1
|
Lasaad S, Nickerson AJ, Crambert G, Satlin LM, Kleyman TR. Going with the flow: New insights regarding flow induced K + secretion in the distal nephron. Physiol Rep 2024; 12:e70087. [PMID: 39428258 PMCID: PMC11491169 DOI: 10.14814/phy2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
K+ secretion in the distal nephron has a critical role in K+ homeostasis and is the primary route by which K+ is lost from the body. Renal K+ secretion is enhanced by increases in dietary K+ intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K+ secretion (FIKS). While basal K+ secretion in the distal nephron is mediated by renal outer medullary K+ (ROMK) channels in principal cells (PCs), FIKS is mediated by large conductance, Ca2+/stretch activated K+ (BK) channels in intercalated cells (ICs), a distinct cell type. BK channel activation requires an increase in intracellular Ca2+ concentration ([Ca2+]i), and both PCs and ICs exhibit increases in [Ca2+]i in response to increases in tubular fluid flow rate, associated with an increase in tubular diameter. PIEZO1, a mechanosensitive, nonselective cation channel, is expressed in the basolateral membranes of PCs and ICs, where it functions as a mechanosensor. The loss of flow-induced [Ca2+]i transients in ICs and BK channel-mediated FIKS in microperfused collecting ducts isolated from mice with IC-specific deletion of Piezo1 in the CCD underscores the importance of PIEZO1 in the renal regulation of K+ transport.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Gilles Crambert
- Centre de Recherche Des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM)Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et TubulopathiesParisFrance
- Unité Métabolisme et Physiologie RénaleCentre National de la Recherche Scientifique (CNRS) EMR 8228ParisFrance
| | - Lisa M. Satlin
- Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell Biology and Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
3
|
Wouda RD, Gritter M, Karsten M, Michels EH, Nieuweboer TM, Danser AJ, de Borst MH, Hoorn EJ, Rotmans JI, Vogt L. Kaliuresis and Intracellular Uptake of Potassium with Potassium Citrate and Potassium Chloride Supplements: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:1260-1271. [PMID: 37382933 PMCID: PMC10578626 DOI: 10.2215/cjn.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND A potassium replete diet is associated with lower cardiovascular risk but may increase the risk of hyperkalemia, particularly in people using renin-angiotensin-aldosterone system inhibitors. We investigated whether intracellular uptake and potassium excretion after an acute oral potassium load depend on the accompanying anion and/or aldosterone and whether this results in altered plasma potassium change. METHODS In this placebo-controlled interventional cross-over trial including 18 healthy individuals, we studied the acute effects of one oral load of potassium citrate (40 mmol), potassium chloride (40 mmol), and placebo in random order after overnight fasting. Supplements were administered after a 6-week period with and without lisinopril pretreatment. Linear mixed effect models were used to compare blood and urine values before and after supplementation and between the interventions. Univariable linear regression was used to determine the association between baseline variables and change in blood and urine values after supplementation. RESULTS During the 4-hour follow-up, the rise in plasma potassium was similar for all interventions. After potassium citrate, both red blood cell potassium-as measure of the intracellular potassium-and transtubular potassium gradient (TTKG)-reflecting potassium secretory capacity-were higher than after potassium chloride or potassium citrate with lisinopril pretreatment. Baseline aldosterone was significantly associated with TTKG after potassium citrate, but not after potassium chloride or potassium citrate with lisinopril pretreatment. The observed TTKG change after potassium citrate was significantly associated with urine pH change during this intervention ( R =0.60, P < 0.001). CONCLUSIONS With similar plasma potassium increase, red blood cell potassium uptake and kaliuresis were higher after an acute load of potassium citrate as compared with potassium chloride alone or pretreatment with lisinopril. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Potassium supplementation in patients with chronic kidney disease and healthy subjects: effects on potassium and sodium balance, NL7618.
Collapse
Affiliation(s)
- Rosa D. Wouda
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Micky Karsten
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Erik H.A. Michels
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tamar M. Nieuweboer
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A.H. Jan Danser
- Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Al-Qusairi L, Ferdaus MZ, Pham TD, Li D, Grimm PR, Zapf AM, Abood DC, Tahaei E, Delpire E, Wall SM, Welling PA. Dietary anions control potassium excretion: it is more than a poorly absorbable anion effect. Am J Physiol Renal Physiol 2023; 325:F377-F393. [PMID: 37498547 PMCID: PMC10639028 DOI: 10.1152/ajprenal.00193.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
The urinary potassium (K+) excretion machinery is upregulated with increasing dietary K+, but the role of accompanying dietary anions remains inadequately characterized. Poorly absorbable anions, including [Formula: see text], are thought to increase K+ secretion through a transepithelial voltage effect. Here, we tested if they also influence the K+ secretion machinery. Wild-type mice, aldosterone synthase (AS) knockout (KO) mice, or pendrin KO mice were randomized to control, high-KCl, or high-KHCO3 diets. The K+ secretory capacity was assessed in balance experiments. Protein abundance, modification, and localization of K+-secretory transporters were evaluated by Western blot analysis and confocal microscopy. Feeding the high-KHCO3 diet increased urinary K+ excretion and the transtubular K+ gradient significantly more than the high-KCl diet, coincident with more pronounced upregulation of epithelial Na+ channels (ENaC) and renal outer medullary K+ (ROMK) channels and apical localization in the distal nephron. Experiments in AS KO mice revealed that the enhanced effects of [Formula: see text] were aldosterone independent. The high-KHCO3 diet also uniquely increased the large-conductance Ca2+-activated K+ (BK) channel β4-subunit, stabilizing BKα on the apical membrane, the Cl-/[Formula: see text] exchanger, pendrin, and the apical KCl cotransporter (KCC3a), all of which are expressed specifically in pendrin-positive intercalated cells. Experiments in pendrin KO mice revealed that pendrin was required to increase K+ excretion with the high-KHCO3 diet. In summary, [Formula: see text] stimulates K+ excretion beyond a poorly absorbable anion effect, upregulating ENaC and ROMK in principal cells and BK, pendrin, and KCC3a in pendrin-positive intercalated cells. The adaptive mechanism prevents hyperkalemia and alkalosis with the consumption of alkaline ash-rich diets but may drive K+ wasting and hypokalemia in alkalosis.NEW & NOTEWORTHY Dietary anions profoundly impact K+ homeostasis. Here, we found that a K+-rich diet, containing [Formula: see text] as the counteranion, enhances the electrogenic K+ excretory machinery, epithelial Na+ channels, and renal outer medullary K+ channels, much more than a high-KCl diet. It also uniquely induces KCC3a and pendrin, in B-intercalated cells, providing an electroneutral KHCO3 secretion pathway. These findings reveal new K+ balance mechanisms that drive adaption to alkaline and K+-rich foods, which should guide new treatment strategies for K+ disorders.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Truyen D Pham
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Dimin Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - P Richard Grimm
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ava M Zapf
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Delaney C Abood
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ebrahim Tahaei
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Susan M Wall
- Department of Medicine Nephrology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
6
|
Xu C, Chen Y, Ramkumar N, Zou CJ, Sigmund CD, Yang T. Collecting duct renin regulates potassium homeostasis in mice. Acta Physiol (Oxf) 2023; 237:e13899. [PMID: 36264268 PMCID: PMC10754139 DOI: 10.1111/apha.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 01/03/2023]
Abstract
AIM The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (β-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION Taken together, these results support a kaliuretic action of CD renin during HK intake.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Yanting Chen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| |
Collapse
|
7
|
McDonough AA, Fenton RA. Potassium homeostasis: sensors, mediators, and targets. Pflugers Arch 2022; 474:853-867. [PMID: 35727363 PMCID: PMC10163916 DOI: 10.1007/s00424-022-02718-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022]
Abstract
Transmembrane potassium (K) gradients are key determinants of membrane potential that can modulate action potentials, control muscle contractility, and influence ion channel and transporter activity. Daily K intake is normally equal to the amount of K in the entire extracellular fluid (ECF) creating a critical challenge - how to maintain ECF [K] and membrane potential in a narrow range during feast and famine. Adaptations to maintain ECF [K] include sensing the K intake, sensing ECF [K] vs. desired set-point and activating mediators that regulate K distribution between ECF and ICF, and regulate renal K excretion. In this focused review, we discuss the basis of these adaptions, including (1) potential mechanisms for rapid feedforward signaling to kidney and muscle after a meal (before a rise in ECF [K]), (2) how skeletal muscles sense and respond to changes in ECF [K], (3) effects of K on aldosterone biosynthesis, and (4) how the kidney responds to changes in ECF [K] to modify K excretion. The concepts of sexual dimorphisms in renal K handling adaptation are introduced, and the molecular mechanisms that can account for the benefits of a K-rich diet to maintain cardiovascular health are discussed. Although the big picture of K homeostasis is becoming more clear, we also highlight significant pieces of the puzzle that remain to be solved, including knowledge gaps in our understanding of initiating signals, sensors and their connection to homeostatic adjustments of ECF [K].
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
9
|
Zhang M, Yang H, Yang E, Li J, Dong L. Berberine Decreases Intestinal GLUT2 Translocation and Reduces Intestinal Glucose Absorption in Mice. Int J Mol Sci 2021; 23:327. [PMID: 35008753 PMCID: PMC8745600 DOI: 10.3390/ijms23010327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Military Medical University, Xi’an 710032, China; (M.Z.); (H.Y.); (E.Y.); (J.L.)
| |
Collapse
|
10
|
Ray EC, Carrisoza-Gaytan R, Al-Bataineh M, Marciszyn AL, Nkashama LJ, Chen J, Winfrey A, Griffiths S, Lam TR, Flores D, Wu P, Wang W, Huang CL, Subramanya AR, Kleyman TR, Satlin LM. L-WNK1 is required for BK channel activation in intercalated cells. Am J Physiol Renal Physiol 2021; 321:F245-F254. [PMID: 34229479 PMCID: PMC8424664 DOI: 10.1152/ajprenal.00472.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.
Collapse
Affiliation(s)
- Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaliyah Winfrey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn Griffiths
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tracey R Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Bukiya AN, Leo MD, Jaggar JH, Dopico AM. Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. J Biol Chem 2021; 296:100381. [PMID: 33556372 PMCID: PMC7950327 DOI: 10.1016/j.jbc.2021.100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (β1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 μM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - M Dennis Leo
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
12
|
Bazard P, Ding B, Chittam HK, Zhu X, Parks TA, Taylor-Clark TE, Bhethanabotla VR, Frisina RD, Walton JP. Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Sci Rep 2020; 10:15604. [PMID: 32973172 PMCID: PMC7515911 DOI: 10.1038/s41598-020-72450-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/12/2020] [Indexed: 02/02/2023] Open
Abstract
Na+-K+-2Cl- Cotransporter (NKCC1) is a protein that aids in the active transport of sodium, potassium, and chloride ions across cell membranes. It has been shown that long-term systemic treatment with aldosterone (ALD) can enhance NKCC1 protein expression and activity in the aging cochlea resulting in improved hearing. In the present work, we used a cell line with confirmed NKCC1 expression to demonstrate that in vitro application of ALD increased outward voltage-gated potassium currents significantly, and simultaneously upregulated whole lysate and membrane portion NKCC1 protein expression. These ALD-induced changes were blocked by applying the mineralocorticoid receptor antagonist eplerenone. However, application of the NKCC1 inhibitor bumetanide or the potassium channel antagonist Tetraethyl ammonium had no effect. In addition, NKKC1 mRNA levels remained stable, indicating that ALD modulates NKCC1 protein expression via the activation of mineralocorticoid receptors and post-transcriptional modifications. Further, in vitro electrophysiology experiments, with ALD in the presence of NKCC1, K+ channel and mineralocorticoid receptor inhibitors, revealed interactions between NKCC1 and outward K+ channels, mediated by a mineralocorticoid receptor-ALD complex. These results provide evidence of the therapeutic potential of ALD for the prevention/treatment of inner ear disorders such as age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Harish K Chittam
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Thomas A Parks
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Venkat R Bhethanabotla
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Joseph P Walton
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA.
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
13
|
Pham TD, Verlander JW, Wang Y, Romero CA, Yue Q, Chen C, Thumova M, Eaton DC, Lazo-Fernandez Y, Wall SM. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium. J Am Soc Nephrol 2020. [PMID: 32054691 DOI: 10.1152/ajprenal.90637.2008.-ammonia] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Aldosterone activates the intercalated cell mineralocorticoid receptor, which is enhanced with hypokalemia. Whether this receptor directly regulates the intercalated cell chloride/bicarbonate exchanger pendrin is unclear, as are potassium's role in this response and the receptor's effect on intercalated and principal cell function in the cortical collecting duct (CCD). METHODS We measured CCD chloride absorption, transepithelial voltage, epithelial sodium channel activity, and pendrin abundance and subcellular distribution in wild-type and intercalated cell-specific mineralocorticoid receptor knockout mice. To determine if the receptor directly regulates pendrin, as well as the effect of serum aldosterone and potassium on this response, we measured pendrin label intensity and subcellular distribution in wild-type mice, knockout mice, and receptor-positive and receptor-negative intercalated cells from the same knockout mice. RESULTS Ablation of the intercalated cell mineralocorticoid receptor in CCDs from aldosterone-treated mice reduced chloride absorption and epithelial sodium channel activity, despite principal cell mineralocorticoid receptor expression in the knockout mice. With high circulating aldosterone, intercalated cell mineralocorticoid receptor gene ablation directly reduced pendrin's relative abundance in the apical membrane region and pendrin abundance per cell whether serum potassium was high or low. Intercalated cell mineralocorticoid receptor ablation blunted, but did not eliminate, aldosterone's effect on pendrin total and apical abundance and subcellular distribution. CONCLUSIONS With high circulating aldosterone, intercalated cell mineralocorticoid receptor ablation reduces chloride absorption in the CCD and indirectly reduces principal cell epithelial sodium channel abundance and function. This receptor directly regulates pendrin's total abundance and its relative abundance in the apical membrane region over a wide range in serum potassium concentration. Aldosterone regulates pendrin through mechanisms both dependent and independent of the IC MR receptor.
Collapse
Affiliation(s)
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | | | | | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Douglas C Eaton
- Departments of Medicine and
- Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Susan M Wall
- Departments of Medicine and
- Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
14
|
Pham TD, Verlander JW, Wang Y, Romero CA, Yue Q, Chen C, Thumova M, Eaton DC, Lazo-Fernandez Y, Wall SM. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium. J Am Soc Nephrol 2020; 31:483-499. [PMID: 32054691 DOI: 10.1681/asn.2019050551] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Aldosterone activates the intercalated cell mineralocorticoid receptor, which is enhanced with hypokalemia. Whether this receptor directly regulates the intercalated cell chloride/bicarbonate exchanger pendrin is unclear, as are potassium's role in this response and the receptor's effect on intercalated and principal cell function in the cortical collecting duct (CCD). METHODS We measured CCD chloride absorption, transepithelial voltage, epithelial sodium channel activity, and pendrin abundance and subcellular distribution in wild-type and intercalated cell-specific mineralocorticoid receptor knockout mice. To determine if the receptor directly regulates pendrin, as well as the effect of serum aldosterone and potassium on this response, we measured pendrin label intensity and subcellular distribution in wild-type mice, knockout mice, and receptor-positive and receptor-negative intercalated cells from the same knockout mice. RESULTS Ablation of the intercalated cell mineralocorticoid receptor in CCDs from aldosterone-treated mice reduced chloride absorption and epithelial sodium channel activity, despite principal cell mineralocorticoid receptor expression in the knockout mice. With high circulating aldosterone, intercalated cell mineralocorticoid receptor gene ablation directly reduced pendrin's relative abundance in the apical membrane region and pendrin abundance per cell whether serum potassium was high or low. Intercalated cell mineralocorticoid receptor ablation blunted, but did not eliminate, aldosterone's effect on pendrin total and apical abundance and subcellular distribution. CONCLUSIONS With high circulating aldosterone, intercalated cell mineralocorticoid receptor ablation reduces chloride absorption in the CCD and indirectly reduces principal cell epithelial sodium channel abundance and function. This receptor directly regulates pendrin's total abundance and its relative abundance in the apical membrane region over a wide range in serum potassium concentration. Aldosterone regulates pendrin through mechanisms both dependent and independent of the IC MR receptor.
Collapse
Affiliation(s)
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | | | | | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Douglas C Eaton
- Departments of Medicine and.,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Susan M Wall
- Departments of Medicine and .,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
15
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Wang B, Sansom SC. Potassium-sparing effects of furosemide in mice on high-potassium diets. Am J Physiol Renal Physiol 2019; 316:F970-F973. [PMID: 30838871 DOI: 10.1152/ajprenal.00614.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In individuals on a regular "Western" diet, furosemide induces a kaliuresis and reduction in plasma K concentration by inhibiting Na reabsorption in the thick ascending limb of Henle's loop, enhancing delivery of Na to the aldosterone-sensitive distal nephron. In the aldosterone-sensitive distal nephron, the increased Na delivery stimulates K wasting due to an exaggerated exchange of epithelial Na channel-mediated Na reabsorption of secreted K. The effects of furosemide are different in mice fed a high-K, alkaline (HK) diet: the large-conductance Ca-activated K (BK) channel, in conjunction with the BK β4-subunit (BK-α/β4), mediates K secretion from intercalated cells (IC) of the connecting tubule and collecting ducts. The urinary alkaline load is necessary for BK-α/β4-mediated K secretion in HK diet-fed mice. However, furosemide acidifies the urine by increasing vacuolar ATPase expression and acid secretion from IC, thereby inhibiting BK-α/β4-mediated K secretion and sparing K. In mice fed a low-Na, high-K (LNaHK) diet, furosemide causes a greater increase in plasma K concentration and reduction in K excretion than in HK diet-fed mice. Micropuncture of the early distal tubule of mice fed a LNaHK diet, but not a regular or a HK diet, reveals K secretion in the thick ascending limb of Henle's loop. The sites of action of K secretion in individuals consuming a high-K diet should be taken into account when diuretic agents known to waste K with low or moderate K intakes are prescribed.
Collapse
Affiliation(s)
- Bangchen Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
17
|
Wang B, Wang-France J, Li H, Sansom SC. Furosemide reduces BK-αβ4-mediated K + secretion in mice on an alkaline high-K + diet. Am J Physiol Renal Physiol 2019; 316:F341-F350. [PMID: 30484346 DOI: 10.1152/ajprenal.00223.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Special high-K diets have cardioprotective effects and are often warranted in conjunction with diuretics such as furosemide for treating hypertension. However, it is not understood how a high-K diet (HK) influences the actions of diuretics on renal K+ handling. Furosemide acidifies the urine by increasing acid secretion via the Na+-H+ exchanger 3 (NHE3) in TAL and vacuolar H+-ATPase (V-ATPase) in the distal nephron. We previously found that an alkaline urine is required for large conductance Ca2+-activated K+ (BK)-αβ4-mediated K+ secretion in mice on HK. We therefore hypothesized that furosemide could reduce BK-αβ4-mediated K+ secretion by acidifying the urine. Treating with furosemide (drinking water) for 11 days led to decreased urine pH in both wild-type (WT) and BK-β4-knockout mice (BK-β4-KO) with increased V-ATPase expression and elevated plasma aldosterone levels. However, furosemide decreased renal K+ clearance and elevated plasma [K+] in WT but not BK-β4-KO. Western blotting and immunofluorescence staining showed that furosemide treatment decreased cortical expression of BK-β4 and reduced apical localization of BK-α in connecting tubules. Addition of the carbonic anhydrase inhibitor, acetazolamide, to furosemide water restored urine pH along with renal K+ clearance and plasma [K+] to control levels. Acetazolamide plus furosemide also restored the cortical expression of BK-β4 and BK-α in connecting tubules. These results indicate that in mice adapted to HK, furosemide reduces BK-αβ4-mediated K+ secretion by acidifying the urine.
Collapse
Affiliation(s)
- Bangchen Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Huaqing Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
18
|
Abstract
Since its discovery, aldosterone and ion modulation have been entwined. While scientific investigations throughout the decades have emphasized aldosterone's connection to Na+, K+, and H+ homeostasis, more recent research has demonstrated a relationship between aldosterone and Mg2+, Ca2+, and Cl- homeostasis. The mechanisms connecting aldosterone to ion regulation frequently involve ion channels; the membrane localized proteins containing at least one aqueous pore for ion conduction. In order to precisely control intracellular or intraorganelle ion concentrations, ion channels have evolved highly specific regions within the conduction pore that select ions by charge, size, and/or dehydration energy requirement, meaning aldosterone must be able to modulate multiple ion channels to regulate the many ions described above. The list of ion channels presently connected to aldosterone includes ENaC (Na+), ROMK/BK (K+), TRPV4/5/6 (Ca2+), TRPM7/6 (Mg2+), and ClC-K/CFTR (Cl-), among others. This list is only expected to grow over time, as the promiscuity of aldosterone becomes more understood.
Collapse
Affiliation(s)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Aldosterone, SGK1, and ion channels in the kidney. Clin Sci (Lond) 2018; 132:173-183. [PMID: 29352074 PMCID: PMC5817097 DOI: 10.1042/cs20171525] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+, K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells expressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiquitous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate the surface expression and function of many classes of renal ion channels, including those that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl− (ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels are up-regulated by SGK1, while highlighting newly discovered pathways connecting aldosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+ (TRPV4).
Collapse
|
20
|
Pratt CP, Kuljis DA, Homanics GE, He J, Kolodieznyi D, Dudem S, Hollywood MA, Barth AL, Bruchez MP. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum. Front Cell Neurosci 2017; 11:337. [PMID: 29163049 PMCID: PMC5671578 DOI: 10.3389/fncel.2017.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianjun He
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int 2017; 91:1398-1409. [PMID: 28187982 DOI: 10.1016/j.kint.2016.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.
Collapse
|
23
|
Xu C, Lu A, Wang H, Fang H, Zhou L, Sun P, Yang T. (Pro)Renin receptor regulates potassium homeostasis through a local mechanism. Am J Physiol Renal Physiol 2016; 313:F641-F656. [PMID: 27440776 DOI: 10.1152/ajprenal.00043.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022] Open
Abstract
(Pro)renin receptor (PRR) is highly expressed in the distal nephron, but it has an unclear functional implication. The present study was conducted to explore a potential role of renal PRR during high K+ (HK) loading. In normal Sprague-Dawley rats, a 1-wk HK intake increased renal expression of full-length PRR and urinary excretion of soluble PRR (sPRR). Administration of PRO20, a decoy peptide antagonist of PRR, in K+-loaded animals elevated plasma K+ level and decreased urinary K+ excretion, accompanied with suppressed urinary aldosterone excretion and intrarenal aldosterone levels. HK downregulated Na+-Cl- cotransporter (NCC) expression but upregulated CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2), renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit α1 (α-BK), α-Na+-K+-ATPase (α-NKA), and epithelial Na+ channel subunit β (β-ENaC), all of which were blunted by PRO20. After HK loading was completed, urinary, but not plasma renin, was upregulated, which was blunted by PRO20. The same experiments that were performed using adrenalectomized (ADX) rats yielded similar results. Interestingly, spironolactone treatment in HK-loaded ADX rats attenuated kaliuresis but promoted natriuresis, which was associated with the suppressed responses of β-ENaC, α-NKA, ROMK, and α-BK protein expression. Taken together, we discovered a novel role of renal PRR in regulation of K+ homeostasis through a local mechanism involving intrarenal renin-angiotensin-aldosterone system and coordinated regulation of membrane Na+- and K+-transporting proteins.
Collapse
Affiliation(s)
- Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Hong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Hui Fang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Peng Sun
- Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; .,Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
24
|
Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. PLoS One 2016; 11:e0155006. [PMID: 27159616 PMCID: PMC4861333 DOI: 10.1371/journal.pone.0155006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/22/2016] [Indexed: 12/02/2022] Open
Abstract
The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PC<IC, and SK3:PC>IC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.
Collapse
|
25
|
Larsen CK, Jensen IS, Sorensen MV, de Bruijn PI, Bleich M, Praetorius HA, Leipziger J. Hyperaldosteronism after decreased renal K+ excretion in KCNMB2 knockout mice. Am J Physiol Renal Physiol 2016; 310:F1035-46. [PMID: 26962098 DOI: 10.1152/ajprenal.00010.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022] Open
Abstract
The kidney is the primary organ ensuring K(+) homeostasis. K(+) is secreted into the urine in the distal tubule by two mechanisms: by the renal outer medullary K(+) channel (Kir1.1) and by the Ca(2+)-activated K(+) channel (KCa1.1). Here, we report a novel knockout mouse of the β2-subunit of the KCa1.1 channel (KCNMB2), which displays hyperaldosteronism after decreased renal K(+) excretion. KCNMB2(-/-) mice displayed hyperaldosteronism, normal plasma K(+) concentration, and produced dilute urine with decreased K(+) concentration. The normokalemia indicated that hyperaldosteronism did not result from primary aldosteronism. Activation of the renin-angiotensin-aldosterone system was also ruled out as renal renin mRNA expression was reduced in KCNMB2(-/-) mice. Renal K(+) excretion rates were similar in the two genotypes; however, KCNMB2(-/-) mice required elevated plasma aldosterone to achieve K(+) balance. Blockade of the mineralocorticoid receptor with eplerenone triggered mild hyperkalemia and unmasked reduced renal K(+) excretion in KCNMB2(-/-) mice. Knockout mice for the α-subunit of the KCa1.1 channel (KCNMA1(-/-) mice) have hyperaldosteronism, are hypertensive, and lack flow-induced K(+) secretion. KCNMB2(-/-) mice share the phenotypic traits of normokalemia and hyperaldosteronism with KCNMA1(-/-) mice but were normotensive and displayed intact flow-induced K(+) secretion. Despite elevated plasma aldosterone, KNCMB2(-/-) mice did not display salt-sensitive hypertension and were able to decrease plasma aldosterone on a high-Na(+) diet, although plasma aldosterone remained elevated in KCNMB2(-/-) mice. In summary, KCNMB2(-/-) mice have a reduced ability to excrete K(+) into the urine but achieve K(+) balance through an aldosterone-mediated, β2-independent mechanism. The phenotype of KCNMB2 mice was similar but milder than the phenotype of KCNMA1(-/-) mice.
Collapse
Affiliation(s)
- Casper K Larsen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Iben S Jensen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Mads V Sorensen
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark; Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark; and
| | - Pauline I de Bruijn
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - Helle A Praetorius
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, and Health, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
26
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
27
|
Webb TN, Carrisoza-Gaytan R, Montalbetti N, Rued A, Roy A, Socovich AM, Subramanya AR, Satlin LM, Kleyman TR, Carattino MD. Cell-specific regulation of L-WNK1 by dietary K. Am J Physiol Renal Physiol 2016; 310:F15-26. [PMID: 26662201 PMCID: PMC4675801 DOI: 10.1152/ajprenal.00226.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022] Open
Abstract
Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells. Overexpression of L-WNK1 promoted a significant increase in BK α-subunit whole cell abundance and functional channel expression. BK α-subunit abundance also increased with coexpression of a kinase dead L-WNK1 mutant (K233M) and with kidney-specific WNK1 (KS-WNK1), suggesting that the catalytic activity of L-WNK1 was not required to increase BK expression. We examined whether dietary K(+) intake affected L-WNK1 expression in the aldosterone-sensitive distal nephron. We found a paucity of L-WNK1 labeling in cortical collecting ducts (CCDs) from rabbits on a low-K(+) diet but observed robust staining for L-WNK1 primarily in intercalated cells when rabbits were fed a high-K(+) diet. Our results and previous findings suggest that L-WNK1 exerts different effects on renal K(+) secretory channels, inhibiting renal outer medullary K(+) channels and activating BK channels. A high-K(+) diet induced an increase in L-WNK1 expression selectively in intercalated cells and may contribute to enhanced BK channel expression and K(+) secretion in CCDs.
Collapse
Affiliation(s)
- Tennille N Webb
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Anna Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Abstract
More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes KCNJ1, KCNJ10, KCNJ16, KCNMA1, and KCNN3. Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
29
|
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res 2015; 46:408-26. [DOI: 10.1016/j.arcmed.2015.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
|
30
|
Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka TD, Ito K, Harada T, Takahashi H, Ikegami M, Anzawa R, Yoshimura M. Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice. PLoS One 2015; 10:e0130605. [PMID: 26121582 PMCID: PMC4486720 DOI: 10.1371/journal.pone.0130605] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/21/2015] [Indexed: 02/05/2023] Open
Abstract
Objective Sodium-glucose cotransporter 1 (SGLT1) is thought to be expressed in the heart as the dominant isoform of cardiac SGLT, although more information is required to delineate the subtypes of SGLTs in human hearts. Moreover, the functional role of SGLTs in the heart remains to be fully elucidated. We herein investigated whether SGLT1 is expressed in human hearts and whether SGLTs significantly contribute to cardiac energy metabolism during ischemia-reperfusion injury (IRI) via enhanced glucose utilization in mice. Methods and Results We determined that SGLT1 was highly expressed in both human autopsied hearts and murine perfused hearts, as assessed by immunostaining and immunoblotting with membrane fractionation. To test the functional significance of the substantial expression of SGLTs in the heart, we studied the effects of a non-selective SGLT inhibitor, phlorizin, on the baseline cardiac function and its response to ischemia-reperfusion using the murine Langendorff model. Although phlorizin perfusion did not affect baseline cardiac function, its administration during IRI significantly impaired the recovery in left ventricular contractions and rate pressure product, associated with an increased infarct size, as demonstrated by triphenyltetrazolium chloride staining and creatine phosphokinase activity released into the perfusate. The onset of ischemic contracture, which indicates the initiation of ATP depletion in myocardium, was earlier with phlorizin. Consistent with this finding, there was a significant decrease in the tissue ATP content associated with reductions in glucose uptake, as well as lactate output (indicating glycolytic flux), during ischemia-reperfusion in the phlorizin-perfused hearts. Conclusions Cardiac SGLTs, possibly SGLT1 in particular, appear to provide an important protective mechanism against IRI by replenishing ATP stores in ischemic cardiac tissues via enhancing availability of glucose. The present findings provide new insight into the significant role of SGLTs in optimizing cardiac energy metabolism, at least during the acute phase of IRI.
Collapse
Affiliation(s)
- Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takuya Yoshino
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshikazu D. Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichi Ito
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Harada
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryuko Anzawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Wen D, Yuan Y, Cornelius RJ, Li H, Warner PC, Wang B, Wang-France J, Boettger T, Sansom SC. Deficient acid handling with distal RTA in the NBCe2 knockout mouse. Am J Physiol Renal Physiol 2015; 309:F523-30. [PMID: 26109087 DOI: 10.1152/ajprenal.00163.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
In many circumstances, the pathogenesis of distal renal tubular acidosis (dRTA) is not understood. In the present study, we report that a mouse model lacking the electrogenic Na(+)-HCO3 (-) cotransporter [NBCe2/Slc4a5; NBCe2 knockout (KO) mice] developed dRTA after an oral acid challenge. NBCe2 expression was identified in the connecting tubule (CNT) of wild-type mice, and its expression was significantly increased after acid loading. NBCe2 KO mice did not have dRTA when on a standard mouse diet. However, after acid loading, NBCe2 KO mice exhibited complete features of dRTA, characterized by insufficient urinary acidification, hyperchloremic hypokalemic metabolic acidosis, and hypercalciuria. Additional experiments showed that NBCe2 KO mice had decreased luminal transepithelial potential in the CNT, as revealed by micropuncture. Further immunofluorescence and Western blot experiments found that NBCe2 KO mice had increased expression of H(+)-ATPase B1 in the plasma membrane. These results showed that NBCe2 KO mice with acid loading developed increased urinary K(+) and Ca(2+) wasting due to decreased luminal transepithelial potential in the CNT. NBCe2 KO mice compensated to maintain systemic pH by increasing H(+)-ATPase in the plasma membrane. Therefore, defects in NBCe2 can cause dRTA, and NBCe2 has an important role to regulate urinary acidification and the transport of K(+) and Ca(2+) in the distal nephron.
Collapse
Affiliation(s)
- Donghai Wen
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Yang Yuan
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Ryan J Cornelius
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Huaqing Li
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Paige C Warner
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Thomas Boettger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
32
|
Wen D, Yuan Y, Warner PC, Wang B, Cornelius RJ, Wang-France J, Li H, Boettger T, Sansom SC. Increased Epithelial Sodium Channel Activity Contributes to Hypertension Caused by Na+-HCO3- Cotransporter Electrogenic 2 Deficiency. Hypertension 2015; 66:68-74. [PMID: 25941340 DOI: 10.1161/hypertensionaha.115.05394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
The gene SLC4A5 encodes the Na(+)-HCO3 (-) cotransporter electrogenic 2, which is located in the distal nephron. Genetically deleting Na(+)-HCO3 (-) cotransporter electrogenic 2 (knockout) causes Na(+)-retention and hypertension, a phenotype that is diminished with alkali loading. We performed experiments with acid-loaded mice and determined whether overactive epithelial Na(+) channels (ENaC) or the Na(+)-Cl(-) cotransporter causes the Na(+) retention and hypertension in knockout. In untreated mice, the mean arterial pressure was higher in knockout, compared with wild-type (WT); however, treatment with amiloride, a blocker of ENaC, abolished this difference. In contrast, hydrochlorothiazide, an inhibitor of Na(+)-Cl(-) cotransporter, decreased mean arterial pressure in WT, but not knockout. Western blots showed that quantity of plasmalemmal full-length ENaC-α was significantly higher in knockout than in WT. Amiloride treatment caused a 2-fold greater increase in Na(+) excretion in knockout, compared with WT. In knockout, but not WT, amiloride treatment decreased plasma [Na(+)] and urinary K(+) excretion, but increased hematocrit and plasma [K(+)] significantly. Micropuncture with microelectrodes showed that the [K(+)] was significantly higher and the transepithelial potential (Vte) was significantly lower in the late distal tubule of the knockout compared with WT. The reduced Vte in knockout was amiloride sensitive and therefore revealed an upregulation of electrogenic ENaC-mediated Na(+) reabsorption in this segment. These results show that, in the absence of Na(+)-HCO3 (-) cotransporter electrogenic 2 in the late distal tubule, acid-loaded mice exhibit disinhibition of ENaC-mediated Na(+) reabsorption, which results in Na(+) retention, K(+) wasting, and hypertension.
Collapse
Affiliation(s)
- Donghai Wen
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Yang Yuan
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Paige C Warner
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Bangchen Wang
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Ryan J Cornelius
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Jun Wang-France
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Huaqing Li
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Boettger
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Steven C Sansom
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
33
|
Cornelius RJ, Wen D, Li H, Yuan Y, Wang-France J, Warner PC, Sansom SC. Low Na, high K diet and the role of aldosterone in BK-mediated K excretion. PLoS One 2015; 10:e0115515. [PMID: 25607984 PMCID: PMC4301648 DOI: 10.1371/journal.pone.0115515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/β4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-β4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-β4 knockout (β4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of β4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in β4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/β4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease.
Collapse
Affiliation(s)
- Ryan J. Cornelius
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Donghai Wen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Huaqing Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yang Yuan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jun Wang-France
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Paige C. Warner
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Steven C. Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
34
|
Penton D, Czogalla J, Loffing J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch 2015; 467:513-30. [PMID: 25559844 DOI: 10.1007/s00424-014-1673-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023]
Abstract
Dietary potassium (K(+)) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K(+) diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na(+)) balance. Indeed, several studies demonstrate that dietary K(+) intake induces renal Na(+) loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K(+) on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K(+) and Na(+) excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K(+) intake on renal K(+) and Na(+) handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K(+)-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K(+) intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K(+) intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.
Collapse
Affiliation(s)
- David Penton
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Carattino MD, Mueller GM, Palmer LG, Frindt G, Rued AC, Hughey RP, Kleyman TR. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. Am J Physiol Renal Physiol 2014; 307:F1080-7. [PMID: 25209858 DOI: 10.1152/ajprenal.00157.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During maturation, the α- and γ-subunits of the epithelial Na+ channel (ENaC) undergo proteolytic processing by furin. Cleavage of the γ-subunit by furin at the consensus site γRKRR143 and subsequent cleavage by a second protease at a distal site strongly activate the channel. For example, coexpression of prostasin with ENaC increases both channel function and cleavage at the γRKRK186 site. We generated a polyclonal antibody that recognizes the region 144-186 in the γ-subunit (anti-γ43) to determine whether prostasin promotes the release of the intervening tract between the putative furin and γRKRK186 cleavage sites. Anti-γ43 precipitated both full-length (93 kDa) and furin-processed (83 kDa) γ-subunits from extracts obtained from oocytes expressing αβHA-γ-V5 channels, but only the full-length (93 kDa) γ-subunit from oocytes expressing αβHA-γ-V5 channels and either wild-type or a catalytically inactive prostasin. Although both wild-type and catalytically inactive prostasin activated ENaCs in an aprotinin-sensitive manner, only wild-type prostasin bound to aprotinin beads, suggesting that catalytically inactive prostasin facilitates the cleavage of the γ-subunit by an endogenous protease in Xenopus oocytes. As dietary salt restriction increases cleavage of the renal γ-subunit, we assessed release of the 43-mer inhibitory tract on rats fed a low-Na+ diet. We found that a low-Na+ diet increased γ-subunit cleavage detected with the anti-γ antibody and dramatically reduced the fraction precipitated with the anti-γ43 antibody. Our results suggest that the inhibitory tract dissociates from the γ-subunit in kidneys from rats on a low-Na+ diet.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Gunhild M Mueller
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Anna C Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
36
|
Relation between BK-α/β4-mediated potassium secretion and ENaC-mediated sodium reabsorption. Kidney Int 2014; 86:139-45. [PMID: 24573316 PMCID: PMC4077913 DOI: 10.1038/ki.2014.14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
Abstract
The large conductance, calcium-activated BK-α/β4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high potassium, alkaline diets. Here we determine whether BK-α/β4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron by feeding mice a low sodium, high potassium diet. Wild type and BK-β4 knockout mice were maintained on low sodium, high potassium, alkaline diet or a low sodium, high potassium, acidic diet for 7–10 days. Wild type mice maintained potassium homeostasis on the alkaline but not acid diet. BK-β4 knockout mice could not maintain potassium homeostasis on either diet. During the last 12 hours of diet, wild type mice on either a regular, alkaline or an acid diet, or knockout mice on an alkaline diet were administered amiloride (an ENaC inhibitor). Amiloride enhanced sodium excretion in all wild type and knockout groups to similar values; however, amiloride diminished potassium excretion by 59% in wild type but only by 33% in knockout mice on an alkaline diet. Similarly, amiloride decreased the transtubular potassium gradient by 68% in wild type but only by 42% in knockout mice on an alkaline diet. Amiloride treatment equally enhanced sodium excretion and diminished potassium secretion in knockout mice on an alkaline diet and wild type mice on an acid diet. Thus, the enhanced effect of amiloride on potassium secretion in wild type compared to knockout mice on the alkaline diet, clarify a BK- α/β4-mediated potassium secretory pathway in intercalated cells driven by ENaC-mediated sodium reabsorption linked to bicarbonate secretion.
Collapse
|
37
|
Hunter RW, Craigie E, Homer NZM, Mullins JJ, Bailey MA. Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis. Am J Physiol Renal Physiol 2014; 306:F457-67. [PMID: 24402096 PMCID: PMC3920023 DOI: 10.1152/ajprenal.00339.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Na(+) reabsorption from the distal renal tubule involves electroneutral and electrogenic pathways, with the latter promoting K(+) excretion. The relative activities of these two pathways are tightly controlled, participating in the minute-to-minute regulation of systemic K(+) balance. The pathways are interdependent: the activity of the NaCl cotransporter (NCC) in the distal convoluted tubule influences the activity of the epithelial Na(+) channel (ENaC) downstream. This effect might be mediated by changes in distal Na(+) delivery per se or by molecular and structural adaptations in the connecting tubule and collecting ducts. We hypothesized that acute inhibition of NCC activity would cause an immediate increase in Na(+) flux through ENaC, with a concomitant increase in renal K(+) excretion. We tested this using renal clearance methodology in anesthetized mice, by the administration of hydrochlorothiazide (HCTZ) and/or benzamil (BZM) to exert specific blockade of NCC and ENaC, respectively. Bolus HCTZ elicited a natriuresis that was sustained for up to 110 min; urinary K(+) excretion was not affected. Furthermore, the magnitude of the natriuresis was no greater during concomitant BZM administration. This suggests that ENaC-mediated Na(+) reabsorption was not normally limited by Na(+) delivery, accounting for the absence of thiazide-induced kaliuresis. After dietary Na(+) restriction, HCTZ elicited a kaliuresis, but the natiuretic effect of HCTZ was not enhanced by BZM. Our findings support a model in which inhibition of NCC activity does not increase Na(+) reabsorption through ENaC solely by increasing distal Na(+) delivery but rather by inducing a molecular and structural adaptation in downstream nephron segments.
Collapse
Affiliation(s)
- Robert W Hunter
- Univ. of Edinburgh/BHF Centre for Cardiovascular Science, Rm. W3.33B, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|
38
|
Wen D, Cornelius RJ, Sansom SC. Interacting influence of diuretics and diet on BK channel-regulated K homeostasis. Curr Opin Pharmacol 2013; 15:28-32. [PMID: 24721651 DOI: 10.1016/j.coph.2013.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 12/26/2022]
Abstract
Large conductance, Ca-activated K channels (BK) are abundantly located in cells of vasculature, glomerulus, and distal nephron, where they are involved in maintaining blood volume, blood pressure, and K homeostasis. In mesangial cells and smooth muscle cells of vessels, the BK-α pore associates with BK-β1 subunits and regulates contraction in a Ca-mediated feedback manner. The BK-β1 also resides in connecting tubule cells of the nephron. BK-β1 knockout mice (β1KO) exhibit fluid retention, hypertension, and compromised K handling. The BK-α/β4 resides in acid/base transporting intercalated cells (IC) of the distal nephron, where they mediate K secretion in mammals on a high K, alkaline diet. BK-α expression in IC is increased by a high K diet via aldosterone. The BK-β4 subunit and alkaline urine are necessary for the luminal expression and function of BK-α in mouse IC. In distal nephron cells, membrane BK-α expression is inhibited by WNK4 in in vitro expression systems, indicating a role in the hyperkalemic phenotype in patients with familial hyperkalemic hypertension type 2 (FHHt2). β1KO and BK-β4 knockout mice (β4KO) are hypertensive because of exaggerated epithelial Na channels (ENaC) mediated Na retention in an effort to secrete K via only renal outer medullary K channels (ROMK). BK hypertension is resistant to thiazides and furosemide, and would be more amenable to ENaC and aldosterone inhibiting drugs. Activators of BK-α/β1 or BK-α/β4 might be effective blood pressure lowering agents for a subset of hypertensive patients. Inhibitors of renal BK would effectively spare K in patients with Bartter Syndrome, a renal K wasting disease.
Collapse
Affiliation(s)
- Donghai Wen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ryan J Cornelius
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Steven C Sansom
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
39
|
Girault A, Brochiero E. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair. Am J Physiol Cell Physiol 2013; 306:C307-19. [PMID: 24196531 DOI: 10.1152/ajpcell.00226.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K(+) channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K(+) channels in the regulation of these key repair processes. We also describe the mechanisms whereby K(+) channels may control epithelial repair processes. In particular, changes in membrane potential, K(+) concentration, cell volume, intracellular Ca(2+), and signaling pathways following modulation of K(+) channel activity, as well as physical interaction of K(+) channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K(+) channels for therapeutic applications to improve epithelial repair in vivo.
Collapse
Affiliation(s)
- Alban Girault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; and
| | | |
Collapse
|
40
|
van der Lubbe N, Moes AD, Rosenbaek LL, Schoep S, Meima ME, Danser AHJ, Fenton RA, Zietse R, Hoorn EJ. K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter. Am J Physiol Renal Physiol 2013; 305:F1177-88. [PMID: 23986520 DOI: 10.1152/ajprenal.00201.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During hypovolemia and hyperkalemia, the kidneys defend homeostasis by Na(+) retention and K(+) secretion, respectively. Aldosterone mediates both effects, but it is unclear how the same hormone can evoke such different responses. To address this, we mimicked hypovolemia and hyperkalemia in four groups of rats with a control diet, low-Na(+) diet, high-K(+) diet, or combined diet. The low-Na(+) and combined diets increased plasma and kidney ANG II. The low-Na(+) and high-K(+) diets increased plasma aldosterone to a similar degree (3-fold), whereas the combined diet increased aldosterone to a greater extent (10-fold). Despite similar Na(+) intake and higher aldosterone, the high-K(+) and combined diets caused a greater natriuresis than the control and low-Na(+) diets, respectively (P < 0.001 for both). This K(+)-induced natriuresis was accompanied by a decreased abundance but not phosphorylation of the Na(+)-Cl(-) cotransporter (NCC). In contrast, the epithelial Na(+) channel (ENaC) increased in parallel with aldosterone, showing the highest expression with the combined diet. The high-K(+) and combined diets also increased WNK4 but decreased Nedd4-2 in the kidney. Total and phosphorylated Ste-20-related kinase were also increased but were retained in the cytoplasm of distal convoluted tubule cells. In summary, high dietary K(+) overrides the effects of ANG II and aldosterone on NCC to deliver sufficient Na(+) to ENaC for K(+) secretion. K(+) may inhibit NCC through WNK4 and help activate ENaC through Nedd4-2.
Collapse
|