and ACh-stimulated PGE2release by cyclo-oxygenase 1. Exp Physiol 2006; 91:1015-24. [PMID: 16945943 DOI: 10.1113/expphysiol.2006.034405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin E(2) (PGE(2)), which is generated by two isoforms of cyclo-oxygenase (COX(1) and COX(2)), is a key mediator in gastric mucosal defense. In the present study, antral mucosa of guinea-pigs was incubated with various agonists or antagonists in a medium, the PGE(2) concentration of which was measured using a PGE(2) EIA kit. Prostaglandin E(2) was released from the antral mucosa spontaneously (basal PGE(2) release) and acetylcholine (ACh, 10 microM) enhanced the PGE(2) release (ACh-stimulated PGE(2) release) was mediated via intracellular Ca(2+) concentration ([Ca(2+)](i)). Arachidonic acid enhanced both forms of PGE(2) release, and a phospholipase A(2) inhibitor (amylcinnamoyl anthranilic acid) and COX inhibitors (acetylsalicylic acid and indomethacin) decreased them. 5-(4-Chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazol (SC560, 100 nm, a COX(1)-selective inhibitor) inhibited ACh-stimulated PGE(2) release without any decrease in basal PGE(2) release. N-(2-Cyclohexyloxy-4-nitrophenyl) methanesulphonamide (NS398, 20 microM, a COX(2)-selective inhibitor) decreased basal PGE(2) release without any reduction of ACh-stimulated PGE(2) release. However, ionomycin (a Ca(2+) ionophore) increased PGE(2) release from antral mucosa in the presence of SC560 or NS398, suggesting that COX(1) and COX(2) are regulated by [Ca(2+)](i). These findings indicate that COX(1)-containing cells have ACh receptors but COX(2)-containing cells do not. Moreover, in isolated antral epithelial cells, SC560 decreased basal and ACh-stimulated PGE(2) release, but NS398 did not. In conclusion, in antral mucosa, basal PGE(2) release is mainly maintained by COX(2) of non-epithelial cells, and ACh-stimulated PGE(2) release is maintained by COX(1) of epithelial cells.
Collapse
Affiliation(s)
- Chikao Shimamoto
- Central Research Laboratory (Nakahari Project), Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Ballerini P, Di Iorio P, Caciagli F, Rathbone MP, Jiang S, Nargi E, Buccella S, Giuliani P, D'Alimonte I, Fischione G, Masciulli A, Romano S, Ciccarelli R. P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes. Int J Immunopathol Pharmacol 2006; 19:293-308. [PMID: 16831297 DOI: 10.1177/039463200601900207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among P2 metabotropic ATP receptors, P2Y2 subtype seems to be peculiar as its upregulation triggers important biological events in different cells types. In non-stimulated cells including astrocytes, P2Y2 receptors are usually expressed at levels lower than P2Y1 sites, however the promoter region of the P2Y2 receptors has not yet been studied and little is known about the mechanisms underlying the regulation of the expression of this ATP receptor. We showed that not only UTP and ATP are the most potent and naturally occurring agonist for P2Y2 sites, but also guanosine induced an up-regulation of astrocyte P2Y2 receptor mRNA evaluated by Northern blot analysis. We also focused our attention on this nucleoside since in our previous studies it was reported to be released by cultured astrocytes and to exert different neuroprotective effects. UTP and guanosine-evoked P2Y2 receptor up-regulation in rat brain cultured astrocytes was linked to an increased P2Y2-mediated intracellular calcium response, thus suggesting an increased P2Y2 activity. Actinomycin D, a RNA polymerase inhibitor, abrogated both UTP and guanosine-mediated P2Y2 up-regulation, thus indicating that de novo transcription was required. The effect of UTP and guanosine was also evaluated in astrocytes pretreated with different inhibitors of signal transduction pathways including ERK, PKC and PKA reported to be involved in the regulation of other cell surface receptor mRNAs. The results show that ERK1-2/MAPK pathway play a key role in the P2Y2 receptor up-regulation mediated by either UTP or guanosine. Moreover, our data suggest that PKA is also involved in guanosine-induced transcriptional activation of P2Y2 mRNA and that increased intracellular calcium levels and PKC activation may also mediate P2Y2 receptor up-regulation triggered by UTP. The extracellular release of ATP under physiological and pathological conditions has been widely studied. On the contrary, little is known about the release of pyrimidines and in particular of UTP. Here we show that astrocytes are able to release UTP, either at rest or during and following hypoxia/hypoglycemia obtained by submitting the cells to glucose-oxygen deprivation (OGD). Interestingly, also P2Y2 receptor mRNA increased by about two-fold the control values when the cultures were submitted to OGD. It has been recently reported that P2Y2 receptors can play a protective role in astrocytes, thus either guanosine administration or increased extracellular concentrations of guanosine and UTP reached locally following CNS injury may increase P2Y2-mediated biological events aimed at promoting a protective astrocyte response.
Collapse
Affiliation(s)
- P Ballerini
- Dept. of Biomedical Sciences, Section of Pharmacology and Toxicology, Medical School, University G. D'Annunzio of Chieti-Pescara, Via dei Vestini 29, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 2006; 31:169-83. [PMID: 15953819 DOI: 10.1385/mn:31:1-3:169] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 01/05/2023]
Abstract
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry and Neuroscience Program, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nandigama R, Padmasekar M, Wartenberg M, Sauer H. Feed forward cycle of hypotonic stress-induced ATP release, purinergic receptor activation, and growth stimulation of prostate cancer cells. J Biol Chem 2005; 281:5686-93. [PMID: 16321972 DOI: 10.1074/jbc.m510452200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP is released in many cell types upon mechanical strain, the physiological function of extracellular ATP is largely unknown, however. Here we report that ATP released upon hypotonic stress stimulated prostate cancer cell proliferation, activated purinergic receptors, increased intracellular [Ca(2+)](i), and initiated downstream signaling cascades that involved MAPKs ERK1/2 and p38 as well as phosphatidylinositol 3-kinase (PI3K). MAPK activation, the calcium response as well as induction of cell proliferation upon hypotonic stress were inhibited by preincubation with the ATP scavenger apyrase, indicating that hypotonic stress-induced signaling pathways are elicited by released ATP. Hypotonic stress increased prostaglandin E(2) (PGE(2)) synthesis. Consequently, ATP release was inhibited by antagonists of PI3K (LY294002 and wortmannin), phospholipase A(2) (methyl arachidonyl fluorophosphonate (MAFP)), cyclooxygenase-2 (COX-2) (indomethacin, etodolac, NS398) and 5,8,11,14-eicosatetraynoic acid (ETYA), which are involved in arachidonic acid metabolism. Furthermore, ATP release was abolished in the presence of the adenylate cyclase (AC) inhibitor MDL-12,330A, indicating regulation of ATP-release by cAMP. The hypotonic stress-induced ATP release was significantly blunted when the ATP-mediated signal transduction cascade was inhibited on different levels, i.e. purinergic receptors were blocked by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), the Ca(2+) response was inhibited upon chelation of intracellular Ca(2+) by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), and ERK1,2 as well as p38 were inhibited by UO126 and SB203580, respectively. In summary our data demonstrate that hypotonic stress initiates a feed forward cycle of ATP release and purinergic receptor signaling resulting in proliferation of prostate cancer cells.
Collapse
Affiliation(s)
- Rajender Nandigama
- Department of Physiology, Justus-Liebig-University Giessen, 35312 Giessen, Germany
| | | | | | | |
Collapse
|
39
|
Brautigam VM, Frasier C, Nikodemova M, Watters JJ. Purinergic receptor modulation of BV-2 microglial cell activity: potential involvement of p38 MAP kinase and CREB. J Neuroimmunol 2005; 166:113-25. [PMID: 15979729 DOI: 10.1016/j.jneuroim.2005.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/25/2005] [Indexed: 01/29/2023]
Abstract
ATP is abundant in the extracellular fluid following brain injury, and it exerts potent modulatory effects on microglia, whose hyperactivation is thought to exacerbate neuronal damage. We show here that ATP decreases LPS-stimulated iNOS and COX-2 expression and reduces NO release in BV-2 microglia by a mechanism involving p38 MAP kinase. Further, we demonstrate that the inhibitory effects of ATP on NO production occur within 30 min of exposure and correlate with activation of the transcription factor CREB. Together, these data suggest that ATP may exert neuroprotective effects in the brain via a mechanism involving augmented activation of the p38/CREB pathway.
Collapse
Affiliation(s)
- Vielska M Brautigam
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|