1
|
Millward DJ. Post-prandial tracer studies of protein and amino acid utilisation: what can they tell us about human amino acid and protein requirements? Br J Nutr 2024; 131:2005-2030. [PMID: 38606599 PMCID: PMC11361918 DOI: 10.1017/s0007114524000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Nitrogen balance (NB), the principal methodology used to derive recommendations for human protein and amino acid requirements, has been widely criticised, and calls for increased protein and amino acid requirement recommendations have been made, often on the basis of post-prandial amino acid tracer kinetic studies of muscle protein synthesis, or of amino acid oxidation. This narrative review considers our knowledge of the homeostatic regulation of the FFM throughout the diurnal cycle of feeding and fasting and what can and has been learnt from post-prandial amino acid tracer studies, about amino acid and protein requirements. Within the FFM, muscle mass in well fed weight-stable adults with healthy lifestyles appears fixed at a phenotypic level within a wide range of habitual protein intakes. However homoeostatic regulation occurs in response to variation in habitual protein intake, with adaptive changes in amino acid oxidation which influence the magnitude of diurnal losses and gains of body protein. Post-prandial indicator amino acid oxidation (IAAO) studies have been introduced as an alternative to NB and to the logistically complex 24 h [13C-1] amino acid balance studies, for assessment of protein and amino acid requirements. However, a detailed examination of IAAO studies shows both a lack of concern for homeostatic regulation of amino acid oxidation and major flaws in their design and analytical interpretation, which seriously constrain their ability to provide reliable values. New ideas and a much more critical approach to existing work is needed if real progress is to be made in the area.
Collapse
Affiliation(s)
- D. Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Bjelica M, Walker RG, Obeid J, Issenman RM, Timmons BW. A Pilot Study of Exercise Training for Children and Adolescents With Inflammatory Bowel Disease: An Evaluation of Feasibility, Safety, Satisfaction, and Efficacy. Pediatr Exerc Sci 2023; 35:239-248. [PMID: 37487583 DOI: 10.1123/pes.2022-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Children with inflammatory bowel disease (IBD) experience extraintestinal side effects including altered body composition, impaired muscle strength, and aerobic capacity. Exercise training may remedy these issues. PURPOSE To assess the feasibility, safety, participant satisfaction, and efficacy of a training program for youth with IBD. METHODS Children with IBD completed 16 weeks of training (2 supervised + 1 home sessions per week). Feasibility was assessed by tracking recruitment, adherence, and compliance rates. Safety was assessed by tracking symptoms and adverse events. Posttraining interviews gauged satisfaction. Circulating inflammatory markers, body composition, muscle strength, aerobic fitness, and habitual physical activity were measured at baseline, midtraining (8 wk), and posttraining. RESULTS Eleven youth were recruited and 10 completed the study. Participants adhered to 28 (1) of 32 prescribed supervised sessions and 8 (4) of 16 prescribed home sessions. There were no adverse events, and overall feedback on training was positive. Posttraining, we observed an increase in lean mass (+2.4 [1.1] kg), bone density (+0.0124 [0.015] g·cm-2), aerobic fitness (+2.8 [5.7] mL·kg LM-1· min-1), and vigorous physical activity levels (+13.09 [8.95] min·h-1) but no change in inflammation or muscle strength. CONCLUSION Supervised exercise training is feasible, safe, and effective for youth with IBD and should be encouraged.
Collapse
Affiliation(s)
- Mila Bjelica
- Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Rachel G Walker
- Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Joyce Obeid
- Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Robert M Issenman
- Division of Pediatric Gastroenterology, McMaster University, Hamilton, ON,Canada
| | - Brian W Timmons
- Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| |
Collapse
|
3
|
Garcia-Iborra M, Castanys-Munoz E, Oliveros E, Ramirez M. Optimal Protein Intake in Healthy Children and Adolescents: Evaluating Current Evidence. Nutrients 2023; 15:nu15071683. [PMID: 37049523 PMCID: PMC10097334 DOI: 10.3390/nu15071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
High protein intake might elicit beneficial or detrimental effects, depending on life stages and populations. While high protein intake in elder individuals can promote beneficial health effects, elevated protein intakes in infancy are discouraged, since they have been associated with obesity risks later in life. However, in children and adolescents (4–18 years), there is a scarcity of data assessing the effects of high protein intake later in life, despite protein intake being usually two- to three-fold higher than the recommendations in developed countries. This narrative review aimed to revise the available evidence on the long-term effects of protein intake in children and adolescents aged 4–18 years. Additionally, it discusses emerging techniques to assess protein metabolism in children, which suggest a need to reevaluate current recommendations. While the optimal range is yet to be firmly established, available evidence suggests a link between high protein intake and increased Body Mass Index (BMI), which might be driven by an increase in Fat-Free Mass Index (FFMI), as opposed to Fat Mass Index (FMI).
Collapse
Affiliation(s)
- Maria Garcia-Iborra
- Abbott Nutrition R & D, Granada University Science Park, 18016 Granada, Spain; (M.G.-I.); (E.C.-M.)
| | - Esther Castanys-Munoz
- Abbott Nutrition R & D, Granada University Science Park, 18016 Granada, Spain; (M.G.-I.); (E.C.-M.)
| | - Elena Oliveros
- Abbott Nutrition R & D, Abbott Laboratories, 18004 Granada, Spain;
| | - Maria Ramirez
- Abbott Nutrition R & D, Abbott Laboratories, 18004 Granada, Spain;
- Correspondence: ; Tel.: +34-669127998
| |
Collapse
|
4
|
Thams L, Hvid LG, Stounbjerg NG, Brønd JC, Mølgaard C, Damsgaard CT, Hansen M. Vitamin D supplementation and increased dairy protein intake do not affect muscle strength or physical function in healthy 6-8-year-old children: the D-pro randomized trial. Eur J Nutr 2022; 61:3613-3623. [PMID: 35643873 PMCID: PMC9146815 DOI: 10.1007/s00394-022-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate separate and combined effects of vitamin D supplementation during the extended winter and increased dairy protein intake on muscle strength and physical function in children, and furthermore to explore potential sex differences. METHODS In a 2 × 2-factorial, randomized winter trial, 183 healthy, 6-8-year-old children received blinded tablets with 20 µg/day vitamin D3 or placebo, and substituted 260 g/day dairy with yogurts with high (HP, 10 g protein/100 g) or normal protein content (NP, 3.5 g protein/100 g) for 24 weeks during winter at 55° N. We measured maximal isometric handgrip and leg press strength, and physical function by jump tests and a 30 s sit-to-stand test. Physical activity was measured by 7-day accelerometry. RESULTS Baseline (mean ± SD) serum 25-hydroxyvitamin D was 80.8 ± 17.2 nmol/L, which increased to 88.7 ± 17.6 nmol/L with vitamin D supplementation and decreased to 48.4 ± 19.2 nmol/L with placebo. Baseline protein intake was 15.5 ± 2.4 E%, which increased to 18.4 ± 3.4 E% with HP and was unchanged with NP. We found no separate or combined effects of vitamin D supplementation and/or increased dairy protein intake on muscle strength or physical function (all P > 0.20). There was an interaction on the sit-to-stand test (Pvitamin×yogurt = 0.02), which however disappeared after adjusting for physical activity (P = 0.16). Further, vitamin D supplementation increased leg press strength relatively more in girls compared to boys (mean [95% CI] 158 [17, 299] N; Pvitamin×sex = 0.047). CONCLUSION Overall, vitamin D and dairy protein supplementation during the extended winter did not affect muscle strength or physical function in healthy children. Potential sex differences of vitamin D supplementation should be investigated further. REGISTERED AT CLINICALTRIALS.GOV: NCT0395673.
Collapse
Affiliation(s)
- Line Thams
- Section of Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Lars G Hvid
- Section of Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals, Ry and Haslev, Haslev, Denmark
| | - Nanna G Stounbjerg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jan C Brønd
- Center for Research in Childhood Health, Unit for Exercise Epidemiology, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Camilla T Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Section of Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Ong C, Lee JH, Leow MKS, Puthucheary ZA. A narrative review of skeletal muscle atrophy in critically ill children: pathogenesis and chronic sequelae. Transl Pediatr 2021; 10:2763-2777. [PMID: 34765499 PMCID: PMC8578782 DOI: 10.21037/tp-20-298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
Muscle wasting is now recognized as a growing, debilitating problem in critically ill adults, resulting in long-term deficits in function and an impaired quality of life. Ultrasonography has demonstrated decreases in skeletal muscle size during pediatric critical illness, although variations exist. However, muscle protein turnover patterns during pediatric critical illness are unclear. Understanding muscle protein turnover during critical illness is important in guiding interventions to reduce muscle wasting. The aim of this review was to explore the possible protein synthesis and breakdown patterns in pediatric critical illness. Muscle protein turnover studies in critically ill children are lacking, with the exception of those with burn injuries. Children with burn injuries demonstrate an elevation in both muscle protein breakdown (MPB) and synthesis during critical illness. Extrapolations from animal models and whole-body protein turnover studies in children suggest that children may be more dependent on anabolic factors (e.g., nutrition and growth factors), and may experience greater muscle degradation in response to insults than adults. Yet, children, particularly the younger ones, are more responsive to anabolic agents, suggesting modifiable muscle wasting during critical illness. There is a lack of evidence for muscle wasting in critically ill children and its correlation with outcomes, possibly due to current available methods to study muscle protein turnover in children-most of which are invasive or tedious. In summary, children may experience muscle wasting during critical illness, which may be more reversible by the appropriate anabolic agents than adults. Age appears an important determinant of skeletal muscle turnover. Less invasive methods to study muscle protein turnover and associations with long-term outcome would strengthen the evidence for muscle wasting in critically ill children.
Collapse
Affiliation(s)
- Chengsi Ong
- Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Melvin K S Leow
- Duke-NUS Medical School, Singapore, Singapore.,Clinical Nutrition Research Center, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zudin A Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
6
|
Hudson JL, Baum JI, Diaz EC, Børsheim E. Dietary Protein Requirements in Children: Methods for Consideration. Nutrients 2021; 13:nu13051554. [PMID: 34063030 PMCID: PMC8147948 DOI: 10.3390/nu13051554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
The current protein requirement estimates in children were largely determined from studies using the nitrogen balance technique, which has been criticized for potentially underestimating protein needs. Indeed, recent advances in stable isotope techniques suggests protein requirement as much as 60% higher than current recommendations. Furthermore, there is not a separate recommendation for children who engage in higher levels of physical activity. The current evidence suggests that physical activity increases protein requirements to support accretion of lean body masses from adaptations to exercise. The indicator amino acid oxidation and the 15N-end product methods represent alternatives to the nitrogen balance technique for estimating protein requirements. Several newer methods, such as the virtual biopsy approach and 2H3-creatine dilution method could also be deployed to inform about pediatric protein requirements, although their validity and reproducibility is still under investigation. Based on the current evidence, the Dietary Reference Intakes for protein indicate that children 4–13 years and 14–18 years require 0.95 and 0.85 g·kg−1·day−1, respectively, based on the classic nitrogen balance technique. There are not enough published data to overturn these estimates; however, this is a much-needed area of research.
Collapse
Affiliation(s)
- Joshua L. Hudson
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.C.D.); (E.B.)
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
- Correspondence:
| | - Jamie I. Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| | - Eva C. Diaz
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.C.D.); (E.B.)
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Elisabet Børsheim
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.C.D.); (E.B.)
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
- Reynolds Institute on Aging, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Effects of Post-Exercise Whey Protein Consumption on Recovery Indices in Adolescent Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217761. [PMID: 33114186 PMCID: PMC7660601 DOI: 10.3390/ijerph17217761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Purpose: This study examined the effect of whey protein consumption following high-intensity interval swimming (HIIS) on muscle damage, inflammatory cytokines and performance in adolescent swimmers. Methods: Fifty-four swimmers (11-17 years-old) were stratified by age, sex and body mass to a whey protein (PRO), isoenergetic carbohydrate (CHO) or a water/placebo (H2O) group. Following baseline blood samples (06:00 h) and a standardised breakfast, participants performed a maximal 200 m swim, followed by HIIS. A total of two post-exercise boluses were consumed following HIIS and ~5 h post-baseline. Blood and 200 m performance measurements were repeated at 5 h, 8 h and 24 h from baseline. Muscle soreness was assessed at 24 h. Creatine kinase (CK), interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) were measured in plasma. Results: No difference in 200 m swim performance was observed between groups. CK activity was elevated at 5 h compared to baseline and 24 h and at 8 h compared to all other timepoints, with no differences between groups. Muscle soreness was lower in PRO compared to H2O (p = 0.04). Anti-inflammatory IL-10 increased at 8 h in PRO, while it decreased in CHO and H2O. Conclusions: Post-exercise consumption of whey protein appears to have no additional benefit on recovery indices following HIIS compared to isoenergetic amounts of carbohydrate in adolescent swimmers. However, it may assist with the acute-inflammatory response.
Collapse
|
8
|
Theocharidis A, McKinlay BJ, Vlachopoulos D, Josse AR, Falk B, Klentrou P. Effects of post exercise protein supplementation on markers of bone turnover in adolescent swimmers. J Int Soc Sports Nutr 2020; 17:20. [PMID: 32293471 PMCID: PMC7158004 DOI: 10.1186/s12970-020-00350-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study examined the effects of whey protein supplementation, compared with an isocaloric carbohydrate beverage and water, consumed immediately following an intense swimming trial on bone turnover in adolescent swimmers. METHODS Fifty-eight (31 female, 27 male) swimmers (14.1 ± 0.4 years) were stratified into three groups matched for age, sex and body mass. The protein and carbohydrate groups consumed two isocaloric post-exercise beverages each containing 0.3 g.kg- 1 of whey protein (with ~ 6 mg of calcium) or maltodextrin while the control group consumed water. Participants provided a morning, fasted, resting blood sample, then performed an intense swimming trial consisting of a maximal 200 m swim followed by a high intensity interval swimming protocol (5x100m, 5x50m and 5x25m; 1:1 work-to-rest ratio). Following swimming, they consumed their first respective post-exercise beverage, and 2 h later, they performed a second maximal swim immediately followed by the second beverage. Approximately 3 h after the second beverage, two post-consumption blood samples were collected at 8 h and 24 h from baseline. Procollagen type 1 intact N-terminal propeptide (PINP) and carboxy-terminal collagen crosslinks (CTXI) were measured in serum. The multiples of medians of PINP and CTXI were also used to calculate bone turnover rate and balance. RESULTS No significant changes were observed in PINP. CTXI increased (+ 11%) at 8 h in all groups, but then significantly decreased (- 22%) at 24 h in the protein group only. The protein group also had a significantly higher calculated rate of bone turnover at 8 h and 24 h compared to baseline, which was not observed in the other groups. CONCLUSIONS These results shed light on the potential importance of protein consumed shortly after intense swimming in promoting positive bone turnover responses up to 24 h following exercise in adolescent athletes. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov PRS; NCT04114045. Registered 1 October 2019 - Retrospectively registered.
Collapse
Affiliation(s)
- Alexandros Theocharidis
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Brandon J McKinlay
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrea R Josse
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Bareket Falk
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
9
|
Burd NA, McKenna CF, Salvador AF, Paulussen KJ, Moore DR. Dietary Protein Quantity, Quality, and Exercise Are Key to Healthy Living: A Muscle-Centric Perspective Across the Lifespan. Front Nutr 2019; 6:83. [PMID: 31245378 PMCID: PMC6563776 DOI: 10.3389/fnut.2019.00083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
A healthy eating pattern, regardless of age, should consist of ingesting high quality protein preferably in adequate amounts across all meals throughout the day. Of particular relevance to overall health is the growth, development, and maintenance of skeletal muscle tissue. Skeletal muscle not only contributes to physical strength and performance, but also contributes to efficient macronutrient utilization and storage. Achieving an optimal amount of muscle mass begins early in life with transitions to "steady-state" maintenance as an adult, and then safeguarding against ultimate decline of muscle mass with age, all of which are influenced by physical activity and dietary (e.g., protein) factors. Current protein recommendations, as defined by recommended dietary allowances (RDA) for the US population or the population reference intakes (PRI) in Europe, are set to cover basic needs; however, it is thought that a higher protein intake might be necessary for optimizing muscle mass, especially for adults and individuals with an active lifestyle. It is necessary to balance the accurate assessment of protein quality (e.g., digestible indispensable amino acid score; DIAAS) with methods that provide a physiological correlate (e.g., established measures of protein synthesis, substrate oxidation, lean mass retention, or accrual, etc.) in order to accurately define protein requirements for these physiological outcomes. Moreover, current recommendations need to shift from single nutrient guidelines to whole food based guidelines in order to practically acknowledge food matrix interactions and other required nutrients for potentially optimizing the health effects of food. The aim of this paper is to discuss protein quality and amount that should be consumed with consideration to the presence of non-protein constituents within a food matrix and potential interactions with physical activity to maximize muscle mass throughout life.
Collapse
Affiliation(s)
- Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Kevin J.M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Chu L, Timmons BW. Nutritional Considerations for Sport Participation in Children and Adolescents With Obesity. Am J Lifestyle Med 2019; 13:129-137. [PMID: 30800016 PMCID: PMC6378498 DOI: 10.1177/1559827617751684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a high prevalence of children with obesity who are participating in sports. Appropriate nutritional considerations are important to optimize health and training adaptations. This review focuses on macronutrient recommendations and their effect on weight management and/or benefits for athletic training for children ages 5 to 18 years. Equal distribution of protein intake throughout the day (~25-30 g/meal) and during postexercise recovery is recommended. Special attention should be given to increasing protein intake during breakfast because it is often the meal with the least protein intake. Both postexercise recommendations for protein (~0.3 g/kg of body weight) and carbohydrate (~1.0-1.2 g/kg/h) were not determined in children with obesity, and require future verification. Individual carbohydrate needs of training to meet fuel costs are recommended, but ~200 to 500 g/day of carbohydrate may be required depending on a child's level of sport participation and competition. Fat intake should follow general recommendations to meet the accepted macronutrient distribution range in children (25% to 35%) and reduce saturated fat intake. No evidence suggests that additional dietary fat modifications would improve training adaptations in children. Longitudinal studies are required to further our understanding of age and sex effects and confirm the appropriate quantity of macronutrients for active children with obesity.
Collapse
Affiliation(s)
- Lisa Chu
- Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Brian W. Timmons
- Child Health and Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Understanding how exercise and dietary protein alter the turnover and synthesis of body proteins in youth can provide guidelines for the optimal development of lean mass. This review hypothesizes that active youth obtain similar anabolic benefits from exercise and dietary protein as adults, but the requirement for amino acids to support growth renders them more sensitive to these nutrients.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Mazzulla M, Volterman KA, Packer JE, Wooding DJ, Brooks JC, Kato H, Moore DR. Whole-body net protein balance plateaus in response to increasing protein intakes during post-exercise recovery in adults and adolescents. Nutr Metab (Lond) 2018; 15:62. [PMID: 30258470 PMCID: PMC6154919 DOI: 10.1186/s12986-018-0301-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 01/27/2023] Open
Abstract
Background Muscle protein synthesis and muscle net balance plateau after moderate protein ingestion in adults. However, it has been suggested that there is no practical limit to the anabolic response of whole-body net balance to dietary protein. Moreover, limited research has addressed the anabolic response to dietary protein in adolescents. The present study determined whether whole-body net balance plateaued in response to increasing protein intakes during post-exercise recovery and whether there were age- and/or sex-related dimorphisms in the anabolic response. Methods Thirteen adults [7 males (M), 6 females (F)] and 14 adolescents [7 males (AM), 7 females (AF) within ~ 0.4 y from peak height velocity] performed ~ 1 h variable intensity exercise (i.e., Loughborough Intermittent Shuttle Test) prior to ingesting hourly mixed meals that provided a variable amount of protein (0.02-0.25 g·kg- 1·h- 1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled noninvasively with oral L-[1-13C]phenylalanine. Breath and urine samples were taken at plateau to determine phenylalanine oxidation and flux (estimate of protein breakdown), respectively. Whole-body net balance was determined by the difference between protein synthesis (flux - oxidation) and protein breakdown. Total amino acid oxidation was estimated from the ratio of urinary urea/creatinine. Results Mixed model biphasic linear regression explained a greater proportion of net balance variance than linear regression (all, r 2 ≥ 0.56; P < 0.01), indicating an anabolic plateau. Net balance was maximized at ~ 0.15, 0.12, 0.12, and 0.11 g protein·kg- 1·h- 1 in M, F, AM, and AF, respectively. When collapsed across age, the y-intercept (net balance at very low protein intake) was greater (overlapping CI did not contain zero) in adolescents vs. adults. Urea/creatinine excretion increased linearly (all, r ≥ 0.76; P < 0.01) across the range of protein intakes. At plateau, net balance was greater (P < 0.05) in AM vs. M. Conclusions Our data suggest there is a practical limit to the anabolic response to protein ingestion within a mixed meal and that higher intakes lead to deamination and oxidation of excess amino acids. Consistent with a need to support lean mass growth, adolescents appear to have greater anabolic sensitivity and a greater capacity to assimilate dietary amino acids than adults.
Collapse
Affiliation(s)
- Michael Mazzulla
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Kimberly A Volterman
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Jeff E Packer
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Denise J Wooding
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Jahmal C Brooks
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| | - Hiroyuki Kato
- 2Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Japan
| | - Daniel R Moore
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON Canada
| |
Collapse
|
13
|
Karagounis LG, Volterman KA, Breuillé D, Offord EA, Emady-Azar S, Moore DR. Protein Intake at Breakfast Promotes a Positive Whole-Body Protein Balance in a Dose-Response Manner in Healthy Children: A Randomized Trial. J Nutr 2018; 148:729-737. [PMID: 30053279 DOI: 10.1093/jn/nxy026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Background Protein ingestion promotes whole-body net protein balance (NB) in children, which is a prerequisite for growth. Determining how much protein is required at breakfast to promote a positive NB, which may be negative after the traditional overnight fast in children, has yet to be determined. Objective We determined the impact of incremental doses of milk protein at breakfast as well as the impact of daily dietary protein distribution on NB in children. Methods A total of 28 children [14 boys, 14 girls; age range: 7-11 y; body mass index (mean ± SD, in kg/m2): 16.0 ± 1.9] completed 2 intervention trials. During the breakfast meal, participants consumed an isoenergetic beverage with different amounts of protein (0, 7, 14, or 21 g for Groups A-D, respectively) and [15N]-glycine to measure whole body protein metabolism. Whole-body nitrogen turnover, protein synthesis (PS), protein breakdown, and NB were measured over 9 and 24 h. Results Following an overnight fast, children were in negative NB (-64.5 mg · kg-1 · h-1). Protein ingestion at breakfast induced a stepwise increase in NB over 9 h [Groups A (6.2 mg · kg-1 · h-1) < B (27.9 mg · kg-1 · h-1) < C (46.9 mg · kg-1 · h-1) < D (66.0 mg · kg-1 · h-1)] with all conditions different from each other (all P < 0.01). PS was 42% greater in Group D than in Group A over 9 h (P < 0.05). Conclusions Consuming ≥7 g of the total daily protein intake at breakfast attenuates the observed overnight protein losses in children during the subsequent 9 h following breakfast consumption. The dose-dependent increase in NB over a daytime fed period, inclusive of breakfast and lunch, highlights the importance of breakfast protein intake on acute anabolism in healthy active children. This trial was registered at clinicaltrials.gov as NCT02465151.
Collapse
Affiliation(s)
- Leonidas G Karagounis
- Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland.,Experimental Myology and Integrative Physiology Cluster, Plymouth Marjon University, Plymouth, United Kingdom
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Denis Breuillé
- Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland
| | - Elizabeth A Offord
- Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland
| | - Shahram Emady-Azar
- Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
The preliminary analysis of protein catabolism and nitrogen balance in young gymnasts. Sci Sports 2018. [DOI: 10.1016/j.scispo.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017; 9:E735. [PMID: 28696380 PMCID: PMC5537849 DOI: 10.3390/nu9070735] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.
Collapse
Affiliation(s)
- Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Daniel R Moore
- Kinesiology and Physical Education University of Toronto 100 Devonshire Place, Toronto, ON M5S 2C9, Canada.
| |
Collapse
|
16
|
Volterman KA, Moore DR, Breithaupt P, Grathwohl D, Offord EA, Karagounis LG, Timmons BW. Timing and pattern of postexercise protein ingestion affects whole-body protein balance in healthy children: a randomized trial. Appl Physiol Nutr Metab 2017; 42:1142-1148. [PMID: 28683243 DOI: 10.1139/apnm-2017-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dose and timing of postexercise protein ingestion can influence whole-body protein balance (WBPB) in adults, although comparable data from children are scarce. This study investigated how protein intake (both amount and distribution) postexercise can affect WBPB in physically active children. Thirty-five children (26 males; 9-13 years old) underwent a 5-day adaptation diet, maintaining a protein intake of 0.95 g·kg-1·day-1. Participants consumed [15N]glycine (2 mg·kg-1) before performing 3 × 20 min of variable-intensity cycling, and whole-body protein kinetics were assessed over 6 and 24 h of recovery. Fifteen grams of protein was distributed across 2 isoenergetic carbohydrate-containing beverages (15 and 240 min postexercise) containing reciprocal amounts of protein (i.e., 0 + 15 g, 5 + 10 g, 10 + 5 g, and 15 + 0 g for Groups A-D, respectively). Over the 6 h that included the exercise bout and consumption of the first beverage at 15 min postexercise, WBPB (i.e., synthesis - breakdown) demonstrated a linear increase of 0.647 g·kg-1·day-1 per 1 g protein intake (P < 0.001). Over 24 h, robust regression revealed that WBPB was best modeled by a parabola (P < 0.05), suggesting that a maximum in WBPB was achieved between groups B and C. In conclusion, despite a dose response early in recovery, a periodized protein intake with multiple smaller doses after physical activity may be more beneficial than a single bolus dose in promoting daily WBPB in healthy active children.
Collapse
Affiliation(s)
- Kimberly A Volterman
- a Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Daniel R Moore
- b Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Peter Breithaupt
- a Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dominik Grathwohl
- c Department of Nutrition and Health Research, Nestle Research Centre, 1000 Lausanne, Switzerland
| | - Elizabeth A Offord
- c Department of Nutrition and Health Research, Nestle Research Centre, 1000 Lausanne, Switzerland
| | - Leonidas G Karagounis
- c Department of Nutrition and Health Research, Nestle Research Centre, 1000 Lausanne, Switzerland
| | - Brian W Timmons
- a Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|