1
|
Maddipati KR. Distinct etiology of chronic inflammation - implications on degenerative diseases and cancer therapy. Front Immunol 2024; 15:1460302. [PMID: 39555057 PMCID: PMC11563979 DOI: 10.3389/fimmu.2024.1460302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Acute inflammation is elicited by lipid and protein mediators in defense of the host following sterile or pathogen-driven injury. A common refrain is that chronic inflammation is a result of incomplete resolution of acute inflammation and behind the etiology of all chronic diseases, including cancer. However, mediators that participate in inflammation are also essential in homeostasis and developmental biology but without eliciting the clinical symptoms of inflammation. This non-inflammatory physiological activity of the so called 'inflammatory' mediators, apparently under the functional balance with anti-inflammatory mediators, is defined as unalamation (un-ala-mation). Inflammation in the absence of injury is a result of perturbance in unalamation due to a decrease in the anti-inflammatory mediators rather than an increase in the inflammatory mediators and leads to chronic inflammation. This concept on the etiology of chronic inflammation suggests that treatment of chronic diseases is better achieved by stimulating the endogenous anti-inflammatory mediators instead of inhibiting the 'inflammatory' mediator biosynthesis with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Furthermore, both 'inflammatory' and anti-inflammatory mediators are present at higher concentrations in the tumor microenvironment compared to normal tissue environments. Since cancer is a proliferative disorder rather than a degenerative disease, it is proposed that heightened unalamation, rather than chronic inflammation, drives tumor growth. This understanding helps explain the inefficacy of NSAIDs as anticancer agents. Finally, inhibition of anti-inflammatory mediator biosynthesis in tumor tissues could imbalance unalamation toward local acute inflammation triggering an immune response to restore homeostasis and away from tumor growth.
Collapse
|
2
|
Zhang WT, Ge HW, Wei Y, Gao JL, Tian F, Zhou EC. Molecular characterization of PANoptosis-related genes in chronic kidney disease. PLoS One 2024; 19:e0312696. [PMID: 39466748 PMCID: PMC11515967 DOI: 10.1371/journal.pone.0312696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by fibrosis and inflammation in renal tissues. Several types of cell death have been implicated in CKD onset and progression. Unlike traditional forms of cell death, PANoptosis is characterized by the crosstalk among programmed cell death pathways. However, the interaction between PANoptosis and CKD remains unclear. Here, we used bioinformatics methods to identify differentially expressed genes and differentially expressed PANoptosis-related genes (DE-PRGs) using data from the GSE37171 dataset. Following this, we further performed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and gene set enrichment analysis using the data. We adopted a combined approach to select hub genes, using the STRING database and CytoHubba plug-in, and we used the GSE66494 as a validation dataset. In addition, we constructed ceRNA, transcription factor (TF)-gene, and drug-gene networks using Cytoscape. Lastly, we conducted immunohistochemical analysis and western blotting to validate the hub genes. We identified 57 PANoptosis-associated genes as DE-PRGs. We screened nine hub genes from the 57 DE-PRGs. We identified two hub genes (FOS and PTGS2) using the GSE66494 database, Nephroseq, immunohistochemistry, and western blotting. A common miRNA (Hsa-miR-101-3p) and three TFs (CREB1, E2F1, and RELA) may play a crucial role in the onset and progression of PANoptosis-related CKD. In our analysis of the drug-gene network, we identified eight drugs targeting FOS and 52 drugs targeting PTGS2.
Collapse
Affiliation(s)
- Wen-tao Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-wei Ge
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-lin Gao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - En-chao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Afolabi JM, Michael OS, Falayi OO, Kanthakumar P, Mankuzhy PD, Soni H, Adebiyi A. Activation of renal vascular smooth muscle TRPV4 channels by 5-hydroxytryptamine impairs kidney function in neonatal pigs. Microvasc Res 2023; 148:104516. [PMID: 36889668 PMCID: PMC10258165 DOI: 10.1016/j.mvr.2023.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Control of microvascular reactivity by 5-hydroxytryptamine (5-HT; serotonin) is complex and may depend on vascular bed type and 5-HT receptors. 5-HT receptors consist of seven families (5-HT1-5-HT7), with 5-HT2 predominantly mediating renal vasoconstriction. Cyclooxygenase (COX) and smooth muscle intracellular Ca2+ levels ([Ca2+]i) have been implicated in 5-HT-induced vascular reactivity. Although 5-HT receptor expression and circulating 5-HT levels are known to be dependent on postnatal age, control of neonatal renal microvascular function by 5-HT is unclear. In the present study, we demonstrate that 5-HT stimulated human TRPV4 transiently expressed in Chinese hamster ovary cells. 5-HT2A is the predominant 5-HT2 receptor subtype in freshly isolated neonatal pig renal microvascular smooth muscle cells (SMCs). HC-067047 (HC), a selective TRPV4 blocker, attenuated cation currents induced by 5-HT in the SMCs. HC also inhibited the 5-HT-induced increase in renal microvascular [Ca2+]i and constriction. Intrarenal artery infusion of 5-HT had minimal effects on systemic hemodynamics but reduced renal blood flow (RBF) and increased renal vascular resistance (RVR) in the pigs. Transdermal measurement of glomerular filtration rate (GFR) indicated that kidney infusion of 5-HT reduced GFR. HC and 5-HT2 receptor antagonist ritanserin attenuated 5-HT effects on RBF, RVR, and GFR. Moreover, the serum and urinary COX-1 and COX-2 levels in 5-HT-treated piglets were unchanged compared with the control. These data suggest that activation of renal microvascular SMC TRPV4 channels by 5-HT impairs kidney function in neonatal pigs independently of COX production.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olugbenga S Michael
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olufunke O Falayi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pratheesh D Mankuzhy
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Kurra V, Eräranta A, Paavonen T, Honkanen T, Myllymäki J, Riutta A, Tikkanen I, Lakkisto P, Mustonen J, Pörsti I. Moderate hyperuricaemia ameliorated kidney damage in a low-renin model of experimental renal insufficiency. Basic Clin Pharmacol Toxicol 2023; 132:21-32. [PMID: 36220802 PMCID: PMC10091954 DOI: 10.1111/bcpt.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 01/06/2023]
Abstract
Uric acid has promoted renal fibrosis and inflammation in experimental studies, but some studies have shown nephroprotective effects due to alleviated oxidative stress. We studied the influence of experimental hyperuricaemia in surgically 5/6 nephrectomized rats. Three weeks after subtotal nephrectomy or sham operation, the rats were allocated to control diet or 2.0% oxonic acid (uricase inhibitor) diet for 9 weeks. Then blood, urine and tissue samples were taken, and renal morphology and oxidative stress were examined. Inflammation and fibrosis were evaluated using immunohistochemistry and real-time PCR (RT-PCR). Remnant kidney rats ingesting normal or oxonic acid diet presented with ~60% reduction of creatinine clearance and suppressed plasma renin activity. Oxonic acid diet increased plasma uric acid levels by >80 μmol/L. In remnant kidney rats, moderate hyperuricaemia decreased glomerulosclerosis, tubulointerstitial damage and kidney mast cell count, without influencing the fibrosis marker collagen I messenger RNA (mRNA) content. In both sham-operated and 5/6 nephrectomized rats, the mast cell product 11-epi-prostaglandin-F2α excretion to the urine and kidney tissue cyclooxygenase-2 (COX-2) levels were decreased. To conclude, hyperuricaemic remnant kidney rats displayed improved kidney morphology and reduced markers of oxidative stress and inflammation. Thus, moderately elevated plasma uric acid had beneficial effects on the kidney in this low-renin model of experimental renal insufficiency.
Collapse
Affiliation(s)
- Venla Kurra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Timo Paavonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Teemu Honkanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhani Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Asko Riutta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Tikkanen
- Minerva Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland.,Abdominal Center, Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Minerva Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
5
|
Zapf AM, Grimm PR, Al-Qusairi L, Delpire E, Welling PA. Low Salt Delivery Triggers Autocrine Release of Prostaglandin E2 From the Aldosterone-Sensitive Distal Nephron in Familial Hyperkalemic Hypertension Mice. Front Physiol 2022; 12:787323. [PMID: 35069250 PMCID: PMC8770744 DOI: 10.3389/fphys.2021.787323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.
Collapse
Affiliation(s)
- Ava M Zapf
- Molecular Medicine, Graduate Program in Life Sciences, University of Maryland Medical School, Baltimore, MD, United States
| | - Paul R Grimm
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Mutsaers HA, Nørregaard R. Prostaglandin E2 receptors as therapeutic targets in renal fibrosis. Kidney Res Clin Pract 2022; 41:4-13. [PMID: 35108767 PMCID: PMC8816406 DOI: 10.23876/j.krcp.21.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Rikke Nørregaard Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark E-mail:
| |
Collapse
|
7
|
Modulation of Enzyme-Catalyzed Synthesis of Prostaglandins by Components Contained in Kidney Microsomal Preparations. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010219. [PMID: 35011450 PMCID: PMC8746486 DOI: 10.3390/molecules27010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
In the kidney, prostaglandins formed by cyclooxygenase 1 and 2 (COX-1 and COX-2) play an important role in regulating renal blood flow. In the present study, we report our observations regarding a unique modulatory effect of renal microsomal preparation on COX-1/2-mediated formation of major prostaglandin (PG) products in vitro. We found that microsomes prepared from pig and rat kidneys had a dual stimulatory–inhibitory effect on the formation of certain PG products catalyzed by COX-1 and COX-2. At lower concentrations, kidney microsomes stimulated the formation of certain PG products, whereas at higher concentrations, their presence inhibited the formation. Presence of kidney microsomes consistently increased the Km values of the COX-1/2-mediated reactions, while the Vmax might be increased or decreased depending on stimulation or inhibition observed. Experimental evidence was presented to show that a protein component present in the pig kidney microsomes was primarily responsible for the activation of the enzyme-catalyzed arachidonic acid metabolism leading to the formation of certain PG products.
Collapse
|
8
|
Hu C, Lakshmipathi J, Stuart D, Peti-Peterdi J, Gyarmati G, Hao CM, Hansell P, Kohan DE. Renomedullary Interstitial Cell Endothelin A Receptors Regulate BP and Renal Function. J Am Soc Nephrol 2020; 31:1555-1568. [PMID: 32487560 DOI: 10.1681/asn.2020020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.
Collapse
Affiliation(s)
- Chunyan Hu
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | | | - Deborah Stuart
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | - Janos Peti-Peterdi
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Hansell
- Department of Medical Cell Biology, Section of Integrative Physiology, Uppsala University Biomedical Center, Uppsala, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| |
Collapse
|
9
|
Bankir L, Figueres L, Prot-Bertoye C, Bouby N, Crambert G, Pratt JH, Houillier P. Medullary and cortical thick ascending limb: similarities and differences. Am J Physiol Renal Physiol 2020; 318:F422-F442. [DOI: 10.1152/ajprenal.00261.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thick ascending limb of the loop of Henle (TAL) is the first segment of the distal nephron, extending through the whole outer medulla and cortex, two regions with different composition of the peritubular environment. The TAL plays a critical role in the control of NaCl, water, acid, and divalent cation homeostasis, as illustrated by the consequences of the various monogenic diseases that affect the TAL. It delivers tubular fluid to the distal convoluted tubule and thereby affects the function of the downstream tubular segments. The TAL is commonly considered as a whole. However, many structural and functional differences exist between its medullary and cortical parts. The present review summarizes the available data regarding the similarities and differences between the medullary and cortical parts of the TAL. Both subsegments reabsorb NaCl and have high Na+-K+-ATPase activity and negligible water permeability; however, they express distinct isoforms of the Na+-K+-2Cl−cotransporter at the apical membrane. Ammonia and bicarbonate are mostly reabsorbed in the medullary TAL, whereas Ca2+and Mg2+are mostly reabsorbed in the cortical TAL. The peptidic hormone receptors controlling transport in the TAL are not homogeneously expressed along the cortical and medullary TAL. Besides this axial heterogeneity, structural and functional differences are also apparent between species, which underscores the link between properties and role of the TAL under various environments.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
| | - Nadine Bouby
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - J. Howard Pratt
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- CNRS ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, Paris, France
| |
Collapse
|
10
|
Is there a cardiovascular protective effect of aspirin in chronic kidney disease patients? A systematic review and meta-analysis. Int Urol Nephrol 2019; 52:315-324. [PMID: 31820360 DOI: 10.1007/s11255-019-02350-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To perform a systematic review and meta-analysis to evaluate the cardiovascular prevention effect of aspirin among patients with chronic kidney disease (CKD). METHODS A comprehensive literature search was conducted in Embase, PubMed, and Cochrane library (up to March 2019) without language limitations. Randomized control trials (RCT) and observational studies that met the inclusion and exclusion criteria were included. Two reviewers independently extracted data, and evaluated study quality using modified Jadad score for RCTs and Newcastle-Ottawa Scale for observational study. A meta-analysis was conducted in the Stata 15.0 software using the DerSimonian and Laird random-effects model. RESULTS 1768 references were identified from literature searching. Four RCTs and four cohort studies that reported the cardiovascular prevention outcome of aspirin in CKD patients (38,341 participants) were included in this review. The pooled data revealed that aspirin had no significant prevention effect on cardiovascular events among CKD patients (RR = 0.96, 95% CI, 0.59-1.13). There was also no significant reduction in cardiovascular mortality and all-cause mortality. Although we found no significant increased risk in major bleeding events, there was a statistically significant increased risk of minor bleeding events (RR = 2.57, 95% CI, 1.60-4.13) and renal events (RR = 1.30, 95% CI, 1.02-1.65) for aspirin use. CONCLUSION Our review indicated that aspirin use in CKD patients had no prevention effect on cardiovascular events and no statistically significant reduction in risk of cardiovascular or all-cause mortality, with a significant increased risk of minor bleeding and renal events.
Collapse
|
11
|
Helmy MM, Helmy MW, El-Mas MM. Upregulation of cystathionine-γ-lyase/hydrogen sulfide pathway underlies the celecoxib counteraction of cyclosporine-induced hypertension and renal insult in rats. Prostaglandins Other Lipid Mediat 2019; 141:1-10. [DOI: 10.1016/j.prostaglandins.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
12
|
Aspirin for Primary Prevention of Cardiovascular Disease and Renal Disease Progression in Chronic Kidney Disease Patients: a Multicenter Randomized Clinical Trial (AASER Study). Cardiovasc Drugs Ther 2018; 32:255-263. [PMID: 29943364 DOI: 10.1007/s10557-018-6802-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) are at high risk for developing cardiovascular events. However, limited evidence is available regarding the use of aspirin in CKD patients to decrease cardiovascular risk and to slow renal disease progression. STUDY DESIGN Prospective, multicenter, open-label randomized controlled trial. SETTING AND PARTICIPANTS One hundred eleven patients with estimated glomerular filtration rate (eGFR) 15-60 ml/min/1.73 m2 without previous cardiovascular events. INTERVENTION Aspirin treatment (100 mg/day) (n = 50) or usual therapy (n = 61). Mean follow-up time was 64.8 ± 16.4 months. OUTCOMES The primary endpoint was composed of cardiovascular death, acute coronary syndrome (nonfatal MI, coronary revascularization, or unstable angina pectoris), cerebrovascular disease, heart failure, or nonfatal peripheral arterial disease. Secondary endpoints were fatal and nonfatal coronary events, renal events (defined as doubling of serum creatinine, ≥ 50% decrease in eGFR, or renal replacement therapy), and bleeding episodes. RESULTS During follow-up, 17 and 5 participants suffered from a primary endpoint in the control and aspirin groups, respectively. Aspirin did not significantly reduce primary composite endpoint (HR, 0.396 (0.146-1.076), p = 0.069. Eight patients suffered from a fatal or nonfatal coronary event in the control group compared to no patients in the aspirin group. Aspirin significantly reduced the risk of coronary events (log-rank, 5.997; p = 0.014). Seventeen patients in the control group reached the renal outcome in comparison with 3 patients in the aspirin group. Aspirin treatment decreased renal disease progression in a model adjusted for age, baseline kidney function, and diabetes mellitus (HR, 0.272; 95% CI, 0.077-0.955; p = 0.043) but did not when adjusted for albuminuria. No differences were found in minor bleeding episodes between groups and no major bleeding was registered. LIMITATIONS Small sample size and open-label trial. CONCLUSIONS Long-term treatment with low-dose aspirin did not reduce the composite primary endpoint; however, there were reductions in secondary endpoints with fewer coronary events and renal outcomes. ClinicalTrials.gov Identifier: NCT01709994.
Collapse
|
13
|
Rein JL, Coca SG. "I don't get no respect": the role of chloride in acute kidney injury. Am J Physiol Renal Physiol 2018; 316:F587-F605. [PMID: 30539650 DOI: 10.1152/ajprenal.00130.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major public health problem that complicates 10-40% of hospital admissions. Importantly, AKI is independently associated with increased risk of progression to chronic kidney disease, end-stage renal disease, cardiovascular events, and increased risk of in-hospital and long-term mortality. The chloride content of intravenous fluid has garnered much attention over the last decade, as well as its association with excess use and adverse outcomes, including AKI. Numerous studies show that changes in serum chloride concentration, independent of serum sodium and bicarbonate, are associated with increased risk of AKI, morbidity, and mortality. This comprehensive review details the complex renal physiology regarding the role of chloride in regulating renal blood flow, glomerular filtration rate, tubuloglomerular feedback, and tubular injury, as well as the findings of clinical research related to the chloride content of intravenous fluids, changes in serum chloride concentration, and AKI. Chloride is underappreciated in both physiology and pathophysiology. Although the exact mechanism is debated, avoidance of excessive chloride administration is a reasonable treatment option for all patients and especially in those at risk for AKI. Therefore, high-risk patients and those with "incipient" AKI should receive balanced solutions rather than normal saline to minimize the risk of AKI.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
14
|
Interactions between the Cyclooxygenase Metabolic Pathway and the Renin-Angiotensin-Aldosterone Systems: Their Effect on Cardiovascular Risk, from Theory to the Clinical Practice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7902081. [PMID: 30386795 PMCID: PMC6189683 DOI: 10.1155/2018/7902081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Coronary artery disease (CAD) and stroke are the most common and serious long-term complications of hypertension. Acetylsalicylic acid (ASA) significantly reduces their incidence and cardiovascular mortality. The RAAS activation plays an important role in pathogenesis of CVD, resulting in increased vascular resistance, proliferation of vascular-smooth-muscle-cells, and cardiac hypertrophy. Drugs acting on the renin-angiotensin-aldosterone system (RAAS) are demonstrated to reduce cardiovascular events in population with cardiovascular disease (CVD). The cyclooxygenase inhibitors limit the beneficial effect of RAAS-inhibitors, which in turn may be important in subjects with hypertension, CAD, and congestive heart failure. These observations apply to most of nonsteroidal anti-inflammatory drugs and ASA at high doses. Nevertheless, there is no strong evidence confirming presence of similar effects of cardioprotective ASA doses. The benefit of combined therapy with low-doses of ASA is-in some cases-significantly higher than that of monotherapy. So far, the significance of ASA in optimizing the pharmacotherapy remains not fully established. A better understanding of its influence on the particular CVD should contribute to more precise identification of patients in whom benefits of ASA outweigh the complication risk. This brief review summarizes the data regarding usefulness and safety of the ASA combination with drugs acting directly on the RAAS.
Collapse
|
15
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
16
|
Li YZ, Ren S, Yan XT, Li HP, Li W, Zheng B, Wang Z, Liu YY. Improvement of Cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:228-237. [PMID: 29421595 DOI: 10.1016/j.jep.2018.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill is a frequently used traditional Chinese medicine, and modern pharmacological research has proven that S. chinensis has antioxidant, anti-hepatotoxity, anti-inflammatory, and anti-nephrotoxic effects. Cisplatin is widely used as antineoplastic drug at present, but the clinical application is limited owing to its nephrotoxicity. AIM OF THE STUDY To demonstrate the renoprotective activity of the extract of the stems of S. chinensis (SCE) in mice established by cisplatin-triggering acute kidney injury (AKI). The possible molecular mechanism of nephroprotection exhibited by SCE was evaluated for the first time. MATERIALS AND METHODS Mice in SCE groups were pre-treated with SCE for 10 consecutive days, and on 7th day 1 h after final administration, following intraperitoneal injection of cisplatin with 20 mg/kg was treated to cisplatin group and SCE groups. On the 10th day, renal function, histopathological change, and oxidative stress markers were investigated. RESULTS Renal oxidative stress level characterized by elevated heme oxygenase 1 (HO-1), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) expression was obviously reduced by SCE pre-treatment. In addition, SCE was found to suppress inflammatory response through the reduction of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) expression and nuclear factor-kappa B (NF-κB) p65 activation. SCE treatment also inhibited activation of apoptotic pathways through down-regulating Bax, cleaved caspase-3, 8, 9 and up-regulating Bcl-2 expression levels. CONCLUSION These findings illustrated that SCE possessed powerful protective effect on AKI caused by cisplatin via amelioration of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yan-Zi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Bing Zheng
- School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
17
|
Li X, Mazaleuskaya LL, Ballantyne LL, Meng H, FitzGerald GA, Funk CD. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions. FASEB J 2018; 32:5326-5337. [PMID: 29676940 DOI: 10.1096/fj.201800252r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distinct functions of each cyclooxygenase (COX) isoform in renal homeostasis have been the subject of intense investigation for many years. We took the novel approach of using 3 characterized mouse lines, where the prostaglandin (PG)-endoperoxide synthase genes 1 and 2 ( Ptgs1 and Ptgs2) substitute for one another to delineate distinct roles and the potential for COX isoform substitution. Flipped Ptgs genes generate a reversed COX-expression pattern in the kidney, where the knockin COX-2 is highly expressed. Normal nephrogenesis was sustained in all 3 strains at the postnatal stage d 8 (P8). Knockin COX-1 can temporally restore renal function and delay but not prevent renal pathology consequent to COX-2 deletion. Loss of COX-2 in adult COX-1 > COX-2 mice results in severe nephropathy, which leads to impaired renal function. These defects are partially rescued by the knockin COX-2 in Reversa mice, whereas COX-2 can compensate for the loss of COX-1 in COX-2 > COX-1 mice. Intriguingly, the highly expressed knockin COX-2 enzyme barely makes any PGs or thromboxane in neonatal P8 or adult mice, demonstrating that prostanoid biosynthesis requires native COX-1 and cannot be rescued by the knockin COX-2. In summary, the 2 COX isoforms can preferentially compensate for some renal functions, which appears to be independent of the PG-synthetic capacity.-Li, X., Mazaleuskaya, L. L., Ballantyne, L. L., Meng, H., FitzGerald, G. A., Funk, C. D. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| |
Collapse
|
18
|
Li Y, Wei Y, Zheng F, Guan Y, Zhang X. Prostaglandin E2 in the Regulation of Water Transport in Renal Collecting Ducts. Int J Mol Sci 2017; 18:ijms18122539. [PMID: 29186911 PMCID: PMC5751142 DOI: 10.3390/ijms18122539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/26/2023] Open
Abstract
The kidney plays a central role in the regulation of the body water balance. The process of targeting the water channel aquaporin-2 (AQP2) on the apical plasma membrane of the collecting duct (CD) principal cells is mainly regulated by the antidiuretic peptide hormone arginine vasopressin (AVP), which is responsible for the maintenance of water homeostasis. Recently, much attention has been focused on the local factors modulating renal water reabsorption by AQP2 in the collecting ducts, especially prostaglandin E2 (PGE₂). PGE₂ is a lipid mediator involved in a variety of physiological and pathophysiological processes in the kidney. The biological function of PGE₂ is mainly mediated by four G-protein-coupled receptors, namely EP1-4, which couple to drive separate intracellular signaling pathways. Increasing evidence demonstrates that PGE₂ is essential for renal water transport regulation via multiple mechanisms. Each EP receptor plays a unique role in regulating water reabsorption in renal collecting ducts. This brief review highlights the role of PGE₂ in the regulation of water reabsorption and discusses the involvement of each EP receptor subtype in renal collecting duct. A better understanding of the role of PGE₂ in renal water transport process may improve disease management strategies for water balance disorders, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yuanyi Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
19
|
Violi F, Targher G, Vestri A, Carnevale R, Averna M, Farcomeni A, Lenzi A, Angelico F, Cipollone F, Pastori D. Effect of aspirin on renal disease progression in patients with type 2 diabetes: A multicenter, double-blind, placebo-controlled, randomized trial. The renaL disEase progression by aspirin in diabetic pAtients (LEDA) trial. Rationale and study design. Am Heart J 2017. [PMID: 28625368 DOI: 10.1016/j.ahj.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common causes of chronic kidney disease and kidney failure. It has been estimated that the annual decline of estimated glomerular filtration rate (eGFR) among patients with T2DM is approximately 2.0-2.5mL min-1 y-1. Cyclooxygenase-dependent eicosanoids, such as 11-dehydro-thromboxane (Tx)B2, are increased in T2DM patients and are potentially involved in the regulation of renal blood flow. Animal models showed that cyclooxygenase inhibitors, such as aspirin, are associated with improvements in renal plasma flow and eGFR values. HYPOTHESIS The primary end point of the LEDA trial is to evaluate the 1-year decline of eGFR in T2DM patients treated or not with low-dose aspirin (100mg/d). Secondary end points will be the rapid decline in renal function, defined as a reduction of eGFR ≥5mL/min, and change of renal function class after 1-year follow-up. Furthermore, urinary excretion 11-dehydro-TxB2 will be related to renal function modifications. STUDY DESIGN A phase 3 no-profit, multicenter, double-blind, randomized intervention trial of aspirin 100mg/dvs placebo (ClinicalTrials.gov Identifier: NCT02895113). All patients will be monitored at 6 and 12months after randomization to assess drug adherence and eGFR changes. SUMMARY The LEDA trial is the first double-blind, placebo-controlled, randomized clinical trial aimed at examining whether aspirin treatment may beneficially affect kidney function in patients with T2DM by reducing the annual eGFR decline. The trial will also examine whether the potential renoprotective effects of aspirin might be partly due to its inhibition of TxB2 production.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy.
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Annarita Vestri
- Department of Public Health and Infections Disease, Sapienza University of Rome, Roma, Italy
| | - Roberto Carnevale
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maurizio Averna
- Department of Internal Medicine and Medical Specialties and DIBIMIS, School of Medicine, University of Palermo, Palermo, Italy
| | - Alessio Farcomeni
- Department of Public Health and Infections Disease, Sapienza University of Rome, Roma, Italy
| | - Andrea Lenzi
- Department Experimental Medicine-Medical Physiopathology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Francesco Angelico
- Department of Public Health and Infections Disease, Sapienza University of Rome, Roma, Italy
| | | | - Daniele Pastori
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Abstract
This review aims to summarize the knowledge about the sensor and endocrine response functions of resident interstitial cells of the kidney. By the production of renin, erythropoietin and arachidonate metabolites (medullipin) subsets of renal interstitial fibroblasts and pericytes in different kidney zones play a central role in salt, blood pressure and oxygen homeostasis of the body. Common to these endocrine functions is that their regulation mainly occurs by (de)recruitment of active cells.
Collapse
Affiliation(s)
- Armin Kurtz
- Physiologisches Institut der Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
21
|
Ibrahim KS, El-Yazbi AF, El-Gowelli HM, El-Mas MM. Opposite Modulatory Effects of Selective and Non-Selective Cyclooxygenase Inhibition on Cardiovascular and Autonomic Consequences of Cyclosporine in Female Rats. Basic Clin Pharmacol Toxicol 2017; 120:571-581. [PMID: 28054752 DOI: 10.1111/bcpt.12754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2025]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and the immunosuppressant drug cyclosporine (CSA) are concurrently administered in arthritis. Here, we investigated whether diclofenac (non-selective inhibitor of cyclooxygenase-1 and 2, COX-1/COX-2), celecoxib (selective COX-2 inhibitor) or SC560 (selective COX-1 inhibitor) interact variably with haemodynamic effects of CSA in conscious female rats. Changes caused by CSA (10 mg/kg i.v.) in blood pressure (BP), heart rate (HR), HR variability (HRV) and myocardial contractility were assessed in the absence and presence of individual NSAIDs (10 mg/kg each). Compared with vehicle values, CSA caused immediate and sustained (i) increases in BP and decreases in pulse pressure index (PPI) and HR, (ii) elevations in left ventricular (LV) contractility (dP/dtmax ) and isovolumic relaxation constant (Τau) and (iii) increases in the time- and frequency-domain indices of HRV and shifted the cardiac sympathovagal balance towards parasympathetic dominance. CSA hypertension was abolished in rats pre-treated with celecoxib and intensified in the presence of diclofenac or SC560. Alternatively, the CSA-evoked decreases in PPI, increases in HRV indices and cardiac parasympathetic dominance were blunted by celecoxib in contrast to no effect for diclofenac or SC560. Similarly, celecoxib, but not other NSAIDs, eliminated the elevated LV contractility (dP/dtmax ) and isovolumic relaxation constant (Τau, τ), which reflect cardiac systolic and diastolic function, respectively, that accompanied the CSA-induced pressure load. The data underscore the preferential capacity of selective COX-2 inhibition by celecoxib to mitigate CSA hypertension and consequent alterations in cardiac performance and autonomic balance. By contrast, CSA effects are preserved or even exacerbated after COX-1 inhibition.
Collapse
Affiliation(s)
- Karim S Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Scherk MA, Laflamme DP. Controversies in Veterinary Nephrology: Renal Diets Are Indicated for Cats with International Renal Interest Society Chronic Kidney Disease Stages 2 to 4: The Con View. Vet Clin North Am Small Anim Pract 2017; 46:1067-94. [PMID: 27593575 DOI: 10.1016/j.cvsm.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal diets typically incorporate protein and phosphorus restriction, supplement with potassium and Omega-3 fatty acids, and address metabolic acidosis. Compared to "maintenance" diets, these modifications appear to benefit cats with chronic kidney disease (CKD). However, there is limited data in cats justifying the specific amounts of the nutrients used in these diets, and there is little evidence supporting protein restriction in cats with CKD. Energy intake, maintenance of body weight, and muscle and body condition need to be addressed, and may take precedence over special diets. Further research is needed to better define optimum diets for cats with CKD.
Collapse
Affiliation(s)
- Margie A Scherk
- CatsINK 4381 Gladstone Street, Vancouver, British Columbia V5N 4Z4, Canada.
| | - Dottie P Laflamme
- Scientific Communications, 473 Grandma's Place, Floyd, VA 24091, USA
| |
Collapse
|
23
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
24
|
Yang T, Liu M. Regulation and function of renal medullary cyclooxygenase-2 during high salt loading. Front Biosci (Landmark Ed) 2017; 22:128-136. [PMID: 27814606 DOI: 10.2741/4476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostaglandins (PGs) are important autocrine/paracrine regulators that contribute to sodium balance and blood pressure control. Along the nephron, the highest amount of PGE2 is found in the distal nephron, an important site for fine-tuning of urinary sodium and water excretion. Cylooxygenase-2 (COX-2) is abundantly expressed in the renal medulla and its expression along with urinary PGE2 excretion is highly induced by chronic salt loading. Factors involved in high salt-induced COX-2 expression in the renal medulla include the hypertonicity, fluid shear stress (FSS), and hypoxia-inducible factor-1 alpha (HIF-1 alpha). Site-specific inhibition of COX-2 in the renal medulla of Sprague-Dawley rats causes sodium retention and salt-sensitive hypertension. Together, these results support the concept that renal medullary COX-2 functions an important natriuretic mediator that is activated by salt loading and its products promote sodium excretion and contribute to maintenance of sodium balance and blood pressure.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah,
| | - Mi Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah and Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, 510080, China
| |
Collapse
|
25
|
Efficiency of Osmotic Concentration after Combined Treatment with Vasopressin and Blockage of Prostaglandin Synthesis. Bull Exp Biol Med 2016; 162:187-190. [PMID: 27909962 DOI: 10.1007/s10517-016-3572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 10/20/2022]
Abstract
We performed a complex functional study of the effects of prostaglandin synthesis blockage with diclofenac on manifestation of the hydroosmotic effect of vasopressin V2-receptor agonist desmopressin in the kidneys of Wistar rats with normal synthesis of endogenous vasopressin and homozygous Brattleboro rats with hereditary impaired synthesis of neurohypophyseal hormone vasopressin. Blockage of prostaglandin synthesis led to more pronounced increase in urine osmolality in Brattleboro rats than in Wistar rats due to elevation of not only urine but also sodium gradient at the expense of elimination of the inhibitory effect of prostaglandins on sodium reabsorption and membrane permeability for urine. During combined treatment, the effects of the hormone predominated: the increase in urine osmolality in Wistar and Brattleboro rats did not differ from that after desmopressin administration.
Collapse
|
26
|
Pastori D, Pignatelli P, Perticone F, Sciacqua A, Carnevale R, Farcomeni A, Basili S, Corazza GR, Davì G, Lip GY, Violi F. Aspirin and renal insufficiency progression in patients with atrial fibrillation and chronic kidney disease. Int J Cardiol 2016; 223:619-624. [DOI: 10.1016/j.ijcard.2016.08.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022]
|
27
|
Prieto-García L, Pericacho M, Sancho-Martínez SM, Sánchez Á, Martínez-Salgado C, López-Novoa JM, López-Hernández FJ. Mechanisms of triple whammy acute kidney injury. Pharmacol Ther 2016; 167:132-145. [PMID: 27490717 DOI: 10.1016/j.pharmthera.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/26/2022]
Abstract
Pre-renal acute kidney injury (AKI) results from glomerular haemodynamic alterations leading to reduced glomerular filtration rate (GFR) with no parenchymal compromise. Renin-angiotensin system inhibitors, such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor antagonists (ARAs), non-steroidal anti-inflammatory drugs (NSAIDs) and diuretics, are highly prescribed drugs that are frequently administered together. Double and triple associations have been correlated with increased pre-renal AKI incidence, termed "double whammy" and "triple whammy", respectively. This article presents an integrative analysis of the complex interplay among the effects of NSAIDs, ACEIs/ARAs and diuretics, acting alone and together in double and triple therapies. In addition, we explore how these drug combinations alter the equilibrium of regulatory mechanisms controlling blood pressure (renal perfusion pressure) and GFR to increase the odds of inducing AKI through the concomitant reduction of blood pressure and distortion of renal autoregulation. Using this knowledge, we propose a more general model of pre-renal AKI based on a multi whammy model, whereby several factors are necessary to effectively reduce net filtration. The triple whammy was the only model associated with pre-renal AKI accompanied by a course of other risk factors, among numerous potential combinations of clinical circumstances causing hypoperfusion in which renal autoregulation is not operative or is deregulated. These factors would uncouple the normal BP-GFR relationship, where lower GFR values are obtained at every BP value.
Collapse
Affiliation(s)
- Laura Prieto-García
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Miguel Pericacho
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - Sandra M Sancho-Martínez
- Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ángel Sánchez
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Hospital Universitario de Salamanca, Unidad de Hipertensión, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - José Miguel López-Novoa
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco J López-Hernández
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Paseo de San Vicente, 58-182 - Hospital Virgen Vega, Planta 10, 37007 Salamanca, Spain; Department of Physiology & Pharmacology, University of Salamanca, Salamanca, Spain; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain; Group of Biomedical Research in Critical Care Medicine (BioCritic), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Group of Theranostics for Renal and Cardiovascular Diseases (TERCARD), Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
28
|
Hao S, DelliPizzi A, Quiroz-Munoz M, Jiang H, Ferreri NR. The EP3 receptor regulates water excretion in response to high salt intake. Am J Physiol Renal Physiol 2016; 311:F822-F829. [PMID: 27465993 DOI: 10.1152/ajprenal.00589.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 μg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 μg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Mariana Quiroz-Munoz
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
29
|
Chrysant SG. Effects of High Salt Intake on Blood Pressure and Cardiovascular Disease: The Role of COX Inhibitors. Clin Cardiol 2016; 39:240-2. [PMID: 26997359 PMCID: PMC6490875 DOI: 10.1002/clc.22536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Indexed: 11/06/2022] Open
Abstract
Sodium has a bidirectional effect on blood pressure (BP) and cardiovascular disease (CVD). High sodium intake increases both BP and CVD, whereas low sodium intake decreases them. The significance of this association has been debated for years, mostly due to the inconsistency of data, but recently it has been revived due to new evidence about the harmful effects of sodium. Recent studies have indicated that high sodium intake was associated with an increase in BP and CVD, which in 2010 was estimated to have accounted for 1.65 million deaths worldwide. Based on this evidence, the American Heart Association has issued a Science Advisory statement regarding the significance of high sodium intake in relation to the incidence of hypertension and CVD. In addition to high sodium intake, experimental studies have shown that the coadministration of nonsteroidal anti-inflammatory drugs further aggravates the harmful effects of high sodium intake. The interrelationship of high sodium intake and nonsteroidal anti-inflammatory drugs will be discussed in this commentary.
Collapse
Affiliation(s)
- Steven G. Chrysant
- Department of CardiologyUniversity of Oklahoma College of MedicineOklahoma CityOklahoma
| |
Collapse
|
30
|
Yousaf F, Spinowitz B. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin? Curr Hypertens Rep 2016; 18:23. [DOI: 10.1007/s11906-016-0629-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Zhu J, Chaki M, Lu D, Ren C, Wang SS, Rauhauser A, Li B, Zimmerman S, Jun B, Du Y, Vadnagara K, Wang H, Elhadi S, Quigg RJ, Topham MK, Mohan C, Ozaltin F, Zhou XJ, Marciano DK, Bazan NG, Attanasio M. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. Am J Physiol Renal Physiol 2016; 310:F895-908. [PMID: 26887830 DOI: 10.1152/ajprenal.00431.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/23/2016] [Indexed: 12/12/2022] Open
Abstract
Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress.
Collapse
Affiliation(s)
- Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Nephrology, Renmin Hospital, Wuhan University, Hubei, Wuhan, China
| | - Moumita Chaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shan-Shan Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alysha Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Susan Zimmerman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bokkyoo Jun
- Department of Neuroscience, Louisiana State University, New Orleans, Louisiana
| | - Yong Du
- Biomedical Engineering, University of Houston, Houston, Texas
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hanquin Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Institute of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan, China
| | - Sarah Elhadi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Richard J Quigg
- Department of Medicine, University of Buffalo, Buffalo, New York
| | - Matthew K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Chandra Mohan
- Biomedical Engineering, University of Houston, Houston, Texas
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey; Nephrogenetics Laboratory, Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Xin J Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories and Department of Pathology, Baylor University Medical Center, Dallas, Texas; and
| | - Denise K Marciano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas G Bazan
- Department of Neuroscience, Louisiana State University, New Orleans, Louisiana
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Eugene McDermott Center for Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Pelligand L, Suemanotham N, King JN, Seewald W, Syme H, Smith K, Lees P, Elliott J. Effect of Cyclooxygenase(COX)-1 and COX-2 inhibition on furosemide-induced renal responses and isoform immunolocalization in the healthy cat kidney. BMC Vet Res 2015; 11:296. [PMID: 26634699 PMCID: PMC4669647 DOI: 10.1186/s12917-015-0598-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background The role of cyclooxygenase(COX)-1 and COX-2 in the saluretic and renin-angiotensin responses to loop diuretics in the cat is unknown. We propose in vivo characterisation of isoform roles in a furosemide model by administering non-steroidal anti-inflammatory drugs (NSAIDs) with differing selectivity profiles: robenacoxib (COX-2 selective) and ketoprofen (COX-1 selective). Results In this four period crossover study, we compared the effect of four treatments: placebo, robenacoxib once or twice daily and ketoprofen once daily concomitantly with furosemide in seven healthy cats. For each period, urine and blood samples were collected at baseline and within 48 h of treatment starting. Plasma renin activity (PRA), plasma and urinary aldosterone concentrations, glomerular filtration rate (GFR) and 24 h urinary volumes, electrolytes and eicosanoids (PGE2, 6-keto-PGF1α, TxB2), renal injury biomarker excretions [N-acetyl-beta-D-glucosaminidase (NAG) and Gamma-Glutamyltransferase] were measured. Urine volume (24 h) and urinary sodium, chloride and calcium excretions increased from baseline with all treatments. Plasma creatinine increased with all treatments except placebo, whereas GFR was significantly decreased from baseline only with ketoprofen. PRA increased significantly with placebo and once daily robenacoxib and the increase was significantly higher with placebo compared to ketoprofen (10.5 ± 4.4 vs 4.9 ± 5.0 ng ml−1 h−1). Urinary aldosterone excretion increased with all treatments but this increase was inhibited by 75 % with ketoprofen and 65 % with once daily robenacoxib compared to placebo. Urinary PGE2 excretion decreased with all treatments and excretion was significantly lower with ketoprofen compared to placebo. Urinary TxB2 excretion was significantly increased from baseline only with placebo. NAG increased from baseline with all treatments. Immunohistochemistry on post-mortem renal specimens, obtained from a different group of cats that died naturally of non-renal causes, suggested constitutive COX-1 and COX-2 co-localization in many renal structures including the macula densa (MD). Conclusions These data suggest that both COX-1 and COX-2 could generate the signal from the MD to the renin secreting cells in cats exposed to furosemide. Co-localization of COX isoenzymes in MD cells supports the functional data reported here. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0598-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Pelligand
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK. .,Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - N Suemanotham
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - J N King
- Novartis Animal Health Inc., Clinical Development, Basel, Switzerland.
| | - W Seewald
- Novartis Animal Health Inc., Clinical Development, Basel, Switzerland.
| | - H Syme
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - K Smith
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - P Lees
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - J Elliott
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
34
|
Nørregaard R, Kwon TH, Frøkiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 2015; 34:194-200. [PMID: 26779421 PMCID: PMC4688592 DOI: 10.1016/j.krcp.2015.10.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023] Open
Abstract
The cyclooxygenase (COX) enzyme system is the major pathway catalyzing the conversion of arachidonic acid into prostaglandins (PGs). PGs are lipid mediators implicated in a variety of physiological and pathophysiological processes in the kidney, including renal hemodynamics, body water and sodium balance, and the inflammatory injury characteristic in multiple renal diseases. Since the beginning of 1990s, it has been confirmed that COX exists in 2 isoforms, referred to as COX-1 and COX-2. Even though the 2 enzymes are similar in size and structure, COX-1 and COX-2 are regulated by different systems and have different functional roles. This review summarizes the current data on renal expression of the 2 COX isoforms and highlights mainly the role of COX-2 and PGE2 in several physiological and pathophysiological processes in the kidney.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Korea
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Helmy MW, El-Gowelli HM, Ali RM, El-Mas MM. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats. Br J Pharmacol 2015; 172:4291-302. [PMID: 26013701 DOI: 10.1111/bph.13199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclosporine (CSA) and non-steroidal anti-inflammatory drugs (NSAIDs) are co-prescribed for some arthritic conditions. We tested the hypothesis that this combined regimen elicits exaggerated nephrotoxicity in rats via the up-regulation of endothelin (ET) receptor signalling. EXPERIMENTAL APPROACH The effects of a 10 day treatment with CSA (20 mg · kg(-1) · day(-1)), indomethacin (5 mg · kg(-1) · day(-1)) or their combination on renal biochemical, inflammatory, oxidative and structural profiles were assessed. The roles of ETA receptor and COX-2 pathways in the interaction were evaluated. KEY RESULTS Oral treatment with CSA or indomethacin elevated serum urea and creatinine, caused renal tubular atrophy and interstitial fibrosis, increased renal TGF-β1, and reduced immunohistochemical expressions of ETA receptors and COX-2. CSA, but not indomethacin, increased renal ET-1, the lipid peroxidation product malondialdehyde (MDA) and GSH activity. Compared with individual treatments, simultaneous CSA/indomethacin exposure caused: (i) greater elevations in serum creatinine and renal MDA; (ii) loss of the compensatory increase in GSH; (iii) renal infiltration of inflammatory cells and worsening of fibrotic and necrotic profiles; and (iv) increased renal ET-1 and decreased ETA receptor and COX-2 expressions. Blockade of ETA receptors by atrasentan ameliorated the biochemical, structural, inflammatory and oxidative abnormalities caused by the CSA/indomethacin regimen. Furthermore, atrasentan partly reversed the CSA/indomethacin-evoked reductions in the expression of ETA receptor and COX-2 protein. CONCLUSIONS AND IMPLICATIONS The exaggerated oxidative insult and associated dysregulation of the ETA receptor/COX-2/TGF-β1 signalling might account for the aggravated nephrotoxicity caused by the CSA/indomethacin regimen. The potential renoprotective effect of ETA receptor antagonism might be exploited therapeutically.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Hanan M El-Gowelli
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rabab M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
37
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
38
|
Casali CI, Weber K, Faggionato D, Gómez EM, Tome MCF. Coordinate regulation between the nuclear receptor peroxisome proliferator-activated receptor-γ and cyclooxygenase-2 in renal epithelial cells. Biochem Pharmacol 2014; 90:432-9. [PMID: 24915420 DOI: 10.1016/j.bcp.2014.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors involved in lipid metabolism and glucose utilization, in cell growth, differentiation and apoptosis, and in the regulation of pro-inflammatory genes expression such as cyclooxygenase-2 (COX-2). PPARγ is the main isoform in the renal inner medulla where it is believed to possess nephroprotective actions. In this kidney zone, COX-2 acts as an osmoprotective gene and its expression is modulated by changes in interstitial osmolarity. In the present work we evaluated whether hyperosmolar-induced COX-2 expression is modulated by PPARγ in renal epithelial cells MDCK subjected to high NaCl medium. The results presented herein show that ligand-activated PPARγ repressed COX-2 expression. But more important, the present findings show that hyperosmolar medium decreased PPARγ protein and increases the PPARγ phosphorylated form, which is inactive. ERK1/2 and p38 activation precedes PPARγ disappearance and induced-COX-2 expression. Therefore, the decrease in PPARγ expression is required for hyperosmotic induction of COX-2. We also found that PGE2, the main product of COX-2 in MDCK cells, induced these changes in PPARγ protein. Our results may alert on the long term use of thiazolidinediones (TZD) since they could affect renal medullary function that depends on COX-2 for cellular protection against osmotic stress.
Collapse
Affiliation(s)
- Cecilia I Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Karen Weber
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Daniela Faggionato
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Emanuel Morel Gómez
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - María C Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
39
|
Wang SF, Shu L, Wang S, Wang XQ, Mu M, Hu CQ, Liu KY, Zhao QH, Hu AL, Bo QL, Tao FB, Sheng J. Gender difference in the association of hyperuricemia with hypertension in a middle-aged Chinese population. Blood Press 2014; 23:339-44. [PMID: 24905962 DOI: 10.3109/08037051.2014.906131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, we report the relationship between hyperuricemia and hypertension in a middle-aged Chinese population, emphasizing the difference of gender. The cross-sectional study was conducted among 1776 adults aged 45-60 years, who participated in the Hefei Nutrition and Health Study (2012). Hyperuricemia was defined as serum uric acid (SUA)> 420 μmol/l for men, and > 360 μmol/l for women. Hypertension was defined as systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg. Anthropometric measurements and biochemical data were collected using standardized procedures. Multivariate logistic regression analysis was performed to determine the relationship between hyperuricemia and hypertension with adjustment of potential confounding factors. Body mass index (BMI), waist circumference (WC), SBP, DBP, fasting glucose, SUA and the prevalence of hyperuricemia and hypertension were significantly higher in male than in female (p < 0.001). Females had significantly higher levels of triglycerides (TG) and high-density lipoprotein (HDL)-cholesterol (5.23 ± 0.87 vs 5.12 ± 1.01, p < 0.05, 1.50 ± 0.37 vs 1.28 ± 0.41, respectively.) than males. Simple correlation analysis showed that SUA was positively associated with WC and TG. In addition, after adjusting for potential confounders, hyperuricemia was associated with increased risk of hypertension in both males and females, with odds ratios (95% CI) of 1.680 (1.110-2.543) and 1.065 (1.012-1.118), respectively. Conclusions: The association of hyperuricemia with hypertension was stronger in males than in females, and middle-aged men with hyperuricemia had greater association with hypertension. Our findings remain to be confirmed in future prospective studies.
Collapse
Affiliation(s)
- Su-Fang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University , Hefei, Anhui , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats. Br J Nutr 2014; 111:1932-44. [PMID: 24661554 DOI: 10.1017/s0007114513004236] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, we investigated the development of hypertension in prenatally undernourished adult rats, including the mechanisms that culminate in dysfunctions of molecular signalling in the kidney. Dams were fed a low-protein multideficient diet throughout gestation with or without α-tocopherol during lactation. The time course of hypertension development followed in male offspring was correlated with alterations in proximal tubule Na+-ATPase activity, expression of angiotensin II (Ang II) receptors, and activity of protein kinases C and A. After the establishment of hypertension, Ang II levels, cyclo-oxygenase 2 (COX-2) and NADPH oxidase subunit expression, lipid peroxidation and macrophage infiltration were examined in renal tissue. Lipid peroxidation in undernourished rats, which was very intense at 60 d, decreased at 90 d and returned to control values by 150 d. During the prehypertensive phase, prenatally undernourished rats exhibited elevated renal Na+-ATPase activity, type 2 Ang II receptor down-regulation and altered protein kinase A:protein kinase C ratio. Stable late hypertension coexisted with highly elevated levels of Ang II-positive cells in the cortical tubulointerstitium, enhanced increase in the expression of p47phox (NADPH oxidase regulatory subunit), marked down-regulation of COX-2 expression, expanded plasma volume and decreased creatinine clearance. These alterations were reduced when the dams were given α-tocopherol during lactation. The offspring of well-nourished dams treated with α-tocopherol exhibited most of the alterations encountered in the offspring of undernourished dams not treated with α-tocopherol. Thus, alterations in proximal tubule Na+ transport, subcellular signalling pathways and reactive oxygen species handling in renal tissue underpin the development of hypertension.
Collapse
|
41
|
Liu Y, Jia Z, Sun Y, Zhou L, Downton M, Chen R, Zhang A, Yang T. Postnatal regulation of 15-hydroxyprostaglandin dehydrogenase in the rat kidney. Am J Physiol Renal Physiol 2014; 307:F388-95. [PMID: 24647712 DOI: 10.1152/ajprenal.00512.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) has an established role in postnatal kidney development. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is recently identified as an endogenous inhibitor of COX-2, limiting the production of COX-2-derived prostanoids in several pathological conditions. The present study was undertaken to examine the regulation of renal 15-PGDH expression during postnatal kidney development in rats compared with COX-2. qRT-PCR and immunoblotting demonstrated that 15-PGDH mRNA and protein in the kidney were present in neonates, peaked in the second postnatal week, and then declined sharply to very low level in adulthood. Immunostaining demonstrated that at the second postnatal week, renal 15-PGDH protein was predominantly found in the proximal tubules stained positive for Na/H exchanger 3 and brush borders (periodic acid-Schiff), whereas COX-2 protein was restricted to macular densa and adjacent thick ascending limbs. Interestingly, in the fourth postnatal week, 15-PGDH protein was redistributed to thick ascending limbs stained positive for the Na-K-2Cl cotransporter. After 6 wk of age, 15-PGDH protein was found in the granules in subsets of the proximal tubules. Overall, these results support a possibility that 15-PGDH may regulate postnatal kidney development through interaction with COX-2.
Collapse
Affiliation(s)
- Ying Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Maicy Downton
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah
| | - Ren Chen
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lke City, Utah; Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China;
| |
Collapse
|
42
|
HVAS CL, NØRREGAARD R, NIELSEN TK, BARKLIN A, TØNNESEN E. Brain death increases COX-1 and COX-2 expression in the renal medulla in a pig model. Acta Anaesthesiol Scand 2014; 58:243-50. [PMID: 24320706 DOI: 10.1111/aas.12235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Brain death is linked to a systemic inflammatory response that includes prostaglandins and cytokines among its mediators. The levels of cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) affect graft survival, but it remains unknown whether these enzymes are modified during brain death. The aims of this study were to investigate the organ expression of COX and to analyse the cytokine response in the plasma, cerebrospinal fluid (CSF), and organs in a porcine model of intracerebral haemorrhage and brain death. METHODS Twenty pigs were randomly assigned to either a brain death group or a control group. Brain death was induced by an intracerebral injection of blood, and the animals were observed over the next 8 h. Tissue samples were tested for COX-1, COX-2 messenger RNA (mRNA) expression (heart, lung, and kidney), haeme oxygenase-1 (HO-1) (kidney), interleukin-1β (IL-1β), IL-6, IL-8, IL-10, and tumour necrosis factor-α. These cytokines were also measured at eight time points in the plasma and CSF. RESULTS At the organ level, the levels of COX-1 and COX-2 mRNA expression were increased only in the renal medulla (P = 0.03 and P = 0.02, respectively). The cytokine levels in the tissue, plasma, and CSF revealed no differences between the groups. HO-1 expression decreased (P = 0.0088). CONCLUSION Brain death increases the expression of COX-1 and COX-2 mRNA in the renal medulla. The release of cytokines into the plasma and CSF did not vary between the groups.
Collapse
Affiliation(s)
- C. L. HVAS
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
- Institute of Clinical Medicine; Aarhus University Hospital; Aarhus N Denmark
| | - R. NØRREGAARD
- Institute of Clinical Medicine; Aarhus University Hospital; Aarhus N Denmark
| | - T. K. NIELSEN
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| | - A. BARKLIN
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| | - E. TØNNESEN
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| |
Collapse
|
43
|
El-Gowelli HM, Helmy MW, Ali RM, El-Mas MM. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade. Toxicol Appl Pharmacol 2014; 275:88-95. [PMID: 24462674 DOI: 10.1016/j.taap.2014.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET(B) receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β₁, TGF-β₁). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET(B) receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET(B) receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ETB receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET(B) receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats.
Collapse
Affiliation(s)
- Hanan M El-Gowelli
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Rabab M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
44
|
Zhu Q, Hu J, Han WQ, Zhang F, Li PL, Wang Z, Li N. Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am J Hypertens 2014; 27:107-13. [PMID: 24190904 DOI: 10.1093/ajh/hpt207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In response to high salt intake, transcription factor hypoxia-inducible factor (HIF) 1α activates many antihypertensive genes, such as heme oxygenase 1 (HO-1) 1 and cyclooxygenase 2 (COX-2) in the renal medulla, which is an important molecular adaptation to promote extra sodium excretion. We recently showed that high salt inhibited the expression of HIF prolyl-hydroxylase 2 (PHD2), an enzyme that promotes the degradation of HIF-1α, thereby upregulating HIF-1α, and that high salt-induced inhibition in PHD2 and subsequent activation of HIF-1α in the renal medulla was blunted in Dahl salt-sensitive hypertensive rats. This study tested the hypothesis that silencing the PHD2 gene to increase HIF-1α levels in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. METHODS PHD2 short hairpin RNA (shRNA) plasmids were transfected into the renal medulla in uninephrectomized Dahl S rats. Renal function and blood pressure were then measured. RESULTS PHD2 shRNA reduced PHD2 levels by >60% and significantly increased HIF-1α protein levels and the expression of HIF-1α target genes HO-1 and COX-2 by >3-fold in the renal medulla. Functionally, pressure natriuresis was remarkably enhanced, urinary sodium excretion was doubled after acute intravenous sodium loading, and chronic high salt-induced sodium retention was remarkably decreased, and as a result, salt-sensitive hypertension was significantly attenuated in PHD2 shRNA rats compared with control rats. CONCLUSIONS Impaired PHD2 response to high salt intake in the renal medulla may represent a novel mechanism for hypertension in Dahl S rats, and inhibition of PHD2 in the renal medulla could be a therapeutic approach for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
46
|
Differential role of cyclooxygenase-1 and -2 on renal vasoconstriction to α1-adrenoceptor stimulation in normotensive and hypertensive rats. Life Sci 2013; 93:552-7. [DOI: 10.1016/j.lfs.2013.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 12/20/2022]
|
47
|
Glucocorticoid mediates the transcription of OAT-PG, a kidney-specific prostaglandin transporter. Pflugers Arch 2013; 466:925-35. [PMID: 24057348 DOI: 10.1007/s00424-013-1351-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
OAT-PG is a kidney-specific prostaglandin transporter and exclusively expressed at the basolateral membrane of proximal tubules in rodent kidneys. We previously reported that OAT-PG was dominantly expressed in the male kidney similar to the other SLC22 family proteins as organic anion transporter (OAT) 1 and OAT3. Recently, Wegner et al. revealed that a transcription factor, B-cell CLL/lymphoma 6 (BCL6), is associated with the male-dominant expressions of OAT1 and OAT3 in the rat kidney. Here, we performed the luciferase assay to investigate whether OAT-PG is also transcriptionally regulated by BCL6. However, the promoter activity of OAT-PG was not directly affected by BCL6 overexpression nor the testosterone treatment, suggesting that different regulatory mechanisms underlie the male-dominant transcriptional regulation of OAT-PG compared to those of OAT1 and OAT3. We newly found that adrenalectomy (Adx) of male rat caused a significant reduction of OAT-PG expression without any significant changes in the OAT1 and OAT3 expressions, and it was recovered by the dexamethasone administration. Furthermore, the renocortical PGE2 concentration was markedly increased in Adx male rat, concomitant with the downregulation of OAT-PG, and it was reduced to the basal level by dexamethasone treatment. In the luciferase assay, dexamethasone stimulated OAT-PG promoter activity but not OAT1. The luciferase activity responsiveness to dexamethasone was significantly reduced by the deletion of glucocorticoid response elements in the OAT-PG promoter region. These results suggest that glucocorticoid plays an important role in the regulation of the renocortical PGE2 concentration by the transcriptional regulation of OAT-PG in the rat kidney.
Collapse
|
48
|
Pai BHS, Swarnalatha G, Ram R, Dakshinamurty KV. Allopurinol for prevention of progression of kidney disease with hyperuricemia. Indian J Nephrol 2013; 23:280-6. [PMID: 23960345 PMCID: PMC3741973 DOI: 10.4103/0971-4065.114499] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hyperuricemia is associated with hypertension and progressive chronic renal disease. This is a retrospective cohort study in chronic kidney disease (CKD) patients with hyperuricemia from 1998 to 2008. Patients were divided into two groups: treatment group who received allopurinol in a dose of 100 mg/day and the other group remained untreated. Clinical, hematologic, biochemical parameters and outcome were measured at baseline and 6 months, 1 year, and 2 years of treatment. A total of 183 patients were enrolled. Mean age of the allopurinol group was 50.15 ± 14.42 years and control group was 53.23 ± 13.86 years. Male-female ratios were 2.57:1 and 2.21:1 for the treatment and control groups, respectively. Baseline characteristics and the laboratory parameters were similar in both groups. Patients who received allopurinol had lower blood pressure at 6 months, 1 year, and 2 years when compared to baseline. There was a significant decrease in the serum uric acid (UA) levels in the treatment group at the end of 6 months, 1 year, and 2 years with respect to base line. An inverse correlation as noted between serum UA levels and the estimated glomerular filtration rate at 6 months, 1 year, and 2 years. Allopurinol treatment decreases blood UA levels and is associated with better blood pressure control and decreased progression of renal disease in CKD patients with hyperuricemia.
Collapse
Affiliation(s)
- B H Santhosh Pai
- Department of Nephrology, Nizams Institute of Medical Sciences, Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
49
|
Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat 2013; 104-105:58-66. [DOI: 10.1016/j.prostaglandins.2012.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/16/2023]
|
50
|
Morinelli TA, Lee MH, Kendall RT, Luttrell LM, Walker LP, Ullian ME. Angiotensin II activates NF-κB through AT1A receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2013; 304:C1176-86. [PMID: 23576578 DOI: 10.1152/ajpcell.00235.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the angiotensin type 1A receptor (AT1AR) in rat aorta vascular smooth muscle cells (RASMC) results in increased synthesis of the proinflammatory enzyme cyclooxygenase-2 (COX-2). We previously showed that nuclear localization of internalized AT1AR results in activation of transcription of the gene for COX-2, i.e., prostaglandin-endoperoxide synthase-2. Others have suggested that ANG II stimulation of COX-2 protein synthesis is mediated by NF-κB. The purpose of the present study was to examine the interrelationship between AT1AR activation, β-arrestin recruitment, and NF-κB activation in the ability of ANG II to increase COX-2 protein synthesis in RASMC. In the present study we utilized RASMC, inhibitors of the NF-κB pathway, β-arrestin knockdown, radioligand binding, immunoblotting, and immunofluorescence to characterize the roles of AT1AR internalization, NF-κB activation, and β-arrestin in ANG II-induced COX-2 synthesis. Ro-106-9920 or parthenolide, agents that inhibit the initial steps of NF-κB activation, blocked ANG II-induced p65 NF-κB nuclear localization, COX-2 protein expression, β-arrestin recruitment, and AT1AR internalization without inhibiting ANG II-induced p42/44 ERK activation. Curcumin, an inhibitor of NF-κB-induced transcription, blocked ANG II-induced COX-2 protein expression without altering AT1AR internalization, ANG II-induced p65 NF-κB nuclear localization, or p42/44 ERK activation. Small interfering RNA-induced knockdown of β-arrestin-1 and -2 inhibited ANG II-induced p65 NF-κB nuclear localization. In vascular smooth muscle cells, internalization of the activated AT1AR mediated by β-arrestins activates the NF-κB pathway, producing nuclear localization of the transcription factor and initiation of COX-2 protein synthesis, thereby linking internalization of the receptor with the NF-κB pathway.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|