1
|
Bremond-Gignac D, Gicquel JJ, Chiambaretta F. Pharmacokinetic evaluation of diquafosol tetrasodium for the treatment of Sjögren's syndrome. Expert Opin Drug Metab Toxicol 2014; 10:905-13. [PMID: 24797483 DOI: 10.1517/17425255.2014.915026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Dry eye is a multifactorial disease of the ocular surface causing ocular discomfort and visual impairment for the patient. A variety of topical and systemic drugs are available to treat dry eye. Conventional treatments are limited to tear supplementation or improvement of ocular surface inflammation by the use of corticosteroids or cyclosporine A. Treatment of severe dry eye associated with Sjögren's syndrome (SS) is even more challenging and is designed to improve the quality and quantity of tear fluid. Diquafosol tetrasodium , a P2Y2 purinergic receptor agonist, acts via a novel mechanism by activating P2Y2 receptors of the ocular surface. AREAS COVERED The aim of this review is to summarize the pharmacokinetics, and pharmacological and clinical data of 3% diquafosol tetrasodium ophthalmic solution in patients with dry eye, particularly SS. The mechanisms of impaired ocular surface due to severe dry eye, as defined by the International Dry Eye Workshop, are analyzed. EXPERT OPINION Diquafosol tetrasodium provides a novel mode of action in dry eye syndrome, including SS, by stimulating the quantity and quality of tear fluid secretion via various mechanisms. In clinical trials, 3% Diquafosol tetrasodium ophthalmic solution demonstrated a good safety profile and exhibited efficacy with clinical improvement of the ocular surface in dry eye including SS.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- University Hospital, St Victor Center, Department of Ophthalmology , 354 Boulevard de Beauvillé, UPJV, Amiens , France +33 3 22 82 41 08 ; +33 3 22 82 40 61 ;
| | | | | |
Collapse
|
2
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
3
|
P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells. Pflugers Arch 2014; 466:2035-47. [PMID: 24463702 DOI: 10.1007/s00424-013-1438-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/28/2013] [Accepted: 12/29/2013] [Indexed: 12/11/2022]
Abstract
Luminal nucleotide stimulation is known to reduce Na(+) transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca(2+) transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca(2+) transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca(2+) concentration ([Ca(2+)]i) may control NCC transcription, we overexpressed the Ca(2+)-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca(2+). Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from -1 to -2,200 bp was not regulated by changes in [Ca(2+)]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca(2+) signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca(2+) concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.
Collapse
|
4
|
Olinger E, Schwaller B, Loffing J, Gailly P, Devuyst O. Parvalbumin: calcium and magnesium buffering in the distal nephron. Nephrol Dial Transplant 2012; 27:3988-94. [DOI: 10.1093/ndt/gfs457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
5
|
Melendez E, Bidet M, Reyes JL, Martial S, Barbier O, Tauc M, Sanchez E, Poujeol P. New evidence of a dihydropyridine-activated cationic channel in the MDCK cell line. Nephron Clin Pract 2011; 118:p73-81. [PMID: 21502768 DOI: 10.1159/000325467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
Newborn rat distal cells express an apical Ca2+ channel activated by dihydropyridine drugs. Similarly, in Madin-Darby canine kidney (MDCK) cells, nifedipine increased Ca2+i in a concentration-dependent manner (IC50=4 μM) in fura-2-loaded cells. Response to nifedipine was abolished by EGTA, suggesting that it depends on extracellular calcium. Ca2+ channel antagonist isradipine and agonist BayK8644 increased Ca2+i indicating that this effect is related to the dihydropyridine group. Diltiazem (20 μM) and gadolinium (200 μM) decreased the nifedipine effect (62 and 43%, respectively). Lanthanum (100 μM) did not change the response. Valinomycin clamping of the membrane potential did not modify nifedipine-induced increment, indicating that it was unrelated to potassium fluxes. We performed whole cell clamp experiments in MDCK cells maintained at -50 mV with perfusion solution containing 10 mM CaCl2. Nifedipine (20 μM) induced an increase in current (1.2±0.3 nA), which was partially inhibited by Gd3+. No significant current was induced by nifedipine in the presence of 0.5 mM EGTA. To determine the effects of nifedipine on the membrane potential, we performed oxonol fluorescence experiments. The addition of nifedipine or Bay K8644 induced depolarization, highly dependent on external sodium. Nifedipine (20 μM) induced depolarization of 6.9±0.8 mV (n=21). EC50 to nifedipine was in the 10 μM range. We conclude that MDCK cells exhibit a dihydropyridine-activated cationic channel.
Collapse
Affiliation(s)
- E Melendez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Stoessel A, Himmerkus N, Bleich M, Bachmann S, Theilig F. Connexin 37 is localized in renal epithelia and responds to changes in dietary salt intake. Am J Physiol Renal Physiol 2010; 298:F216-23. [PMID: 19828678 DOI: 10.1152/ajprenal.00295.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connexins are the main components of gap junction channels, which are important for intercellular communication. In the kidney, several members of the connexin (Cx) family have been identified. Renal vascular expression and hemodynamic impacts have so far been shown for Cx37, Cx40, and Cx43. Additionally, Cx30, Cx30.3, and Cx43 have been identified to be part of tubular epithelial gap junctions and/or hemichannels. However, the localization and role of other Cx family members in renal epithelial structures remain undetermined. We aimed to localize Cx37 in the kidney to obtain information on its epithelial expression and potential functions. Immunohistochemistry in rodent kidney showed characteristic punctate patterns in the vasculature and along the nephron. Strong basolateral expression was found in the thick ascending limb and distal convoluted tubule. Weaker abundances were found in the proximal tubule and the collecting duct also at the basolateral side. In situ hybridization and real-time PCR of isolated nephron segments confirmed this distribution at the mRNA level. Ultrastructurally, Cx37 immunostaining was confined to basolateral cell interdigitations and infoldings. As a functional approach, rats were fed low- or high-salt diets. Compared with control and high-salt diets, rats treated with low-salt diet showed significantly increased Cx37 mRNA and protein levels. This may be indicative of an adaptive tubular response to changes in sodium reabsorption. In summary, renal epithelia express Cx37 in their basolateral membranes. Here, the formation of Cx37 gap junctions may be involved in cellular communication and adjustments of vectorial epithelial transport.
Collapse
MESH Headings
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Connexins/metabolism
- Dose-Response Relationship, Drug
- Epithelium/drug effects
- Epithelium/metabolism
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Loop of Henle/cytology
- Loop of Henle/drug effects
- Loop of Henle/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Rats
- Rats, Sprague-Dawley
- Sodium Chloride, Dietary/pharmacology
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- Adelina Stoessel
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
7
|
Li G, Olson JE. Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. Am J Physiol Cell Physiol 2008; 295:C1550-60. [PMID: 18923056 DOI: 10.1152/ajpcell.90605.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.
Collapse
Affiliation(s)
- Guangze Li
- Dept. of Emergency Medicine, Wright State Univ., Boonshoft School of Medicine, Kettering, OH 45429, USA
| | | |
Collapse
|
8
|
Kempson SA, Edwards JM, Osborn A, Sturek M. Acute inhibition of the betaine transporter by ATP and adenosine in renal MDCK cells. Am J Physiol Renal Physiol 2008; 295:F108-17. [PMID: 18448594 DOI: 10.1152/ajprenal.00108.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP interacts with purinergic P2 receptors to regulate a range of physiological responses, including downregulation of transport activity in the nephron. ATP is released from cells by mechanical stimuli such as cell volume changes, and autocrine signaling by extracellular ATP could occur in renal medullary cells during diuresis. This was tested in Madin-Darby canine kidney (MDCK) cells, a model used frequently to study P1 and P2 receptor activity. ATP was released within 1 min after transfer from 500 to 300 mosmol/kgH2O medium. A 30-min incubation with ATP produced dose-dependent inhibition (0.01-0.10 mM) of the renal betaine/GABA transporter (BGT1) with little effect on other osmolyte transporters. Inhibition was reproduced by specific agonists for P2X (alpha,beta-methylene-ATP) and P2Y (UTP) receptors. Adenosine, the final product of ATP hydrolysis, also inhibited BGT1 but not taurine transport. Inhibition by ATP and adenosine was blocked by pertussis toxin and A73122, suggesting involvement of inhibitory G protein and PLC in postreceptor signaling. Both ATP and adenosine (0.1 mM) produced rapid increases in intracellular Ca2+, due to the mobilization of intracellular Ca2+ stores and Ca2+ influx. Blocking these Ca2+ increases with BAPTA-AM also blocked the action of ATP and adenosine on BGT1 transport. Finally, immunohistochemical studies indicated that inhibition of BGT1 transport may be due to endocytic accumulation of BGT1 proteins from the plasma membrane. We conclude that ATP and adenosine, through stimulation of PLC and intracellular Ca2+, may be rapidly acting regulators of BGT1 transport especially in response to a fall in extracellular osmolarity.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Intergrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
9
|
Roberts VHJ, Waters LH, Powell T. Purinergic receptor expression and activation in first trimester and term human placenta. Placenta 2006; 28:339-47. [PMID: 16764923 DOI: 10.1016/j.placenta.2006.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
Intracellular calcium concentration ([Ca(2+)](i)) is an important signalling molecule in the human placenta and regulation of [Ca(2+)](i) must be tightly controlled to ensure normal cell function and in order to meet the changing demand for calcium with increased fetal growth over gestation. Little is known about the receptors and mechanisms involved in intracellular calcium signalling in the human placenta but in isolated cytotrophoblast cells members of the P2 purinergic receptor family have been shown to mediate an ATP-stimulated rise in [Ca(2+)](i). In this study we examined activation and expression of several of the purinergic receptor subtypes in human placental villous fragments at two stages of gestation, first trimester and term. We demonstrate mRNA and protein expression of the P2X(4), P2X(7) and P2Y(2) subtypes but found no evidence of P2Y(4) protein in the placenta. Using fluorescent calcium imaging we demonstrate that 300 microM ATP, 450 microM UTP and 300 microM BzATP significantly elevate [Ca(2+)](i) in villous fragments with a significant increase in agonist-induced response seen in the term compared to the first trimester fragments (ATP, P<0.0001; UTP, P=0.018; BzATP, P=0.015). The roles of the purinergic receptors within the human placenta are not known but it seems likely for this study that calcium handling through these receptors is altered with advancing gestation. This may be due to the need to meet increased fetal Ca(2+) requirements due to growth or as a secondary function to alterations in placental [Ca(2+)](i) signalling.
Collapse
Affiliation(s)
- V H J Roberts
- Division of Human Development, St Mary's Hospital, University of Manchester, Manchester M13 0JH, UK.
| | | | | |
Collapse
|
10
|
Paredes-Gamero EJ, Craveiro RB, Pesquero JB, França JP, Oshiro MEM, Ferreira AT. Activation of P2Y1 receptor triggers two calcium signaling pathways in bone marrow erythroblasts. Eur J Pharmacol 2006; 534:30-8. [PMID: 16487961 DOI: 10.1016/j.ejphar.2006.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/10/2006] [Indexed: 11/30/2022]
Abstract
In this study, we describe the presence of P2 receptor subtypes and Ca2+ signaling in erythroblasts. ATP and ADP produced a biphasic increase of intracellular Ca2+ concentration ([Ca2+]i), with an initial transient phase followed by a sustained phase. Reverse transcription polymerase chain reaction (RT-PCR) showed the expression of P2Y1, P2Y2 and P2Y12. The selective P2Y1 receptor antagonist 2'-deoxy-N6-methyl-adenosine-3',5'-diphosphate (MRS2179) and the G(i) protein inhibitor pertussis toxin blocked Ca2+ increase. The initial transient [Ca2+]i increase phase was sensitive to the 1,4,5-inositol trisphosphate (IP3) receptor blocker 2-aminoethoxy-diphenylborate (2-APB), while the sustained phase was sensitive to the protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF109203X) and calcium calmodulin kinase II (CaMKII) inhibitor 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62). In addition, the PKC activator phorbol-12,13-dibutyrate (PDBu) produced increase of [Ca2+]i. Flow cytometry analysis showed the expression of Ca2+-dependent PKC alpha, betaI, gamma and phospho-CaMKII. These results suggest that the activation of the P2Y1 receptor triggers two different [Ca2+]i increase pathways, one IP3-dependent and the other kinase-dependent.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Boron Compounds/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Erythroblasts/drug effects
- Erythroblasts/metabolism
- Female
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Maleimides/pharmacology
- Mice
- Mice, Inbred C57BL
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
Collapse
Affiliation(s)
- Edgar Julian Paredes-Gamero
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, 04023-062, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Wildman SS, Hooper KM, Turner CM, Sham JSK, Lakatta EG, King BF, Unwin RJ, Sutters M. The isolated polycystin-1 cytoplasmic COOH terminus prolongs ATP-stimulated Cl- conductance through increased Ca2+ entry. Am J Physiol Renal Physiol 2003; 285:F1168-78. [PMID: 12888616 DOI: 10.1152/ajprenal.00171.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise steps leading from mutation of the polycystic kidney disease (PKD1) gene to the autosomal dominant polycystic kidney disease (ADPKD) phenotype remain to be established. Fluid accumulation is a requirement for cyst expansion in ADPKD, suggesting that abnormal fluid secretion into the cyst lumen might play a role in disease. In this study, we sought to establish a link between polycystin-1 (the PKD1 gene product) and ATP-stimulated Cl- secretion in renal tubule cells. To do this, we performed a whole cell patch-clamp analysis of the effects of expression of the isolated cytoplasmic COOH-terminus of polycystin-1 in stably transfected mouse cortical collecting duct cells. The truncated polycystin-1 fusion protein prolonged the duration of ATP-stimulated Cl- conductance and intracellular Ca2+ responses. Both effects were dependent on extracellular Ca2+. It was determined that expression of the truncated polycystin-1 fusion protein introduced, or activated, an ATP-induced Ca2+ entry pathway that was undetectable in transfection control cell lines. Our findings are concordant with increasing evidence for a role of polycystin-1 in cell Ca2+ homeostasis and indicate that dysregulated Ca2+ entry might promote Cl- secretion and cyst expansion in ADPKD.
Collapse
Affiliation(s)
- Scott S Wildman
- Laboratory of Cardiological Sciences, Gerontology Research Center, Division of Renal Medicine, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Woda CB, Leite M, Rohatgi R, Satlin LM. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct. Am J Physiol Renal Physiol 2002; 283:F437-46. [PMID: 12167594 DOI: 10.1152/ajprenal.00316.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is apparently not mediated by apical P2 purinergic receptor signaling.
Collapse
Affiliation(s)
- Craig B Woda
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | |
Collapse
|
13
|
Kassack MU, Höfgen B, Lehmann J, Eckstein N, Quillan JM, Sadée W. Functional screening of G protein-coupled receptors by measuring intracellular calcium with a fluorescence microplate reader. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:233-46. [PMID: 12097186 DOI: 10.1177/108705710200700307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ligand binding studies reveal information about affinity to G protein-coupled receptors (GPCRs) rather than functional properties. Increase in intracellular Ca(2+) appears to represent a universal second messenger signal for a majority of recombinant GPCRs. Here, we exploit Ca(2+) signaling as a fast and sensitive functional screening method for a number of GPCRs coupled to different G proteins. Ca(2+) fluorescence measurements are performed using Oregon Green 488 BAPTA-1/AM and a microplate reader equipped with an injector. Buffer alone or test compounds dissolved in buffer are injected into a cell suspension, and fluorescence intensity is recorded for 30 s. Each of the GPCRs tested--G(q)-coupled P2Y(2), G(s)-coupled dopamine D1 and D5, G(i)-coupled dopamine D2L, and G(q/11)-coupled muscarinic acetylcholine M1--yielded a significant rise in intracellular free [Ca(2+)] on agonist stimulation. Agonist stimulation was dose dependent, as shown for ATP or UTP stimulation of P2Y(2) receptors (EC(50) = 1 microM), SKF38393 stimulation of hD1 and hD5 (EC(50) = 18.1 nM and 2.7 nM), and quinpirole at hD2L (EC(50) = 6.5 nM). SCH23390 (at hD1 and hD5) and spiperone, haloperidol, and clozapine (at hD2L) competitively antagonized the Ca(2+) response. Furthermore, the Ca(2+) assay served to screen suramin analogs for antagonistic activity at P2Y(2) receptors. Screening at dopamine receptors revealed LE300, a new lead for a dopamine receptor antagonist. Advantages of the assay include fast and simple 96- or 384-well plate format (high-throughput screening), use of a visible light-excitable fluorescent dye, applicability to a majority of GPCRs, and simultaneous analysis of distinct Ca(2+) fluxes.
Collapse
|
14
|
Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AEG. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 2002; 13:1145-51. [PMID: 11961001 DOI: 10.1097/01.asn.0000014827.71910.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Kunzelmann K, Schreiber R, Boucherot A. Mechanisms of the inhibition of epithelial Na(+) channels by CFTR and purinergic stimulation. Kidney Int 2001; 60:455-61. [PMID: 11473626 DOI: 10.1046/j.1523-1755.2001.060002455.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epithelial Na+ channel ENaC is inhibited when the cystic fibrosis transmembrane conductance regulator (CFTR) coexpressed in the same cell is activated by the cyclic adenosine monophosphate (cAMP)-dependent pathway. Regulation of ENaC by CFTR has been studied in detail in epithelial tissues from intestine and trachea and is also detected in renal cells. In the kidney, regulation of other membrane conductances might be the predominant function of CFTR. A similar inhibition of ENaC takes place when luminal purinergic receptors are activated by 5'-adenosine triphosphate (ATP) or uridine triphosphate (UTP). Because both stimulation of purinergic receptors and activation of CFTR induce a Cl(-) conductance, it is likely that Cl(-) ions control ENaC activity.
Collapse
Affiliation(s)
- K Kunzelmann
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Brisbane, Australia.
| | | | | |
Collapse
|
16
|
Abstract
In the last 10-15 years, interest in the physiological role of P2 receptors has grown rapidly. Cellular, tissue, and organ responses to P2 receptor activation have been described in numerous in vivo and in vitro models. The purpose of this review is to provide an update of the recent advances made in determining the involvement of P2 receptors in the control of renal hemodynamics and the renal microcirculation. Special attention will be paid to work published in the last 5-6 years directed at understanding the role of P2 receptors in the physiological control of renal microvascular function. Several investigators have begun to evaluate the effects of P2 receptor activation on renal microvascular function across several species. In vivo and in vitro evidence consistently supports the hypothesis that P2 receptor activation by locally released extracellular nucleotides influences microvascular function. Extracellular nucleotides selectively influence preglomerular resistance without having an effect on postglomerular tone. P2 receptor inactivation blocks autoregulatory behavior whereas responsiveness to other vasoconstrictor agonists is retained. P2 receptor stimulation activates multiple intracellular signal transduction pathways in preglomerular smooth muscle cells and mesangial cells. Renal microvascular cells and mesangial cells express multiple subtypes of P2 receptors; however, the specific role each plays in regulating vascular and mesangial cell function remains unclear. Accordingly, the results of studies performed to date provide strong support for the hypothesis that P2 receptors are important contributors to the physiological regulation of renal microvascular and/or glomerular function.
Collapse
Affiliation(s)
- E W Inscho
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
17
|
Schwiebert EM, Kishore BK. Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 2001; 280:F945-63. [PMID: 11352834 DOI: 10.1152/ajprenal.2001.280.6.f945] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the past two decades, several cell membrane receptors, which preferentially bind extracellular nucleotides, and their analogs have been identified. These receptors, collectively known as nucleotide receptors or "purinergic" receptors, have been characterized and classified on the basis of their biological actions, their pharmacology, their molecular biology, and their tissue and cell distribution. For these receptors to have biological and physiological relevance, nucleotides must be released from cells. The field of extracellular ATP release and signaling is exploding, as assays to detect this biological process increase in number and ingenuity. Studies of ATP release have revealed a myriad of roles in local regulatory (autocrine or paracrine) processes in almost every tissue in the body. The regulatory mechanisms that these receptors control or modulate have physiological and pathophysiological roles and potential therapeutic applications. Only recently, however, have ATP release and nucleotide receptors been identified along the renal epithelium of the nephron. This work has set the stage for the study of their physiological and pathophysiological roles in the kidney. This review provides a comprehensive presentation of these issues, with a focus on the renal epithelium.
Collapse
Affiliation(s)
- E M Schwiebert
- Departments of Physiology and Biophysics and of Cell Biology, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
18
|
Valencia L, Bidet M, Martial S, Sanchez E, Melendez E, Tauc M, Poujeol C, Martin D, Namorado MD, Reyes JL, Poujeol P. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture. Am J Physiol Cell Physiol 2001; 280:C1193-203. [PMID: 11287333 DOI: 10.1152/ajpcell.2001.280.5.c1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Newborn
- Biological Transport/drug effects
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Cell Membrane Permeability/drug effects
- Cell Membrane Permeability/physiology
- Cells, Cultured
- Cytosol/metabolism
- Dihydropyridines/pharmacology
- Diltiazem/pharmacology
- Egtazic Acid/pharmacology
- Gadolinium/pharmacology
- Hydrogen Peroxide/pharmacology
- Isradipine/pharmacology
- Kidney Cortex/cytology
- Kidney Cortex/physiology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/physiology
- Kinetics
- Lanthanum/pharmacology
- Nifedipine/pharmacology
- Protamines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Thapsigargin/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- L Valencia
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional, Mexico City DF 07000, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rubera I, Barrière H, Tauc M, Bidet M, Verheecke-Mauze C, Poujeol C, Cuiller B, Poujeol P. Extracellular adenosine modulates a volume-sensitive-like chloride conductance in immortalized rabbit DC1 cells. Am J Physiol Renal Physiol 2001; 280:F126-45. [PMID: 11133523 DOI: 10.1152/ajprenal.2001.280.1.f126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl(-) currents induced by cell swelling were characterized in an immortalized cell line (DC1) derived from rabbit distal bright convoluted tubule by the whole cell patch-clamp techniques and by (125)I(-) efflux experiments. Exposure of cells to a hypotonic shock induced outwardly rectifying Cl(-) currents that could be blocked by 0.1 mM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, 1 mM DIDS, and by 1 mM diphenylamine-2-carboxylate. (125)I(-) efflux experiments showed that exposure of the monolayer to a hypotonic medium increased (125)I(-) loss. Preincubation of cells with LaCl(3) or GdCl(3) prevented the development of the response. The addition of 10 microM adenosine to the bath medium activated outwardly rectifying whole cell currents similar to those recorded after hypotonic shock. This conductance was inhibited by the A(1)-receptor antagonist 8-cyclopentyl-1,3-diproxylxanthine (DPCPX), LaCl(3), or GdCl(3) and was activated by GTPgammaS. The selective A(1)-receptor agonist N(6)-cyclopentyladenosine (CPA) mimicked the effect of hypotonicity on (125)I(-) efflux. The CPA-induced increase of (125)I(-) efflux was inhibited by DPCPX and external application of LaCl(3) or GdCl(3). Adenosine also enhanced Mn(2+) influx across the apical membrane. Overall, the data show that DC1 cells possess swelling- and adenosine-activated Cl(-) conductances that share identical characteristics. The activation of both conductances involved Ca(2+) entry into the cell, probably via mechanosensitive Ca(2+) channels. The effects of adenosine are mediated via A(1) receptors that could mediate the purinergic regulation of the volume-sensitive Cl(-) conductance.
Collapse
Affiliation(s)
- I Rubera
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, O6108 Nice Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rubera I, Tauc M, Bidet M, Verheecke-Mauze C, De Renzis G, Poujeol C, Cuiller B, Poujeol P. Extracellular ATP increases [Ca(2+)](i) in distal tubule cells. II. Activation of a Ca(2+)-dependent Cl(-) conductance. Am J Physiol Renal Physiol 2000; 279:F102-11. [PMID: 10894792 DOI: 10.1152/ajprenal.2000.279.1.f102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We characterized Cl(-) conductance activated by extracellular ATP in an immortalized cell line derived from rabbit distal bright convoluted tubule (DC1). (125)I(-) efflux experiments showed that ATP increased (125)I(-) loss with an EC(50) = 3 microM. Diphenylamine-2-carboxylate (10(-3) M) and NPPB (10(-4) M) abolished the (125)I(-) efflux. Preincubation with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or 10(-7) M thapsigargin inhibited the effect of ATP. Ionomycin (2 microM) increased (125)I(-) efflux with a time course similar to that of extracellular ATP, suggesting that the response is dependent on the intracellular Ca(2+) concentration ([Ca(2+)](i)). The ATP agonist potency order was ATP >/= UTP > ATPgammaS. Suramin (500 microM) inhibited the ATP-induced (125)I(-) efflux, consistent with P2 purinoceptors. (125)I(-) effluxes from cells grown on permeable filters suggest that ATP induced an apical efflux that was mediated via apical P2 receptors. Whole cell experiments showed that ATP (100 microM) activated outwardly rectifying Cl(-) currents in the presence of 8-cyclopentyl-1,3-dipropylxanthine, excluding the involvement of P1 receptors. Ionomycin activated Cl(-) currents similar to those developed with ATP. These results demonstrate the presence of a purinergic regulatory mechanism involving ATP, apical P2Y2 receptors, and Ca(2+) mobilization for apical Cl(-) conductance in a distal tubule cell line.
Collapse
Affiliation(s)
- I Rubera
- Unité Mixte de Recherche 6548, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|