1
|
Mehmood K, Wilczek MP, DuShane JK, Parent MT, Mayberry CL, Wallace JN, Levasseur FL, Fong TM, Hess ST, Maginnis MS. Dynamics and Patterning of 5-Hydroxytryptamine 2 Subtype Receptors in JC Polyomavirus Entry. Viruses 2022; 14:2597. [PMID: 36560603 PMCID: PMC9782046 DOI: 10.3390/v14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The organization and dynamics of plasma membrane receptors are a critical link in virus-receptor interactions, which finetune signaling efficiency and determine cellular responses during infection. Characterizing the mechanisms responsible for the active rearrangement and clustering of receptors may aid in developing novel strategies for the therapeutic treatment of viruses. Virus-receptor interactions are poorly understood at the nanoscale, yet they present an attractive target for the design of drugs and for the illumination of viral infection and pathogenesis. This study utilizes super-resolution microscopy and related techniques, which surpass traditional microscopy resolution limitations, to provide both a spatial and temporal assessment of the interactions of human JC polyomavirus (JCPyV) with 5-hydroxytrypamine 2 receptors (5-HT2Rs) subtypes during viral entry. JCPyV causes asymptomatic kidney infection in the majority of the population and can cause fatal brain disease, and progressive multifocal leukoencephalopathy (PML), in immunocompromised individuals. Using Fluorescence Photoactivation Localization Microscopy (FPALM), the colocalization of JCPyV with 5-HT2 receptor subtypes (5-HT2A, 5-HT2B, and 5-HT2C) during viral attachment and viral entry was analyzed. JCPyV was found to significantly enhance the clustering of 5-HT2 receptors during entry. Cluster analysis of infected cells reveals changes in 5-HT2 receptor cluster attributes, and radial distribution function (RDF) analyses suggest a significant increase in the aggregation of JCPyV particles colocalized with 5-HT2 receptor clusters in JCPyV-infected samples. These findings provide novel insights into receptor patterning during viral entry and highlight improved technologies for the future development of therapies for JCPyV infection as well as therapies for diseases involving 5-HT2 receptors.
Collapse
Affiliation(s)
- Kashif Mehmood
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Michael P. Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Jeanne K. DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Matthew T. Parent
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
| | - Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Jaqulin N. Wallace
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
| | - Francois L. Levasseur
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Tristan M. Fong
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Samuel T. Hess
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, USA
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
2
|
Liu Y, Wu M, Sun Z, Li Q, Jiang R, Meng F, Liu J, Wang W, Dai J, Li C, Jiang S. Effect of PPM1F in dorsal raphe 5-HT neurons in regulating methamphetamine-induced conditioned place preference performance in mice. Brain Res Bull 2021; 179:36-48. [PMID: 34871711 DOI: 10.1016/j.brainresbull.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Methamphetamine (METH), a synthetically produced central nervous system stimulant, is one of the most illicit and addictive drugs worldwide. Protein phosphatase Mg2 + /Mn2 + -dependent 1F F (PPM1F) has been reported to exert multiple biological and cellular functions. Nevertheless, the effects of PPM1F and its neuronal substrates on METH addiction remain unclear. Herein, we first established a METH-induced conditioned place preference (CPP) mouse model. We showed that PPM1F is widely distributed in 5-HT neurons of the dorsal raphe nucleus (DRN), and METH treatment decreased the expression of PPM1F in DRN, which was negatively correlated with METH-induced CPP behaviors. Knockout of PPM1F mediated by adeno-associated virus (AAV) in DRN produced enhanced susceptibility to METH-induced CPP, whereas the overexpression of PPM1F in DRN attenuated METH-induced CPP phenotypes. The expression levels of Tryptophan hydroxylase2 (TPH2) and serotonin transporter (SERT) were down-regulated with a concurrent reduction in 5-hydroxytryptamine (5-HT), tryptophan hydroxylase2 (TPH2)-immunoreactivity neurons and 5-HT levels in DRN of PPM1F knockout mice. In the end, decreased expression levels of PPM1F were found in the blood of METH abusers and METH-taking mice. These results suggest that PPM1F in DRN 5-HT neurons regulates METH-induced CPP behaviors by modulating the key components of the 5-HT neurotransmitter system, which might be an important pathological gene and diagnostic marker for METH-induced addiction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Binzhou Medical University, Shandong, China; Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Zongyue Sun
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Fantao Meng
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Jing Liu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wentao Wang
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Juanjuan Dai
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| |
Collapse
|
3
|
Jin J, Xu F, Zhang Y, Guan J, Liang X, Zhang Y, Yuan A, Liu R, Fu J. Renal ischemia/reperfusion injury in rats is probably due to the activation of the 5-HT degradation system in proximal renal tubular epithelial cells. Life Sci 2021; 285:120002. [PMID: 34599937 DOI: 10.1016/j.lfs.2021.120002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
AIMS To explore the relationship between renal ischemia/reperfusion injury (RIRI) and the activation of the renal 5-HT degradation system, including 5-HT2A receptor (5-HT2AR), 5-HT synthases and monoamine oxidase-A (MAO-A). MAIN METHODS Rat RIRI was induced by removing the right kidney, causing ischemia of the left kidney for 45 min and reperfusion for different times. RIRI model (ischemia for 45 min and reperfusion for 24 h) was pretreated with 5-HT2AR antagonist sarpogrelate hydrochloride (SH) and the 5-HT synthase inhibitor carbidopa. In HK-2 cells, cellular damage was induced by hypoxia (24 h)/reoxygenation (12 h) (H/R) and treated with SH, carbidopa or the MAO-A inhibitor clorgyline. Hematoxylin-eosin, immunohistochemistry, TUNEL and fluorescent probe staining, RT-qPCR, western blotting, ELISA, etc. were used in the tests. KEY FINDINGS The development of RIRI and the emergence of the RIRI peak were consistent with renal 5-HT degradation system activation. The highest expression regions of the 5-HT degradation system overlapped with those of the most severe lesions in the kidney, which were in proximal renal tubules. Rat RIRI and HK-2 cell damage, including oxidative stress, inflammation and apoptosis, could be almost abolished by synergistic inhibition of SH and carbidopa. Clorgyline also abolished the cellular damage induced by H/R. H/R-induced production of mitochondrial ROS in HK-2 cells was due to MAO-A-catalyzed 5-HT degradation, and 5-HT2AR was involved by mediating the expression of 5-HT synthases and MAO-A. SIGNIFICANCE These findings revealed a close association between RIRI and activation of the renal 5-HT degradation system.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Fan Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Jing Guan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Xiurui Liang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Yuxin Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China
| | - Ansheng Yuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Runkun Liu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jihua Fu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210003, China.
| |
Collapse
|
4
|
Molecular Cloning and Functional Characterization of Three 5-HT Receptor Genes ( HTR1B, HTR1E, and HTR1F) in Chickens. Genes (Basel) 2021; 12:genes12060891. [PMID: 34207786 PMCID: PMC8230051 DOI: 10.3390/genes12060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.
Collapse
|
5
|
Kaur G, Krishan P. Serotonin 5HT 2A receptor antagonism mediated anti-inflammatory and anti-fibrotic effect in adriamycin-induced CKD in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1269-1279. [PMID: 32342136 DOI: 10.1007/s00210-020-01826-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
A selective 5-HT2A receptor antagonist ketanserin has been used preclinically to improve renal blood flow because of its beneficial effect on autoregulation in various chronic kidney disease models. Ketanserin might be able to turn down adriamycin-induced chronic kidney disease, which is characterized by renal fibrosis, inflammation and structural and functional changes in glomeruli. In the present study, we investigated whether ketanserin suppresses these renal alterations or not. Wistar rats were administered with a single dose of adriamycin (6 mg/kg/i.v), which leads to development of severe tubulointerstitial fibrosis with altered renal function. Subsequent ketanserin treatment (5 mg/kg/p.o) for 4 weeks shown significant change in oxidative stress, serum and urine parameters in adriamycin-induced chronic kidney disease rats. Additionally, results showed that mRNA expression of TGF-β and collagen IV, which are known to promote fibrosis via various signaling pathways involved in the progression of renal disease, was suppressed by ketanserin treatment. Furthermore, expression levels of 5-HT2A and pro-inflammatory marker IL-6 have also been reduced significantly after ketanserin administration in adriamycin-treated animals. Moreover, histopathological studies also reveal the considerable structural changes after ketanserin treatment, and these results are further supported via data obtained from the percentage of glomeruli size changes. In conclusion, ketanserin reduces renal fibrosis and inflammation in adriamycin-induced chronic kidney disease by suppressing 5-HT2A, IL-6, TGF-β and collagen IV expression in renal tissue.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
6
|
Guo J, Xiang Q, Xin Y, Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal 2020; 18:35. [PMID: 32127022 PMCID: PMC7055126 DOI: 10.1186/s12964-019-0504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation and oxidative stress induced by oxidized low density lipoprotein are the main causes of vascular endothelial injury and atherosclerosis. Endothelial cells are important for the formation and repair of blood vessels. However, the detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived endothelial like cells remains unclear. Besides, YY1 and TET2 play a key role on epigenetic modifications of proliferation and differentiation of stem cells. However, the regulatory mechanism of epigenetic modification induced by YY1 and TET2 on stem cells to iECICs is also not clear. Aim Here, we want to investigate detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived iECICs by by YY1 and TET2. Methods The qPCR, Western blot, immunohistochemical staining and flow cytometric analysis were used to analyze the expression level of each gene. Luciferase reporter assay was used to detect the binding sites between microRNA and target genes. The hMeDIP-sequence, ChIP-PCR and dot blot were used to detect the 5-hydroxymethylcytosine modification of genomic DNA. ATP, ROS, SOD assay were used to evaluate of oxidative stress in cells. The iECICs transplantation group The ApoE−/− mice were intravenous injected of iECICs to evaluation of therapeutic effect in vivo. Results Our studies have found that as the differentiation of human amniotic epithelial cells (HuAECs) is directed towards iECICs in vitro, the expression levels of vascular endothelial cell markers and miR-544 increase significantly and the expression level of YinYang 1 (YY1) decreases significantly. The luciferase reporter assay suggests that Yy1 is one of the targets of miR-544. Hydroxymethylated DNA immunoprecipitation sequencing showed that compared with HuAECs, iECICs had 174 protein-coding DNA sequences with extensive hydroxymethylation modifications. Overexpression of miR-544 inhibits the activity of the YY1/PRC2 complex and promotes the transcription and expression of the ten-eleven translocation 2 (TET2) gene, thereby activating the key factors of the serotonergic synapse pathway, CACNA1F, and CYP2D6. In addition, it promotes ability of maturity, antioxidation and vascular formation in vitro. Meanwhile, transplantation for miR-544-iECICs can significantly relieve oxidative stress injury on ApoE−/− atherosclerotic mice in vivo. Conclusions miR-544 regulates the maturity and antioxidation of iECICs derived from HuAECs by regulating the YY1/TET2/serotonergic synapse signalling axis. Video abstract
Collapse
Affiliation(s)
- Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Qiuling Xiang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyi Huang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA. .,Shanghai Geriatric Institute of Chinese Medicine, University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
7
|
Severo RF, do Amaral CC, Garcia TF, Ferrúa CP, Corrêa GP, Klug AB, da Silva KD, Bastos CR, Britto Correa M, Ghisleni GC, Uchoa Vasconcelos AC, Tarquinio SBC, Nedel F. The T102C polymorphism of 5HT2A receptor in oral epithelial dysplasia: A pilot case-control study. Arch Oral Biol 2020; 113:104688. [PMID: 32146149 DOI: 10.1016/j.archoralbio.2020.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE investigate the T102C polymorphism of 5HT2A receptor in dysplasia in oral potentially malignant lesions and its association with smoking and alcohol habits. METHODS case-control study that included patients with oral potentially malignant lesions (OPML) histopathologically diagnosed with dysplasia and healthy controls, and within these group patients with and without smoking and alcohol consumption habits. Cell samples from the oral lesions were collected with the patients previously anesthetized using disposable cytological brushes. Deoxyribonucleic acid (DNA) extraction was performed and the T102C polymorphism (rs6313) was genotyped in a real-time polymerase chain reaction (PCR) allelic discrimination assays. RESULTS 110 individuals were included in this study (38 with dysplasia and 72 controls). The genotype (p = 0.016), allele (p = 0.020) and smoking habits (<0.001) distribution differed significantly between dysplasia and control group, where the CT and TT (C - cytosine/ T - thymine) genotype and the T allele showed a higher frequency in dysplasia (65.6, 18.8 and 84.4 %, respectively) than in controls (55.7, 4.9 and 60.7). Concerning smoking habits, the higher frequency was in the dysplasia group. The multivariate logistic regression analysis, associating variables of interest and the presence of dysplasia, showed that individuals with smoking habits present 7.58 increase risk to develop dysplasia than non-smokers; and individuals carrying the T allele for the T102C polymorphism have a 4.6 increased risk to develop oral dysplasia in OPML. CONCLUSIONS the T102C polymorphism is associated with oral dysplasia in OPML, however, failed to show association with smoking and alcohol habits in OPML dysplasia.
Collapse
Affiliation(s)
- Rafaely Ferreira Severo
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Cainá Corrêa do Amaral
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Tiago Fernandez Garcia
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Camila Perelló Ferrúa
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Geovanna Peter Corrêa
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Adriana Beiersdorff Klug
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Karine Duarte da Silva
- Graduate Program in Dentistry of the Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Clarissa Ribeiro Bastos
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Marcos Britto Correa
- Graduate Program in Dentistry of the Federal University of Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | | | - Fernanda Nedel
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil.
| |
Collapse
|
8
|
Gibbs WS, Garrett SM, Beeson CC, Schnellmann RG. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. Am J Physiol Renal Physiol 2018; 314:F260-F268. [PMID: 29046298 PMCID: PMC5866450 DOI: 10.1152/ajprenal.00324.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Our laboratory recently made the novel observation that 5-hydroxytryptamine 1F (5-HT1F) receptor activation induces mitochondrial biogenesis (MB), the production of new, functional mitochondria, in vitro and in vivo. We sought to determine the mechanism linking the 5-HT1F receptor to MB in renal proximal tubule cells. Using LY344864 , a selective 5-HT1F receptor agonist, we determined that the 5-HT1F receptor is coupled to Gαi/o and induces MB through Gβγ-dependent activation of Akt, endothelial nitric oxide synthase (eNOS), cyclic guanosine-monophosphate (cGMP), protein kinase G (PKG), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). We also report that the 5-HT1F receptor signals through a second, Gβγ-dependent pathway that is linked by Akt phosphorylation of Raf. In contrast to the activated Akt pathway, Raf phosphorylation reduced extracellular signal regulated kinases (ERK1/2) and foxhead box O3a (FOXO3a) phosphorylation, suppressing an inhibitory MB pathway. These results demonstrate that the 5-HT1F receptor regulates MB through Gβγ-dependent dual mechanisms that activate a stimulatory MB pathway, Akt/eNOS/cGMP/PKG/PGC-1α, while simultaneously repressing an inhibitory MB pathway, Raf/MEK/ERK/FOXO3a. Novel mechanisms of MB provide the foundation for new chemicals that induce MB to treat acute and chronic organ injuries.
Collapse
Affiliation(s)
- Whitney S Gibbs
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| | - Sara M Garrett
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
- Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
9
|
Harmon JL, Wills LP, McOmish CE, Demireva EY, Gingrich JA, Beeson CC, Schnellmann RG. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists. J Pharmacol Exp Ther 2016; 357:1-9. [PMID: 26787771 PMCID: PMC4809314 DOI: 10.1124/jpet.115.228395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP-809,101 and antagonist SB-242,084 increase mitochondrial genes and oxidative metabolism through the 5-HT2A receptor. To our knowledge, this is the first report that links 5-HT2A receptor agonism to mitochondrial function.
Collapse
MESH Headings
- Aminopyridines/pharmacology
- Animals
- Electron Transport Complex I/biosynthesis
- Electron Transport Complex I/genetics
- Female
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Indoles/pharmacology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/genetics
- Oxidation-Reduction
- Oxygen Consumption
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Piperazines/pharmacology
- Pyrazines/pharmacology
- Rabbits
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/genetics
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jennifer L Harmon
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Lauren P Wills
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Caitlin E McOmish
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Elena Y Demireva
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Jay A Gingrich
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.L.H., L.P.W., C.C.B., R.G.S.); Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York (C.E.M., E.Y.D., J.A.G.); Division of Molecular Psychiatry, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia (C.E.M.); Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York (E.Y.D., J.A.G.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
10
|
Megyesi J, Tarcsafalvi A, Li S, Hodeify R, Seng NSHL, Portilla D, Price PM. Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 2015; 308:F122-30. [PMID: 25428126 PMCID: PMC4340262 DOI: 10.1152/ajprenal.00489.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023] Open
Abstract
Tissue fibrosis is a major cause of death in developed countries. It commonly occurs after either acute or chronic injury and affects diverse organs, including the heart, liver, lung, and kidney. Using the renal ablation model of chronic kidney disease, we previously found that the development of progressive renal fibrosis was dependent on p21(WAF1/Cip1) expression; the genetic knockout of the p21 gene greatly alleviated this disease. In the present study, we expanded on this observation and report that fibrosis induced by two different acute injuries to the kidney is also dependent on p21. In addition, when p21 expression was restricted only to the proximal tubule, fibrosis after injury was induced in the whole organ. One molecular fibrogenic switch we describe is transforming growth factor-β induction, which occurred in vivo and in cultured kidney cells exposed to adenovirus expressing p21. Our data suggests that fibrosis is p21 dependent and that preventing p21 induction after stress could be a novel therapeutic target.
Collapse
Affiliation(s)
- Judit Megyesi
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Adel Tarcsafalvi
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shenyang Li
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Rawad Hodeify
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nang San Hti Lar Seng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Didier Portilla
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Peter M Price
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
11
|
Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J Pharmacol Exp Ther 2014; 350:257-64. [PMID: 24849926 PMCID: PMC4109485 DOI: 10.1124/jpet.114.214700] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
Many acute and chronic conditions, such as acute kidney injury, chronic kidney disease, heart failure, and liver disease, involve mitochondrial dysfunction. Although we have provided evidence that drug-induced stimulation of mitochondrial biogenesis (MB) accelerates mitochondrial and cellular repair, leading to recovery of organ function, only a limited number of chemicals have been identified that induce MB. The goal of this study was to assess the role of the 5-hydroxytryptamine 1F (5-HT1F) receptor in MB. Immunoblot and quantitative polymerase chain reaction analyses revealed 5-HT1F receptor expression in renal proximal tubule cells (RPTC). A MB screening assay demonstrated that two selective 5-HT1F receptor agonists, LY334370 (4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide) and LY344864 (N-[(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-6-yl]-4-fluorobenzamide; 1-100 nM) increased carbonylcyanide-p-trifluoromethoxyphenylhydrazone-uncoupled oxygen consumption in RPTC, and validation studies confirmed both agonists increased mitochondrial proteins [e.g., ATP synthase β, cytochrome c oxidase 1 (Cox1), and NADH dehydrogenase (ubiquinone) 1β subcomplex subunit 8 (NDUFB8)] in vitro. Small interfering RNA knockdown of the 5-HT1F receptor blocked agonist-induced MB. Furthermore, LY344864 increased peroxisome proliferator-activated receptor coactivator 1-α, Cox1, and NDUFB8 transcript levels and mitochondrial DNA (mtDNA) copy number in murine renal cortex, heart, and liver. Finally, LY344864 accelerated recovery of renal function, as indicated by decreased blood urea nitrogen and kidney injury molecule 1 and increased mtDNA copy number following ischemia/reperfusion-induced acute kidney injury (AKI). In summary, these studies reveal that the 5-HT1F receptor is linked to MB, 5-HT1F receptor agonism promotes MB in vitro and in vivo, and 5-HT1F receptor agonism promotes recovery from AKI injury. Induction of MB through 5-HT1F receptor agonism represents a new target and approach to treat mitochondrial organ dysfunction.
Collapse
Affiliation(s)
- Sara M Garrett
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Ryan M Whitaker
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Craig C Beeson
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.M.G., R.M.W., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
12
|
Kemp BA, Howell NL, Gildea JJ, Padia SH. Intrarenal ghrelin receptor antagonism prevents high-fat diet-induced hypertension in male rats. Endocrinology 2014; 155:2658-66. [PMID: 24797629 DOI: 10.1210/en.2013-2177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Excess weight gain contributes up to 65% of the risk of primary hypertension, and the increase in blood pressure in response to high-fat diet (HFD) is preceded by significant increases in renal tubular sodium (Na(+)) reabsorption. In normal rats, intrarenal ghrelin infusion increases distal nephron-dependent Na(+) reabsorption via activation of the intrarenal ghrelin receptor (GHSR). This study focusses on the role of intrarenal GHSR-mediated Na(+) reabsorption in HFD-induced hypertension. Dahl salt-sensitive rats received standard diet or HFD for 6 weeks. Rats underwent uninephrectomy and osmotic minipump implantation for chronic intrarenal delivery of vehicle (0.25 μL/h × 28 d), selective GHSR antagonist [D-Lys-3]-growth hormone releasing peptide-6 (0.2μM/d), or GHSR inverse agonist [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P (SUB-P) (3.6μM/d). HFD rats with vehicle pumps had significantly increased renal GHSR expression compared with standard diet (0.092 ± 0.005 vs 0.065 ± 0.004 arbitrary units; P < .05), whereas acyl ghrelin levels were similar (16.3±6.2 vs 15.7±8.7 pg/g tissue). HFD rats with vehicle pumps became hypertensive after 2 weeks (P < .05) and showed a significant reduction in 24-hour urine Na(+) before hypertension. At this time, these rats showed an increase in collecting duct α-epithelial Na(+) channel, thereby providing a potential mechanism for the excess Na(+) reabsorption. In contrast, HFD rats with [D-Lys-3]-growth hormone releasing peptide-6 or SUB-P pumps never became hypertensive and did not show the reduction in urine Na(+). Because SUB-P blocks the constitutive, but not ghrelin-dependent, activity of the GHSR, and HFD-induced α-epithelial Na(+) channel up-regulation was abolished during GHSR antagonism, these data suggest that HFD increases the constitutive activity of renal GHSR to increase Na(+) reabsorption and induce hypertension in rats.
Collapse
Affiliation(s)
- Brandon A Kemp
- Division of Endocrinology and Metabolism (B.A.K., N.L.H., S.H.P.), Department of Medicine, and Department of Pathology (J.J.G.), University of Virginia School of Medicine, Charlottesville, Virginia 22908-1414
| | | | | | | |
Collapse
|
13
|
Hamasaki Y, Doi K, Maeda-Mamiya R, Ogasawara E, Katagiri D, Tanaka T, Yamamoto T, Sugaya T, Nangaku M, Noiri E. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Renal Physiol 2013; 305:F1796-803. [PMID: 24107419 DOI: 10.1152/ajprenal.00151.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A selective 5-hydroxytryptamine (5-HT) 2A receptor antagonist sarpogrelate (SG) blocks serotonin-induced platelet aggregation. It has been used clinically for the treatment of peripheral arterial disease. SG might be able to improve chronic ischemia, which contributes to renal fibrosis progression by maintaining renal microcirculation. This study investigated whether SG suppresses renal fibrosis. C57BL/6 mice fed a 0.2% adenine-containing diet for 6 wk developed severe tubulointerstitial fibrosis with kidney dysfunction. Subsequent SG treatment (30 mg·kg(-1)·day(-1)) for 4 wk improved these changes significantly by increasing peritubular blood flow in the fibrotic area, as evaluated by intravital microscopy and decreasing fibrin deposition. Urinary L-type fatty acid-binding protein, up-regulated by renal hypoxia, was also reduced by SG. Additionally, results showed that mRNA expression of plasminogen activator inhibitor-1 (PAI-1), which is known to promote fibrosis by mediating and enhancing transforming growth factor (TGF)-β1 signaling, was suppressed by SG treatment in the kidney. In vitro experiments using cultured murine proximal tubular epithelial (mProx) cells revealed that incubation with TGF-β1 and 5-HT increased PAI-1 mRNA expression; SG significantly reduced it. In conclusion, SG reduces renal fibrosis not only by the antithrombotic effect of maintaining peritubular blood flow but also by suppressing PAI-1 expression in renal tubular cells.
Collapse
Affiliation(s)
- Yoshifumi Hamasaki
- Dept. of Emergency and Critical Care Medicine, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Moya PR, Wendland JR, Rubenstein LM, Timpano KR, Heiman GA, Tischfield JA, King RA, Andrews AM, Ramamoorthy S, McMahon FJ, Murphy DL. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette's disorder. Mov Disord 2013; 28:1263-70. [PMID: 23630162 PMCID: PMC3766488 DOI: 10.1002/mds.25460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/02/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022] Open
Abstract
To evaluate the hypothesis that functionally over-expressing alleles of the serotonin transporter (SERT) gene (solute carrier family 6, member 4, SLC6A4) are present in Tourette's disorder (TD), just as we previously observed in obsessive compulsive disorder (OCD), we evaluated TD probands (N = 151) and controls (N = 858). We genotyped the refined SERT-linked polymorphic region 5-HTTLPR/rs25531 and the associated rs25532 variant in the SLC6A4 promoter plus the rare coding variant SERT isoleucine-to-valine at position 425 (I425V). The higher expressing 5-HTTLPR/rs25531 LA allele was more prevalent in TD probands than in controls (χ(2) = 5.75; P = 0.017; odds ratio [OR], 1.35); and, in a secondary analysis, surprisingly, it was significantly more frequent in probands who had TD alone than in those who had TD plus OCD (Fisher's exact test; P = 0.0006; OR, 2.29). Likewise, the higher expressing LAC haplotype (5-HTTLPR/rs25531/rs25532) was more frequent in TD probands than in controls (P = 0.024; OR, 1.33) and also in the TD alone group versus the TD plus OCD group (P = 0.0013; OR, 2.14). Furthermore, the rare gain-of-function SERT I425V variant was observed in 3 male siblings with TD and/or OCD and in their father. Thus, the cumulative count of SERT I425V becomes 1.57% in OCD/TD spectrum conditions versus 0.15% in controls, with a recalculated, family-adjusted significance of χ(2) = 15.03 (P < 0.0001; OR, 9.0; total worldwide genotyped, 2914). This report provides a unique combination of common and rare variants in one gene in TD, all of which are associated with SERT gain of function. Thus, altered SERT activity represents a potential contributor to serotonergic abnormalities in TD. The present results call for replication in a similarly intensively evaluated sample. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Pablo R Moya
- National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Low nitric oxide bioavailability upregulates renal heparin binding EGF-like growth factor expression. Kidney Int 2013; 84:1176-88. [PMID: 23760291 PMCID: PMC3796048 DOI: 10.1038/ki.2013.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 12/20/2022]
Abstract
Decreased nitric oxide bioavailability plays an important role in the initiation and progression of diabetic nephropathy, but the underlying mechanisms remain unclear. Here, we found that heparin binding epidermal growth factor-like growth factor (HB-EGF) expression levels increased in the kidneys of both endothelial nitric oxide synthase (eNOS) knockout and eNOS knockout diabetic (Lepr db/db) mice as early as 8 weeks of age. Further increases in expression were only seen in eNOS knockout diabetic mice and paralleled the progression of glomerulopathy. HB-EGF expression increased in endothelium, podocytes, and tubular epithelial cells. In cultured glomerular endothelial cells, the nitric oxide synthase inhibitors NG-nitro-L-arginine methyl ester (L-NAME) or L-N5-(1-Iminoethyl) ornithine increased HB-EGF protein expression. Administration of L-NAME dramatically increased renal HB-EGF expression and urinary HB-EGF excretion in diabetic mice. On the other hand, replenishing nitric oxide with sodium nitrate in eNOS knockout diabetic mice reduced urinary HB-EGF excretion and inhibited the progression of diabetic nephropathy. Furthermore, specific deletion of HB-EGF expression in endothelium attenuated renal injury in diabetic eNOS knockout mice. Thus, our results suggest that decreased nitric oxide bioavailability leads to increased HB-EGF expression, which may be an important mediator of the resulting progressive diabetic nephropathy in eNOS knockout diabetic mice.
Collapse
|
16
|
Hirose M, Tomoda F, Koike T, Yamazaki H, Ohara M, Liu H, Kagitani S, Inoue H. Imbalance of renal production between 5-hydroxytryptamine and dopamine in patients with essential hypertension complicated by microalbuminuria. Am J Hypertens 2013; 26:227-33. [PMID: 23382407 DOI: 10.1093/ajh/hps008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the kidney, 5-hydroxytryptamine (5-HT) and dopamine (DA) are formed by the same enzyme, l-aromatic amino acid decarboxylase, but act on renal function and glomerular structure in an opposite direction. The present study was designed to explore whether rates of renal production of 5-HT relative to that of DA are altered in patients with essential hypertension and microalbuminuria. METHODS We measured urinary levels of 5-HT and DA, reflecting renal production of 5-HT and DA as well as 24-hour ambulatory blood pressure and urinary albumin excretion in 82 consecutive untreated, essential hypertensives without overt proteinuria. RESULTS Urinary 5-HT excretion and the ratio of urinary 5-HT to DA were significantly higher in 22 patients with microalbuminuria than in the remaining patients with normoalbuminuria, although urinary DA levels did not differ between the groups. The 24-hour systolic and diastolic blood pressures were also higher in the microalbuminuric group than in the normoalbuminuric group. Multiple regression analysis revealed that urinary 5-HT excretion and 24-hour systolic blood pressure were independently associated with urinary albumin excretion. Furthermore, urinary 5-HT excretion was positively correlated with creatinine clearance as well as blood pressure but tended to be negatively correlated with fractional excretion of sodium. CONCLUSIONS Renal production of 5-HT is enhanced compared with that of DA in essential hypertensives with microalbuminuria. This imbalance may contribute to the genesis of hypertensive glomerular damage.
Collapse
Affiliation(s)
- Masayo Hirose
- Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: A new class of inflammation modulators? Biochimie 2011; 93:377-88. [DOI: 10.1016/j.biochi.2010.11.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023]
|
18
|
Serotonin reverts age-related capillarization and failure of regeneration in the liver through a VEGF-dependent pathway. Proc Natl Acad Sci U S A 2011; 108:2945-50. [PMID: 21282654 DOI: 10.1073/pnas.1012531108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The function of the liver is well-preserved during the aging process, although some evidence suggests that liver regeneration might be impaired with advanced age. We observed a decreased ability of the liver to restore normal volume after partial hepatectomy in elderly mice, and we identified a pathway that rescued regeneration and was triggered by serotonin. 2,5-dimethoxy-4-iodoamphetamine (DOI), a serotonin receptor agonist, reversed the age-related pseudocapillarization of old liver and improved hepatosinusoidal blood flow. After hepatectomy, the open fenestrae were associated with a restored attachment of platelets to endothelium and the initiation of a normal regenerative response, including the up-regulation of essential growth mediators and serotonin receptors. In turn, hepatocyte proliferation recovered along with regain of liver volume and animal survival. DOI operates through the release of VEGF, and its effects could be blocked with anti-VEGF antibodies both in vitro and in vivo. These results suggest that pseudocapillarization in the aged acts as a barrier to liver regeneration. DOI breaks this restraint through an endothelium-dependent mechanism driven by VEGF. This pathway highlights a target for reversing the age-associated decline in the capacity of the liver to regenerate.
Collapse
|
19
|
Rasbach KA, Funk JA, Jayavelu T, Green PT, Schnellmann RG. 5-hydroxytryptamine receptor stimulation of mitochondrial biogenesis. J Pharmacol Exp Ther 2010; 332:632-9. [PMID: 19875674 PMCID: PMC2812119 DOI: 10.1124/jpet.109.159947] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/28/2009] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is both a cause and target of reactive oxygen species during ischemia-reperfusion, drug, and toxicant injury. After injury, renal proximal tubular cells (RPTC) recover mitochondrial function by increasing the expression of the master regulator of mitochondrial biogenesis, peroxisome-proliferator-activated-receptor-gamma-coactivator-1alpha (PGC-1alpha). The goal of this study was to determine whether 5-hydroxytryptamine (5-HT) receptor agonists increase mitochondrial biogenesis and accelerate the recovery of mitochondrial function. Reverse transcription-polymerase chain reaction analysis confirmed the presence of 5-HT2A, 5-HT2B, and 5-HT2C receptor mRNA in RPTC. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 3-10 microM) increased PGC-1alpha levels, expression of mitochondrial proteins ATP synthase beta and NADH dehydrogenase (ubiquinone) 1beta subcomplex 8 (NDUFB8), MitoTracker Red staining intensity, cellular respiration, and ATP levels through a 5-HT receptor and PGC-1alpha-dependent pathway. Similar effects were observed with the 5-HT2 agonist m-chlorophenylpiperazine and were blocked by the 5-HT2 antagonist 8-[3-(4-fluorophenoxy) propyl]-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one (AMI-193). In addition, DOI accelerated the recovery of mitochondrial function after oxidant-induced injury in RPTC. This is the first report to demonstrate 5-HT receptor-mediated mitochondrial biogenesis, and we suggest that 5-HT-agonists may be effective in the treatment of mitochondrial and cell injury.
Collapse
Affiliation(s)
- Kyle A Rasbach
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
20
|
Linder AE, Beggs KM, Burnett RJ, Watts SW. Body distribution of infused serotonin in rats. Clin Exp Pharmacol Physiol 2009; 36:599-601. [PMID: 19207716 DOI: 10.1111/j.1440-1681.2009.05147.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Our goal was to investigate the body distribution of serotonin (5-hydroxytryptamine; 5-HT) in rats infused with 5-HT (25 microg/kg per min) for 7 days and the contribution of the 5-HT transporter (SERT) for 5-HT uptake into the tissues. 2. Mini-osmotic pumps containing 5-HT or vehicle were implanted in rats knocked out for SERT (SERT-KO) or in wild-type (WT) rats. On the 8th day, tissues were harvested for measurements of 5-HT by high-performance liquid chromatography (HPLC). The 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA) was also measured by HPLC, because an increase in 5-HIAA in tissues from rats receiving 5-HT reflects 5-HT uptake followed by metabolism. 3. In WT rats infused with 5-HT, an increase in 5-HT or 5-HIAA was observed in the heart, pancreas, thyroid, adrenal gland, kidney, seminal vesicle, bladder, prostate, liver, oesophagus, stomach, femur, trachea, lung and spleen compared with vehicle-infused rats. An increase in 5-HT and 5-HIAA was not observed in aorta, vena cava and jejunum. In tissues from SERT-KO rats infused with 5-HT, the content of 5-HT or 5-HIAA was decreased in most of the tissues studied compared with 5-HT-infused WT rats. Although 5-HT uptake in the kidney, seminal vesicle, prostate, jejunum and trachea is SERT dependent, it is SERT independent in the pancreas. The remaining tissues display SERT-dependent and -independent mechanisms for 5-HT uptake. 4. Altogether, tissues from different systems, such as the cardiovascular, endocrine, genitourinary and gastrointestinal, accumulate 5-HT mainly via SERT and, thus, these systems are potential targets for drugs that interfere with 5-HT homeostasis.
Collapse
Affiliation(s)
- A Elizabeth Linder
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
21
|
Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS. NFATc1 identifies a population of proximal tubule cell progenitors. J Am Soc Nephrol 2008; 20:311-21. [PMID: 19118153 DOI: 10.1681/asn.2008010094] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recovery from acute kidney injury requires regeneration of tubule cells. Because calcineurin induces nuclear transport of NFATc proteins, whose expression pattern correlates with the nephron segments injured by calcineurin inhibitors, we hypothesized that NFATc1 plays a role in modifying epithelial regeneration after injury. To test this, we induced proximal tubular cell (PTC) injury in Balb/c mice and Nfatc1(+/-) mice with mercuric chloride; the PTCs of Nfatc1(+/-) mice demonstrated increased apoptosis, sustained injury, and delayed regeneration. To attenuate NFATc1 activity further, we injected cyclosporin A daily. Cyclosporin A-treated Nfatc1(+/-) mice demonstrated rapid and severe injury after administration of mercuric chloride, with increased serum creatinine, increased apoptosis, decreased PTC proliferation, and increased mortality compared with similarly treated wild-type mice. Using a novel NFATc1 transgenic line that reports activation of an NFATc1 enhancer domain critical for NFATc1 autoamplification, we demonstrated accentuated NFATc1 expression in a PTC subpopulation after mercuric chloride-induced injury. In addition, NFATc1-labeled, apoptosis-resistant PTCs proliferated to repair the damaged proximal tubule segment. These data provide evidence for a resident progenitor PTC population and suggest a role for NFATc1 in the regeneration of injured proximal tubules.
Collapse
Affiliation(s)
- Melissa Langworthy
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The hepatic wound-healing response is a complex process involving many different cell types and factors. It leads to the formation of excessive matrix and a fibrotic scar, which ultimately disrupts proper functioning of the liver and establishes cirrhosis. Activated hepatic myofibroblasts, which are derived from cells such as hepatic stellate cells (HSCs), play a key role in this process. Upon chronic liver injury, there is an upregulation in the local neuroendocrine system and it has recently been demonstrated that activated HSCs express specific receptors and respond to different components of this system. Neuroendocrine factors and their receptors participate in a complex network that modulates liver inflammation and wound healing, and controls the development and progression of liver fibrosis. The first part of this review provides an overview of the molecular mechanisms governing hepatic wound healing. In the second section, we explore important components of the hepatic neuroendocrine system and their recently highlighted roles in HSC biology and hepatic fibrogenesis. We discuss the therapeutic interventions that are being developed for use in antifibrotic therapy.
Collapse
|
23
|
Ogawa S, Mori T, Nako K, Ishizuka T, Ito S. Reduced albuminuria with sarpogrelate is accompanied by a decrease in monocyte chemoattractant protein-1 levels in type 2 diabetes. Clin J Am Soc Nephrol 2008; 3:362-8. [PMID: 18235151 DOI: 10.2215/cjn.03450807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Sarpogrelate has been shown to reduce albuminuria in diabetic nephropathy. For examination of whether this is based on the same mechanisms as angiotensin II receptor blockers or thiazolidinedione, effects of sarpogrelate on atherosclerotic inflammatory molecules and their relations to albuminuria in patients who had diabetes and had already been treated with angiotensin II receptor blockers and with or without thiazolidinedione were examined. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Forty patients who had diabetes with nephropathy and arteriosclerosis obliterans and had already been treated with angiotensin II receptor blocker (n = 40) were randomly assigned to sarpogrelate (300 mg/d; n = 20) or aspirin group (100 mg/d; n = 20). Plasma monocyte chemoattractant protein-1 and urinary albumin-to-creatinine ratio and monocyte chemoattractant protein-1 were measured at baseline and 16 wk after administration. RESULTS Only the sarpogrelate group showed increases in plasma adiponectin and decreases in both plasma and urinary monocyte chemoattractant protein-1 and albumin-to-creatinine ratio levels. Moreover, percentage change of monocyte chemoattractant protein-1 level correlated positively to that of albumin-to-creatinine ratio. Even when the sarpogrelate group was further divided into two groups with (n = 9) or without thiazolidinedione (n = 11), changes in monocyte chemoattractant protein-1 or albumin-to-creatinine ratio did not differ. CONCLUSIONS Sarpogrelate can reduce albuminuria and plasma and urinary monocyte chemoattractant protein-1 levels while increasing plasma adiponectin in diabetic nephropathy. These effects seem to be mediated via mechanisms that are different from those of angiotensin II receptor blocker or thiazolidinedione.
Collapse
Affiliation(s)
- Susumu Ogawa
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | |
Collapse
|