1
|
Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J Allergy Clin Immunol 2023; 152:117-125. [PMID: 36918039 DOI: 10.1016/j.jaci.2023.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom.
| | - James P R Schofield
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xian Yang
- Data Science Institute, Imperial College, London, United Kingdom
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Grielof Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, United Kingdom
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
2
|
Höglund N, Nieminen P, Mustonen AM, Käkelä R, Tollis S, Koho N, Holopainen M, Ruhanen H, Mykkänen A. Fatty acid fingerprints in bronchoalveolar lavage fluid and its extracellular vesicles reflect equine asthma severity. Sci Rep 2023; 13:9821. [PMID: 37330591 PMCID: PMC10276833 DOI: 10.1038/s41598-023-36697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Abstract
Equine asthma (EA) is an inflammatory disease of the lower airways driven by mediators released from cells. Extracellular vesicles (EVs) are vehicles for lipid mediators, which possess either pro-inflammatory or dual anti-inflammatory and pro-resolving functions. In this study, we investigated how the respiratory fatty acid (FA) profile reflects airway inflammatory status. The FA composition of bronchoalveolar lavage fluid (BALF), BALF supernatant, and bronchoalveolar EVs of healthy horses (n = 15) and horses with mild/moderate EA (n = 10) or severe EA (SEA, n = 5) was determined with gas chromatography and mass spectrometry. The FA profiles distinguished samples with different diagnoses in all sample types, yet they were insufficient to predict the health status of uncategorized samples. Different individual FAs were responsible for the discrimination of the diagnoses in different sample types. Particularly, in the EVs of SEA horses the proportions of palmitic acid (16:0) decreased and those of eicosapentaenoic acid (20:5n-3) increased, and all sample types of asthmatic horses had elevated dihomo-γ-linolenic acid (20:3n-6) proportions. The results suggest simultaneous pro-inflammatory and resolving actions of FAs and a potential role for EVs as vehicles for lipid mediators in asthma pathogenesis. EV lipid manifestations of EA can offer translational targets to study asthma pathophysiology and treatment options.
Collapse
Affiliation(s)
- Nina Höglund
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Petteri Nieminen
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Anne-Mari Mustonen
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 80101, Joensuu, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Sylvain Tollis
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Ninna Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
3
|
Stevens NC, Brown VJ, Domanico MC, Edwards PC, Van Winkle LS, Fiehn O. Alteration of glycosphingolipid metabolism by ozone is associated with exacerbation of allergic asthma characteristics in mice. Toxicol Sci 2023; 191:79-89. [PMID: 36331340 PMCID: PMC9887677 DOI: 10.1093/toxsci/kfac117] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asthma is a common chronic respiratory disease exacerbated by multiple environmental factors. Acute ozone exposure has previously been implicated in airway inflammation, airway hyperreactivity, and other characteristics of asthma, which may be attributable to altered sphingolipid metabolism. This study tested the hypothesis that acute ozone exposure alters sphingolipid metabolism within the lung, which contributes to exacerbations in characteristics of asthma in allergen-sensitized mice. Adult male and female BALB/c mice were sensitized intranasally to house dust mite (HDM) allergen on days 1, 3, and 5 and challenged on days 12-14. Mice were exposed to ozone following each HDM challenge for 6 h/day. Bronchoalveolar lavage, lung lobes, and microdissected lung airways were collected for metabolomics analysis (N = 8/sex/group). Another subset of mice underwent methacholine challenge using a forced oscillation technique to measure airway resistance (N = 6/sex/group). Combined HDM and ozone exposure in male mice synergistically increased airway hyperreactivity that was not observed in females and was accompanied by increased airway inflammation and eosinophilia relative to control mice. Importantly, glycosphingolipids were significantly increased following combined HDM and ozone exposure relative to controls in both male and female airways, which was also associated with both airway resistance and eosinophilia. However, 15 glycosphingolipid species were increased in females compared with only 6 in males, which was concomitant with significant associations between glycosphingolipids and airway resistance that ranged from R2 = 0.33-0.51 for females and R2 = 0.20-0.34 in male mice. These observed sex differences demonstrate that glycosphingolipids potentially serve to mitigate exacerbations in characteristics of allergic asthma.
Collapse
Affiliation(s)
| | - Veneese J Brown
- Center for Health and the Environment, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Morgan C Domanico
- Center for Health and the Environment, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Patricia C Edwards
- Center for Health and the Environment, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
4
|
Liu JY, Pradhan SH, Hussain S, Sayes CM. Platform for Exposing Aerosolized Substances to Lung Surfactant and Alveolar Cells at the Air-Liquid Interface. ACS CHEMICAL HEALTH & SAFETY 2022. [DOI: 10.1021/acs.chas.2c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James Y. Liu
- Department of Environmental Science, Baylor University, Waco, Texas 76706, United States
| | - Sahar H. Pradhan
- Department of Environmental Science, Baylor University, Waco, Texas 76706, United States
| | - Saber Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, Ohio 45435, United States
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
5
|
Östling J, Van Geest M, Olsson HK, Dahlen SE, Viklund E, Gustafsson PM, Mirgorodskaya E, Olin AC. A novel non-invasive method allowing for discovery of pathologically relevant proteins from small airways. Clin Proteomics 2022; 19:20. [PMID: 35668386 PMCID: PMC9167914 DOI: 10.1186/s12014-022-09348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background There is a lack of early and precise biomarkers for personalized respiratory medicine. Breath contains an aerosol of droplet particles, which are formed from the epithelial lining fluid when the small airways close and re-open during inhalation succeeding a full expiration. These particles can be collected by impaction using the PExA method (Particles in Exhaled Air), and are derived from an area of high clinical interest previously difficult to access, making them a potential source of biomarkers reflecting pathological processes in the small airways. Research question Our aim was to investigate if PExA method is useful for discovery of biomarkers that reflect pathology of small airways. Methods and analysis Ten healthy controls and 20 subjects with asthma, of whom 10 with small airway involvement as indicated by a high lung clearance index (LCI ≥ 2.9 z-score), were examined in a cross-sectional design, using the PExA instrument. The samples were analysed with the SOMAscan proteomics platform (SomaLogic Inc.). Results Two hundred-seven proteins were detected in up to 80% of the samples. Nine proteins showed differential abundance in subjects with asthma and high LCI as compared to healthy controls. Two of these were less abundant (ALDOA4, C4), and seven more abundant (FIGF, SERPINA1, CD93, CCL18, F10, IgM, IL1RAP). sRAGE levels were lower in ex-smokers (n = 14) than in never smokers (n = 16). Gene Ontology (GO) annotation database analyses revealed that the PEx proteome is enriched in extracellular proteins associated with extracellular exosome-vesicles and innate immunity. Conclusion The applied analytical method was reproducible and allowed identification of pathologically interesting proteins in PEx samples from asthmatic subjects with high LCI. The results suggest that PEx based proteomics is a novel and promising approach to study respiratory diseases with small airway involvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09348-y. Key question Can the PExA method identify individual protein profiles that reflect pathology of small airways, using the SOMAscan platform? What is the bottom line? Two hundred-seven proteins were detected in up to 80% of the PEx samples, with a strong overrepresentation of proteins related to innate immune responses, including nine proteins that that discriminated subjects with asthma and high LCI as compared to healthy controls. Why read on The results support that PEx based proteomics is a novel and promising approach to study respiratory diseases with small airway involvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09348-y.
Collapse
Affiliation(s)
- Jörgen Östling
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,PExA AB, Gothenburg, Sweden
| | - Marleen Van Geest
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,Hansa Biopharma AB, Lund, Sweden
| | - Henric K Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Emilia Viklund
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Anna-Carin Olin
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Numata M, Voelker DR. Anti-inflammatory and anti-viral actions of anionic pulmonary surfactant phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159139. [PMID: 35240310 PMCID: PMC9050941 DOI: 10.1016/j.bbalip.2022.159139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), are present within the alveoli at very high concentrations, and exert anti-inflammatory effects by regulating multiple Toll like receptors (TLR2/1, TLR4, and TLR2/6) by antagonizing cognate ligand-dependent activation. POPG also attenuates LPS-induced lung injury in vivo. In addition, these lipids bind directly to RSV and influenza A viruses (IAVs) and block interaction between host cells and virions, and thereby prevent viral replication in vitro. POPG and PI also inhibit RSV and IAV infection in vivo, in mice and ferrets. The lipids markedly inhibit SARS-CoV-2 infection in vitro. These findings suggest that both POPG and PI have strong potential to be applied as both prophylaxis and post-infection treatments for problematic respiratory viral infections.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States of America; Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO 80206, United States of America.
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, CO 80206, United States of America; Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO 80206, United States of America.
| |
Collapse
|
7
|
Wijers CDM, Pham L, Douglass MV, Skaar EP, Palmer LD, Noto MJ. Gram-negative bacteria act as a reservoir for aminoglycoside antibiotics that interact with host factors to enhance bacterial killing in a mouse model of pneumonia. FEMS MICROBES 2022; 3:xtac016. [PMID: 35909464 PMCID: PMC9326624 DOI: 10.1093/femsmc/xtac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
In vitro exposure of multiple Gram-negative bacteria to an aminoglycoside (AG) antibiotic has previously been demonstrated to result in bacterial alterations that interact with host factors to suppress Gram-negative pneumonia. However, the mechanisms resulting in suppression are not known. Here, the hypothesis that Gram-negative bacteria bind and retain AGs, which are introduced into the lung and interact with host defenses to affect bacterial killing, was tested. Following in vitro exposure of one of several, pathogenic Gram-negative bacteria to the AG antibiotics kanamycin or gentamicin, AGs were detected in bacterial cell pellets (up to 208 μg/mL). Using inhibitors of AG binding and internalization, the bacterial outer membrane was implicated as the predominant kanamycin and gentamicin reservoir. Following intranasal administration of gentamicin-bound bacteria or gentamicin solution at the time of infection with live, AG-naïve bacteria, gentamicin was detected in the lungs of infected mice (up to 8 μg/g). Co-inoculation with gentamicin-bound bacteria resulted in killing of AG-naïve bacteria by up to 3-log10, mirroring the effects of intranasal gentamicin treatment. In vitro killing of AG-naïve bacteria mediated by kanamycin-bound bacteria required the presence of detergents or pulmonary surfactant, suggesting that increased bacterial killing inside the murine lung is facilitated by the detergent component of pulmonary surfactant. These findings demonstrate that Gram-negative bacteria bind and retain AGs that can interact with host-derived pulmonary surfactant to enhance bacterial killing in the lung. This may help explain why AGs appear to have unique efficacy in the lung and might expand their clinical utility.
Collapse
Affiliation(s)
- Christiaan D M Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Martin V Douglass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| | - Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, United States
| | - Michael J Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, United States
| |
Collapse
|
8
|
Blanco O, Ramírez W, Lugones Y, Díaz E, Morejón A, Rodríguez VS, Alfonso W, Labrada A. Protective effects of Surfacen® in allergen-induced asthma mice model. Int Immunopharmacol 2022; 102:108391. [PMID: 34836793 DOI: 10.1016/j.intimp.2021.108391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022]
Abstract
Airway obstruction with increased airway resistance in asthma, commonly caused by smooth muscle constriction, mucosal edema and fluid secretion into the airway lumen, may partly be due to a poor function of pulmonary surfactant. Surfacen®, a clinical pulmonary surfactant, has anti-inflammatory action, but its effect on asthma has not been studied. This work aimed to evaluate the effect of Surfacen® in a murine allergen-induced acute asthma model, using house dust mite allergens. In a therapeutic experimental setting, mice were first sensitized by being administered with two doses (sc) of Dermatophagoides siboney allergen in aluminum hydroxide followed by one intranasal administration of the allergen. Then, sensitized mice were administered with aerosol of hypertonic 3% NaCl, Salbutamol 0.15 mg/kg, or Surfacen® 16 mg in a whole-body chamber on days 22, 23, and 24. Further, mice were subjected to aerosol allergen challenge on day 25. Surfacen® showed bronchial dilation and inhibition of Th2 inflammation (lower levels of IL-5 and IL-13 in broncoalveolar lavage) which increased IFN-γ and unchanged IL-10 in BAL. Moreover, Sufacen® administration was associated with a marked inhibition of the serum specific IgE burst upon allergen exposure, as well as, IgG2a antibody increase, suggesting potential anti-allergy effects with inclination towards Th1. These results support also the effectiveness of the aerosol administration method to deliver the drug into lungs. Surfacen® induced a favorable pharmacological effect, with a bronchodilator outcome comparable to Salbutamol, consistent with its action as a lung surfactant, and with an advantageous anti-inflammatory and anti-allergic immunomodulatory effect.
Collapse
Affiliation(s)
- Odalys Blanco
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Wendy Ramírez
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Yuliannis Lugones
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Elaine Díaz
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Alain Morejón
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Valentín S Rodríguez
- Universidad de Ciencias Médicas de Camagüey. Hospital General Docente Martín Chang Puga, Nuevitas. Camagüey, Cuba
| | - Wilma Alfonso
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Alexis Labrada
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba.
| |
Collapse
|
9
|
Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30:30/162/210077. [PMID: 34911693 DOI: 10.1183/16000617.0077-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.
Collapse
Affiliation(s)
- Nadia Milad
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada .,Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
10
|
Wilde MJ, Siddiqui S. Endotyping Asthma - Profiling the Metabolic Dimension? Am J Respir Crit Care Med 2021; 205:261-263. [PMID: 34914570 PMCID: PMC8886991 DOI: 10.1164/rccm.202111-2605ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael J Wilde
- University of Plymouth, 6633, School of Geography, Earth and Environmental Sciences (Faculty of Science and Engineering), Plymouth, Devon, United Kingdom of Great Britain and Northern Ireland
| | - Salman Siddiqui
- Institute for Lung Health/University of Leicester, Infection, Immunity and Inflammation, Leicester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
11
|
Hussein MA, Ismail NEM, Mohamed AH, Borik RM, Ali AA, Mosaad YO. Plasma Phospholipids: A Promising Simple Biochemical Parameter to Evaluate COVID-19 Infection Severity. Bioinform Biol Insights 2021; 15:11779322211055891. [PMID: 34840499 PMCID: PMC8619733 DOI: 10.1177/11779322211055891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/10/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Coronavirus-19 (COVID-19) pandemic is a worldwide public health problem that has been known in China since December 25, 2019. Phospholipids are structural components of the mammalian cytoskeleton and cell membranes. They suppress viral attachment to the plasma membrane and subsequent replication in lung cells. In the virus-infected lung, phospholipids are highly prone to oxidation by reactive oxygen species, leading to the production of oxidized phospholipids (OxPLs). OBJECTIVE This study was carried out to explain the correlation between the level of plasma phospholipids in patients with COVID-19 infection and the levels of cytokine storms to assess the severity of the disease. METHODS Plasma samples from 34 enrolled patients with mild, moderate, and severe COVID-19 infection were collected. Complete blood count (CBC), plasma levels of D-dimer, ferritin, C-reactive protein (CRP), cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), phospholipids, secretory phospholipase A2 (sPLA2)α2, and cytokine storms were estimated, and lung computed tomography (CT) imaging was detected. RESULTS The CBC picture showed the presence of leukopenia, lymphopenia, and eosinopenia in patients with COVID-19 infection. Furthermore, a significant increase was found in plasma levels of D-dimer, CRP, ferritin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-13 as well as sPLA2α2 activity compared to normal persons. However, plasma levels of phospholipids decreased in patients with moderate and severe COVID-19 infection, as well as significantly decreased in levels of triacylglycerols and HDL-C in plasma from patients with severe infection only, compared to normal persons. Furthermore, a lung CT scan showed the presence of inflammation in a patient with mild, moderate, and severe COVID-19 infection. CONCLUSIONS This study shows that there is a correlation between plasma phospholipid depletion and elevated cytokine storm in patients with COVID-19 infection. Depletion of plasma phospholipid levels in patients with COVID-19 infection is due to oxidative stress, induction of cytokine storm, and systemic inflammatory response after endothelial cell damage promote coagulation. According to current knowledge, patients with COVID-19 infection may need to administer surfactant replacement therapy and sPLA2 inhibitors to treat respiratory distress syndrome, which helps them to maintain the interconnected surfactant structures.
Collapse
Affiliation(s)
- Mohammed Abdalla Hussein
- Department of Biochemistry, Faculty of Applied Medical Science, October 6 University, 6th of October City, Egypt
| | | | - Ahmed H Mohamed
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Science, October 6 University, 6th of October City, Egypt
| | - Rita M Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan, Saudi Arabia
| | | | - Yasser O Mosaad
- Faculty of Pharmacy, Department of Pharmacology, Toxicology, and Biochemistry, Future University, New Cairo, Egypt
| |
Collapse
|
12
|
Wang X, Xing M, Zhang Z, Deng L, Han Y, Wang C, Fan R. Using UPLC-QTOF/MS and multivariate analysis to explore the mechanism of Bletilla Striata improving PM 2.5-induced lung impairment. Anal Biochem 2021; 631:114310. [PMID: 34280371 DOI: 10.1016/j.ab.2021.114310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is closely related to lung diseases and has become more and more harmful to public health. The traditional Chinese medicine of Bletilla Striata has the effect of clearing and nourishing the lungs in clinics. The purpose of the study is using metabolomics methods to explore the mechanism of PM2.5-induced lung injury and Bletilla Striata's therapeutic effect. In this article, we used an Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF/MS) method to identify the potential biomarkers. The results showed that there were 18 differential metabolites in the plasma and urine of rats with PM2.5-induced lung injury, involving the glycerophospholipid metabolism pathway, the tryptophan metabolism pathway, and the purine metabolism pathway, etc. After the administration, Bletilla Striata changed the levels of 21 metabolites, and partly corrected the changes in the level of metabolites caused by PM2.5. The results indicated that Bletilla Striata could exert a good therapeutic effect by reversing the levels of some biomarkers in the rats with PM2.5-induced lung impairment.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Meiqi Xing
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ze Zhang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Lili Deng
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Yumo Han
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Chen Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China.
| |
Collapse
|
13
|
Gad El-Hak HN, Mohamed OE, Nabil ZI. Evaluating the protective role of Deglycyrrhizinated licorice root supplement on bleomycin induced pulmonary oxidative damage. Toxicol Mech Methods 2021; 32:180-193. [PMID: 34488542 DOI: 10.1080/15376516.2021.1977881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to investigate the protective effect of licorice supplements in a rat model of Bleomycin-induced lung oxidative damage over a duration of one month. The rats were randomly divided into six groups (n = 10 per group). Control group; Bleomycin group (B): rats were IP injected with bleomycin 5 mg/kg twice weekly. Licorice group (L): rats received orally 300 mg/kg licorice extract. Bleomycin and a low dose of Licorice group (BLLG): rats received orally 75 mg/kg licorice daily and injected as the B group. Bleomycin and a middle dose of Licorice group (BMLG): rats received orally 150 mg/kg licorice daily and injected as the Bleomycin group. Bleomycin and a high dose of Licorice group (BHLG): rats received orally 300 mg/kg licorice daily and injected as the Bleomycin group. Treatment with Bleomycin induced inflammation and oxidative damage to the lungs expressed in the disturbance of the measured parameters in the blood serum, the lung tissue, and the broncholavage fluid. In addition to the decreased expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) in the lung tissues. Bleomycin caused deformative changes in the histopathological and cellular examination of the lungs especially in the alveolar cells and the interstitial space. On the other hand, treated the bleomycin group with different doses of licorice supplement activates the antioxidant defense mechanism and attenuates the oxidative damage and damage induced to the lung. In conclusion, Deglycyrrhizinated licorice root supplement provided strong antioxidant and protective effects on Bleomycin-induced lung damage.
Collapse
Affiliation(s)
- Heba N Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Osman E Mohamed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Zohour I Nabil
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
14
|
You YN, Xing QQ, Zhao X, Ji JJ, Yan H, Zhou T, Dong YM, Ren LS, Hou ST, Ding YY. Gu-Ben-Fang-Xiao decoction modulates lipid metabolism by activating the AMPK pathway in asthma remission. Biomed Pharmacother 2021; 138:111403. [PMID: 33714782 DOI: 10.1016/j.biopha.2021.111403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gu-Ben-Fang-Xiao decoction (GBFXD), derived from the traditional Chinese medicine Yu-Ping-Feng-San, is widely used in clinical settings and has obvious curative effects in respiratory diseases. GBFXD regulates cholesterol transport and lipid metabolism in chronic persistent asthma. There is evidence for its beneficial effects in the remission stage of asthma; however, its metabolic regulatory effects and underlying mechanisms during asthma remission are unclear. In the present study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse the metabolic profile of mouse serum during asthma remission. The acquired LC-MS data were subjected to a multivariate analysis for identification of significantly altered metabolites. In total, 42 metabolites were significantly differentially expressed among the control, model, and GBFXD groups. In particular, levels of fatty acids, acylcarnitines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, and diacylglycerols were altered during asthma remission. GBFXD may maintain lipid homeostasis on the lung surface by modulating lipid metabolism and may thereby alleviate asthma. We further quantified hypogeic acid (FA 16:1) based on targeted metabolomics and found that GBFXD may regulate fatty acid metabolism by activating the AMP-activated protein kinase (AMPK) pathway. These results support the use of GBFXD in patients with asthma remission.
Collapse
Affiliation(s)
- Yan-Nan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Jian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Shun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan-Yuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
Ellis SR, Hall E, Panchal M, Flinders B, Madsen J, Koster G, Heeren RMA, Clark HW, Postle AD. Mass spectrometry imaging of phosphatidylcholine metabolism in lungs administered with therapeutic surfactants and isotopic tracers. J Lipid Res 2021; 62:100023. [PMID: 33453219 PMCID: PMC7961103 DOI: 10.1016/j.jlr.2021.100023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mass spectrometry imaging (MSI) visualizes molecular distributions throughout tissues but is blind to dynamic metabolic processes. Here, MSI with high mass resolution together with multiple stable isotope labeling provided spatial analyses of phosphatidylcholine (PC) metabolism in mouse lungs. Dysregulated surfactant metabolism is central to many respiratory diseases. Metabolism and turnover of therapeutic pulmonary surfactants were imaged from distributions of intact and metabolic products of an added tracer, universally 13C-labeled dipalmitoyl PC (U13C-DPPC). The parenchymal distributions of newly synthesized PC species were also imaged from incorporations of methyl-D9-choline. This dual labeling strategy demonstrated both lack of inhibition of endogenous PC synthesis by exogenous surfactant and location of acyl chain remodeling processes acting on the U13C-DPPC-labeled surfactant, leading to formation of polyunsaturated PC lipids. This ability to visualize discrete metabolic events will greatly enhance our understanding of lipid metabolism in diverse tissues and has potential application to both clinical and experimental studies.
Collapse
Affiliation(s)
- Shane R Ellis
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Emily Hall
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Madhuriben Panchal
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Bryn Flinders
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands
| | - Jens Madsen
- Elizabeth Garrett Anderson Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Grielof Koster
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, The Netherlands
| | - Howard W Clark
- Elizabeth Garrett Anderson Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom; National Institute for Health Biomedical Research Centre, University College London Hospital Biomedical Research Centre, London, United Kingdom
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
16
|
Shanmugam T, Joshi N, Kaviratna A, Ahamad N, Bhatia E, Banerjee R. Aerosol Delivery of Paclitaxel-Containing Self-Assembled Nanocochleates for Treating Pulmonary Metastasis: An Approach Supporting Pulmonary Mechanics. ACS Biomater Sci Eng 2021; 7:144-156. [PMID: 33346632 DOI: 10.1021/acsbiomaterials.0c01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Paclitaxel (PTX) is a potent anticancer agent, which is clinically administered by infusion for treating pulmonary metastasis of different cancers. Systemic injection of PTX is promising in treating pulmonary metastasis of various cancers but simultaneously leads to many severe complications in the body. In this study, we have demonstrated a noninvasive approach for delivering PTX to deep pulmonary tissues via an inhalable phospholipid-based nanocochleate platform and showed its potential in treating pulmonary metastasis of melanoma cancer. Nanocochleates have been previously explored for oral delivery of anticancer drugs; their application for aerosol-based administration has not been accomplished in the literature thus far. Our results showed that the PTX-carrying aerosol nanocochleates (PTX-CPTs) possessed excellent pulmonary surfactant action characterized by high surface activity and encouraging in vitro terminal airway patency when compared to the marketed Taxol formulation, which is known to contain a high amount of Cremophore EL. We observed under in vitro twin-impinger analysis that the PTX-CPT had a high tendency to get deposited in stage II (alveolar region of lungs), indicating the capability of CPT to reach the deep alveolar region. Further, while exposed to the human lung adenocarcinoma cell line (A549), the PTX-CPT showed excellent cytotoxicity mediated by enhanced cellular uptake via energy-dependent endocytosis. Aerosol-based administration of PTX-CPT in a pulmonary metastatic murine melanoma model (B16F10) resulted in significant (p < 0.05) tumor growth inhibition when compared to an intravenous dose of Taxol. Inhibition of tumor growth in aerosol-based PTX-CPT-treated animals was evident by the significant (p < 0.05) reduction in numbers of tumor nodules and percent metastasis area covered by melanoma cells in the lung when compared to other treatment groups. Overall, our finding suggests that PTX can be safely administered in the form of an aerosol using a newly developed CPT system, which serves a dual purpose as both a drug delivery carrier and a pulmonary surfactant in treating pulmonary metastasis.
Collapse
Affiliation(s)
- Thanigaivel Shanmugam
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nitin Joshi
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Anubhav Kaviratna
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Hussain-Alkhateeb L, Bake B, Holm M, Emilsson Ö, Mirgorodskaya E, Olin AC. Novel non-invasive particles in exhaled air method to explore the lining fluid of small airways-a European population-based cohort study. BMJ Open Respir Res 2021; 8:8/1/e000804. [PMID: 33402401 PMCID: PMC7786806 DOI: 10.1136/bmjresp-2020-000804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Respiratory tract lining fluid of small airways mainly consists of surfactant that can be investigated by collection of the particles of exhaled aerosol (PExA) method. This offers an exciting prospect to monitor small airway pathology, including subjects with asthma and smokers. AIM To explore the influence of anthropometric factors and gender on phospholipids, surfactant protein A (SP-A) and albumin of the lining fluid of small airwaysand to examine the association with asthma and smoking. Furthermore, to examine if the surfactant components can predict lung function in terms of spirometry variables. METHOD This study employs the population-based cohort of the European Community Respiratory Health Survey III, including participants from Gothenburg city, Sweden (n=200). The PExA method enabled quantitative description and analytical analysis of phospholipids, SP-A and albumin of the lining fluid of small airways. RESULTS Age was a significant predictor of the phospholipids. The components PC14:0/16:0, PC16:0/18:2 (PC, phosphatidylcholine) and SP-A were higher among subjects with asthma, whereas albumin was lower. Among smokers, there were higher levels particularly of di-palmitoyl-di-phosphatidyl-choline compared with non-smokers. Most phospholipids significantly predicted the spirometry variables. CONCLUSION This non-invasive PExA method appears to have great potential to explore the role of lipids and proteins of surfactant in respiratory disease.
Collapse
Affiliation(s)
- Laith Hussain-Alkhateeb
- Public Health and Community Medicine, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| | - Björn Bake
- Department of Respiratory Medicine and Allergology, Insitute of Medicine, Gothenburg, Sweden
| | - Mathias Holm
- Public Health and Community Medicine, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| | - Össur Emilsson
- Department of Medical Sciences, Respiratory, allergy and sleep research, Uppsala University, Uppsala, Sweden
| | | | - Anna-Carin Olin
- Public Health and Community Medicine, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| |
Collapse
|
18
|
Hamed R, Schenck DM, Fiegel J. Surface rheological properties alter aerosol formation from mucus mimetic surfaces. SOFT MATTER 2020; 16:7823-7834. [PMID: 32756700 DOI: 10.1039/d0sm01232g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effects of surface tension and surface viscoelastic properties on the formation of aerosol droplets generated from mucus-like viscoelastic gels (mucus mimetics) during shearing with a high velocity air stream were investigated. Mucus mimetic samples were formulated with similar composition (94% water and 6% dissolved solids, consisting of mucins, proteins, and ions), surface tension (via the addition of surfactant to the mimetic surface) and bulk viscoelastic properties (via crosslinking of mucin macromolecules in the mimetic) to that of native non-diseased tracheal mucus. The surface tension of the mucus mimetic was decreased by spreading one of two surfactants, dipalmitoyl phosphatidylcholine (DPPC) or calf lung surfactant (Infasurf®), on the mimetic surface. Aerosols were generated from the mimetic surfaces during simulated coughing using an enhanced simulated cough machine (ESCM) operating under controlled environmental conditions. The size distribution of aerosol droplets generated during simulated coughing from the surfactant-coated mimetic surfaces was multimodal, while no droplets were generated from the bare mimetic surface due to its high surface viscoelastic properties and high surface tension. The concentration of aerosols generated from the DPPC-coated mimetic was higher than that of the Infasurf®-coated mimetic, even though the surface tension of the two interfaces was the same. The experimental results suggest that a balance of surface elastic behavior and surface viscous behavior is required for the generation of aerosols from the viscoelastic surfaces.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA, USA
| | - Daniel M Schenck
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA, USA
| | - Jennifer Fiegel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA, USA and Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
da Costa Loureiro L, da Costa Loureiro L, Gabriel-Junior EA, Zambuzi FA, Fontanari C, Sales-Campos H, Frantz FG, Faccioli LH, Sorgi CA. Pulmonary surfactant phosphatidylcholines induce immunological adaptation of alveolar macrophages. Mol Immunol 2020; 122:163-172. [PMID: 32361419 DOI: 10.1016/j.molimm.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant plays an important role in lung surface tension, defense against invading pathogens, and immune response. Furthermore, alveolar macrophages (AM) that comprise the front line of immune defense against inhaled microorganisms are covered by a layer of pulmonary fluid. Phosphatidylcholines (PCs), including unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), are the most prevalent phospholipids in pulmonary surfactant. POPC reacts with ozone to produce 1-palmitoyl-2-(9-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC), a soluble mediator that initiates an inflammatory reaction in the lungs. However, the modulatory effects of POPC and PONPC on biology and activity of AM remain inconclusive. The exposure of AM (cell line AMJ2-C11) to POPC and PONPC was not directly related to the production of inflammatory mediators. However, AM, pre-incubated with POPC or PONPC, showed enhanced response after lipopolysaccharide (LPS) stimulation, and increased the production of nitric oxide and cytokines. This phenomenon was also observed for classical-polarized macrophages (M1). This increment on the production of inflammatory mediators was not associated with macrophage polarization, but with up-regulation of Tlr4 and Myd88 gene expression, which was in accordance with the adaptation of immune cells. This observation was confirmed by the histone acetylation epigenetic pathway. In contrast to the priming effect of POPC on AM activity, a harmful immune response, induced on incubation with PONPC, improved prostaglandin E2 (PGE2) formation, resulting in diminished bacterial phagocytosis. Additionally, PONPC induced production of CXCL1/KC, which potentially mediates neutrophil recruitment and enhances tissue inflammation. These results disclosed another dynamic mechanism by which pulmonary surfactant lipids (natural or oxidized) primed macrophage activity, thus affecting lung host defense.
Collapse
Affiliation(s)
- Luma da Costa Loureiro
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana da Costa Loureiro
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edson Alves Gabriel-Junior
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiana Albani Zambuzi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fabiani Gai Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Arterio Sorgi
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Numata M, Mitchell JR, Tipper JL, Brand JD, Trombley JE, Nagashima Y, Kandasamy P, Chu HW, Harrod KS, Voelker DR. Pulmonary surfactant lipids inhibit infections with the pandemic H1N1 influenza virus in several animal models. J Biol Chem 2020; 295:1704-1715. [PMID: 31882535 PMCID: PMC7008372 DOI: 10.1074/jbc.ra119.012053] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden. In this study, we examined whether palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI) effectively antagonize (H1N1)pdm09 infection. POPG and PI markedly suppressed cytopathic effects and attenuated viral gene expression in (H1N1)pdm09-infected Madin-Darby canine kidney cells. POPG and PI bound to (H1N1)pdm09 with high affinity and disrupted viral spread from infected to noninfected cells in tissue culture and also reduced (H1N1)pdm09 propagation by a factor of 102 after viral infection was established in vitro In a mouse infection model of (H1N1)pdm09, POPG and PI significantly reduced lung inflammation and viral burden. Of note, when mice were challenged with a typically lethal dose of 1000 plaque-forming units of (H1N1)pdm09, survival after 10 days was 100% (14 of 14 mice) with the POPG treatment compared with 0% (0 of 14 mice) without this treatment. POPG also significantly reduced inflammatory infiltrates and the viral burden induced by (H1N1)pdm09 infection in a ferret model. These findings indicate that anionic phospholipids potently and efficiently disrupt influenza infections in animal models.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, Colorado 80206
| | - James R Mitchell
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, Colorado 80206
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Tokyo 1628666, Japan
| | - Pitchaimani Kandasamy
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, Colorado 80206
| | - Hong Wei Chu
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, Colorado 80206
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Dennis R Voelker
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, Colorado 80206.
| |
Collapse
|
21
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
22
|
Seidl E, Kiermeier H, Liebisch G, Ballmann M, Hesse S, Paul-Buck K, Ratjen F, Rietschel E, Griese M. Lavage lipidomics signatures in children with cystic fibrosis and protracted bacterial bronchitis. J Cyst Fibros 2019; 18:790-795. [DOI: 10.1016/j.jcf.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
|
23
|
Radivojev S, Zellnitz S, Paudel A, Fröhlich E. Searching for physiologically relevant in vitro dissolution techniques for orally inhaled drugs. Int J Pharm 2019; 556:45-56. [DOI: 10.1016/j.ijpharm.2018.11.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023]
|
24
|
Brandsma J, Goss VM, Yang X, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Sousa AR, Pandis I, Bansal AT, Sterk PJ, Djukanović R, Postle AD. Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers. Metabolomics 2018; 14:123. [PMID: 30830396 PMCID: PMC6153688 DOI: 10.1007/s11306-018-1412-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/12/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Lung epithelial lining fluid (ELF)-sampled through sputum induction-is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood. OBJECTIVES To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort. METHODS Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes. RESULTS The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender. CONCLUSIONS We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Xian Yang
- Data Science Institute, Imperial College, London, UK
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK
| | - Ildiko Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, UK
| | | | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, UK
| | | | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, UK
| | - Peter J Sterk
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, UK
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
25
|
Madsen J, Panchal MH, Mackay RMA, Echaide M, Koster G, Aquino G, Pelizzi N, Perez-Gil J, Salomone F, Clark HW, Postle AD. Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice. J Lipid Res 2018; 59:1880-1892. [PMID: 30108154 PMCID: PMC6168297 DOI: 10.1194/jlr.m085431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species.
Collapse
Affiliation(s)
- Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Madhuriben H Panchal
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rose-Marie A Mackay
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mercedes Echaide
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Hospital 12 de Octubre Research Institute, Complutense University, Madrid, Spain
| | - Grielof Koster
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | | | | | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Hospital 12 de Octubre Research Institute, Complutense University, Madrid, Spain
| | | | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom .,National Institute for Health Research, Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
26
|
Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim YI, Spell ML, Wang Y, Chanda D, Dager JR, Sharma NS, Curtiss M, Antony VB, Dransfield MT, Chaplin DD, Steele C, Barnes S, Duncan SR, Prasain JK, Thannickal VJ, Deshane JS. Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Sci Rep 2018; 8:10340. [PMID: 29985427 PMCID: PMC6037776 DOI: 10.1038/s41598-018-28655-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic inflammatory disease process involving the conductive airways of the human lung. The dysregulated inflammatory response in this disease process may involve multiple cell-cell interactions mediated by signaling molecules, including lipid mediators. Extracellular vesicles (EVs) are lipid membrane particles that are now recognized as critical mediators of cell-cell communication. Here, we compared the lipid composition and presence of specific lipid mediators in airway EVs purified from the bronchoalveolar lavage (BAL) fluid of healthy controls and asthmatic subjects with and without second-hand smoke (SHS) exposure. Airway exosome concentrations were increased in asthmatics, and correlated with blood eosinophilia and serum IgE levels. Frequencies of HLA-DR+ and CD54+ exosomes were also significantly higher in asthmatics. Lipidomics analysis revealed that phosphatidylglycerol, ceramide-phosphates, and ceramides were significantly reduced in exosomes from asthmatics compared to the non-exposed control groups. Sphingomyelin 34:1 was more abundant in exosomes of SHS-exposed asthmatics compared to healthy controls. Our results suggest that chronic airway inflammation may be driven by alterations in the composition of lipid mediators within airway EVs of human subjects with asthma.
Collapse
Affiliation(s)
- Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon S Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Trevor
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John G Strenkowski
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Njeri Maina
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Il Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marion L Spell
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diptiman Chanda
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose Rodriguez Dager
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirmal S Sharma
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miranda Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Wang X, Jiang S, Liu Y, Du X, Zhang W, Zhang J, Shen H. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:41-50. [PMID: 28297636 DOI: 10.1016/j.scitotenv.2017.03.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Airborne fine particulate matter (PM2.5) has been closely related with a variety of lung diseases. Although some modes of action (e.g. oxidative stress, inflammations) have been proposed, but the pulmonary toxicological mechanism remains obscure. In this paper, in order to understand the comprehensive pulmonary response to PM2.5 stress, a non-targeted high-throughput metabolomics strategy was adopted to characterize the overall metabolic changes and relevant toxicological pathways. PM2.5 samples were collected from Tangshan, one of the most polluted cities in China. Adult male rats were treated with PM2.5 suspension once a week at the dose of 1mg/kg/week through intratracheal instillation in three months. Aqueous and organic metabolite extracts of the lung tissues were subjected to metabolomics analysis using ultra-high performance liquid chromatograph/mass spectrometry. Along with a significant increase of oxidative stress, significant metabolome alterations were observed in the lung tissues of the treated rats. Nineteen metabolites were found decreased and 31 metabolites increased, which are mainly involved in lipid and nucleotide metabolism. Integrated pathway analysis suggests that PM2.5 can induce pulmonary toxicity through disturbing pro-oxidant/antioxidant balance, which may further correlate with metabolism changes of phospholipid, glycerophospholipid, sphingolipid and purine. These findings improve our understanding of the toxicological pathways of PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaofei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Liu
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| |
Collapse
|
28
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Larsson P, Bake B, Wallin A, Hammar O, Almstrand AC, Lärstad M, Ljungström E, Mirgorodskaya E, Olin AC. The effect of exhalation flow on endogenous particle emission and phospholipid composition. Respir Physiol Neurobiol 2017; 243:39-46. [PMID: 28502893 DOI: 10.1016/j.resp.2017.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
Abstract
Exhaled particles constitute a micro-sample of respiratory tract lining fluid. Inhalations from low lung volumes generate particles in small airways by the airway re-opening mechanism. Forced exhalations are assumed to generate particles in central airways by mechanisms associated with high air velocities. To increase knowledge on how and where particles are formed, different breathing manoeuvres were compared in 11 healthy volunteers. Particles in the 0.41-4.55μm diameter range were characterised and sampled. The surfactant lipid dipalmitoylphosphatidylcholine (DPPC) was quantified by mass spectrometry. The mass of exhaled particles increased by 150% (95% CI 10-470) for the forced exhalation and by 470% (95% CI 150-1190) for the airway re-opening manoeuvre, compared to slow exhalations. DPPC weight percent concentration (wt%) in particles was 2.8wt% (95%CI 1.4-4.2) and 9.4wt% (95%CI 8.0-10.8) for the forced and the airway re-opening manoeuvres, respectively. In conclusion, forced exhalation and airway re-opening manoeuvres generate particles from different airway regions having different DPPC concentration.
Collapse
Affiliation(s)
- Per Larsson
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Björn Bake
- Unit of Respiratory Medicine and Allergy, Department of Internal Medicine, Institute of medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anita Wallin
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oscar Hammar
- AstraZeneca, R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Ann-Charlotte Almstrand
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mona Lärstad
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Evert Ljungström
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Olin
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Zemski Berry KA, Murphy RC, Kosmider B, Mason RJ. Lipidomic characterization and localization of phospholipids in the human lung. J Lipid Res 2017; 58:926-933. [PMID: 28280112 PMCID: PMC5408611 DOI: 10.1194/jlr.m074955] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Indexed: 01/22/2023] Open
Abstract
Lipids play a central role in lung physiology and pathology; however, a comprehensive lipidomic characterization of human pulmonary cells relevant to disease has not been performed. The cells involved in lung host defense, including alveolar macrophages (AMs), bronchial epithelial cells (BECs), and alveolar type II cells (ATIIs), were isolated from human subjects and lipidomic analysis by LC-MS and LC-MS/MS was performed. Additionally, pieces of lung tissue from the same donors were analyzed by MALDI imaging MS in order to determine lipid localization in the tissue. The unique distribution of phospholipids in ATIIs, BECs, and AMs from human subjects was accomplished by subjecting the large number of identified phospholipid molecular species to univariant statistical analysis. Specific MALDI images were generated based on the univariant statistical analysis data to reveal the location of specific cell types within the human lung slice. While the complex composition and function of the lipidome in various disease states is currently poorly understood, this method could be useful for the characterization of lipid alterations in pulmonary disease and may aid in a better understanding of disease pathogenesis.
Collapse
Affiliation(s)
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Beata Kosmider
- Department of Medicine, National Jewish Health, Denver, CO 80206
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, CO 80206
| |
Collapse
|
31
|
Magniez JC, Baudoin M, Liu C, Zoueshtiagh F. Dynamics of liquid plugs in prewetted capillary tubes: from acceleration and rupture to deceleration and airway obstruction. SOFT MATTER 2016; 12:8710-8717. [PMID: 27714328 DOI: 10.1039/c6sm01463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dynamics of individual liquid plugs pushed at a constant pressure head inside prewetted cylindrical capillary tubes is investigated experimentally and theoretically. It is shown that, depending on the thickness of the prewetting film and the magnitude of the pressure head, the plugs can either experience a continuous acceleration leading to a dramatic decrease of their size and eventually their rupture or conversely, a progressive deceleration associated with their growth and an exacerbation of the airway obstruction. These behaviors are quantitatively reproduced using a simple nonlinear model [Baudoin et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 859] adapted here for cylindrical channels. Furthermore, an analytical criterion for the transition between these two regimes is derived and successfully compared with extensive experimental data. The potential implications of this work for pulmonary obstructive diseases are discussed.
Collapse
Affiliation(s)
- J C Magniez
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - M Baudoin
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - C Liu
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - F Zoueshtiagh
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
32
|
Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 2016; 48:1201-1214. [PMID: 27587549 DOI: 10.1183/13993003.00120-2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Owing to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences constitute essential first and second lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease.
Collapse
Affiliation(s)
- William J Janssen
- Dept of Medicine, National Jewish Health, Denver, CO, USA Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Bruce S Bochner
- Dept of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher M Evans
- Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
33
|
Zemski Berry KA, Murphy RC. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages. Chem Res Toxicol 2016; 29:1355-64. [PMID: 27448436 DOI: 10.1021/acs.chemrestox.6b00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| |
Collapse
|
34
|
Kandasamy P, Numata M, Berry KZ, Fickes R, Leslie CC, Murphy RC, Voelker DR. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit toll-like receptor 2 and 4 signaling. J Lipid Res 2016; 57:993-1005. [PMID: 27095543 DOI: 10.1194/jlr.m065201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
The pulmonary surfactant phospholipid, 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), potently inhibits toll-like receptor (TLR)2 and TLR4 signaling from the cell surface of macrophages. Analogs of POPG that vary in polar head group length, hydroxylation, and alkyl branching were synthesized using a phospholipase D-catalyzed transphosphatidylation reaction and a 1-palmitoyl-2-oleoyl phosphatidylcholine substrate. Lipid analogs with C3 and C4 alkyl head group length (POP-propanol and POP-butanol) are less effective than POPG as TLR2 and TLR4 antagonists. However, adding a hydroxyl group at the alkyl chain 3- or 4-position (POP-propanediols or POP-butanediols) greatly increased their inhibitory effects against TLR2 and TLR4. POP-2',2'-dimethylpropanediol is a weak inhibitor of TLR2 and TLR4 activation that results in arachidonic acid release, but an effective inhibitor of TLR4 activation that results in TNF-α production. Addition of an amino group at the alkyl-2 position (POP-2'-aminopropanediol) completely abolished the antagonism of TLRs 2 and 4. Multiple analogs strongly bind to the TLR4 coreceptors, cluster of differentiation 14 (CD14) and myeloid differentiation 2, but competition for di[3-deoxy-D-manno-octulosonyl]-lipid A binding to CD14 is the best predictor of biological activity at the cellular level. Collectively, these findings identify new compounds for antagonizing TLR2 and TLR4 activation and define structural properties of POPG analogs for discriminating between two TLR systems.
Collapse
Affiliation(s)
- Pitchaimani Kandasamy
- Departments of Medicine, Basic Science Section, National Jewish Health, Denver, CO 80206
| | - Mari Numata
- Departments of Medicine, Basic Science Section, National Jewish Health, Denver, CO 80206
| | | | - Rachel Fickes
- Departments of Medicine, Basic Science Section, National Jewish Health, Denver, CO 80206
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Aurora, CO 80045
| | - Dennis R Voelker
- Departments of Medicine, Basic Science Section, National Jewish Health, Denver, CO 80206
| |
Collapse
|
35
|
Ullah S, Sandqvist S, Beck O. Measurement of Lung Phosphatidylcholines in Exhaled Breath Particles by a Convenient Collection Procedure. Anal Chem 2015; 87:11553-60. [DOI: 10.1021/acs.analchem.5b03433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shahid Ullah
- Department
of Laboratory Medicine, Karolinska Institute, 14183 Stockholm, Sweden
| | - Sören Sandqvist
- Department
of Clinical Pharmacology, Karolinska University Laboratory, 14186 Huddinge, Sweden
| | - Olof Beck
- Department
of Laboratory Medicine, Karolinska Institute, 14183 Stockholm, Sweden
- Department
of Clinical Pharmacology, Karolinska University Laboratory, 14186 Huddinge, Sweden
| |
Collapse
|
36
|
Griese M, Kirmeier HG, Liebisch G, Rauch D, Stückler F, Schmitz G, Zarbock R. Surfactant lipidomics in healthy children and childhood interstitial lung disease. PLoS One 2015; 10:e0117985. [PMID: 25692779 PMCID: PMC4333572 DOI: 10.1371/journal.pone.0117985] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
Background Lipids account for the majority of pulmonary surfactant, which is essential for normal breathing. We asked if interstitial lung diseases (ILD) in children may disrupt alveolar surfactant and give clues for disease categorization. Methods Comprehensive lipidomics profiles of broncho-alveolar lavage fluid were generated in 115 children by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Two reference populations were compared to a broad range of children with ILD. Results Class and species composition in healthy children did not differ from that in children with ILD related to diffuse developmental disorders, chronic tachypnoe of infancy, ILD related to lung vessels and the heart, and ILD related to reactive lymphoid lesions. As groups, ILDs related to the alveolar surfactant region, ILD related to unclear respiratory distress syndrome in the mature neonate, or in part ILD related to growth abnormalities reflecting deficient alveolarisation, had significant alterations of some surfactant specific phospholipids. Additionally, lipids derived from inflammatory processes were identified and differentiated. In children with ABCA3-deficiency from two ILD causing mutations saturated and monounsaturated phosphatidylcholine species with 30 and 32 carbons and almost all phosphatidylglycerol species were severely reduced. In other alveolar disorders lipidomic profiles may be of less diagnostic value, but nevertheless may substantiate lack of significant involvement of mechanisms related to surfactant lipid metabolism. Conclusions Lipidomic profiling may identify specific forms of ILD in children with surfactant alterations and characterized the molecular species pattern likely to be transported by ABCA3 in vivo.
Collapse
Affiliation(s)
- Matthias Griese
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
- * E-mail:
| | - Hannah G. Kirmeier
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Gerhard Liebisch
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniela Rauch
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Ferdinand Stückler
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Zarbock
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | | |
Collapse
|
37
|
Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:179-85. [PMID: 25369257 PMCID: PMC4314248 DOI: 10.1289/ehp.1408235] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 11/03/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although pesticide use is widespread, the possible effect of early-life exposure to organophosphate (OP) on pediatric respiratory health is not well described. OBJECTIVES We investigated the relationship between early-life exposure to OPs and respiratory outcomes. METHODS Participants included 359 mothers and children from the CHAMACOS birth cohort. Dialkyl phosphate (DAP) metabolites of OP pesticides, specifically diethyl (DE) and dimethyl (DM) phosphate metabolites, were measured in urine from mothers twice during pregnancy (mean = 13 and 26 weeks gestation) and from children five times during childhood (0.5-5 years). Childhood DAP concentrations were estimated by the area under curve (AUC). Mothers reported their child's respiratory symptoms at 5 and 7 years of age. We used generalized estimating equations (GEE) to examine associations of prenatal and childhood DAP concentrations with repeated measures of respiratory symptoms and exercise-induced coughing at 5 and 7 years of age, adjusting for child's sex and age, maternal smoking during pregnancy, secondhand tobacco smoke, season of birth, PM2.5, breastfeeding, mold and cockroaches in home, and distance from highway. RESULTS Higher prenatal DAP concentrations, particularly DE, were nonsignificantly associated with respiratory symptoms in the previous 12 months at 5 or 7 years of age [adjusted odds ratio (aOR) per 10-fold increase = 1.44; 95% CI: 0.98, 2.12]. This association was strongest with total DAP and DE from the second half of pregnancy (aOR per 10-fold increase = 1.77; 95% CI: 1.06, 2.95; and 1.61; 95% CI: 1.08, 2.39, respectively). Childhood DAP, DE, and DM concentrations were associated with respiratory symptoms and exercise-induced coughing in the previous 12 months at 5 or 7 years of age (total DAPs: aOR per 10-fold increase = 2.53; 95% CI: 1.32, 4.86; and aOR = 5.40; 95% CI: 2.10, 13.91, respectively). CONCLUSIONS Early-life exposure to OP pesticides was associated with respiratory symptoms consistent with possible asthma in childhood.
Collapse
Affiliation(s)
- Rachel Raanan
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
38
|
Carraro S, Giordano G, Pirillo P, Maretti M, Reniero F, Cogo PE, Perilongo G, Stocchero M, Baraldi E. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J Pediatr 2015; 166:234-9.e1. [PMID: 25294602 DOI: 10.1016/j.jpeds.2014.08.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/23/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess a group of adolescents with bronchopulmonary dysplasia (BPD) from a biochemical-metabolic standpoint, applying the metabolomic approach to studying their exhaled breath condensate (EBC). STUDY DESIGN Twenty adolescents with BPD (mean age 14.8 years) and 15 healthy controls (mean age 15.2 years) were recruited for EBC collection, exhaled nitric oxide measurement, and spirometry. The EBC samples were analyzed using a metabolomic approach based on mass spectrometry. The obtained spectra were analyzed using multivariate statistical analysis tools. RESULTS A reliable Orthogonal Projections to Latent Structures-Discriminant Analysis model showed a clear discrimination between cases of BPD and healthy controls (R(2) = 0.95 and Q(2) = 0.92). The search for putative biomarkers identified an altered complex lipid profile in the adolescents with BPD. CONCLUSIONS The metabolomic analysis of EBC distinguishes cases of BPD from healthy individuals, suggesting that the lung of survivors of BPD is characterized by long-term metabolic abnormalities. The search for putative biomarkers indicated a possible role of an altered surfactant composition, which may persist far beyond infancy.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Giuseppe Giordano
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Paola Pirillo
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Michela Maretti
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Fabiano Reniero
- European Commission, Joint Research Center, Institute for Health and Consumer Protection (IHCP), System Toxicology Unit (ST), Ispra (VA), Italy
| | - Paola E Cogo
- Anesthesia and Cardiac Intensive Care, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Giorgio Perilongo
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | | | - Eugenio Baraldi
- Women's and Children's Health Department, University of Padova, Padova, Italy.
| |
Collapse
|
39
|
Numata M, Kandasamy P, Nagashima Y, Fickes R, Murphy RC, Voelker DR. Phosphatidylinositol inhibits respiratory syncytial virus infection. J Lipid Res 2015; 56:578-587. [PMID: 25561461 DOI: 10.1194/jlr.m055723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects nearly all children under age 2, and reinfection occurs throughout life, seriously impacting adults with chronic pulmonary diseases. Recent data demonstrate that the anionic pulmonary surfactant lipid phosphatidylglycerol (PG) exerts a potent antiviral effect against RSV in vitro and in vivo. Phosphatidylinositol (PI) is also an anionic pulmonary surfactant phospholipid, and we tested its antiviral activity. PI liposomes completely suppress interleukin-8 production from BEAS2B epithelial cells challenged with RSV. The presence of PI during viral challenge in vitro reduces infection by a factor of >10(3). PI binds RSV with high affinity, preventing virus attachment to epithelial cells. Intranasal inoculation with PI along with RSV in mice reduces the viral burden 30-fold, eliminates the influx of inflammatory cells, and reduces tissue histopathology. Pharmacological doses of PI persist for >6 h in mouse lung. Pretreatment of mice with PI at 2 h prior to viral infection effectively suppresses inflammation and reduces the viral burden by 85%. These data demonstrate that PI has potent antiviral properties, a long residence time in the extracellular bronchoalveolar compartment, and a significant prophylaxis window. The findings demonstrate PG and PI have complementary roles as intrinsic, innate immune antiviral mediators in the lung.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO 80206
| | - Pitchaimani Kandasamy
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO 80206
| | - Yoji Nagashima
- Department of Pathology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Rachel Fickes
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO 80206
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Denver, CO 80045
| | - Dennis R Voelker
- Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO 80206.
| |
Collapse
|
40
|
Dushianthan A, Goss V, Cusack R, Grocott MPW, Postle AD. Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome. Respir Res 2014; 15:128. [PMID: 25378080 PMCID: PMC4226855 DOI: 10.1186/s12931-014-0128-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening critical illness, characterised by qualitative and quantitative surfactant compositional changes associated with premature airway collapse, gas-exchange abnormalities and acute hypoxic respiratory failure. The underlying mechanisms for this dysregulation in surfactant metabolisms are not fully explored. Lack of therapeutic benefits from clinical trials, highlight the importance of detailed in-vivo analysis and characterisation of ARDS patients according to patterns of surfactant synthesis and metabolism. Methods Ten patients with moderate to severe ARDS were recruited. Most (90%) suffered from pneumonia. They had an infusion of methyl-D9-choline chloride and small volume bronchoalveolar lavage fluid (BALF) was obtained at 0,6,12,24,48,72 and 96 hours. Controls were healthy volunteers, who had BALF at 24 and 48 hours after methyl-D9-choline infusion. Compositional analysis and enrichment patterns of stable isotope labelling of surfactant phosphatidylcholine (PC) was determined by electrospray ionisation mass spectrometry. Results BALF of patients with ARDS consisted of diminished total PC and fractional PC16:0/16:0 concentrations compared to healthy controls. Compositional analysis revealed, reductions in fractional compositions of saturated PC species with elevated levels of longer acyl chain unsaturated PC species. Molecular specificity of newly synthesised PC fraction showed time course variation, with lower PC16:0/16:0 composition at earlier time points, but achieved near equilibrium with endogenous composition at 48 hours after methyl-D9-choline infusion. The enrichment of methyl-D9-choline into surfactant total PC is nearly doubled in patients, with considerable variation between individuals. Conclusions This study demonstrate significant alterations in composition and kinetics of surfactant PC extracted from ARDS patients. This novel approach may facilitate biochemical phenotyping of ARDS patients according to surfactant synthesis and metabolism, enabling individualised treatment approaches for the management of ARDS patients in the future.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK. .,Critical Care Research & Anaesthesia Unit, CE 93, MP24, E-Level, Centre Block, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Department of Critical Care Unit, Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital, Southwick Hill Road, Cosham, PO6 3LY, UK.
| | - Victoria Goss
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Rebecca Cusack
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK. .,Critical Care Research & Anaesthesia Unit, CE 93, MP24, E-Level, Centre Block, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| | - Michael P W Grocott
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK. .,Critical Care Research & Anaesthesia Unit, CE 93, MP24, E-Level, Centre Block, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.
| | - Anthony D Postle
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK. .,Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
41
|
Taylor R, Miller RH, Miller RD, Porter M, Dalgleish J, Prince JT. Automated structural classification of lipids by machine learning. Bioinformatics 2014; 31:621-5. [DOI: 10.1093/bioinformatics/btu723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park CS, Park SW, Kwon SW. Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 2014; 13:3919-29. [PMID: 25040188 DOI: 10.1021/pr5002059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To better understand the respiratory lipid phenotypes of asthma, we developed a novel method for lipid profiling of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS with an internal spectral library and high-throughput lipid-identifying software. The method was applied to BALF from 38 asthmatic patients (18 patients with nonsteroid treated bronchial asthma [NSBA] and 20 patients with steroid treated bronchial asthma [SBA]) and 13 healthy subjects (NC). We identified 69 lipids, which were categorized into one of six lipid classes: lysophosphatidylcholine (LPC), phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), sphingomyelin (SM) and triglyceride (TG). Compared with the NC group, the individual quantity levels of the six classes of lipids were significantly higher in the NSBA subjects. In the SBA subjects, the PC, PG, PS, SM, and TG levels were similar to the levels observed in the NC group. Using differentially expressed lipid species (p value < 0.05, FDR < 0.1 and VIP score of PLS-DA > 1), 34 lipid biomarker candidates with high prediction performance between asthmatics and controls were identified (AUROC > 0.9). These novel findings revealed specific characteristics of lipid phenotypes in asthmatic patients and suggested the importance of future research on the relationship between lipid levels and asthma.
Collapse
Affiliation(s)
- Yun Pyo Kang
- College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ho WE, Xu YJ, Cheng C, Peh HY, Tannenbaum SR, Wong WSF, Ong CN. Metabolomics Reveals Inflammatory-Linked Pulmonary Metabolic Alterations in a Murine Model of House Dust Mite-Induced Allergic Asthma. J Proteome Res 2014; 13:3771-3782. [PMID: 24956233 DOI: 10.1021/pr5003615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the house dust mite (HDM) is a major environmental aeroallergen that promotes the pathogenesis and severity of allergic asthma, it remains elusive if HDM exposures can induce global metabolism aberrations during allergic airway inflammation. Using an integrated gas and liquid chromatography mass spectrometry-based metabolomics and multiplex cytokine profile analysis, metabolic alterations and cytokine changes were investigated in the bronchoalveolar lavage fluid (BALF), serum, and lung tissues in experimental HDM-induced allergic asthma. Allergic pulmonary HDM exposures lead to pronounced eosinophilia, neutrophilia, and increases in inflammatory cytokines. Metabolomics analysis of the BALF, serum, and lung tissues revealed distinctive compartmental metabolic signatures, which included depleted carbohydrates, increased energy metabolites, and consistent losses of sterols and phosphatidylcholines. Pearson correlation analysis uncovered strong associations between specific metabolic alterations and inflammatory cells and cytokines, linking altered pulmonary metabolism to allergic airway inflammation. The clinically prescribed glucocorticoid prednisolone could modulate airway inflammation but was ineffective against the reversal of many HDM-induced metabolic alterations. Collectively, metabolomics reveal comprehensive pulmonary metabolic signatures in HDM-induced allergic asthma, with specific alterations in carbohydrates, lipids, sterols, and energy metabolic pathways. Altered pulmonary metabolism may be a major underlying molecular feature involved during HDM-induced allergic airway inflammation, linked to inflammatory cells and cytokines changes.
Collapse
Affiliation(s)
- Wanxing Eugene Ho
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602
| | - Yong-Jiang Xu
- Key Laboratory of Insect Development and Evolutionary Biology, Chinese Academy of Sciences , Shanghai 200032, China
| | - Chang Cheng
- Department of Gastroenterology & Hepatology, Singapore General Hospital , Singapore 169608
| | | | - Steven R Tannenbaum
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602.,Department of Biological Engineering and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
44
|
Dushianthan A, Goss V, Cusack R, Grocott MPW, Postle AD. Phospholipid composition and kinetics in different endobronchial fractions from healthy volunteers. BMC Pulm Med 2014; 14:10. [PMID: 24484629 PMCID: PMC3914358 DOI: 10.1186/1471-2466-14-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/30/2014] [Indexed: 11/21/2022] Open
Abstract
Background Alterations in surfactant phospholipid compositions are a recognized feature of many acute and chronic lung diseases. Investigation of underlying mechanisms requires assessment of surfactant phospholipid molecular composition and kinetics of synthesis and turnover. Such studies have recently become possible in humans due to the development of stable isotope labelling combined with advances in analytical methods in lipidomics. The objectives of this study are to compare phospholipid molecular species composition and phosphatidylcholine synthesis and turnover in surfactant isolated from various endobronchial compartments in healthy adults. Methods Healthy adults (N = 10) were infused with methyl-D9-choline chloride and samples of induced sputum, tracheal wash and small volume bronchoalveolar lavage fluid were obtained subsequently at intervals up to 96 hours. Surfactant phospholipid composition and incorporation of stable isotope into surfactant phosphatidylcholine were determined by electrospray ionisation mass spectrometry. Results While molecular species compositions of phospholipids were similar for all three sample types, dipalmitoylphosphatidylcholine content was highest in lavage, intermediate in tracheal wash and lowest in sputum. Methyl-D9-choline incorporation into surfactant phosphatidylcholine was lower for sputum at 24 hours but reached equilibrium with other sample types by 48 hours. Fractional methyl-D9-dipalmitoylphosphatidylcholine incorporation for all sample types was about 0.5% of the endogenous composition. Lysophosphatidylcholine enrichment was twice than that of phosphatidylcholine. Conclusions Tracheal secretions may be of value as a surrogate to assess bronchoalveolar lavage fluid surfactant molecular composition and metabolism in healthy people. Despite minor differences, the phospholipid molecular composition of induced sputum also showed similarities to that of bronchoalveolar lavage fluid. Detailed analysis of newly synthesized individual phosphatidylcholine species provided novel insights into mechanisms of surfactant synthesis and acyl remodelling. Lysophosphatidylcholine methyl-D9 incorporation patterns suggest that these species are secreted together with other surfactant phospholipids and are not generated in the air spaces by hydrolysis of secreted surfactant phosphatidylcholine. Application into patient populations may elucidate potential underlying pathophysiological mechanisms that lead to surfactant alterations in disease states.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
45
|
Balgoma D, Checa A, Sar DG, Snowden S, Wheelock CE. Quantitative metabolic profiling of lipid mediators. Mol Nutr Food Res 2013; 57:1359-77. [PMID: 23828856 DOI: 10.1002/mnfr.201200840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
Abstract
Lipids are heterogeneous biological molecules that possess multiple physiological roles including cell structure, homeostasis, and restoration of tissue functionality during and after inflammation. Lipid metabolism constitutes a network of pathways that are related at multiple biosynthetic hubs. Disregulation of lipid metabolism can lead to pathophysiological effects and multiple lipid mediators have been described to be involved in physiological processes, (e.g. inflammation). Accordingly, a thorough description of these pathways may shed light on putative relations in multiple complex diseases, including chronic obstructive pulmonary disease, asthma, Alzheimer's disease, multiple sclerosis, obesity, and cancer. Due to the structural complexity of lipids and the low abundance of many lipid mediators, mass spectrometry is the most commonly employed method for analysis. However, multiple challenges remain in the efforts to analyze every lipid subfamily. In this review, the biological role of sphingolipids, glycerolipids, oxylipins (e.g. eicosanoids), endocannabinoids, and N-acylethanolamines in relation to health and disease and the state-of-the-art analyses are summarized. The characterization and understanding of these pathways will increase our ability to examine for interrelations among lipid pathways and improve the knowledge of biological mechanisms in health and disease.
Collapse
Affiliation(s)
- David Balgoma
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Hamed R, Fiegel J. Synthetic tracheal mucus with native rheological and surface tension properties. J Biomed Mater Res A 2013; 102:1788-98. [PMID: 23813841 DOI: 10.1002/jbm.a.34851] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 11/07/2022]
Abstract
In this study, the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics (MMs) were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions, and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bifunctional cross-linking agent enabled control over the viscoelastic properties of the MMs by tailoring the concentration of the cross-linking agent and the duration of cross-linking. Three MM formulations with different bulk viscoelastic properties, all within the normal range for nondiseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved.
Collapse
Affiliation(s)
- R Hamed
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa, 52242; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | | |
Collapse
|
47
|
Airway reopening through catastrophic events in a hierarchical network. Proc Natl Acad Sci U S A 2012; 110:859-64. [PMID: 23277557 DOI: 10.1073/pnas.1211706110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations.
Collapse
|
48
|
Numata M, Kandasamy P, Voelker DR. Anionic pulmonary surfactant lipid regulation of innate immunity. Expert Rev Respir Med 2012; 6:243-6. [PMID: 22788936 DOI: 10.1586/ers.12.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Ho WE, Xu YJ, Xu F, Cheng C, Peh HY, Tannenbaum SR, Wong WSF, Ong CN. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol 2012; 48:204-11. [PMID: 23144334 DOI: 10.1165/rcmb.2012-0246oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Metabolomics refers to the comprehensive analysis of metabolites in biological systems, and has been employed to study patients with asthma based on their urinary metabolite profile. We hypothesize that airway allergic asthma would affect metabolism in the lungs, and could be detected in bronchoalveolar lavage (BAL) fluid (BALF) using a combined liquid chromatography- and gas chromatography-mass spectrometry (MS) platform. The objective of this study was to investigate changes of lung metabolism in allergic asthma by metabolomic analysis of BALF. BALB/c mice were sensitized and challenged with ovalbumin to develop experimental asthma. Dexamethasone was administered to study the effects of corticosteroids on lung metabolism. Metabolites in BALF were measured using liquid chromatography-MS and gas chromatography-MS, and multivariate statistical analysis was performed by orthogonal projections to latent structures discriminant analysis. Metabolomic analysis of BALF from ovalbumin-challenged mice revealed novel changes in metabolic pathways in the lungs as compared with control animals. These metabolite changes suggest alterations of energy metabolism in asthmatic lungs, with increases of lactate, malate, and creatinine and reductions in carbohydrates, such as mannose, galactose, and arabinose. Lipid and sterol metabolism were affected with significant decreases in phosphatidylcholines, diglycerides, triglycerides, cholesterol, cortol, and cholic acid. Dexamethasone treatment effectively reversed many key metabolite changes, but was ineffective in repressing lactate, malate, and creatinine, and induced additional metabolite changes. Metabolomic analysis of BALF offers a promising approach to investigating allergic asthma. Our overall findings revealed considerable pathway changes in lung metabolism in asthmatic lungs, including energy, amino acids, and lipid metabolism.
Collapse
Affiliation(s)
- Wanxing Eugene Ho
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive MD3, Singapore 117597.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|