1
|
Li Q, Liu Q, Lin Z, Lin W, Lin Z, Huang F, Zhu P. Comparison Between the Effect of Mid-Late-Life High-Intensity Interval Training and Continuous Moderate-Intensity Training in Old Mouse Hearts. J Gerontol A Biol Sci Med Sci 2025; 80:glaf025. [PMID: 39928548 PMCID: PMC11973967 DOI: 10.1093/gerona/glaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 02/12/2025] Open
Abstract
The impact of mid-late-life exercise on the aging heart remains unclear, particularly the effects of high-intensity interval training (HIIT) and continuous moderate-intensity training (CMIT). This study was the first to examine cardiac function, tissue characteristics, electrical remodeling, mitochondrial morphology, and homeostasis in old mice subjected to CMIT or HIIT, compared to untrained controls. Our results showed that 8-week HIIT significantly improved the survival rate of old mice. HIIT presented advantages on cardiac function, deposition of collagen fibers, neovascularization, aging biomarkers, and mitochondrial homeostasis. Only CMIT alleviated age-related cardiac hypertrophy. However, CMIT potentially exacerbated adverse cardiac electrical remodeling. Those findings suggested HIIT as a particularly appealing option for clinical application for aging populations.
Collapse
Affiliation(s)
- Qiaowei Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Qin Liu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhong Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenwen Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhonghua Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Feng Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Pengli Zhu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Rahmati M, Nikooie R. High-intensity interval training alleviates STZ-induced muscle atrophy by restoration of nuclear positioning defects in C57BL/6 male mice. Sci Rep 2025; 15:6891. [PMID: 40011606 DOI: 10.1038/s41598-025-91259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
We tested the hypothesis that improper myonuclei arrangement and morphology are involved in diabetes-induced myofiber atrophy and whether and how high-intensity interval training (HIIT) affects these impairments in isolated skeletal muscle myofibers. STZ-induced diabetes decreased muscle fiber cross-sectional area (CSA) mediated by reduced myonuclear number, enhanced nuclear apoptotic, and failed nuclear accretion from satellite cells. STZ-induced muscle atrophy was accompanied by improper nuclear positioning (sinus of the maximum diameter angles and distance between adjacent myonuclei) and morphology (maximum diameter, area, and volume of the nuclei), which was mediated by suppressed expression of proteins involved in nuclear positioning including KIF5B, dynein, and Nesprin1. Disturbing nuclear positioning by inhibition of Kinsein1 activity reduced CSA to a greater extent than in diabetes alone, suggesting STZ-induced muscle atrophy is mediated by changes in nuclear positioning. HIIT alleviated the STZ-induced decline in muscle CSA and myonuclei per fiber by restoring myonuclear morphometry impairments and improper nuclear positioning to the normal level. HIIT-induced increase in muscle CSA deterred by inhibition of Kinesin1 activity, suggesting its effect is mediated by proper nuclear positioning. These findings suggest that normal nuclear positioning are required for the changes in fiber size properties associated with HIIT in diabetic skeletal muscle fibers.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Geng J, Zhang X, Guo Y, Wen H, Guo D, Liang Q, Pu S, Wang Y, Liu M, Li Z, Hu W, Yang X, Chang P, Hu L, Li Y. Moderate-intensity interval exercise exacerbates cardiac lipotoxicity in high-fat, high-calories diet-fed mice. Nat Commun 2025; 16:613. [PMID: 39800728 PMCID: PMC11725574 DOI: 10.1038/s41467-025-55917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Physical exercise is a cornerstone for preventing diet-induced obesity, while it is unclear whether physical exercise could offset high-fat, high-calories diet (HFCD)-induced cardiac dysfunction. Here, mice were fed with HFCD and simultaneously subjected to physical exercise. As expected, physical exercise prevented HFCD-induced whole-body fat deposition. However, physical exercise exacerbated HFCD-induced cardiac damage. Further metabolomic analysis results showed that physical exercise induced circulating lipid redistribution, leading to excessive cardiac lipid uptake and lipotoxicity. Our study provides valuable insights into the cardiac effects of exercise in mice fed with HFCD, suggesting that counteracting the negative effect of HFCD by simultaneous physical exercise might be detrimental. Moreover, inappropriate physical exercise may damage certain organs even though it leads to weight loss and overall metabolic benefits. Of note, the current findings are based on animal experiments, the generalizability of these findings beyond this specific diet and mouse strain remains to be further explored.
Collapse
Affiliation(s)
- Jing Geng
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Xiaoliang Zhang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
- Department of Cardiology, No.901 Hospital of PLA, Hefei, China
| | - Yanjie Guo
- Xi'an International Medical Center Hospital, Xi'an, China
| | - He Wen
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Qi Liang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Siying Pu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Wei Hu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Xue Yang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China
| | - Pan Chang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China.
| |
Collapse
|
4
|
Chen X, Zhang T, Hu X, Wen Z, Lu W, Jiang W. High-Intensity Interval Training Programs Versus Moderate-Intensity Continuous Training for Individuals With Heart Failure: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2025; 106:98-112. [PMID: 38862032 DOI: 10.1016/j.apmr.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the effect sizes of different high-intensity interval training (HIIT) protocols on cardiorespiratory parameters when compared with moderate-intensity continuous training (MICT) in different heart failure (HF) subtypes. DATA SOURCES Electronic databases were searched from their inception date until January 23, 2023. STUDY SELECTION Randomized controlled trials (RCTs) were included if they compared HIIT with MICT in patients with HF. The primary outcome was peak oxygen consumption (Vo2peak). Two reviewers independently evaluated 99 initially identified studies, resulting in the selection of 15 RCTs that met the eligibility criteria. DATA EXTRACTION Data were extracted independently by 2 observers using a data extraction form drafted based on the CONSORT statement and the Template for Intervention Description and Replication; the methodological quality of the studies was analyzed individually based on the Tool for the Assessment of Study Quality in Exercise scale. DATA SYNTHESIS Fifteen RCTs with 553 patients with HF were included in the systematic review. The included studies had moderate to good overall methodological quality. The results showed that HIIT was generally more effective than MICT at improving Vo2peak in patients with HF (n=541, 15 RCTs; MD: 1.49 mL/kg/min; I2=66%; P<.001). However, the effect size varied depending on the HF subtype and HIIT protocol used. For patients with HF with reduced ejection fraction (HFrEF), the long-interval (high-intensity interval lasting ≥4 min) and high-volume HIIT (high-intensity efforts in total ≥15 min) showed the largest benefits over the MICT (n=261, 6 RCTs; MD: 2.11 mL/kg/min; P<.001); followed by the short-interval (≤1 min) and high-volume HIIT (≥15 min; n=71, 3 RCTs; MD: 0.91 mL/kg/min; P=.12), and the short-interval and low-volume HIIT showed the least superiority over MICT (n=68, 3 RCTs; MD: 0.54 mL/kg/min; P=.05). For patients with HF with perceived ejection fraction, there was a modest beneficial effect from HIIT over MICT (n=141, 3 RCTs; MD: 0.55 mL/kg/min; P=.32). CONCLUSIONS The long-interval and high-volume HIIT protocol may produce greater benefits than MICT for improving cardiopulmonary fitness in patients with HFrEF. Further research is needed to determine the optimal HIIT protocol for different HF subtypes and to provide definitive recommendations for clinical practice.
Collapse
Affiliation(s)
- Xiankun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province
| | - Tong Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing; Zhen's Miscellaneous Diseases School in Lingnan (Lingnan Zhenshi Miscellaneous Diseases Genre), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou
| | - Xiaoyue Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou
| | - Zehuai Wen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province
| | - Weihui Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
dos Santos MC, da Silva DS, Cordeiro JP, Domingos LF, da Silva Gomes EH, Nogueira BV, Bocalini DS, Lima Leopoldo AP, Leopoldo AS. High-intensity interval training improves cardiomyocyte contractile function and myofilament sensitivity to intracellular Ca 2+ in obese rats. Exp Physiol 2024; 109:1710-1727. [PMID: 39207362 PMCID: PMC11442780 DOI: 10.1113/ep092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
High-intensity interval training (HIIT) has shown significant results in addressing adiposity and risk factors associated with obesity. However, there are no studies that investigate the effects of HIIT on contractility and intracellular Ca2+ handling. The purpose of this study was to explore the impact of HIIT on cardiomyocyte contractile function and intracellular Ca2+ handling in rats in which obesity was induced by a saturated high-fat diet (HFD). Male Wistar rats were initially randomized into a standard diet and a HFD group. The experimental protocol spanned 23 weeks, comprising the induction and maintenance of obesity (15 weeks) followed by HIIT treatment (8 weeks). Performance was assessed using the maximum oxygen consumption test (V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Evaluation encompassed cardiac, adipose and skeletal muscle histology, as well as contractility and intracellular Ca2+ handling. HIIT resulted in a reduction in visceral area, an increase inV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ , and an augmentation of gastrocnemius fibre diameter in obese subjects. Additionally, HIIT led to a decrease in collagen fraction, an increase in percentage shortening, and a reduction in systolic Ca2+/percentage shortening and systolic Ca2+/maximum shortening rates. HIIT induces physiological cardiac remodelling, enhancing the contractile function of cardiomyocytes and improving myofilament sensitivity to Ca2+ in the context of obesity. This approach not only enhances cardiorespiratory and physical performance but also reduces visceral area and prevents interstitial fibrosis.
Collapse
Affiliation(s)
- Matheus Corteletti dos Santos
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Daniel Sesana da Silva
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Jóctan Pimentel Cordeiro
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Lucas Furtado Domingos
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Ezio Henrique da Silva Gomes
- Postgraduate Program in Biotechnology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Breno Valentim Nogueira
- Postgraduate Program in Biotechnology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Morphology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Danilo Sales Bocalini
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Ana Paula Lima Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Sports, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - André Soares Leopoldo
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Sports, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| |
Collapse
|
6
|
Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol 2024; 12:1421566. [PMID: 39156974 PMCID: PMC11327861 DOI: 10.3389/fcell.2024.1421566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.
Collapse
Affiliation(s)
- Gianmarco Fenili
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Scaricamazza
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alberto Ferri
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Cristiana Valle
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
7
|
dos Santos ACR, Laurindo RP, Pestana FM, Heringer LDS, Canedo NHS, Martinez AMB, Marques SA. Exercise Volume Can Modulate the Regenerative Response to Spinal Cord Injury in Mice. Neurotrauma Rep 2024; 5:721-737. [PMID: 39144452 PMCID: PMC11319863 DOI: 10.1089/neur.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Traumatic spinal cord injury (SCI) causes debilitating motor and sensory deficits that impair functional performance, and physical rehabilitation is currently the only established therapeutic reality in the clinical setting. In this study, we aimed to assess the effect of exercise of different volume and timing of intervention on functional recovery and neuromuscular regeneration in a mouse model of compressive SCI. Mice were assigned to one of four groups: laminectomy only (SHAM); injured, without treadmill training (SCI); injured, treadmill trained for 10 min until day 56 postinjury (TMT1); and injured, treadmill trained for two 10-min cycles with a 10-min pause between them until day 28 postinjury followed by the TMT1 protocol until day 56 postinjury (TMT3). On day 7 postinjury, animals started an eight-week treadmill-training exercise protocol and were trained three times a week. TMT3 mice had the best results in terms of neuroregeneration, functional recovery, and muscle plasticity as measured by functional and morphometric parameters. In conclusion, the volume of exercise can modulate the quality of the regenerative response to injury, when started in the acute phase and adjusted according to the inflammatory window.
Collapse
Affiliation(s)
| | - Renata Pereira Laurindo
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Marques Pestana
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza dos Santos Heringer
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Neurobiology Department, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Lee SB, Woo TW, Baek DC, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica promotes skeletal muscle hypertrophy in a treadmill exercise mouse model. Front Nutr 2024; 11:1362550. [PMID: 38966418 PMCID: PMC11223055 DOI: 10.3389/fnut.2024.1362550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Background Maintaining a normal range of muscle mass and function is crucial not only for sustaining a healthy life but also for preventing various disorders. Numerous nutritional or natural resources are being explored for their potential muscle hypertrophic properties. Aim We aimed to evaluate the muscle hypertrophic effects of APX, a 1:1 mixture of Astragalus membranaceus and Paeonia japonica. In addition to the myotube differentiation cell assay, we utilized a weighted exercise-based animal model and evaluated changes in muscle hypertrophy using dual-energy X-ray absorptiometry (DXA) and histological analysis. Results The 8-week treadmill exercise led to notable decreases in body weight and fat mass but an increase in muscle mass compared to the control group. Administration of APX significantly accelerated muscle mass gain (p < 0.05) without altering body weight or fat mass compared to the exercise-only group. This muscle hypertrophic effect of APX was consistent with the histologic size of muscle fibers in the gastrocnemius (p > 0.05) and rectus femoris (p < 0.05), as well as the regulation of myogenic transcription factors (MyoD and myogenin), respectively. Furthermore, APX demonstrated a similar action to insulin-like growth factor 1, influencing the proliferation of C2C12 myoblast cells (p < 0.01) and their differentiation into myotubes (p < 0.05) compared to the control group. Conclusion The present study provides experimental evidence that APX has muscle hypertrophic effects, and its underlying mechanisms would involve the modulation of MyoD and myogenin.
Collapse
Affiliation(s)
| | | | | | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Fulghum KL, Collins HE, Lorkiewicz PK, Cassel TA, Fan TWM, Hill BG. Exercise-induced changes in myocardial glucose utilization during periods of active cardiac growth. J Mol Cell Cardiol 2024; 191:50-62. [PMID: 38703412 PMCID: PMC11135805 DOI: 10.1016/j.yjmcc.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Exercise training can promote physiological cardiac growth, which has been suggested to involve changes in glucose metabolism to facilitate hypertrophy of cardiomyocytes. In this study, we used a dietary, in vivo isotope labeling approach to examine how exercise training influences the metabolic fate of carbon derived from dietary glucose in the heart during acute, active, and established phases of exercise-induced cardiac growth. Male and female FVB/NJ mice were subjected to treadmill running for up to 4 weeks and cardiac growth was assessed by gravimetry. Cardiac metabolic responses to exercise were assessed via in vivo tracing of [13C6]-glucose via mass spectrometry and nuclear magnetic resonance. We found that the half-maximal cardiac growth response was achieved by approximately 1 week of daily exercise training, with near maximal growth observed in male mice with 2 weeks of training; however, female mice were recalcitrant to exercise-induced cardiac growth and required a higher daily intensity of exercise training to achieve significant, albeit modest, increases in cardiac mass. We also found that increases in the energy charge of adenylate and guanylate nucleotide pools precede exercise-induced changes in cardiac size and were associated with higher glucose tracer enrichment in the TCA pool and in amino acids (aspartate, glutamate) sourced by TCA intermediates. Our data also indicate that the activity of collateral biosynthetic pathways of glucose metabolism may not be markedly altered by exercise. Overall, this study provides evidence that metabolic remodeling in the form of heightened energy charge and increased TCA cycle activity and cataplerosis precedes cardiac growth caused by exercise training in male mice.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel K Lorkiewicz
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
10
|
Kilpiö T, Skarp S, Perjés Á, Swan J, Kaikkonen L, Saarimäki S, Szokodi I, Penninger JM, Szabó Z, Magga J, Kerkelä R. Apelin regulates skeletal muscle adaptation to exercise in a high-intensity interval training model. Am J Physiol Cell Physiol 2024; 326:C1437-C1450. [PMID: 38525542 DOI: 10.1152/ajpcell.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Plasma apelin levels are reduced in aging and muscle wasting conditions. We aimed to investigate the significance of apelin signaling in cardiac and skeletal muscle responses to physiological stress. Apelin knockout (KO) and wild-type (WT) mice were subjected to high-intensity interval training (HIIT) by treadmill running. The effects of apelin on energy metabolism were studied in primary mouse skeletal muscle myotubes and cardiomyocytes. Apelin increased mitochondrial ATP production and mitochondrial coupling efficiency in myotubes and promoted the expression of mitochondrial genes both in primary myotubes and cardiomyocytes. HIIT induced mild concentric cardiac hypertrophy in WT mice, whereas eccentric growth was observed in the left ventricles of apelin KO mice. HIIT did not affect myofiber size in skeletal muscles of WT mice but decreased the myofiber size in apelin KO mice. The decrease in myofiber size resulted from a fiber type switch toward smaller slow-twitch type I fibers. The increased proportion of slow-twitch type I fibers in apelin KO mice was associated with upregulation of myosin heavy chain slow isoform expression, accompanied with upregulated expression of genes related to fatty acid transport and downregulated expression of genes related to glucose metabolism. Mechanistically, skeletal muscles of apelin KO mice showed defective induction of insulin-like growth factor-1 signaling in response to HIIT. In conclusion, apelin is required for proper skeletal and cardiac muscle adaptation to high-intensity exercise. Promoting apelinergic signaling may have benefits in aging- or disease-related muscle wasting conditions.NEW & NOTEWORTHY Apelin levels decline with age. This study demonstrates that in trained mice, apelin deficiency results in a switch from fast type II myofibers to slow oxidative type I myofibers. This is associated with a concomitant change in gene expression profile toward fatty acid utilization, indicating an aged-muscle phenotype in exercised apelin-deficient mice. These data are of importance in the design of exercise programs for aging individuals and could offer therapeutic target to maintain muscle mass.
Collapse
Affiliation(s)
- Teemu Kilpiö
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Ábel Perjés
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Julia Swan
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Samu Saarimäki
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - István Szokodi
- Heart Institute, Medical School, and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Liu L, Guo J, Tong X, Zhang M, Chen X, Huang M, Zhu C, Bennett S, Xu J, Zou J. Mechanical strain regulates osteogenesis via Antxr1/LncRNA H19/Wnt/β-catenin axis. J Cell Physiol 2024; 239:e31214. [PMID: 38358001 DOI: 10.1002/jcp.31214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/β-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/β-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.
Collapse
Affiliation(s)
- Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Jianmin Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Guangzhou, China
| | - Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Qingdao University of Science and Technology, Qingdao, China
| | - Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Herrera JJ, McAllister CM, Szczesniak D, Goddard R, Day SM. High-intensity exercise training using a rotarod instrument (RotaHIIT) significantly improves exercise capacity in mice. Physiol Rep 2024; 12:e15997. [PMID: 38697937 PMCID: PMC11065697 DOI: 10.14814/phy2.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Voluntary or forced exercise training in mice is used to assess functional capacity as well as potential disease-modifying effects of exercise over a range of cardiovascular disease phenotypes. Compared to voluntary wheel running, forced exercise training enables precise control of exercise workload and volume, and results in superior changes in cardiovascular performance. However, the use of a shock grid with treadmill-based training is associated with stress and risk of injury, and declining compliance with longer periods of training time for many mouse strains. With these limitations in mind, we designed a novel, high-intensity interval training modality (HIIT) for mice that is carried out on a rotarod. Abbreviated as RotaHIIT, this protocol establishes interval workload intensities that are not time or resource intensive, maintains excellent training compliance over time, and results in improved exercise capacity independent of sex when measured by treadmill graded exercise testing (GXT) and rotarod specific acceleration and endurance testing. This protocol may therefore be useful and easily implemented for a broad range of research investigations. As RotaHIIT training was not associated cardiac structural or functional changes, or changes in oxidative capacity in cardiac or skeletal muscle tissue, further studies will be needed to define the physiological adaptations and molecular transducers that are driving the training effect of this exercise modality.
Collapse
Affiliation(s)
- Jonathan J. Herrera
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Medical Scientist Training ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Christopher M. McAllister
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Danielle Szczesniak
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Rose‐Carmel Goddard
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sharlene M. Day
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Koopmans PJ, Williams‐Frey TD, Zwetsloot KA. Stuart has got the PoWeR! Skeletal muscle adaptations to a novel heavy progressive weighted wheel running exercise model in C57BL/6 mice. Exp Physiol 2024; 109:271-282. [PMID: 37974360 PMCID: PMC10988744 DOI: 10.1113/ep091494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Murine exercise models are developed to study the molecular and cellular mechanisms regulating muscle mass. A progressive weighted wheel running model, named 'PoWeR', was previously developed to serve as a more translatable alternative to involuntary resistance-type exercise models in rodents, such as synergist ablation. However, mice still run great distances despite the added resistance as evidenced by a large glycolytic-to-oxidative shift in muscle fibre type. Thus, PoWeR reflects a blended resistance/endurance model. In an attempt to bias PoWeR further towards resistance-type exercise, we developed a novel heavy PoWeR model (hPoWeR) utilizing higher wheel loads (max of 12.5 g vs 6 g). Adult male C57BL/6 mice voluntarily performed an 8-week progressive loading protocol (PoWeR or hPoWeR). Running distance peaked at ∼5-6 km day-1 in both treatments and was maintained by PoWeR mice, but declined in the hPoWeR mice as load increased beyond 7.5 g. Peak isometric force of the gastrocnemius-soleus-plantaris complex tended to increase in wheel running treatments. Soleus mass increased by 19% and 24% in PoWeR and hPoWeR treatments, respectively, and plantaris fibre cross-sectional area was greater in hPoWeR, compared to PoWeR. There were fewer glycolytic and more oxidative fibres in the soleus and plantaris muscles in the PoWeR treatment, but not hPoWeR. Collectively, these data suggest hPoWeR may modestly alter skeletal muscle supporting the aim of better reflecting typical resistance training adaptations, in line with decreased running volume and exposure to higher resistance. Regardless, PoWeR remains an effective hypertrophic concurrent training model in mice.
Collapse
Affiliation(s)
- Pieter J. Koopmans
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of Public Health and Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Therin D. Williams‐Frey
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of BiologyAppalachian State UniversityBooneNorth CarolinaUSA
| | - Kevin A. Zwetsloot
- Integrative Muscle Physiology LaboratoryAppalachian State UniversityBooneNorth CarolinaUSA
- Department of Public Health and Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
- Department of BiologyAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
14
|
Dial MB, Malek EM, Neblina GA, Cooper AR, Vaslieva NI, Frommer R, Girgis M, Dawn B, McGinnis GR. Effects of time-restricted exercise on activity rhythms and exercise-induced adaptations in the heart. Sci Rep 2024; 14:146. [PMID: 38168503 PMCID: PMC10761674 DOI: 10.1038/s41598-023-50113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms play a crucial role in the regulation of various physiological processes, including cardiovascular function and metabolism. Exercise provokes numerous beneficial adaptations in heart, including physiological hypertrophy, and serves to shift circadian rhythms. This study investigated the impact of time-restricted exercise training on exercise-induced adaptations in the heart and locomotor activity rhythms. Male mice (n = 45) were allocated to perform voluntary, time-restricted exercise in the early active phase (EAP), late active phase (LAP), or remain sedentary (SED) for 6 weeks. Subsequently, mice were allowed 24-h ad libitum access to the running wheel to assess diurnal rhythms in locomotor activity. Heart weight and cross-sectional area were measured at sacrifice, and cardiac protein and gene expression levels were assessed for markers of mitochondrial abundance and circadian clock gene expression. Mice rapidly adapted to wheel running, with EAP mice exhibiting a significantly greater running distance compared to LAP mice. Time-restricted exercise induced a shift in voluntary wheel activity during the 24-h free access period, with the acrophase in activity being significantly earlier in EAP mice compared to LAP mice. Gene expression analysis revealed a higher expression of Per1 in LAP mice. EAP exercise elicited greater cardiac hypertrophy compared to LAP exercise. These findings suggest that the timing of exercise affects myocardial adaptations, with exercise in the early active phase inducing hypertrophy in the heart. Understanding the time-of-day dependent response to exercise in the heart may have implications for optimizing exercise interventions for cardiovascular health.
Collapse
Affiliation(s)
- Michael B Dial
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Elias M Malek
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Greco A Neblina
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Austin R Cooper
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Nikoleta I Vaslieva
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA
| | - Rebecca Frommer
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Magdy Girgis
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Graham R McGinnis
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Bigelow Health Sciences (BHS) Building 323, Las Vegas, NV, 89154, USA.
| |
Collapse
|
15
|
Jung SR, Lee JH, Ryu H, Gao Y, Lee J. Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:31-38. [PMID: 38154962 PMCID: PMC10762486 DOI: 10.4196/kjpp.2024.28.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
As in type 1 diabetes, the loss of pancreatic β-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting β-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.
Collapse
Affiliation(s)
- Su-Ryun Jung
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu 42415, Korea
| | - Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
16
|
Jiang J, Ni L, Zhang X, Chatterjee E, Lehmann HI, Li G, Xiao J. Keeping the Heart Healthy: The Role of Exercise in Cardiac Repair and Regeneration. Antioxid Redox Signal 2023; 39:1088-1107. [PMID: 37132606 DOI: 10.1089/ars.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Significance: Heart failure is often accompanied by a decrease in the number of cardiomyocytes. Although the adult mammalian hearts have limited regenerative capacity, the rate of regeneration is extremely low and decreases with age. Exercise is an effective means to improve cardiovascular function and prevent cardiovascular diseases. However, the molecular mechanisms of how exercise acts on cardiomyocytes are still not fully elucidated. Therefore, it is important to explore the role of exercise in cardiomyocytes and cardiac regeneration. Recent Advances: Recent advances have shown that the effects of exercise on cardiomyocytes are critical for cardiac repair and regeneration. Exercise can induce cardiomyocyte growth by increasing the size and number. It can induce physiological cardiomyocyte hypertrophy, inhibit cardiomyocyte apoptosis, and promote cardiomyocyte proliferation. In this review, we have discussed the molecular mechanisms and recent studies of exercise-induced cardiac regeneration, with a focus on its effects on cardiomyocytes. Critical Issues: There is no effective way to promote cardiac regeneration. Moderate exercise can keep the heart healthy by encouraging adult cardiomyocytes to survive and regenerate. Therefore, exercise could be a promising tool for stimulating the regenerative capability of the heart and keeping the heart healthy. Future Directions: Although exercise is an important measure to promote cardiomyocyte growth and subsequent cardiac regeneration, more studies are needed on how to do beneficial exercise and what factors are involved in cardiac repair and regeneration. Thus, it is important to clarify the mechanisms, pathways, and other critical factors involved in the exercise-mediated cardiac repair and regeneration. Antioxid. Redox Signal. 39, 1088-1107.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Emeli Chatterjee
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
17
|
Yoshikawa A, Iizuka M, Kanamaru M, Kamijo S, Ohtaki H, Izumizaki M. Exercise evaluation with metabolic and ventilatory responses and blood lactate concentration in mice. Respir Physiol Neurobiol 2023; 318:104163. [PMID: 37734454 DOI: 10.1016/j.resp.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to clarify the differential exercise capacity between 2-month-old and 10-month-old mice using an incremental running test. Metabolic and ventilatory responses and blood lactate concentration were measured to evaluate exercise capacity. We examined whether incremental running test results reflected metabolic and ventilatory responses and blood lactate concentration observed during the steady-state running test. Metabolic response significantly declined with age, whereas ventilatory response was similar between the groups. A low-intensity/moderate exercise load of 10/min in an incremental running test was performed on both mice for 30 min. They showed a characteristic pattern in ventilatory response in 10-month mice. The results of incremental running tests didn't necessarily reflect the steady-state metabolic and ventilatory responses because some parameters showed an approximation and others did not in incremental and steady-state tests, which changed with age. Our study suggests metabolic and ventilatory responses depending on age and provides basic knowledge regarding the objective and quantitative assessment of treadmill running in an animal model.
Collapse
Affiliation(s)
- Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Division of Health Science Education, Showa University School of Nursing and Rehabilitation Sciences, Yokohama, Japan.
| | - Makito Iizuka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Mitsuko Kanamaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Faculty of Arts and Sciences at Fujiyoshida, Showa University, Yamanashi, Japan
| | - Shotaro Kamijo
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Department of Physiology, Showa University School of Pharmacy, Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Functional Neurobiology, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Hachioji, Japan; Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Ye X, Liu R, Qiao Z, Chai X, Wang Y. Integrative profiling of metabolome and transcriptome of skeletal muscle after acute exercise intervention in mice. Front Physiol 2023; 14:1273342. [PMID: 37869715 PMCID: PMC10587468 DOI: 10.3389/fphys.2023.1273342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
This study aims to explore the molecular regulatory mechanisms of acute exercise in the skeletal muscle of mice. Male C57BL/6 mice were randomly assigned to the control group, and the exercise group, which were sacrificed immediately after an acute bout of exercise. The study was conducted to investigate the metabolic and transcriptional profiling in the quadriceps muscles of mice. The results demonstrated the identification of 34 differentially expressed metabolites (DEMs), with 28 upregulated and 6 downregulated, between the two groups. Metabolic pathway analysis revealed that these DEMs were primarily enriched in several, including the citrate cycle, propanoate metabolism, and lysine degradation pathways. In addition, the results showed a total of 245 differentially expressed genes (DEGs), with 155 genes upregulated and 90 genes downregulated. KEGG analysis indicated that these DEGs were mainly enriched in various pathways such as ubiquitin mediated proteolysis and FoxO signaling pathway. Furthermore, the analysis revealed significant enrichment of DEMs and DEGs in signaling pathways such as protein digestion and absorption, ferroptosis signaling pathway. In summary, the identified multiple metabolic pathways and signaling pathways were involved in the exercise-induced physiological regulation of skeletal muscle, such as the TCA cycle, oxidative phosphorylation, protein digestion and absorption, the FoxO signaling pathway, ubiquitin mediated proteolysis, ferroptosis signaling pathway, and the upregulation of KLF-15, FoxO1, MAFbx, and MuRF1 expression could play a critical role in enhancing skeletal muscle proteolysis.
Collapse
Affiliation(s)
- Xing Ye
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China
| | - Renyi Liu
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaocui Chai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
19
|
Bonilla IM, Baine S, Pokrass A, Mariángelo JIE, Kalyanasundaram A, Bogdanov V, Mezache L, Sakuta G, Beard CM, Belevych A, Tikunova S, Terentyeva R, Terentyev D, Davis J, Veeraraghavan R, Carnes CA, Györke S. STIM1 ablation impairs exercise-induced physiological cardiac hypertrophy and dysregulates autophagy in mouse hearts. J Appl Physiol (1985) 2023; 134:1287-1299. [PMID: 36995910 PMCID: PMC10190841 DOI: 10.1152/japplphysiol.00363.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.
Collapse
Affiliation(s)
- Ingrid M Bonilla
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Veterans Affairs Caribbean Healthcare System, San Juan, Puerto Rico, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States
| | - Stephen Baine
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Anastasia Pokrass
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Juan Ignacio Elio Mariángelo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, Columbus, Ohio, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Galina Sakuta
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Casey M Beard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Andriy Belevych
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jonathan Davis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Cynthia A Carnes
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Sandor Györke
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
20
|
Elming PB, Busk M, Wittenborn TR, Bussink J, Horsman MR, Lønbro S. The effect of single bout and prolonged aerobic exercise on tumor hypoxia in mice. J Appl Physiol (1985) 2023; 134:692-702. [PMID: 36727633 DOI: 10.1152/japplphysiol.00561.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
The objectives of this study were to investigate 1) the effect of acute aerobic exercise on tumor hypoxia and blood perfusion, 2) the impact of exercise intensity, 3) the duration of the effect, and 4) the effect of prolonged training on tumor hypoxia and tumor growth. Female CDF1 mice were inoculated with the C3H mammary carcinoma either in the mammary fat pad or subcutaneously in the back. For experiments on the effect of different intensities in a single exercise bout, mice were randomized to 30-min treadmill running at low-, moderate-, or high-intensity speeds or no exercise. To investigate the prolonged effect on hypoxia and tumor growth, tumor-bearing mice were randomized to no exercise (CON) or daily 30-min high-intensity exercise averaging 2 wk (EX). Tumor hypoxic fraction was quantified using the hypoxia marker Pimonidazole. Initially, high-intensity exercise reduced tumor hypoxic fraction by 37% compared with CON [P = 0.046; 95% confidence interval (CI): 0.1; 10.3] in fat pad tumors. Low- and moderate-intensity exercises did not. Following experiments investigating the duration of the effect-as well as experiments in mice with back tumors-failed to show any exercise-induced changes in hypoxia. Interestingly, prolonged daily training significantly reduced hypoxic fraction by 60% (P = 0.002; 95% CI: 2.5; 10.1) compared with CON. Despite diverging findings on the acute effect of exercise on hypoxia, our data indicate that if exercise has a diminishing effect, high-intensity exercise is needed. Prolonged training reduced tumor hypoxic fraction-cautiously suggesting a potential clinical potential.NEW & NOTEWORTHY This study provides novel information on the effects of acute and chronic exercise on tumor hypoxia in mice. In contrast to the few related existing studies, diverging findings on tumor hypoxia after acute exercise were observed, suggesting that tumor model and location should be considered in future studies. Highly significant reductions in tumor hypoxia following chronic high-intensity exercise propose a future clinical potential but this should be investigated in patients.
Collapse
Affiliation(s)
| | - Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Rea Wittenborn
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lønbro
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Section for Sports Science, Department of Public Health, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Kemi OJ. Exercise and Calcium in the Heart. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Karsenty C, Guilbeau-Frugier C, Genet G, Seguelas MH, Alzieu P, Cazorla O, Montagner A, Blum Y, Dubroca C, Maupoint J, Tramunt B, Cauquil M, Sulpice T, Richard S, Arcucci S, Flores-Flores R, Pataluch N, Montoriol R, Sicard P, Deney A, Couffinhal T, Senard JM, Galés C. Ephrin-B1 regulates the adult diastolic function through a late postnatal maturation of cardiomyocyte surface crests. eLife 2023; 12:e80904. [PMID: 36649053 PMCID: PMC9844986 DOI: 10.7554/elife.80904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.
Collapse
Affiliation(s)
- Clement Karsenty
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Pediatric Cardiology, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Celine Guilbeau-Frugier
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de ToulouseToulouseFrance
| | - Gaël Genet
- Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Marie-Helene Seguelas
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Philippe Alzieu
- Université de Bordeaux, INSERM, Biologie des maladies cardiovasculairesPessacFrance
| | - Olivier Cazorla
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Alexandra Montagner
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Yuna Blum
- IGDR UMR 6290, CNRS, Université de Rennes 1RennesFrance
| | | | | | - Blandine Tramunt
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Diabetology, Metabolic Diseases & Nutrition, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Marie Cauquil
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | | | - Sylvain Richard
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Silvia Arcucci
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Remy Flores-Flores
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Nicolas Pataluch
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Romain Montoriol
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de ToulouseToulouseFrance
| | - Pierre Sicard
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Antoine Deney
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Thierry Couffinhal
- Université de Bordeaux, INSERM, Biologie des maladies cardiovasculairesPessacFrance
- Service des Maladies Cardiaques et Vasculaires, CHU de BordeauxBordeauxFrance
| | - Jean-Michel Senard
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Clinical Pharmacology, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Celine Galés
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| |
Collapse
|
23
|
Battey E, Ross JA, Hoang A, Wilson DGS, Han Y, Levy Y, Pollock RD, Kalakoutis M, Pugh JN, Close GL, Ellison-Hughes GM, Lazarus NR, Iskratsch T, Harridge SDR, Ochala J, Stroud MJ. Myonuclear alterations associated with exercise are independent of age in humans. J Physiol 2023. [PMID: 36597809 DOI: 10.1113/jp284128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-related decline in skeletal muscle structure and function can be mitigated by regular exercise. However, the precise mechanisms that govern this are not fully understood. The nucleus plays an active role in translating forces into biochemical signals (mechanotransduction), with the nuclear lamina protein lamin A regulating nuclear shape, nuclear mechanics and ultimately gene expression. Defective lamin A expression causes muscle pathologies and premature ageing syndromes, but the roles of nuclear structure and function in physiological ageing and in exercise adaptations remain obscure. Here, we isolated single muscle fibres and carried out detailed morphological and functional analyses on myonuclei from young and older exercise-trained individuals. Strikingly, myonuclei from trained individuals were more spherical, less deformable, and contained a thicker nuclear lamina than those from untrained individuals. Complementary to this, exercise resulted in increased levels of lamin A and increased myonuclear stiffness in mice. We conclude that exercise is associated with myonuclear remodelling, independently of age, which may contribute to the preservative effects of exercise on muscle function throughout the lifespan. KEY POINTS: The nucleus plays an active role in translating forces into biochemical signals. Myonuclear aberrations in a group of muscular dystrophies called laminopathies suggest that the shape and mechanical properties of myonuclei are important for maintaining muscle function. Here, striking differences are presented in myonuclear shape and mechanics associated with exercise, in both young and old humans. Myonuclei from trained individuals were more spherical, less deformable and contained a thicker nuclear lamina than untrained individuals. It is concluded that exercise is associated with age-independent myonuclear remodelling, which may help to maintain muscle function throughout the lifespan.
Collapse
Affiliation(s)
- E Battey
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J A Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - A Hoang
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - D G S Wilson
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Y Han
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Y Levy
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - R D Pollock
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - M Kalakoutis
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J N Pugh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G L Close
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G M Ellison-Hughes
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - N R Lazarus
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - T Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - S D R Harridge
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - J Ochala
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| |
Collapse
|
24
|
Jasińska-Stroschein M. Training programs in preclinical studies. The example of pulmonary hypertension. Systematic review and meta-analysis. PLoS One 2022; 17:e0276875. [PMCID: PMC9665399 DOI: 10.1371/journal.pone.0276875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background
Exercise and cardiopulmonary exercise testing are essential in the evaluation of physiological, biochemical, and molecular responses in the experimental studies on chronic diseases such as diabetes, heart failure and hypertension. The exercise tolerance and seem to be a valuable contribution to the experiments that are performed in animal models of pulmonary hypertension (PH), as well. The current survey uses detailed quantitative analyses to assess the advantages of exercise training programs performed in preclinical studies based on outcomes such as exercise capacity, cardiopulmonary hemodynamics, and mortality.
Methods
Articles were identified through search engines in the online electronic databases Pubmed/Medline, Web of Science following the PRISMA Protocol. Studies conducted between 1991 and 2022 without language restrictions were included in this study. Heterogeneity was assessed using the Cochrane Q-test and I2 test statistics. Subgroup analysis was employed with evidence of heterogeneity. Quality assessment was carried out using SYRCLE’s risk of bias tool for animal studies. Publication bias across studies was determined using the funnel plot and Egger’s regression test statistic.
Results
The available protocols typically included treadmill running, swimming, and voluntary wheel running with a different series of intensities, times and durations; these were also used in studies examining the efficacy of chronic training programs. In 66 interventions, PH induction reduced exercise endurance by half compared to healthy subjects, while exposure to tested medical agents normalized exercise capacity. The other 58 interventions demonstrated the advantages of various exercise training programs for PH. Induction of PH reduced exercise endurance by half compared to healthy subjects (R = 0.52; 0.48 − 0.55 95%CI; P<0.0001; I2 = 98.9%), while the exposure to tested medical agents normalized exercise capacity (R = 1.75; 1.61 − 1.91 95%CI; P<0.0001; I2 = 97.8%).
Conclusion
Despite a wide spectrum of study protocols to measure exercise endurance in animals with PH, there is a significant correlation between worsening of exercise-related parameters and PH development, manifested by alterations in haemodynamic and remodeling parameters. Familiarization with exercise, training program schedule, method used for PH induction, or detailed training parameters such as slope, exercise intensity or individualization, can influence the final outcome. This in turn can impact on the diversity and reproducibility of results being obtained in particular experimental studies.
Collapse
|
25
|
Feng N, Yu H, Wang Y, Zhang Y, Xiao H, Gao W. Exercise training attenuates angiotensin II-induced cardiac fibrosis by reducing POU2F1 expression. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00104-1. [PMID: 36374849 PMCID: PMC10362488 DOI: 10.1016/j.jshs.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Exercise training protects against heart failure. However, the mechanism underlying the protective effect of exercise training on angiotensin II (Ang II)-induced cardiac fibrosis remains unclear. METHODS An exercise model involving C57BL/6N mice and 6 weeks of treadmill training was used. Ang II (1.44 mg/kg/day) was administered to induce cardiac fibrosis. RNA sequencing and bioinformatic analysis were used to identify the key factors mediating the effects of exercise training on cardiac fibrosis. Primary adult mouse cardiac fibroblasts (CFs) were used in vitro. Adeno-associated virus serotype 9 was used to overexpress POU domain, class 2, transcription factor 1 (POU2F1) in vivo. RESULTS Exercise training attenuated Ang II-induced cardiac fibrosis and reversed 39 gene expression changes. The transcription factor regulating the largest number of these genes was POU2F1. Compared to controls, POU2F1 was shown to be significantly upregulated by Ang II, which is itself reduced by exercise training. In vivo, POU2F1 overexpression nullified the benefits of exercise training on cardiac fibrosis. In CFs, POU2F1 promoted cardiac fibrosis. CCAAT enhancer-binding protein β (C/EBPβ) was predicted to be the transcription factor of POU2F1 and verified using a dual-luciferase reporter assay. In vivo, exercise training activated AMP-activated protein kinase (AMPK) and alleviated the increase in C/EBPβ induced by Ang II. In CFs, AMPK agonist inhibited the increase in C/EBPβ and POU2F1 induced by Ang II, whereas AMPK inhibitor reversed this effect. CONCLUSION Exercise training attenuates Ang II-induced cardiac fibrosis by reducing POU2F1. Exercise training inhibits POU2F1 by activating AMPK, which is followed by the downregulation of C/EBPβ, the transcription factor of POU2F1.
Collapse
Affiliation(s)
- Na Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yueshen Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
26
|
Villalba-Orero M, Garcia-Pavia P, Lara-Pezzi E. Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC Med 2022; 20:349. [PMID: 36229816 PMCID: PMC9563110 DOI: 10.1186/s12916-022-02546-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) prevalence is increasing, and large clinical trials have failed to reduce mortality. A major reason for this outcome is the failure to translate results from basic research to the clinics. Evaluation of HFpEF in mouse models requires assessing three major key features defining this complex syndrome: the presence of a preserved left ventricular ejection fraction (LVEF), diastolic dysfunction, and the development of HF. In addition, HFpEF is associated with multiple comorbidities such as systemic arterial hypertension, chronic obstructive pulmonary disease, sleep apnea, diabetes, and obesity; thus, non-cardiac disorders assessment is crucial for a complete phenotype characterization. Non-invasive procedures present unquestionable advantages to maintain animal welfare and enable longitudinal analyses. However, unequivocally determining the presence of HFpEF using these methods remains challenging. MAIN TEXT Transthoracic echocardiography (TTE) represents an invaluable tool in HFpEF diagnosis, allowing evaluation of LVEF, diastolic dysfunction, and lung congestion in mice. Since conventional parameters used to evaluate an abnormal diastole like E/A ratio, isovolumic relaxation time, and E/e' may pose limitations in mice, including advanced TTE techniques to characterize cardiac motion, including an assessment under stress, will improve diagnosis. Patients with HFpEF also show electrical cardiac remodelling and therefore electrocardiography may add valuable information in mouse models to assess chronotropic incompetence and sinoatrial node dysfunction, which are major contributors to exercise intolerance. To complete the non-invasive diagnosis of HF, low aerobic exercise capacity and fatigue using exercise tests, impaired oxygen exchange using metabolic cages, and determination of blood biomarkers can be determined. Finally, since HFpEF patients commonly present non-cardiac pathological conditions, acquisition of systemic and pulmonary arterial pressures, blood glucose levels, and performing glucose tolerance and insulin resistance tests are required for a complete phenotyping. CONCLUSION Identification of reliable models of HFpEF in mice by using proper diagnosis tools is necessary to translate basic research results to the clinics. Determining the presence of several HFpEF indicators and a higher number of abnormal parameters will lead to more reliable evidence of HFpEF.
Collapse
Affiliation(s)
- María Villalba-Orero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040, Madrid, Spain. .,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Centro de investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.
| | - Pablo Garcia-Pavia
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Centro de investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Madrid, Spain.,Universidad Francisco de Vitoria, Madrid, Spain
| | - Enrique Lara-Pezzi
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Centro de investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.
| |
Collapse
|
27
|
Long GM, Troutman AD, Gray DA, Fisher AJ, Lahm T, Coggan AR, Brown MB. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2022; 323:R561-R570. [PMID: 36036455 PMCID: PMC9602702 DOI: 10.1152/ajpregu.00327.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.
Collapse
Affiliation(s)
- Gary Marshall Long
- Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Derrick A Gray
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Amanda J Fisher
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Tim Lahm
- Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Bartra C, Jager LA, Alcarraz A, Meza-Ramos A, Sangüesa G, Corpas R, Guasch E, Batlle M, Sanfeliu C. Antioxidant Molecular Brain Changes Parallel Adaptive Cardiovascular Response to Forced Running in Mice. Antioxidants (Basel) 2022; 11:1891. [PMID: 36290614 PMCID: PMC9598430 DOI: 10.3390/antiox11101891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 10/03/2023] Open
Abstract
Physically active lifestyle has huge implications for the health and well-being of people of all ages. However, excessive training can lead to severe cardiovascular events such as heart fibrosis and arrhythmia. In addition, strenuous exercise may impair brain plasticity. Here we investigate the presence of any deleterious effects induced by chronic high-intensity exercise, although not reaching exhaustion. We analyzed cardiovascular, cognitive, and cerebral molecular changes in young adult male mice submitted to treadmill running for eight weeks at moderate or high-intensity regimens compared to sedentary mice. Exercised mice showed decreased weight gain, which was significant for the high-intensity group. Exercised mice showed cardiac hypertrophy but with no signs of hemodynamic overload. No morphological changes in the descending aorta were observed, either. High-intensity training induced a decrease in heart rate and an increase in motor skills. However, it did not impair recognition or spatial memory, and, accordingly, the expression of hippocampal and cerebral cortical neuroplasticity markers was maintained. Interestingly, proteasome enzymatic activity increased in the cerebral cortex of all trained mice, and catalase expression was significantly increased in the high-intensity group; both first-line mechanisms contribute to maintaining redox homeostasis. Therefore, physical exercise at an intensity that induces adaptive cardiovascular changes parallels increases in antioxidant defenses to prevent brain damage.
Collapse
Affiliation(s)
- Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Lars Andre Jager
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
| | - Anna Alcarraz
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Aline Meza-Ramos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Gemma Sangüesa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Rubén Corpas
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Eduard Guasch
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red-Cardiovascular (CIBERCV), 28029 Madrid, Spain
| | - Montserrat Batlle
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red-Cardiovascular (CIBERCV), 28029 Madrid, Spain
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
29
|
The high-intensity interval training mitigates the cardiac remodeling in spontaneously hypertensive rats. Life Sci 2022; 308:120959. [PMID: 36108768 DOI: 10.1016/j.lfs.2022.120959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
AIM To evaluate the influence of high-intensity interval training (HIIT) on cardiac structural and functional characteristics and myocardial mitogen-activated protein kinase (MAPK) signaling in hypertensive rats. METHODS Male rats (12 months old) were divided into three groups: Wistar Kyoto rats (WKY, n = 8); sedentary spontaneously hypertensive rats (SED-SHR, n = 10), and trained spontaneously hypertensive rats (HIIT-SHR, n = 10). Systolic blood pressure (SBP), functional capacity, echocardiography, isolated papillary muscle, and gene expression of MAPK gene-encoding proteins associated with Elk1, cJun, ATF2, MEF2 were analyzed. KEY FINDINGS HIIT decreased SBP and increased functional capacity, left ventricular diastolic diameter, posterior wall thickness-left ventricle, relative wall thickness-left ventricle, and resting tension of the papillary muscle. In hypertensive rats, we observed a decrease in the gene-encoding ATF2 protein; this decrease was reversed by HIIT. SIGNIFICANCE The influence of HIIT in the SHR model in the compensated hypertension phase generated an increase in cardiac hypertrophy, attenuated myocardial diastolic dysfunction, lowered blood pressure, improved functional capacity, and reversed the alteration in gene-encoding ATF2 protein.
Collapse
|
30
|
Cardioprotective Effects of Physical Activity: Focus on Ischemia and Reperfusion. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
This review aimed to revisit the old and introduce some of the new various cardioprotective effects of physical exercise, focusing on ischemia-reperfusion injury. A wealth of data shows that regular physical exercise is necessary to prevent cardiovascular diseases. In the last few years, a number of new training regimes, usually modified variations of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) protocols, have been rising in popularity among people of all ages. Since exercising is not limited to only healthy people, our study emphasized the benefits of HIIT and MICT in preventing or mitigating cardiac ischemia-reperfusion injury. Different kinds of research are being performed, studying the various positive and side effects of these training regimes, all in hopes of finding the most optimal ones. So far, all of them have shown that exercising to any extent, even for a short period of time, is beneficial in one way or another, and outweighs the possible risks it might have. We also revisited some of the known molecular mechanisms responsible for many of the effects of physical exercise and introduced some new findings related to them. Lastly, we summarized and compared the benefits of different HIIT and MICT protocols to narrow down the search for the most efficient training method.
Collapse
|
31
|
Luo M, Cao S, Lv D, He L, He Z, Li L, Li Y, Luo S, Chang Q. Aerobic Exercise Training Improves Renal Injury in Spontaneously Hypertensive Rats by Increasing Renalase Expression in Medulla. Front Cardiovasc Med 2022; 9:922705. [PMID: 35898283 PMCID: PMC9309879 DOI: 10.3389/fcvm.2022.922705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We aimed to examine the effects of aerobic exercise training on renal function in spontaneously hypertensive rats (SHR) and elucidate their possible mechanisms. Adult male SHR and age-matched Wistar-Kyoto rats (WKY) were divided into four groups: WKY sedentary group, SHR sedentary group, low-intensity training group, and medium-intensity training group. Using molecular and biochemical approaches, we investigated the effects of 14-week training on renalase (RNLS) protein levels, renal function, and apoptosis and oxidative stress modulators in kidney tissues. In vitro, angiotensin II (Ang II)-induced human kidney proximal epithelial cells (HK-2) were treated with RNLS, and changes in apoptosis and oxidative stress levels were observed. Our results show that moderate training improved renal function decline in SHR. In addition, aerobic exercise therapy significantly increased levels of RNLS in the renal medulla of SHR. We observed in vitro that RNLS significantly inhibited the increase of Ang II-inducedapoptosis and oxidative stress levels in HK-2. In conclusion, aerobic exercise training effectively improved renal function in SHR by promoting RNLS expression in the renal medulla. These results explain the possible mechanism in which exercise improves renal injury in hypertensive patients and suggest RNLS as a novel therapy for kidney injury patients.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Longlin He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Qing Chang
| |
Collapse
|
32
|
Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022; 130:1994-2014. [PMID: 35679366 PMCID: PMC9202075 DOI: 10.1161/circresaha.122.320247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (J.J.H.)
| | - J Sawalla Guseh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Bjarni Atlason
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Nicholas E Houstis
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Azrul Abdul Kadir
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Haobo Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Cedric Sheffield
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Anand P Singh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jason D Roh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Sharlene M Day
- Cardiovascular Medicine, Perelman School of Medicine' University of Pennsylvania, Philadelphia (S.M.D.)
| | - Anthony Rosenzweig
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| |
Collapse
|
33
|
Jia Y, Yao Y, Zhuo L, Chen X, Yan C, Ji Y, Tao J, Zhu Y. Aerobic Physical Exercise as a Non-medical Intervention for Brain Dysfunction: State of the Art and Beyond. Front Neurol 2022; 13:862078. [PMID: 35645958 PMCID: PMC9136296 DOI: 10.3389/fneur.2022.862078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Brain disorders, including stroke, Alzheimer's disease, depression, and chronic pain, are difficult to effectively treat. These major brain disorders have high incidence and mortality rates in the general population, and seriously affect not only the patient's quality of life, but also increases the burden of social medical care. Aerobic physical exercise is considered an effective adjuvant therapy for preventing and treating major brain disorders. Although the underlying regulatory mechanisms are still unknown, systemic processes may be involved. Here, this review aimed to reveal that aerobic physical exercise improved depression and several brain functions, including cognitive functions, and provided chronic pain relief. We concluded that aerobic physical exercise helps to maintain the regulatory mechanisms of brain homeostasis through anti-inflammatory mechanisms and enhanced synaptic plasticity and inhibition of hippocampal atrophy and neuronal apoptosis. In addition, we also discussed the cross-system mechanisms of aerobic exercise in regulating imbalances in brain function, such as the “bone-brain axis.” Furthermore, our findings provide a scientific basis for the clinical application of aerobic physical exercise in the fight against brain disorders.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Yao
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cuina Yan
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine and School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
34
|
Housing conditions modify seasonal changes in basal metabolism and body mass of the Siberian hamster, Phodopus sungorus. J Comp Physiol B 2022; 192:513-526. [PMID: 35348882 PMCID: PMC9197917 DOI: 10.1007/s00360-022-01434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 10/27/2022]
Abstract
Proper housing conditions are important aspects of animal welfare. Animals housed in enriched environments show less stereotypic behaviours than animals kept in barren cages. However, different types of cage enrichment may affect the results of experimental studies and hinder comparative analyses of animal physiology and behaviour. We investigated whether access to a running wheel, availability of nesting material, and pair housing affect basal metabolic rate (BMR) of Siberian hamsters (Phodopus sungorus) under various acclimation conditions. We used 70 adult hamsters (35 males and 35 females) divided into five groups housed under different cage conditions. All individuals experienced the same acclimation procedure: first a winter (L8:D16) then a summer (L16:D8) photoperiod, at air temperatures of first 20 °C then 7 °C under both photoperiods. We found that nesting material and pair housing did not affect hamster BMR, while access to a running wheel increased BMR and body mass regardless of photoperiod and ambient temperature. Thus, we suggest that cage enrichment should be applied with caution, especially in studies on energetics or thermoregulation, particularly in seasonal animals.
Collapse
|
35
|
Ritchie JA, Ng JQ, Kemi OJ. When one says yes and the other says no; does calcineurin participate in physiologic cardiac hypertrophy? ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:84-95. [PMID: 34762541 DOI: 10.1152/advan.00104.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only two studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by two main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher level cognitive processing.
Collapse
Affiliation(s)
- Jonathan A Ritchie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Q Ng
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ole J Kemi
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
36
|
Morroni J, Schirone L, Valenti V, Zwergel C, Riera CS, Valente S, Vecchio D, Schiavon S, Ragno R, Mai A, Sciarretta S, Lozanoska-Ochser B, Bouchè M. Inhibition of PKCθ Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23042256. [PMID: 35216371 PMCID: PMC8880527 DOI: 10.3390/ijms23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100 Latina, Italy;
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Daniele Vecchio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Sonia Schiavon
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Rino Ragno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Marina Bouchè
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
- Correspondence:
| |
Collapse
|
37
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
38
|
Jasaputra DK, Lucretia T, Ray HRD, Kwee L, Gunawan D, Edwinanto L, Viona SI, Goenawan H, Lesmana R, Gunadi JW. Moringa oleifera Leaves Extract Alters Exercise-Induced Cardiac Hypertrophy Adaptation. Pak J Biol Sci 2022; 25:210-217. [PMID: 35234011 DOI: 10.3923/pjbs.2022.210.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Cardiomyocyte adaptation to exercise might require ROS as a central regulator. There is a limited study regarding the importance of ROS for inducing exercise-induced adaptation and its correlations with changes in histological scoring of cardiac muscles. The study aimed to explore the importance of physiological ROS induced by exercise and its correlation with Cardiomyocyte' histological appearance that is altered by <i>Moringa oleifera</i> leaves extract in Wistar rats. <b>Materials and Methods:</b> This was an animal experimental study, which use 4 groups of 24 Wistar rats divided into Control (Co), <i>Moringa</i> leaves extract (Mo), Exercise (Ex) and a combination of <i>Moringa </i>leaves extract and Exercise (MoEx). The <i>Moringa</i> leaves extract were given orally, 5 days a week, for 4 consecutive weeks. The exercise was given in moderate intensity, 5 days a week, also for 4 consecutive weeks. <b>Results:</b> This study found significant differences in heart weight and heart weight/body weight ratio in Ex group compared to the control. As for histology scoring, found that MoEx group has 16.7% cardiac hypertrophy and myofiber disarray compared to 83.3% mild hypertrophy and 50% mild disarray in Ex group. <b>Conclusion:</b> In summary, the study showed that the potential central role of exercise-induced physiological ROS for cardiac hypertrophy adaptation is altered by <i>Moringa oleifera </i>leaves extract treatment.
Collapse
|
39
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
40
|
Multiple Applications of Different Exercise Modalities with Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3898710. [PMID: 34868454 PMCID: PMC8639251 DOI: 10.1155/2021/3898710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.
Collapse
|
41
|
Urdinguio RG, Tejedor JR, Fernández-Sanjurjo M, Pérez RF, Peñarroya A, Ferrero C, Codina-Martínez H, Díez-Planelles C, Pinto-Hernández P, Castilla-Silgado J, Coto-Vilcapoma A, Díez-Robles S, Blanco-Agudín N, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Fernandez AF, Fraga MF. Physical exercise shapes the mouse brain epigenome. Mol Metab 2021; 54:101398. [PMID: 34801767 PMCID: PMC8661702 DOI: 10.1016/j.molmet.2021.101398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Rocío G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Manuel Fernández-Sanjurjo
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Cecilia Ferrero
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Helena Codina-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos Díez-Planelles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Sergio Díez-Robles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Noelia Blanco-Agudín
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain.
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Agustin F Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain; Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
42
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
43
|
Santamans AM, Montalvo-Romeral V, Mora A, Lopez JA, González-Romero F, Jimenez-Blasco D, Rodríguez E, Pintor-Chocano A, Casanueva-Benítez C, Acín-Pérez R, Leiva-Vega L, Duran J, Guinovart JJ, Jiménez-Borreguero J, Enríquez JA, Villlalba-Orero M, Bolaños JP, Aspichueta P, Vázquez J, González-Terán B, Sabio G. p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biol 2021; 19:e3001447. [PMID: 34758018 PMCID: PMC8612745 DOI: 10.1371/journal.pbio.3001447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.
Collapse
Affiliation(s)
| | | | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - María Villlalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
44
|
Jung S, Kim Y, Kim M, Seo M, Kim S, Kim S, Lee S. Exercise Pills for Drug Addiction: Forced Moderate Endurance Exercise Inhibits Methamphetamine-Induced Hyperactivity through the Striatal Glutamatergic Signaling Pathway in Male Sprague Dawley Rats. Int J Mol Sci 2021; 22:ijms22158203. [PMID: 34360969 PMCID: PMC8348279 DOI: 10.3390/ijms22158203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Physical exercise reduces the extent, duration, and frequency of drug use in drug addicts during the drug initiation phase, as well as during prolonged addiction, withdrawal, and recurrence. However, information about exercise-induced neurobiological changes is limited. This study aimed to investigate the effects of forced moderate endurance exercise training on methamphetamine (METH)-induced behavior and the associated neurobiological changes. Male Sprague Dawley rats were subjected to the administration of METH (1 mg/kg/day, i.p.) and/or forced moderate endurance exercise (treadmill running, 21 m/min, 60 min/day) for 2 weeks. Over the two weeks, endurance exercise training significantly reduced METH-induced hyperactivity. METH and/or exercise treatment increased striatal dopamine (DA) levels, decreased p(Thr308)-Akt expression, and increased p(Tyr216)-GSK-3β expression. However, the phosphorylation levels of Ser9-GSK-3β were significantly increased in the exercise group. METH administration significantly increased the expression of NMDAr1, CaMKK2, MAPKs, and PP1 in the striatum, and exercise treatment significantly decreased the expression of these molecules. Therefore, it is apparent that endurance exercise inhibited the METH-induced hyperactivity due to the decrease in GSK-3β activation by the regulation of the striatal glutamate signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sooyeun Lee
- Correspondence: ; Tel.: +82-53-580-6651; Fax: +82-53-580-5164
| |
Collapse
|
45
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|
46
|
Accelerating the Mdx Heart Histo-Pathology through Physical Exercise. Life (Basel) 2021; 11:life11070706. [PMID: 34357078 PMCID: PMC8306456 DOI: 10.3390/life11070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic cardiac muscle inflammation and fibrosis are key features of Duchenne Muscular Dystrophy (DMD). Around 90% of 18-year-old patients already show signs of DMD-related cardiomyopathy, and cardiac failure is rising as the main cause of death among DMD patients. The evaluation of novel therapies for the treatment of dystrophic heart problems depends on the availability of animal models that closely mirror the human pathology. The widely used DMD animal model, the mdx mouse, presents a milder cardiac pathology compared to humans, with a late onset, which precludes large-scale and reliable studies. In this study, we used an exercise protocol to accelerate and worsen the cardiac pathology in mdx mice. The mice were subjected to a 1 h-long running session on a treadmill, at moderate speed, twice a week for 8 weeks. We demonstrate that subjecting young mdx mice (4-week-old) to "endurance" exercise accelerates heart pathology progression, as shown by early fibrosis deposition, increases necrosis and inflammation, and reduces heart function compared to controls. We believe that our exercised mdx model represents an easily reproducible and useful tool to study the molecular and cellular networks involved in dystrophic heart alterations, as well as to evaluate novel therapeutic strategies aimed at ameliorating dystrophic heart pathology.
Collapse
|
47
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
48
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
49
|
Adamovich Y, Ezagouri S, Dandavate V, Asher G. Monitoring daytime differences in moderate intensity exercise capacity using treadmill test and muscle dissection. STAR Protoc 2021; 2:100331. [PMID: 33598660 PMCID: PMC7868630 DOI: 10.1016/j.xpro.2021.100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity. For complete details on the use and execution of this protocol, please refer to Ezagouri et al. (2019). Exercise capacity is influenced by the time of day Protocol for determining moderate intensity exercise capacity using treadmill test Instructions for muscle dissection
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
50
|
Lambertus M, Øverberg LT, Andersson KA, Hjelden MS, Hadzic A, Haugen ØP, Storm‐Mathisen J, Bergersen LH, Geiseler S, Morland C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1. Acta Physiol (Oxf) 2021; 231:e13587. [PMID: 33244894 DOI: 10.1111/apha.13587] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
AIM Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.
Collapse
Affiliation(s)
- Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Linda Thøring Øverberg
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| | - Krister A. Andersson
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Malin S. Hjelden
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Øyvind P. Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Jon Storm‐Mathisen
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Center for Healthy Aging Department of Neuroscience and Pharmacology Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Samuel Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| |
Collapse
|