1
|
Tastekin B, Pelit A, Sapmaz T, Celenk A, Majeed M, Mundkur L, Nagabhushanam K. The Effects of Antioxidants and Pulsed Magnetic Fields on Slow and Fast Skeletal Muscle Atrophy Induced by Streptozotocin: A Preclinical Study. J Diabetes Res 2023; 2023:6657869. [PMID: 38020198 PMCID: PMC10661870 DOI: 10.1155/2023/6657869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Results Our findings suggest that antioxidants and PMF may alleviate impaired protein synthesis and degradation pathways in skeletal muscle atrophy. PTS showed a positive effect on the anabolic pathway, while RSV and PMF demonstrated potential for ameliorating the catabolic pathway. Notably, the combination therapy of antioxidants and PMF exhibited a stronger ameliorative effect on skeletal muscle atrophy than either intervention alone. Conclusion The present results highlight the benefits of employing a multimodal approach, involving both antioxidant and PMF therapy, for the management of muscle-wasting conditions. These treatments may have potential therapeutic implications for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Bora Tastekin
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Aykut Pelit
- Department of Biophysics, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Tugce Sapmaz
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Alper Celenk
- Department of Histology and Embryology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Muhammed Majeed
- Sami-Sabinsa Group Ltd., 19/1 & 19/2 I Main, II Phase, Peenya Industrial Area, Bangalore, India
- Sabinsa Corporation, 20 Lake Drive, East Windsor, New Jersey, USA
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Ltd., 19/1 & 19/2 I Main, II Phase, Peenya Industrial Area, Bangalore, India
| | | |
Collapse
|
2
|
Rondanelli M, Gasparri C, Riva A, Petrangolini G, Barrile GC, Cavioni A, Razza C, Tartara A, Perna S. Diet and ideal food pyramid to prevent or support the treatment of diabetic retinopathy, age-related macular degeneration, and cataracts. Front Med (Lausanne) 2023; 10:1168560. [PMID: 37324128 PMCID: PMC10265999 DOI: 10.3389/fmed.2023.1168560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Many eye diseases, such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and cataracts are preventable and treatable with lifestyle. The objective of this review is to assess the most recent research on the ideal dietary approach to prevent or support the treatment of DR, AMD, and cataracts, as well as to construct a food pyramid that makes it simple for people who are at risk of developing these pathologies to decide what to eat. The food pyramid presented here proposes what should be consumed every day: 3 portions of low glycemic index (GI) grains (for fiber and zinc content), 5 portions (each portion: ≥200 g/day) of fruits and vegetables (spinach, broccoli, zucchini cooked, green leafy vegetables, orange, kiwi, grapefruit for folic acid, vitamin C, and lutein/zeaxanthin content, at least ≥42 μg/day, are to be preferred), extra virgin olive (EVO) oil (almost 20 mg/day for vitamin E and polyphenols content), nuts or oil seeds (20-30 g/day, for zinc content, at least ≥15.8 mg/day); weekly: fish (4 portions, for omega-3 content and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) 0.35-1.4 g/day), white meat (3 portions for vitamin B12 content), legumes (2 portions for vegetal proteins), eggs (2 portions for lutein/zeaxanthin content), light cheeses (2 portions for vitamin B6 content), and almost 3-4 times/week microgreen and spices (saffron and curcumin). At the top of the pyramid, there are two pennants: one green, which indicates the need for personalized supplementation (if daily requirements cannot be met through diet, omega-3, and L-methylfolate supplementation), and one red, which indicates that certain foods are prohibited (salt and sugar). Finally, 3-4 times per week, 30-40 min of aerobic and resistance exercises are required.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | | | | | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| |
Collapse
|
3
|
The Effect of Diet and Lifestyle on the Course of Diabetic Retinopathy-A Review of the Literature. Nutrients 2022; 14:nu14061252. [PMID: 35334909 PMCID: PMC8955064 DOI: 10.3390/nu14061252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a major social problem. As shown by epidemiological studies, the world incidence of diabetes is increasing and so is the number of people suffering from its complications. Therefore, it is important to determine possible preventive tools. In the prevention of diabetic retinopathy, it is essential to control glycemia, lipid profile and blood pressure. This can be done not only by pharmacological treatment, but first of all by promoting a healthy lifestyle, changing dietary habits and increasing physical activity. In our work, we present a review of the literature to show that physical exercise and an adequate diet can significantly reduce the risk of diabetes and diabetic retinopathy.
Collapse
|
4
|
Takada Y, Hanaoka T, Imagita H, Yasui T, Takeshita D, Abe M, Kawata S, Yamakami T, Okada K, Washio H, Okuda S, Minematsu A, Nakamura T, Terada S, Yamada T, Nakatani A, Sakata S. Long-term wheel-running prevents reduction of grip strength in type 2 diabetic rats. Physiol Rep 2021; 9:e15046. [PMID: 34558206 PMCID: PMC8461031 DOI: 10.14814/phy2.15046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Diabetic skeletal muscles show reduced contractile force and increased fatigability. Hands are a target for several diabetes-induced complications. Therefore, reduced handgrip strength often occurs as a consequence of diabetes. The aim of this study was to examine whether long-term exercise can prevent reduction of grip strength in type 2 diabetes mellitus (T2DM) model OLETF rats, and to explore the mechanisms underlying diabetes-induced grip strength reduction. Ten 5-week-old OLETF rats were used as experimental animals, and five non-diabetic LETO rats as controls of OLETF rats. Half OLETF rats performed daily voluntary wheel-running for 17 months (OLETF + EXE), and the rest of OLETF and LETO rats were sedentary. Grip strength was higher in OLETF + EXE and LETO groups than in OLETF group. OLETF group with hyperglycemia showed an increase in HbA1c, serum TNF-α, and muscle SERCA activity, but a decrease in circulating insulin. Each fiber area, total fiber area, and % total fiber area in type IIb fibers of extensor digitorum longus muscles were larger in OLETF + EXE and LETO groups than in OLETF group. There was a positive correlation between grip strength and the above three parameters concerning type IIb fiber area. Therefore, type IIb fiber atrophy may be the major direct cause of grip strength reduction in OLETF group, although there seems multiple etiological mechanisms. Long-term wheel-running may have blocked the diabetes-induced reduction of grip strength by preventing type IIb fiber atrophy. Regular exercise may be a potent modality for preventing not only the progression of diabetes but muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yoshihiro Takada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Human DevelopmentGraduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Tomoko Hanaoka
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hidetaka Imagita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Toshihide Yasui
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Health and SportsMukogawa Women's UniversityNishinomiyaJapan
| | - Daisuke Takeshita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Masami Abe
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Shinnosuke Kawata
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Taku Yamakami
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Keisuke Okada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hiroe Washio
- Department of NursingSchool of Health SciencesKansai University of International StudiesMikiJapan
| | - Syunji Okuda
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Akira Minematsu
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Tomohiro Nakamura
- Division of Human SciencesFaculty of EngineeringOsaka Institute of TechnologyOsakaJapan
| | - Shin Terada
- Department of Life SciencesGraduate School of Arts and SciencesUniversity of TokyoTokyoJapan
| | - Takashi Yamada
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Akira Nakatani
- Laboratory of Exercise PhysiologyDepartment of Health and Sports Science EducationNara University of EducationNaraJapan
| | - Susumu Sakata
- Department of Physiology 1Nara Medical University School of MedicineKashiharaJapan
| |
Collapse
|
5
|
MiniVStimA: A miniaturized easy to use implantable electrical stimulator for small laboratory animals. PLoS One 2020; 15:e0241638. [PMID: 33125415 PMCID: PMC7598460 DOI: 10.1371/journal.pone.0241638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 01/17/2023] Open
Abstract
According to PubMed, roughly 10% of the annually added publications are describing findings from the small animal model (mice and rats), including investigations in the field of muscle physiology and training. A subset of this research requires neural stimulation with flexible adjustments of stimulation parameters, highlighting the need for reliable implantable electrical stimulators, small enough (~1 cm3), that even mice can tolerate them without impairing their movement. The MiniVStimA is a battery-powered implant for nerve stimulation with an outer diameter of 15 mm and an encapsulated volume of 1.2 cm3 in its smallest variation. It can be pre-programmed according to the experimental protocol and controlled after implantation with a magnet. It delivers constant current charge-balanced monophasic rectangular pulses up to 2 mA and 1 ms phase width (1 kΩ load). The circuitry is optimized for small volume and energy efficiency. Due to the variation of the internal oscillator (31 kHz ± 10%), calibration measures must be implemented during the manufacturing process, which can reduce the deviation of the frequency related parameters down to ± 1%. The expected lifetime of the smaller (larger) version is 100 (480) days for stimulation with 7 Hz all day and 10 (48) days for stimulation with 100 Hz. Devices with complex stimulation patterns for nerve stimulation have been successfully used in two in-vivo studies, lasting up to nine weeks. The implant worked fully self-contained while the animal stayed in its familiar environment. External components are not required during the entire time.
Collapse
|
6
|
Graber TG, Fandrey KR, Thompson LV. Novel individualized power training protocol preserves physical function in adult and older mice. GeroScience 2019; 41:165-183. [PMID: 31076998 PMCID: PMC6544743 DOI: 10.1007/s11357-019-00069-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 11/27/2022] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and strength, contributes to frailty, functional decline, and reduced quality of life in older adults. Exercise is a recognized therapy for sarcopenia and muscle dysfunction, though not a cure. Muscle power declines at an increased rate compared to force, and force output declines earlier than mass. Thus, there is a need for research of exercise focusing on improving power output and functionality in older adults. Our primary purpose was proof-of-concept that a novel individualized power exercise modality would induce positive adaptations in adult mice, before the exercise program was applied to an aged cohort. We hypothesized that after following our protocol, both adult and older mice would show improved function, though there would be evidence of anabolic resistance in the older mice. Male C57BL/6 mice (12 months of age at study conclusion) were randomized into control (n = 9) and exercise (n = 6) groups. The trained group used progressive resistance (with a weighted harness) and intensity (~ 4-10 rpm) on a custom motorized running wheel. The mice trained similarly to a human workout regimen (4-5 sets/session, 3 sessions/week, for 12 weeks). We determined significant (p < 0.05) positive adaptations post-intervention, including: neuromuscular function (rotarod), strength/endurance (inverted cling grip test), training physiology (force/power output per session), muscle size (soleus mass), and power/velocity of contraction (in vitro physiology). Secondly, we trained a cohort of older male mice (28 months old at conclusion): control (n = 12) and exercised (n = 8). While the older exercised mice did preserve function and gain benefits, they also demonstrated evidence of anabolic resistance.
Collapse
Affiliation(s)
- Ted G. Graber
- Department of Nutrition and Metabolism, Division of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX USA
| | - Katie R. Fandrey
- Program in Physical Therapy, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - LaDora V. Thompson
- Department of Physical Therapy & Athletic Training, Boston University, Boston, MA USA
| |
Collapse
|
7
|
Lee TV, Lee CW, Chen VCW, Bui S, Fluckey JD, Riechman SE. The effects of hindlimb unloading versus dietary cholesterol and resistance training on rat skeletal muscle responses. Lipids Health Dis 2019; 18:3. [PMID: 30611265 PMCID: PMC6320614 DOI: 10.1186/s12944-018-0944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
Background The loss of muscle mass and concomitantly strength, poses a serious risk to the elderly and to astronauts. Dietary cholesterol (CL), in conjunction with resistance training (RT), has been strongly associated with improvements in lean mass. The purpose of this study was to examine the effects of two opposing environments on rat skeletal muscle: (1) hindlimb unloading and (2) CL and RT. Methods In protocol 1, 13 male Sprague-Dawley rats were unloaded for 28 days (HU; n = 6) or served as cage controls (CC; n = 7). In protocol 2, 42 rats were assigned to 1 of 6 groups: CC (n = 7), CC + CL (n = 4), RT controls (RTC; n = 7), RTC + CL (n = 8), RT (n = 8) and RT + CL (n = 8). RT/RTC consisted of squat-like exercise. RT had weights added progressively from 80 to 410 g over 5 weeks. CL was supplemented in the chow with either 180 ppm (controls) or 1800 ppm (CL). Lower limb muscles were harvested at the end of both protocols and analyzed by Western Blotting for sterol regulatory element-binding protein-2 (SREBP-2) and low-density lipoprotein-receptor (LDL-R) and protein synthesis. Results Gastrocnemius and plantaris masses and their body mass ratios were significantly lower in the HU rats than control rats. The RT rats gained significantly less body and lean mass than the RTC groups, but the plantar flexor muscles did not show any significant differences among groups. Moreover, RT groups had significantly higher plantaris mixed muscle fractional synthesis rate (FSR) than the RTC and CC animals, with the CL groups showing greater FSR than control rats. No significant differences among groups in SREBP-2 or LDL-R were observed in either protocol. Conclusions These studies provide evidence for a relationship between skeletal muscle and cholesterol metabolism, but the exact nature of that association remains unclear.
Collapse
Affiliation(s)
- Teak V Lee
- Life Sciences Department, Pierce College, 6201 Winnetka Avenue, Woodland Hills, CA, 91371, USA.
| | - Chang Woock Lee
- School of Education, Health Professions, and Human Development, University of Houston-Victoria, Victoria, TX, USA
| | - Vincent C W Chen
- Exercise Science, Wellness and Sports Department, Georgian Court University, Lakewood, NJ, USA
| | - Steve Bui
- Department of Health and Human Performance, Dixie State University, St. George, UT, USA
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A & M University, College Station, TX, USA
| | - Steven E Riechman
- Department of Health and Kinesiology, Texas A & M University, College Station, TX, USA.,Department of Nutrition, Texas A & M University, College Station, TX, USA
| |
Collapse
|
8
|
Gerlinger-Romero F, Guimarães-Ferreira L, Yonamine CY, Salgueiro RB, Nunes MT. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats. J Physiol Sci 2018; 68:165-174. [PMID: 28083734 PMCID: PMC10717962 DOI: 10.1007/s12576-016-0520-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
Collapse
Affiliation(s)
- Frederico Gerlinger-Romero
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil.
- Prédio Biomédicas I-Cidade Universitária-Butantã, Av. Prof. Lineu Prestes 1524, São Paulo, SP, CEP 05508-900, Brazil.
| | - Lucas Guimarães-Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
- Exercise Metabolism Research Group, Department of Sports, Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, Brazil
| | - Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
9
|
Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29:48-62. [PMID: 29356897 PMCID: PMC5851699 DOI: 10.1007/s00335-017-9732-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Exercise training which meets the recommendations set by the National Physical Activity Guidelines ensues a multitude of health benefits towards the prevention and treatment of various chronic diseases. However, not all individuals respond well to exercise training. That is, some individuals have no response, while others respond poorly. Genetic background is known to contribute to the inter-individual (human) and -strain (e.g., mice, rats) variation with acute exercise and exercise training, though to date, no specific genetic factors have been identified that explain the differential responses to exercise. In this review, we provide an overview of studies in human and animal models that have shown a significant contribution of genetics in acute exercise and exercise training-induced adaptations with standardized endurance and resistance training regimens, and further describe the genetic approaches which have been used to demonstrate such responses. Finally, our current understanding of the role of genetics and exercise is limited primarily to the nuclear genome, while only a limited focus has been given to a potential role of the mitochondrial genome and its interactions with the nuclear genome to predict the exercise training-induced phenotype(s) responses. We therefore discuss the mitochondrial genome and literature that suggests it may play a significant role, particularly through interactions with the nuclear genome, in the inherent ability to respond to exercise.
Collapse
Affiliation(s)
- Heather L Vellers
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation and, Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Building 101, E-224, Research Triangle Park, NC, 27709, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats. Front Physiol 2017; 8:830. [PMID: 29123487 PMCID: PMC5662641 DOI: 10.3389/fphys.2017.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group.
Collapse
Affiliation(s)
- Marco A S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel N Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Albany, New Zealand
| | - Carlos H da Justa Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
11
|
Molanouri Shamsi M, Mahdavi M, Quinn LS, Gharakhanlou R, Isanegad A. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats. Cell Stress Chaperones 2016; 21:783-91. [PMID: 27245165 PMCID: PMC5003795 DOI: 10.1007/s12192-016-0703-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022] Open
Abstract
Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- M Molanouri Shamsi
- Physical Education and Sport Sciences Dept., Faculty of Humanities, Tarbiat Modares University, Jala Ale Ahmad Exp., P.O.Box: 14117-13116, Tehran, Iran.
| | - M Mahdavi
- Immunology Department, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran, Iran
| | - L S Quinn
- Research Service, VA Puget Sound Health Care System, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98108, USA
| | - R Gharakhanlou
- Physical Education and Sport Sciences Dept., Faculty of Humanities, Tarbiat Modares University, Jala Ale Ahmad Exp., P.O.Box: 14117-13116, Tehran, Iran
| | - A Isanegad
- Physical Education and Sport Sciences Dept., Faculty of Humanities, Shahed University, P.O.Box: 14117-13116, Tehran, I.R., Iran
- Immunoregulation Research Center, Shahed University, P.O.Box: 14117-13116, Tehran, I.R., Iran
| |
Collapse
|
12
|
Fortes MAS, Pinheiro CHJ, Guimarães-Ferreira L, Vitzel KF, Vasconcelos DAA, Curi R. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats. Physiol Rep 2015. [PMID: 26197932 PMCID: PMC4552534 DOI: 10.14814/phy2.12457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals.
Collapse
Affiliation(s)
- Marco Aurélio S Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Hermano J Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas Guimarães-Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil Exercise Metabolism Research Group, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Kaio F Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Diogo A A Vasconcelos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Molanouri Shamsi M, Hassan ZM, Quinn LS, Gharakhanlou R, Baghersad L, Mahdavi M. Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype. Endocrine 2015; 49:396-403. [PMID: 25522723 DOI: 10.1007/s12020-014-0501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes is associated with skeletal muscle atrophy. Skeletal muscle is an endocrine organ producing myokines such as interleukin-15 (IL-15) and interleukin-6 (IL-6) in response to contraction. These factors may mediate the effects of exercise on skeletal muscle metabolism and anabolic pathways. Lack of correlation between muscle IL-15 mRNA and protein levels after exercise training has been observed, while regulatory effects of IL-6 on IL-15 expression have also been suggested. This study determined post-exercise changes in muscle IL-15 and IL-6 mRNA expression and IL-15 protein levels in healthy and streptozotocin-induced diabetic rats in both the fast flexor hallucis longus (FHL) and slow soleus muscles. Resistance training preserved FHL muscle weight in diabetic rats and increased IL-15 protein levels in both the soleus and FHL muscles. However, the temporal pattern of this response was distinct in normal and diabetic rats. Moreover, discordance between post-exercise muscle IL-15 mRNA and protein expression was observed in our study, and diabetes suppressed post-exercise increases in FHL muscle IL-6 mRNA expression. Our study indicates that training, skeletal muscle phenotype, and metabolic status all influence the temporal pattern of post-exercise changes in IL-15 expression. Muscle IL-15 protein levels increase following training, suggesting this may be an adaptation contributing to increased capacity for secretion of this myokine that is not depressed by the diabetic state.
Collapse
Affiliation(s)
- Mahdieh Molanouri Shamsi
- Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Islamic Republic of Iran,
| | | | | | | | | | | |
Collapse
|
14
|
Boudreaux RD, Swift JM, Gasier HG, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased resistance during jump exercise does not enhance cortical bone formation. Med Sci Sports Exerc 2014; 46:982-9. [PMID: 24743108 DOI: 10.1249/mss.0000000000000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. METHODS Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. RESULTS Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. CONCLUSION These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.
Collapse
Affiliation(s)
- Ramon D Boudreaux
- 1Department of Biomedical Engineering, Texas A&M University, College Station, TX; 2Department of Health and Kinesiology, Texas A&M University, College Station, TX; and 3Department of Mechanical Engineering, Texas A&M University, College Station, TX
| | | | | | | | | | | | | |
Collapse
|
15
|
Shirazi-Fard Y, Metzger CE, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Moderate intensity resistive exercise improves metaphyseal cancellous bone recovery following an initial disuse period, but does not mitigate decrements during a subsequent disuse period in adult rats. Bone 2014; 66:296-305. [PMID: 24929241 DOI: 10.1016/j.bone.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Spaceflight provides a unique environment for skeletal tissue causing decrements in structural and densitometric properties of bone. Previously, we used the adult hindlimb unloaded (HU) rat model to show that previous exposure to HU had minimal effects on bone structure after a second HU exposure followed by recovery. Furthermore, we found that the decrements during second HU exposure were milder than the initial HU cycle. In this study, we used a moderate intensity resistance exercise protocol as an anabolic stimulus during recovery to test the hypothesis that resistance exercise following an exposure to HU will significantly enhance recovery of densitometric, structural, and, more importantly, mechanical properties of trabecular and cortical bone. We also hypothesized that resistance exercise during recovery, and prior to the second unloading period, will mitigate the losses during the second exposure. The hypothesis that exercise during recovery following hindlimb unloading will improve bone quality was supported by our data, as total BMC, total vBMD, and cancellous bone formation at the proximal tibia metaphysis increased significantly during exercise period, and total BMC/vBMD exceeded age-matched control and non-exercised values significantly by the end of recovery. However, our results did not support the hypothesis that resistance exercise prior to a subsequent unloading period will mitigate the detrimental effects of the second exposure, as the losses during the second exposure in total BMC, total vBMD, and cortical area at the proximal tibia metaphysis for the exercised animals were similar to those of the non-exercised group. Therefore, exercise did not mitigate effects of the second HU exposure in terms of pre-to-post HU changes in these variables, but it did produce beneficial effects in a broader sense.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Corinne E Metzger
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Andrea T Kwaczala
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Harry A Hogan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Mota MM, da Silva TLTB, Fontes MT, Barreto AS, Araújo JEDS, de Oliveira ACC, Wichi RB, Santos MRV. Resistance exercise restores endothelial function and reduces blood pressure in type 1 diabetic rats. Arq Bras Cardiol 2014; 103:25-32. [PMID: 25120082 PMCID: PMC4126758 DOI: 10.5935/abc.20140087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Resistance exercise effects on cardiovascular parameters are not consistent. OBJECTIVES The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. METHODS Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. RESULTS A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. CONCLUSIONS Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.
Collapse
Affiliation(s)
- Marcelo Mendonça Mota
- Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São
Cristóvão, SE − Brazil
| | | | - Milene Tavares Fontes
- Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São
Cristóvão, SE − Brazil
| | - André Sales Barreto
- Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São
Cristóvão, SE − Brazil
| | | | | | | | | |
Collapse
|
17
|
Mostarda CT, Rodrigues B, de Moraes OA, Moraes-Silva IC, Arruda PBO, Cardoso R, Scapini KB, Dos Santos F, De Angelis K, Irigoyen MC. Low intensity resistance training improves systolic function and cardiovascular autonomic control in diabetic rats. J Diabetes Complications 2014; 28:273-8. [PMID: 24630761 DOI: 10.1016/j.jdiacomp.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/22/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
Abstract
AIMS We evaluated the effects of low intensity resistance training (RT) on left ventricular (LV) function, baroreflex sensitivity (BRS), and cardiovascular autonomic control of streptozotocin-induced diabetic rats. METHODS Male Wistar rats were divided into (n=8 each group): sedentary control (SC), trained control (TC), sedentary diabetic (SD), and trained diabetic (TD). Trained groups underwent low intensity RT (40%-50% 1 repetition maximum) for 10 weeks. Echocardiographic evaluation, arterial pressure (AP), heart rate (HR), BRS, and autonomic measurements were performed. RESULTS Diabetes induced an increase in glycemia and a reduction in body weight in diabetics when compared with control animals. Diabetic rats displayed cardiac dysfunction, reduced systolic AP and HR, impaired BRS and autonomic derangement when compared to control rats. RT improved ejection fraction (SD: 68%±1.3% vs. TD: 75%±3.0%) and velocity of circumferential fiber shortening (SD: 0.32±0.02 vs. TD: 0.40±0.01 circ/seg.10(-4)). Trained diabetic rats presented increased AP (+10.2%), HR (+10.4%), and BRS after RT protocol. CONCLUSIONS Low intensity RT induced an increase in systolic function in diabetic rats. This may be due to positive LV remodeling and BRS improvement, which may have played an important role in the attenuation of hemodynamic impairment and cardiac autonomic neuropathy in streptozotocin-diabetic rats.
Collapse
Affiliation(s)
- Cristiano T Mostarda
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Bruno Rodrigues
- Human Movement Laboratory, Universidade São Judas Tadeu UST, São Paulo/SP, Brazil
| | - Oscar Albuquerque de Moraes
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil; Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo/SP, Brazil
| | - Ivana C Moraes-Silva
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Paula Barros Olinto Arruda
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Ruymar Cardoso
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Katia Bilhar Scapini
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Fernando Dos Santos
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo/SP, Brazil
| | - Maria Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), Medical School of University of São Paulo, São Paulo/SP, Brazil.
| |
Collapse
|
18
|
Molanouri Shamsi M, Hassan ZH, Gharakhanlou R, Quinn LS, Azadmanesh K, Baghersad L, Isanejad A, Mahdavi M. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training. Endocrine 2014; 46:60-9. [PMID: 24006180 DOI: 10.1007/s12020-013-0038-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/13/2013] [Indexed: 12/21/2022]
Abstract
Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.
Collapse
Affiliation(s)
- M Molanouri Shamsi
- Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Jala Ale Ahmad Exp, 14117-13116, Tehran, Islamic Republic of Iran,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Greene NP, Nilsson MI, Washington TA, Lee DE, Brown LA, Papineau AM, Shimkus KL, Greene ES, Crouse SF, Fluckey JD. Impaired exercise-induced mitochondrial biogenesis in the obese Zucker rat, despite PGC-1α induction, is due to compromised mitochondrial translation elongation. Am J Physiol Endocrinol Metab 2014; 306:E503-11. [PMID: 24398401 DOI: 10.1152/ajpendo.00671.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we demonstrated that high-volume resistance exercise stimulates mitochondrial protein synthesis (a measure of mitochondrial biogenesis) in lean but not obese Zucker rats. Here, we examined factors involved in regulating mitochondrial biogenesis in the same animals. PGC-1α was 45% higher following exercise in obese but not lean animals compared with sedentary counterparts. Interestingly, exercised animals demonstrated greater PPARδ protein in both lean (47%) and obese (>200%) animals. AMPK phosphorylation (300%) and CPT-I protein (30%) were elevated by exercise in lean animals only, indicating improved substrate availability/flux. These findings suggest that, despite PGC-1α induction, obese animals were resistant to exercise-induced synthesis of new mitochondrial and oxidative protein. Previously, we reported that most anabolic processes are upregulated in these same obese animals regardless of exercise, so the purpose of this study was to assess specific factors associated with the mitochondrial genome as possible culprits for impaired mitochondrial biogenesis. Exercise resulted in higher mRNA contents of mitochondrial transcription factor A (∼50% in each phenotype) and mitochondrial translation initiation factor 2 (31 and 47% in lean and obese, respectively). However, mitochondrial translation elongation factor-Tu mRNA was higher following exercise in lean animals only (40%), suggesting aberrant regulation of mitochondrial translation elongation as a possible culprit in impaired mitochondrial biogenesis following exercise with obesity.
Collapse
Affiliation(s)
- Nicholas P Greene
- Applied Exercise Science Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
21
|
Abstract
Physical exercise is firmly incorporated in the management of type 1 diabetes (T1DM), due to multiple recognized beneficial health effects (cardiovascular disease prevention being preeminent). When glycemic values are not excessively low or high at the time of exercise, few absolute contraindications exist; practical guidelines regarding amount, type, and duration of age-appropriate exercise are regularly updated by entities such as the American Diabetes Association and the International Society for Pediatric and Adolescent Diabetes. Practical implementation of exercise regimens, however, may at times be problematic. In the poorly controlled patient, specific structural changes may occur within skeletal muscle fiber, which is considered by some to be a disease-specific myopathy. Further, even in well-controlled patients, several homeostatic mechanisms regulating carbohydrate metabolism often become impaired, causing hypo- or hyperglycemia during and/or after exercise. Some altered responses may be related to inappropriate exogenous insulin administration, but are often also partly caused by the "metabolic memory" of prior glycemic events. In this context, prior hyperglycemia correlates with increased inflammatory and oxidative stress responses, possibly modulating key exercise-associated cardio-protective pathways. Similarly, prior hypoglycemia correlates with impaired glucose counterregulation, resulting in greater likelihood of further hypoglycemia to develop. Additional exercise responses that may be altered in T1DM include growth factor release, which may be especially important in children and adolescents. These multiple alterations in the exercise response should not discourage physical activity in patients with T1DM, but rather should stimulate the quest for the identification of the exercise formats that maximize beneficial health effects.
Collapse
Affiliation(s)
- Pietro Galassetti
- Department of Pediatrics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
22
|
Xiang J, Zhao Y, Chen J, Zhou J. Expression of basic fibroblast growth factor, protein kinase C and members of the apoptotic pathway in skeletal muscle of streptozotocin-induced diabetic rats. Tissue Cell 2013; 46:1-8. [PMID: 24008114 DOI: 10.1016/j.tice.2013.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023]
Abstract
This study investigated the potential mechanisms that may underlie diabetes induced amyoatrophy. Sprague-Dawley rats were either injected intraperiotneally with STZ (test group; N=8) to induce diabetic-like symptoms (blood glucose level ≥16.65mmol/L) or with buffer (control group; N=8). Differences in muscle structure between the STZ-induced diabetic and control groups were evaluated by histochemistry. Protein and mRNA levels of basic FGF (bFGF), bax, bcl-2, and caspase 3 in skeletal muscle were compared between the 2 groups using immunohistochemistry and quantitative PCR, respectively. Serum level of insulin and protein kinase C (PKC) were measured by competitive RIA and ELISA, respectively. Unlike control animals, the skeletal muscle fibers from STZ-induced diabetic animals were broken and pyknotic, the sarcomeric structure disrupted, and mild hyperplasia of interstitial adipose tissues was detected. The serum level of PKC was higher (P=0.003) and the protein and mRNA levels of bFGF in skeletal muscle were lower (P=0.001) in STZ-induced diabetic versus control animals. Protein and mRNA levels of the apoptosis promoting genes caspase-3 and bax were higher in skeletal muscle from STZ-induced diabetic rats as compared to control animals (P<0.001 and P=0.037, respectively), while mRNA and protein levels of bcl-2, an inhibitor of apoptosis, was lower in STZ-induced diabetic rats versus control animals (P=0.026). Increasing apoptosis in skeletal muscle from STZ-induced diabetic rats was further demonstrated by TNNEL assay. Our findings suggest that enhanced PKC levels, reduction of bFGF expression, and increased in apoptosis might be associated with the development of diabetes-induced myoatrophy.
Collapse
Affiliation(s)
- Jingyan Xiang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
23
|
Nilsson MI, Dobson JP, Greene NP, Wiggs MP, Shimkus KL, Wudeck EV, Davis AR, Laureano ML, Fluckey JD. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J 2013; 27:3905-16. [PMID: 23804240 DOI: 10.1096/fj.12-224006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals.
Collapse
Affiliation(s)
- Mats I Nilsson
- 1Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee Y, Kim JH, Hong Y, Lee SR, Chang KT, Hong Y. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. Lab Anim Res 2012; 28:171-9. [PMID: 23091517 PMCID: PMC3469845 DOI: 10.5625/lar.2012.28.3.171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/01/2012] [Accepted: 09/08/2012] [Indexed: 11/30/2022] Open
Abstract
Diabetes decreases skeletal muscle mass and induces atrophy. However, the mechanisms by which hyperglycemia and insulin deficiency modify muscle mass are not well defined. In this study, we evaluated the effects of swimming exercise on muscle mass and intracellular protein degradation in diabetic rats, and proposed that autophagy inhibition induced by swimming exercise serves as a hypercatabolic mechanism in the skeletal muscles of diabetic rats, supporting a notion that swimming exercise could efficiently reverse the reduced skeletal muscle mass caused by diabetes. Adult male Sprague-Dawley rats were injected intraperitoneally with streptozotocin (60 mg/kg body weight) to induce diabetes and then submitted to 1 hr per day of forced swimming exercise, 5 days per week for 4 weeks. We conducted an intraperitoneal glucose tolerance test on the animals and measured body weight, skeletal muscle mass, and protein degradation and examined the level of autophagy in the isolated extensor digitorum longus, plantaris, and soleus muscles. Body weight and muscle tissue mass were higher in the exercising diabetic rats than in control diabetic rats that remained sedentary. Compared to control rats, exercising diabetic rats had lower blood glucose levels, increased intracellular contractile protein expression, and decreased autophagic protein expression. We conclude that swimming exercise improves muscle mass in diabetes-induced skeletal muscle atrophy, suggesting the activation of autophagy in diabetes contributes to muscle atrophy through hypercatabolic metabolism and that aerobic exercise, by suppressing autophagy, may modify or reverse skeletal muscle wasting in diabetic patients.
Collapse
Affiliation(s)
- Youngjeon Lee
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Joo-Heon Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Yunkyung Hong
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
25
|
Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 2011; 12:345-64. [PMID: 20860561 DOI: 10.1111/j.1399-5448.2010.00699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matthew P Krause
- Dept of Pathology & Molecular Medicine, McMaster University, 1200 Main St., W. Hamilton, ON, Canada L8N 3Z5
| | | | | |
Collapse
|
26
|
Gasier HG, Riechman SE, Wiggs MP, Buentello A, Previs SF, Fluckey JD. Cumulative responses of muscle protein synthesis are augmented with chronic resistance exercise training. Acta Physiol (Oxf) 2011; 201:381-9. [PMID: 20804462 DOI: 10.1111/j.1748-1716.2010.02183.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM The purpose of this study was to determine the anabolic response of a single bout of high intensity resistance exercise (RE) following 5 weeks of RE training. METHODS To complete these studies, Sprague-Dawley rats were assigned by body mass to RE, exercise control (EC), or sedentary cage control (CC) groups and studied over 36 h after 5 weeks of RE (squat-like) training. Cumulative (final 36 h) fractional rates of muscle protein synthesis (FSR) were determined by ²H₂O, and acute (16 h post-RE) rates of muscle protein synthesis (RPS) were determined by flooding with l-[2,3,4,5,6-³H]phenylalanine. Regulators of peptide-chain initiation, 4E-BP1, eIF4E and the association of the two were determined by Western blotting and immunoprecipitation respectively. RESULTS No differences were observed with acute measures of RPS obtained 16 h following the final exercise bout in the plantaris or soleus muscles (P > 0.05). Consistent with this observation, 4E-BP1 was similarly phosphorylated and bound to eIF4E among all groups. However, upon determination of the cumulative response, FSR was significantly increased in the plantaris of RE vs. EC and CC (0.929±0.094, 0.384±0.039, 0.300±0.022% h(-1) respectively; P<0.001), but not the soleus. CONCLUSION With the advantage of determining cumulative FSR, the present study demonstrates that anabolic responses to RE are still evident after chronic RE training, primarily in muscle composed of fast-twitch fibres.
Collapse
Affiliation(s)
- H G Gasier
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
27
|
Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985) 2010; 109:1600-7. [PMID: 20930128 DOI: 10.1152/japplphysiol.00596.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.
Collapse
Affiliation(s)
- J M Swift
- Department of Health and Kinesiology, MS 4243, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Nilsson MI, Greene NP, Dobson JP, Wiggs MP, Gasier HG, Macias BR, Shimkus KL, Fluckey JD. Insulin resistance syndrome blunts the mitochondrial anabolic response following resistance exercise. Am J Physiol Endocrinol Metab 2010; 299:E466-74. [PMID: 20606077 DOI: 10.1152/ajpendo.00118.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic risk factors associated with insulin resistance syndrome may attenuate augmentations in skeletal muscle protein anabolism following contractile activity. The purpose of this study was to investigate whether or not the anabolic response, as defined by an increase in cumulative fractional protein synthesis rates (24-h FSR) following resistance exercise (RE), is blunted in skeletal muscle of a well-established rodent model of insulin resistance syndrome. Four-month-old lean (Fa/?) and obese (fa/fa) Zucker rats engaged in four lower body RE sessions over 8 days, with the last bout occurring 16 h prior to muscle harvest. A priming dose of deuterium oxide ((2)H(2)O) and (2)H(2)O-enriched drinking water were administered 24 h prior to euthanization for assessment of cumulative FSR. Fractional synthesis rates of mixed (-5%), mitochondrial (-1%), and cytosolic (+15%), but not myofibrillar, proteins (-16%, P = 0.012) were normal or elevated in gastrocnemius muscle of unexercised obese rats. No statistical differences were found in the anabolic response of cytosolic and myofibrillar subfractions between phenotypes, but obese rats were not able to augment 24-h FSR of mitochondria to the same extent as lean rats following RE (+14% vs. +28%, respectively). We conclude that the mature obese Zucker rat exhibits a mild, myofibrillar-specific suppression in basal FSR and a blunted mitochondrial response to contractile activity in mixed gastrocnemius muscle. These findings underscore the importance of assessing synthesis rates of specific myocellular subfractions to fully elucidate perturbations in basal protein turnover rates and differential adaptations to exercise stimuli in metabolic disease.
Collapse
Affiliation(s)
- Mats I Nilsson
- Dept. of Health and Kinesiology, Texas A & M University, College Station, 77843-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zanchi NE, Lira FS, Seelaender M, Lancha AH. Experimental chronic low-frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers. Cell Biochem Funct 2010; 28:232-8. [PMID: 20373468 DOI: 10.1002/cbf.1665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p < 0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p < 0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not.
Collapse
Affiliation(s)
- Nelo Eidy Zanchi
- Laboratory of Applied Nutrition and Metabolism, Physical Education and Sport School, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
30
|
Irvine C, Taylor NF. Progressive resistance exercise improves glycaemic control in people with type 2 diabetes mellitus: a systematic review. ACTA ACUST UNITED AC 2010; 55:237-46. [PMID: 19929766 DOI: 10.1016/s0004-9514(09)70003-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
QUESTION Is progressive resistance exercise a safe and effective form of exercise to improve glycaemic control in people with type 2 diabetes? DESIGN Systematic review with meta-analysis of randomised controlled trials. PARTICIPANTS People with type 2 diabetes mellitus. INTERVENTION Progressive resistance exercise. OUTCOME MEASURES The primary outcome was glycaemic control measured as percentage glycosylated haemoglobin (HbA1c). Secondary outcomes were body composition (lean body and fat free mass in kg), and muscle strength (% change in 1RM, dynamometry, change in maximum weight lifted). RESULTS The search yielded nine relevant trials that evaluated 372 people with type 2 diabetes. Compared to not exercising, progressive resistance exercise led to small and statistically significant absolute reductions in HbA1c of 0.3% (SMD -0.25, 95% CI -0.47 to -0.03). When compared to aerobic exercise there were no significant differences in HbA1c. Progressive resistance exercise resulted in large improvements in strength when compared to aerobic (SMD 1.44, 95% CI 0.83 to 2.05) or no exercise (SMD 0.95, 95% CI 0.58 to 1.31). There were no significant changes in body composition. CONCLUSIONS Progressive resistance exercise increases strength and leads to small reductions in glycosylated haemoglobin that are likely to be clinically significant for people with type 2 diabetes. Progressive resistance exercise is a feasible option in the management of glycaemia for this population.
Collapse
Affiliation(s)
- Casey Irvine
- Physiotherapy, Peter James Centre, Eastern Health, Melbourne, Victoria 3131, Australia.
| | | |
Collapse
|
31
|
Gasier HG, Riechman SE, Wiggs MP, Previs SF, Fluckey JD. A comparison of 2H2O and phenylalanine flooding dose to investigate muscle protein synthesis with acute exercise in rats. Am J Physiol Endocrinol Metab 2009; 297:E252-9. [PMID: 19366878 PMCID: PMC4043319 DOI: 10.1152/ajpendo.90872.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary objective of this investigation was to determine whether (2)H(2)O and phenylalanine (Phe) flooding dose methods yield comparable fractional rates of protein synthesis (FSR) in skeletal muscle following a single bout of high-intensity resistance exercise (RE). Sprague-Dawley rats were assigned by body mass to either 4-h control (CON 4 h; n = 6), 4-h resistance exercise (RE 4 h; n = 6), 24-h control (CON 24 h; n = 6), or 24-h resistance exercise (RE 24 h; n = 6). The RE groups were operantly conditioned to engage in a single bout of high-intensity, "squat-like" RE. All rats were given an intraperitoneal injection of 99.9% (2)H(2)O and provided 4.0% (2)H(2)O drinking water for either 24 (n = 12) or 4 h (n = 12) prior to receiving a flooding dose of l-[2,3,4,5,6-(3)H]Phe 16 h post-RE. Neither method detected an effect of RE on FSR in the mixed gastrocnemius, plantaris, or soleus muscle. Aside from the qualitative similarities between methods, the 4-h (2)H(2)O FSR measurements, when expressed in percent per hour, were quantitatively greater than the 24-h (2)H(2)O and Phe flooding in all muscles (P < 0.001), and the 24-h (2)H(2)O was greater than the Phe flooding dose in the mixed gastrocnemius and plantaris (P < 0.05). In contrast, the actual percentage of newly synthesized protein was significantly higher in the 24- vs. 4-h (2)H(2)O and Phe flooding dose groups (P < 0.001). These results suggest that the methodologies provide "qualitatively" similar results when a perturbation such as RE is studied. However, due to potential quantitative differences between methods, the experimental question should determine what approach should be used.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Health and Kinesiology, Texas A & M University, College Station, TX 77843-4243, USA
| | | | | | | | | |
Collapse
|
32
|
Ensey JS, Hollander MS, Wu JZ, Kashon ML, Baker BB, Cutlip RG. Response of tibialis anterior tendon to a chronic exposure of stretch-shortening cycles: age effects. Biomed Eng Online 2009; 8:12. [PMID: 19563638 PMCID: PMC2710328 DOI: 10.1186/1475-925x-8-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of the current study was to investigate the effects of aging on tendon response to repetitive exposures of stretch-shortening cycles (SSC's). METHODS The left hind limb from young (3 mo, N = 4) and old (30 mo, N = 9) male Fisher 344 x Brown Norway rats were exposed to 80 maximal SSCs (60 deg/s, 50 deg range of motion) 3 x/week for 4.5 weeks in vivo. After the last exposure, tendons from the tibialis anterior muscle were isolated, stored at -80 degrees C, and then tested using a micro-mechanical testing machine. Deformation of each tendon was evaluated using both relative grip-to-grip displacements and reference marks via a video system. RESULTS At failure, the young control tendons had higher strain magnitude than the young exposed (p < 0.01) and the old control tendons (p < .0001). Total load at inflection was affected by age only (p < 0.01). Old exposed and control tendons exhibited significantly higher loads at the inflection point than their young counterparts (p < 0.05 for both comparisons). At failure, the old exposed tendons carried higher loads than the young exposed tendons (p < 0.05). Stiffness was affected by age only at failure where the old tendons exhibited higher stiffness in both exposed and control tendons than their young counterparts (p < 0.05 and p < 0.01, respectively). CONCLUSION The chronic protocol enhanced the elastic stiffness of young tendon and the loads in both the young and old tendons. The old exposed tendons were found to exhibit higher load capacity than their younger counterparts, which differed from our initial hypothesis.
Collapse
Affiliation(s)
- James S Ensey
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Leme JACA, Silveira RF, Gomes RJ, Moura RF, Sibuya CA, Mello MAR, Luciano E. Long-term physical training increases liver IGF-I in diabetic rats. Growth Horm IGF Res 2009; 19:262-266. [PMID: 19201234 DOI: 10.1016/j.ghir.2008.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/30/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022]
Abstract
Diabetes reduces the serum levels of insulin-like growth factor-I (IGF-I) and physical training may prevent this reduction. Almost all circulating IGF-I is produced and secreted by the liver. To examine the influence of moderate physical training on liver IGF-1 levels in diabetes, male Wistar rats were given a single dose of alloxan (30 mg/kg b.w.) to induce diabetes and then randomly allocated to sedentary or trained groups. The training protocol consisted of a 1h swimming session/day, five days/week for eight weeks with a load corresponding to 5% of the body weight. These two groups were compared with sedentary or trained non-diabetic rats (controls). A subcutaneous insulin tolerance test (ITT) was performed at the 6th week of experiment. At the end of the training period, the rats in all groups were sacrificed and blood was collected for the quantification of hematocrit and serum glucose, insulin, triglycerides, albumin, GH and IGF-1. Skeletal muscle and hepatic glycogen levels and hepatic triglyceride, protein, DNA and IGF-I concentrations were also determined. Diabetes reduced the serum insulin, GH and IGF-I concentrations, and the hepatic protein/DNA ratio and IGF-I concentrations, but increased serum glucose and triglyceride levels. Serum glucose removal during ITT was increased in the trained diabetic animals compared to sedentary control. Physical training reduced the serum glucose and triglyceride levels but increased the muscle glycogen content and restored the hepatic protein/DNA ratio and serum and hepatic IGF-I in diabetic rats. In conclusion, long-term chronic exercise improved the metabolic state and attenuated the reduction in serum and hepatic IGF-I concentrations caused by diabetes.
Collapse
Affiliation(s)
- J A C A Leme
- Department of Physical Education, São Paulo State University (UNESP), Bela Vista, Rio Claro, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Katta A, Karkala SK, Wu M, Meduru S, Desai DH, Rice KM, Blough ER. Lean and obese Zucker rats exhibit different patterns of p70s6 kinase regulation in the tibialis anterior muscle in response to high-force muscle contraction. Muscle Nerve 2009; 39:503-11. [PMID: 19296503 DOI: 10.1002/mus.21255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased phosphorylation of the 70-kDa ribosomal S6 kinase (p70S6k) signaling is strongly correlated with the degree of muscle adaptation following exercise. Herein we compare the phosphorylation of p70S6k, Akt, and mammalian target of rapamycin (mTOR) in the tibialis anterior (TA) muscles of lean and obese Zucker rats following a bout of eccentric exercise. Exercise increased p70S6k (Thr389) phosphorylation immediately after (33.3+/-7.2%) and during [1 h (24.0+/-14.9%) and 3 h (24.6+/-11.3%)] recovery in the lean TA and at 3 h (33.5+/-8.0%) in the obese TA Zucker rats. mTOR (Ser2448) phosphorylation was elevated in the lean TA immediately after exercise (96.5+/-40.3%) but remained unaltered in the obese TA. Exercise increased Akt (Thr308) and Akt (Ser473) phosphorylation in the lean but not the obese TA. These results suggest that insulin resistance is associated with alterations in the ability of muscle to activate p70S6k signaling following an acute bout of exercise.
Collapse
Affiliation(s)
- Anjaiah Katta
- Department of Pharmacology, Physiology, and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Diabetes alters contraction-induced mitogen activated protein kinase activation in the rat soleus and plantaris. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:738101. [PMID: 18551177 PMCID: PMC2409431 DOI: 10.1155/2008/738101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/01/2007] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The prescription of anaerobic exercise has recently been advocated for the management of diabetes; however exercise-induced signaling in diabetic muscle remains largely unexplored. Evidence from exercise studies in nondiabetics suggests that the extracellular-signal-regulated kinases (Erk1/2), p38, and c-JUN NH2-terminal kinase (Jnk) mitogen-activated protein kinases (MAPKs) are important regulators of muscle adaptation. Here, we compare the basal and the in situ contraction-induced phosphorylation of Erk1/2- p38- and Jnk-MAPK and their downstream targets (p90rsk and MAPKAP-K2) in the plantaris and soleus muscles of normal and obese (fa/fa) Zucker rats. Compared to lean animals, the time course and magnitude of Erk1/2, p90rsk and p38 phosphorylation to a single bout of contractile stimuli were greater in the plantaris of obese animals. Jnk phosphorylation in response to contractile stimuli was muscle-type dependent with greater increases in the plantaris than the soleus. These results suggest that diabetes alters intramuscular signaling processes in response to a contractile stimulus.
Collapse
|
36
|
Koopman R, Saris WHM, Wagenmakers AJM, van Loon LJC. Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Med 2008; 37:895-906. [PMID: 17887813 DOI: 10.2165/00007256-200737100-00005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance exercise is a powerful stimulus to augment muscle protein anabolism, as it can improve the balance between muscle protein synthesis and breakdown. However, the intake of food during post-exercise recovery is necessary for hypertrophy to occur. Therefore, athletes need to ingest protein following exercise to attain a positive protein balance and maximise their skeletal muscle adaptive response. The interaction between exercise and nutrition is not only important for athletes, but is also of important clinical relevance in the elderly. Exercise interventions combined with specific nutritional modulation provide an effective strategy to counteract or reduce the loss of skeletal muscle mass with aging.
Collapse
Affiliation(s)
- René Koopman
- Department of Movement Sciences, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Lehti TM, Silvennoinen M, Kivelä R, Kainulainen H, Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle. Am J Physiol Endocrinol Metab 2007; 292:E533-42. [PMID: 17003243 DOI: 10.1152/ajpendo.00229.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In striated muscle, a sarcomeric noncontractile protein, titin, is proposed to form the backbone of the stress- and strain-sensing structures. We investigated the effects of diabetes, physical training, and their combination on the gene expression of proteins of putative titin stretch-sensing complexes in skeletal and cardiac muscle. Mice were divided into control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups performed for 1, 3, or 5 wk of endurance training on a motor-driven treadmill. Muscle samples from T and DT groups together with respective controls were collected 24 h after the last training session. Gene expression of calf muscles (soleus, gastrocnemius, and plantaris) and cardiac muscle were analyzed using microarray and quantitative PCR. Diabetes induced changes in mRNA expression of the proteins of titin stretch-sensing complexes in Z-disc (MLP, myostatin), I-band (CARP, Ankrd2), and M-line (titin kinase signaling). Training alleviated diabetes-induced changes in most affected mRNA levels in skeletal muscle but only one change in cardiac muscle. In conclusion, we showed diabetes-induced changes in mRNA levels of several fiber-type-biased proteins (MLP, myostatin, Ankrd2) in skeletal muscle. These results are consistent with previous observations of diabetes-induced atrophy leading to slower fiber type composition. The ability of exercise to alleviate diabetes-induced changes may indicate slower transition of fiber type.
Collapse
Affiliation(s)
- T Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Rautpohjankatu 8, Viveca, FIN-40700 Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
38
|
De Angelis K, da Pureza DY, Flores LJF, Rodrigues B, Melo KFS, Schaan BD, Irigoyen MC. Efeitos fisiológicos do treinamento físico em pacientes portadores de diabetes tipo 1. ACTA ACUST UNITED AC 2006; 50:1005-13. [PMID: 17221105 DOI: 10.1590/s0004-27302006000600005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 07/04/2006] [Indexed: 12/22/2022]
Abstract
Insulinoterapia, atividade física regular e planejamento alimentar, em conjunto, consistem na abordagem mais completa no tratamento de portadores de diabetes mellitus tipo 1 (DM1). Estudos clínicos e experimentais têm evidenciado os benefícios do treinamento físico em indivíduos com DM1, tais como melhora na sensibilidade à insulina, redução das doses de insulina e atenuação das disfunções autonômicas e cardiovasculares. Essa revisão aborda as adaptações fisiológicas ao treinamento físico no indivíduo com DM1 e discute as recomendações e prescrição de atividade física para esta população.
Collapse
Affiliation(s)
- Kátia De Angelis
- Unidade de Hipertensão, Laboratório do Movimento Humano, São Paulo, SP.
| | | | | | | | | | | | | |
Collapse
|
39
|
Gomes RJ, de Mello MAR, Caetano FH, Sibuya CY, Anaruma CA, Rogatto GP, Pauli JR, Luciano E. Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth Horm IGF Res 2006; 16:326-331. [PMID: 17011807 DOI: 10.1016/j.ghir.2006.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 07/19/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to examine the influence of moderate swimming training on the GH/IGF-1 growth axis and tibial mass in diabetic rats. Male Wistar rats were allocated to one of four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced with alloxan (35 mg/kg b.w.). The training program consisted of a 1h swimming session/day with a load corresponding to 5% of the b.w., five days/week for six weeks. At the end of the training period, the rats were sacrificed and blood was collected for quantification of the serum glucose, insulin, GH, and IGF-1 concentrations. Samples of skeletal muscle were used to quantify the IGF-1 peptide content. The tibias were collected to determine their total area, length and bone mineral content. The results were analyzed by ANOVA with P<0.05 indicating significance. Diabetes decreased the serum levels of GH and IGF-1, as well as the tibial length, total area and bone mineral content in the SD group (P<0.05). Physical training increased the serum IGF-1 level in the TC and TD groups when compared to the sedentary groups (SC and SD), and the tibial length, total area and bone mineral content were higher in the TD group than in the SD group (P<0.05). Exercise did not alter the level of IGF-1 in gastrocnemius muscle in nondiabetic rats, but the muscle IGF-1 content was higher in the TD group than in the SD group. These results indicate that swimming training stimulates bone mass and the GH/IGF-1 axis in diabetic rats.
Collapse
Affiliation(s)
- R J Gomes
- Department of Physical Education, State University of São Paulo (UNESP), Avenida 24A No. 1515, Caixa Postal 199, Bela Vista, Rio Claro, CEP 13506-900, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lehti TM, Silvennoinen M, Kivelä R, Kainulainen H, Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of extracellular matrix proteins in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290:E900-7. [PMID: 16352670 DOI: 10.1152/ajpendo.00444.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes induces changes in the structure and function of the extracellular matrix (ECM) in many tissues. We investigated the effects of diabetes, physical training, and their combination on the gene expression of ECM proteins in skeletal muscle. Mice were divided to control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups (T, DT) performed 1, 3, or 5 wk of endurance training on a treadmill. Gene expression of calf muscles was analyzed using microarray and quantitative PCR. Training group samples were collected 24 h after the last training session. Diabetes affected the gene expression of several collagens (types I, III, IV, V, VI, and XV), some noncollagenous glycoproteins, and proteoglycans (e.g., elastin, thrombospondin-1, laminin-2, decorin). Reduced gene expression of collagens in diabetic skeletal muscle was partially attenuated as a result of physical training. In diabetes, mRNA expression of the basement membrane (BM) collagens decreased and that of noncollagenous glycoproteins increased. This may change the structure of the BM in a less collagenous direction and affect its properties.
Collapse
Affiliation(s)
- T Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Rautpohjankatu 8, Viveca, FIN-40700 Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
41
|
Vingren JL, Koziris LP, Gordon SE, Kraemer WJ, Turner RT, Westerlind KC. Chronic alcohol intake, resistance training, and muscle androgen receptor content. Med Sci Sports Exerc 2006; 37:1842-8. [PMID: 16286851 DOI: 10.1249/01.mss.0000176679.80555.cd] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Chronic alcohol intake and resistance training (RT) have opposite effects on muscle physiology. PURPOSE This study examined the effect of chronic alcohol intake on androgen receptor (AR) content in skeletal muscle to determine whether this effect was influenced by RT. METHODS A total of 48 male Sprague Dawley(R) rats (mass = 456 +/- 1 g; mean +/- SE) were divided into five groups: baseline (N = 8), sedentary + alcohol (Sed-Al) (N = 8), sedentary + normal diet (Sed-Nml) (N = 8), exercise + alcohol (Ex-Al) (N = 12), and exercise + normal diet (Ex-Nml) (N = 12). Exercise groups completed a 6 1/3-wk "squat" RT protocol; alcohol groups received an ethanol-rich (35% caloric content of alcohol) diet throughout the 6 1/3-wk period. Baseline animals were killed at the onset of the 6 1/3-wk training period. RESULTS Western blot analysis showed no effect of alcohol or RT on the AR of the extensor digitorum longus. Alcohol significantly reduced AR content of the rectus femoris (P < 0.05) and prevented RT-induced increases in AR content of the soleus. CONCLUSION Chronic alcohol intake appeared to reduce the AR content of the type IIB fiber-predominant rectus femoris, and this reduction was not affected by RT. In the type I-predominant soleus, chronic alcohol intake alone had no effect but seemed to prevent RT-induced increases in AR content.
Collapse
Affiliation(s)
- Jakob L Vingren
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sanchez OA, Snow LM, Lowe DA, Serfass RC, Thompson LV. Effects of endurance exercise-training on single-fiber contractile properties of insulin-treated streptozotocin-induced diabetic rats. J Appl Physiol (1985) 2005; 99:472-8. [PMID: 15831797 DOI: 10.1152/japplphysiol.01233.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to characterize the contractile properties of individual skinned muscle fibers from insulin-treated streptozotocin-induced diabetic rats after an endurance exercise training program. We hypothesized that single-fiber contractile function would decrease in the diabetic sedentary rats and that endurance exercise would preserve the function. In the study, 28 rats were assigned to either a nondiabetic sedentary, a nondiabetic exercise, a diabetic sedentary, or a diabetic exercise group. Rats in the diabetic groups received subcutaneous intermediate-lasting insulin daily. The exercise-trained rats ran on a treadmill at a moderate intensity for 60 min, five times per week. After 12 wk, the extensor digitorum longus and soleus muscles were dissected. Single-fiber diameter, Ca2+-activated peak force, specific tension, activation threshold, and pCa50as well as the myosin heavy chain isoform expression (MHC) were determined. We found that in MHC type II fibers from extensor digitorum longus muscle, diameters were significantly smaller from diabetic sedentary rats compared with nondiabetic sedentary rats ( P < 0.001). Among the nondiabetic rats, fiber diameters were smaller with exercise ( P = 0.038). The absolute force-generating capacity of single fibers was lower in muscles from diabetic rats. There was greater specific tension (force normalized to cross-sectional area) by fibers from the rats that followed an endurance exercise program compared with sedentary. From the results, we conclude that alterations in the properties of contractile proteins are not implicated in the decrease in strength associated with diabetes and that endurance-exercise training does not prevent or increase muscle weakness in diabetic rats.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Insulin/therapeutic use
- Isometric Contraction
- Muscle Fibers, Skeletal
- Muscle, Skeletal/physiopathology
- Physical Conditioning, Animal/methods
- Physical Endurance
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Stress, Mechanical
Collapse
Affiliation(s)
- Otto A Sanchez
- School of Kinesiology, University of Minnesota Medical School, 420 Delaware Street, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
43
|
Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 2005; 568:283-90. [PMID: 16051622 PMCID: PMC1474760 DOI: 10.1113/jphysiol.2005.093708] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of the present investigation was to determine how fasted-state protein synthesis was affected, acutely, by resistance training. Eight men (24.8+/-1.7 years, body mass index=23.2+/-1.0 kg m-2; means+/-s.e.m.) undertook an 8 week programme of unilateral resistance exercise training (3 sessions week-1, progression from two to four sets; intensity was 80% of the subjects' single repetition maximum (1RM): knee extension and leg press). Following training, subjects underwent two primed constant infusions of l-[ring-13C6]phenylalanine to determine mixed and myofibrillar muscle protein synthesis (MPS) at rest and 12 h after an acute bout of resistance exercise at the same exercise intensity--each leg 80% of 1RM. Biopsies (vastus lateralis) were taken to measure incorporation of labelled phenylalanine into mixed and myofibrillar skeletal muscle proteins and yield fractional MPS. Training resulted in significant dynamic strength gains that were greater (P<0.001) in the trained leg. Hypertrophy of type IIa and IIx fibres (P<0.05) was observed following training. After training, resting mixed MPS rate was elevated (+48%; P<0.05). Acutely, resistance exercise stimulated mixed MPS only in the untrained leg (P<0.05). Myofibrillar MPS was unchanged at rest following training (P=0.61). Myofibrillar MPS increased after resistance exercise (P<0.05), but was not different between the trained and untrained legs (P=0.36). We observed divergent changes in resting mixed versus myofibrillar protein synthesis with training. In addition, resistance training modified the acute response of MPS to resistance exercise by dampening the increased synthesis of non-myofibrillar proteins while maintaining the synthesis of myofibrillar proteins.
Collapse
Affiliation(s)
- Paul L Kim
- Department of Kinesiology, IWC AB116, McMaster University, 1280 Main Street W., Hamilton, ON, Canada L8S 4K1
| | | | | |
Collapse
|
44
|
Abstract
This review is divided into two parts, the first dealing with the cell and molecular biology of muscle in terms of growth and wasting and the second being an account of current knowledge of physiological mechanisms involved in the alteration of size of the human muscle mass. Wherever possible, attempts have been made to interrelate the information in each part and to provide the most likely explanation for phenomena that are currently only partially understood. The review should be of interest to cell and molecular biologists who know little of human muscle physiology and to physicians, physiotherapists, and kinesiologists who may be familiar with the gross behavior of human muscle but wish to understand more about the underlying mechanisms of change.
Collapse
Affiliation(s)
- Michael J Rennie
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Kubica N, Kimball SR, Jefferson LS, Farrell PA. Alterations in the expression of mRNAs and proteins that code for species relevant to eIF2B activity after an acute bout of resistance exercise. J Appl Physiol (1985) 2004; 96:679-87. [PMID: 14565967 DOI: 10.1152/japplphysiol.00962.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The focus of the study described herein was to examine the relative expression levels of mRNAs and proteins relevant to the regulation of translational initation, and hence protein synthesis, in the time course after an acute bout of resistance exercise in male Sprague-Dawley rats. Significant increases in the relative abundance of the mRNAs coding for the epsilon (33%) and gamma (26%) subunits of eukaryotic initiation factor (eIF) 2B were observed 48 h after the exercise bout. Furthermore, the mRNA coding for the delta subunit of eIF2B was also significantly increased, both 24 h (46%) and 48 h (44%) postexercise. There was a relative decrease in three eIF2Bϵ kinase mRNAs, namely sequences coding for glycogen synthase kinase 3β (49%), casein kinase I (48%), and casein kinase II (42%) 48 h into the recovery period. Additionally, there was a significant decrease in expression of the mRNAs coding for eIF2α (28% 24 h postexercise) and one of its regulatory kinases, double-stranded RNA-activated protein kinase (33% 48 h postexercise). Finally, an increase in eIF2B total protein (124%) was observed within 3 h postexercise. These results suggest that there may be rapid translational regulation of mRNAs coding for species relevant to translational initiation after an acute bout of resistance exercise. Furthermore, transcription of these mRNAs is altered further into the recovery period, and this might play a role in protein synthetic capacity on subsequent bouts of resistance exercise.
Collapse
Affiliation(s)
- Neil Kubica
- Noll Physiological Research Center, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
46
|
Hornberger TA, Farrar RP. Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. ACTA ACUST UNITED AC 2004; 29:16-31. [PMID: 15001801 DOI: 10.1139/h04-002] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In humans, progressive resistance exercise is recognized for its ability to induce skeletal muscle hypertrophy. In an attempt to develop an animal model which mimics human progressive resistance exercise, Sprague-Dawley rats were trained to climb a 1.1-m vertical (80° incline) ladder with weights secured to their tail. The rats were trained once every 3 days for 8 weeks. Each training session consisted of 4-9 (6.02 ± 0.23) climbs requiring 8-12 dynamic movements per climb. Based on performance, the weight carried during each session was progressively increased. Over the course of 8 weeks, the maximal amount of weight the rats could carry increased 287%, p ≤ 0.001. The improved training performance was associated with a 23% absolute increase in the weight of the flexor hallucis longus (FHL), with a concomitant 24% increase in both total and myofibrillar protein, p ≤ 0.001. Peak tetanic tension (Po) of the FHL increased 20%, p ≤ 0.001, while specific tetanic tension (SPo) was not altered. No change in twitch tension (Pt) was observed, which resulted in a 22% decrease in specific twitch tension (SPt) p ≤ 0.01. Despite a decrease in resistance to fatigue, p ≤ 0.05, myosin heavy chain composition, ATP, ADP, creatine, and creatine phosphate concentrations of the FHL were not altered. The results of this study describe an animal model that mimics many of the training parameters and physiological adaptations observed with human progressive resistance exercise. Key words: contractile properties, high-energy phosphates, myosin heavy chain, fatigue resistance
Collapse
|
47
|
Wirth O, Gregory EW, Cutlip RG, Miller GR. Control and quantitation of voluntary weight-lifting performance of rats. J Appl Physiol (1985) 2003; 95:402-12. [PMID: 12665538 DOI: 10.1152/japplphysiol.00919.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present paper describes an exercise model that produces a voluntary hindlimb weight-lifting response. Each rat was operantly conditioned to enter a vertical tube, insert its head into a weighted ring (either 70 g or 700 g), lift the ring until its nose interrupted an infrared detector, and then lower the ring. Load cells measured the external force generated, and displacement transducers measured the vertical displacement of the ring during each lifting and lowering movement. The apparatus and training procedures were computer automated. Peak force, velocity, work, and power were calculated for each movement. Rats in both groups easily acquired the task after 12-15 training sessions, on average, conducted 5 days/wk. Once rats were trained, the lifting patterns were quite stable during several more weeks of posttraining exercise; however, the lighter 70-g load gave rise to more variable performances across rats. Results demonstrate the utility of quantitating the biomechanics of volitional movements and suggest that the present model can establish and maintain controlled repetitive movements necessary for studies of adaptation and/or injury in muscles, tendon, and bone.
Collapse
Affiliation(s)
- Oliver Wirth
- Centers for Diseases Control Prevention and National Institute for Occupancy Safety and Health, Morgantown, WV 26505, USA.
| | | | | | | |
Collapse
|
48
|
Pitkanen HT, Nykanen T, Knuutinen J, Lahti K, Keinanen O, Alen M, Komi PV, Mero AA. Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc 2003; 35:784-92. [PMID: 12750588 DOI: 10.1249/01.mss.0000064934.51751.f9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of this study was to assess the effects of a resistance exercise session (RES) on free amino acid concentrations and protein synthesis and breakdown of the vastus lateralis (VL) muscle during recovery in male subjects. METHODS Both the exercise group (EG) and the control group (CG) consisted of six healthy physically active men. On the experiment day in fasting conditions, a stable isotopic tracer of L-[ring-2H(5)] phenylalanine was infused and EG started a heavy 50-min hypertrophic RES for lower extremities after 55 min of infusion. At the same time, CG was at rest. During recovery of 195 min after RES, several blood samples were drawn from the femoral artery (FA) and the femoral vein (FV) and muscle samples from the VL muscle. The enrichment was analyzed by GC/MS and leg muscle amino acid kinetics determined by three-pool compartment model between FA, FV, and VL. RESULTS During recovery at 60 min after RES, there was no difference in muscle protein synthesis or muscle protein breakdown between the groups, but at 195 min, both muscle protein synthesis (P < 0.05) and muscle protein breakdown (P < 0.05) were increased in EG compared with CG. The protein net balance was negative and similar in both groups. Simultaneously in serum concentrations, there was a decrease in leucine (P < 0.05) associated with an increase in aspartate (P < 0.05). Furthermore, the exercise-induced increase in alanine concentration decreased both in serum and muscle. CONCLUSION In fasting conditions, protein net balance is negative and RES induces an increase in muscle protein synthesis and breakdown at 195 min but not yet at 60 min of recovery.
Collapse
Affiliation(s)
- Hannu T Pitkanen
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 2002; 80:1045-53. [PMID: 12489923 DOI: 10.1139/y02-134] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise.
Collapse
Affiliation(s)
- S M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol (1985) 2002; 93:1168-80. [PMID: 12183515 DOI: 10.1152/japplphysiol.00221.2002] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein synthesis in skeletal muscle is modulated in response to a variety of stimuli. Two stimuli receiving a great deal of recent attention are increased amino acid availability and exercise. Both of these effectors stimulate protein synthesis in part through activation of translation initiation. However, the full response of translation initiation and protein synthesis to either effector is not observed in the absence of a minimal concentration of insulin. The combination of insulin and either increased amino acid availability or endurance exercise stimulates translation initiation and protein synthesis in part through activation of the ribosomal protein S6 protein kinase S6K1 as well as through enhanced association of eukaryotic initiation factor eIF4G with eIF4E, an event that promotes binding of mRNA to the ribosome. In contrast, insulin in combination with resistance exercise stimulates translation initiation and protein synthesis through enhanced activity of a guanine nucleotide exchange protein referred to as eIF2B. In both cases, the amount of insulin required for the effects is low, and a concentration of the hormone that approximates that observed in fasting animals is sufficient for maximal stimulation. This review summarizes the results of a number of recent studies that have helped to establish our present understanding of the interactions of insulin, amino acids, and exercise in the regulation of protein synthesis in skeletal muscle.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|