1
|
Stone C, Harris DD, Broadwin M, Kanuparthy M, Nho JW, Yalamanchili K, Hamze J, Abid MR, Sellke FW. Semaglutide Improves Myocardial Perfusion and Performance in a Large Animal Model of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2025; 45:285-297. [PMID: 39665144 PMCID: PMC11748899 DOI: 10.1161/atvbaha.124.321850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Coronary artery disease is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy and up to one-thirds with debilitating angina amenable neither to procedures, nor to current pharmacological options. Semaglutide (SEM), a GLP-1 (glucagon-like peptide 1) agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk. Although subgroup analyses in patients indicate promise, studies explicitly designed to isolate the impact of SEM on the sequelae of coronary artery disease, independently of comorbid diabetes or obesity, are lacking. METHODS Yorkshire swine (n=17) underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce coronary artery disease. Oral SEM was initiated postoperatively at 1.5 mg and scaled up in 2 weeks to 3 mg in treatment animals (n=8) for a total of 5 weeks, while control animals (n=9) received no drug. All then underwent myocardial harvest with acquisition of perfusion and functional data using microsphere injection and pressure-volume loop catheterization. Immunoblotting, immunohistochemistry, and immunofluorescence were performed on the most ischemic myocardial segments for mechanistic elucidation. RESULTS SEM animals exhibited improved left ventricular ejection fraction, both at rest and during rapid myocardial pacing (both P<0.03), accompanied by increased perfusion to the most ischemic myocardial region at rest and during rapid pacing (both P<0.03); reduced perivascular and interstitial fibrosis (both P<0.03); and apoptosis (P=0.008). These changes were associated with increased activation of the endothelial-protective AMPK (AMP-activated protein kinase) pathway (P=0.005), coupled with downstream increases in eNOS (endothelial NO synthase; P=0.014). CONCLUSIONS This study reveals the capacity of oral SEM to augment cardiac function in the chronically ischemic heart in a highly translational large animal model, likely through AMPK-mediated improvement in endothelial function and perfusion to the ischemic myocardium.
Collapse
Affiliation(s)
- Christopher Stone
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Dwight D. Harris
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Mark Broadwin
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | | | - Ju-Woo Nho
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | | | - Jad Hamze
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - M. Ruhul Abid
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| | - Frank W. Sellke
- Department of Cardiothoracic Surgery, Brown University, Providence, RI
| |
Collapse
|
2
|
Stone C, Sabe SA, Harris DD, Broadwin M, Kant RJ, Kanuparthy M, Abid MR, Sellke FW. Metformin Preconditioning Augments Cardiac Perfusion and Performance in a Large Animal Model of Chronic Coronary Artery Disease. Ann Surg 2024; 280:547-556. [PMID: 39041226 DOI: 10.1097/sla.0000000000006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To test the efficacy of metformin (MET) during the induction of coronary ischemia on myocardial performance in a large animal model of coronary artery disease (CAD) and metabolic syndrome (MS), with or without concomitant extracellular vesicular (EV) therapy. BACKGROUND Although surgical and endovascular revascularization are durably efficacious for many patients with CAD, up to one-third are poor candidates for standard therapies. For these patients, many of whom have comorbid MS, adjunctive strategies are needed. EV therapy has shown promise in this context, but its efficacy is attenuated by MS. We investigated whether MET pretreatment could ameliorate therapeutic decrements associated with MS. METHODS Yorkshire swine (n = 29) were provided a high-fat diet to induce MS, whereupon an ameroid constrictor was placed to induce CAD. Animals were initiated on 1000 mg oral MET or placebo; all then underwent repeat thoracotomy for intramyocardial injection of EVs or saline. Swine were maintained for 5 weeks before the acquisition of functional and perfusion data immediately before terminal myocardial harvest. Immunoblotting and immunofluorescence were performed on the most ischemic tissue from all groups. RESULTS Regardless of EV administration, animals that received MET exhibited significantly improved ejection fraction, cardiac index, and contractility at rest and during rapid myocardial pacing, improved perfusion to the most ischemic myocardial region at rest and during pacing, and markedly reduced apoptosis. CONCLUSIONS MET administration reduced apoptotic cell death, improved perfusion, and augmented both intrinsic and load-dependent myocardial performance in a highly translatable large animal model of chronic myocardial ischemia and MS.
Collapse
Affiliation(s)
- Christopher Stone
- Department of Surgery, Division of Cardiothoracic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Nho JW, Yalamanchili K, Hamze J, Abid MR, Sellke FW. Semaglutide Improves Myocardial Perfusion and Performance in a Large Animal Model of Coronary Artery Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608191. [PMID: 39211263 PMCID: PMC11361037 DOI: 10.1101/2024.08.15.608191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Coronary artery disease (CAD) is the leading cause of death worldwide. It imposes an enormous symptomatic burden on patients, leaving many with residual disease despite optimal procedural therapy, and up to 1/3 with debilitating angina amenable neither to procedures, nor to current pharmacologic options. Semaglutide, a glucagon-like peptide 1 agonist originally approved for management of diabetes, has garnered substantial attention for its capacity to attenuate cardiovascular risk. Although subgroup analyses in patients indicate promise, studies explicitly designed to isolate the impact of semaglutide on the sequelae of CAD, independently of comorbid diabetes or obesity, are lacking. Approach and Results Yorkshire swine (n=17) underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce CAD. Oral semaglutide was initiated postoperatively at 1.5 mg and scaled up in 2 weeks to 3 mg in treatment animals (SEM, n=8) for a total of 5 weeks, while control animals (CON, n=9) received no drug. All then underwent myocardial harvest with acquisition of perfusion and functional data using microsphere injection and pressure-volume loop catheterization. Immunoblotting, immunohistochemistry, and immunofluorescence were performed on the most ischemic myocardial segments for mechanistic elucidation. SEM animals exhibited improved left ventricular ejection fraction, both at rest and during rapid myocardial pacing (both p<0.03), accompanied by increased perfusion to the most ischemic myocardial region at rest and during rapid pacing (both p<0.03); reduced perivascular and interstitial fibrosis (both p <0.03); and apoptosis (p=0.008). These changes were associated with increased activation of the endothelial-protective AMPK pathway (p=0.005), coupled with downstream increases in endothelial nitric oxide synthase (p=0.014). Conclusion This study is the first to reveal the capacity of oral semaglutide to augment cardiac function in the chronically ischemic heart in a highly translational large animal model, likely through AMPK-mediated improvement in endothelial function and perfusion to the ischemic myocardium.
Collapse
|
4
|
Stone CR, Harris DD, Broadwin M, Kanuparthy M, Sabe SA, Xu C, Feng J, Abid MR, Sellke FW. Crafting a Rigorous, Clinically Relevant Large Animal Model of Chronic Myocardial Ischemia: What Have We Learned in 20 Years? Methods Protoc 2024; 7:17. [PMID: 38392691 PMCID: PMC10891802 DOI: 10.3390/mps7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The past several decades have borne witness to several breakthroughs and paradigm shifts within the field of cardiovascular medicine, but one component that has remained constant throughout this time is the need for accurate animal models for the refinement and elaboration of the hypotheses and therapies crucial to our capacity to combat human disease. Numerous sophisticated and high-throughput molecular strategies have emerged, including rational drug design and the multi-omics approaches that allow extensive characterization of the host response to disease states and their prospective resolutions, but these technologies all require grounding within a faithful representation of their clinical context. Over this period, our lab has exhaustively tested, progressively refined, and extensively contributed to cardiovascular discovery on the basis of one such faithful representation. It is the purpose of this paper to review our porcine model of chronic myocardial ischemia using ameroid constriction and the subsequent myriad of physiological and molecular-biological insights it has allowed our lab to attain and describe. We hope that, by depicting our methods and the insight they have yielded clearly and completely-drawing for this purpose on comprehensive videographic illustration-other research teams will be empowered to carry our work forward, drawing on our experience to refine their own investigations into the pathogenesis and eradication of cardiovascular disease.
Collapse
Affiliation(s)
- Christopher R. Stone
- Department of Cardiothoracic Surgery, The Warren Alpert School of Medicine at Brown University, Providence, RI 02903, USA; (D.D.H.); (M.B.); (M.K.); (S.A.S.); (C.X.); (J.F.); (M.R.A.); (F.W.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhuang B, Cui C, He J, Xu J, Wang X, Li L, Jia L, Wu W, Sun X, Li S, Zhou D, Yang W, Wang Y, Zhu L, Sirajuddin A, Zhao S, Lu M. Developing and evaluating a chronic ischemic cardiomyopathy in swine model by rest and stress CMR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:249-260. [PMID: 37971706 DOI: 10.1007/s10554-023-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
A large animal model of chronic coronary artery disease (CAD) is crucial for the understanding the underlying pathophysiological processes of chronic CAD and consequences for cardiac structure and function. The goal of this study was to develop a chronic model of CAD in a swine model and to evaluate the changes of myocardial structure, myocardial motility, and myocardial viability during coronary stenosis. A total of 30 swine (including 24 experimental animals and 6 controls) were enrolled. The chronic ischemia model was constructed by using Ameroid constrictor in experimental group. The 24 experimental animals were further divided into 4 groups (6 animals in each group) and were sacrificed at 1, 2, 3 and 4 weeks after operation for pathological examination, respectively. Cardiac magnetic resonance (CMR) was performed preoperatively and weekly postoperatively until sacrificed both in experimental and control group. CMR cine images, rest/adenosine triphosphate (ATP) stress myocardial contrast perfusion and LGE were performed and analyzed. The rest wall thickening (WT) score was calculated from rest cine images. The MPRI (myocardial perfusion reserve index) and MPR (myocardial perfusion reserve) were calculated based on rest and stress perfusion images. Pathology staining including triphenyltetrazolium chloride, HE and picrosirus red staining were performed after swine were sacrificed and collagen volume fraction (CVF) was calculated. The time to formation of ischemic, hibernating, and infarcted myocardium was recorded. In experimental group, from 1w to 4w after surgery, the rest WT score decreased gradually from 35.2 ± 2.0%, 32.0 ± 2.9% to 30.5 ± 3.0% and finally 29.06 ± 1.78%, p < 0.001. Left ventricular ejection fraction was gradually impaired after modeling (58.9 ± 12.6%, 56.3 ± 10.1%, 55.3 ± 9.0%, 53.8 ± 9.9%, respectively). And the MPR and MPRI also decreased stepwise with extent of surgery time (MPRI dropped from 2.1 ± 0.4, 2.0 ± 0.2 to 1.8 ± 0.3 and finally 1.7 ± 0.1, p = 0.004; MPR dropped from 2.3 ± 0.4, 2.1 ± 0.2 to 1.9 ± 0.4 and finally 1.8 ± 0.1, p < 0.001). Stronger associations between MPR, MPRI and CVF were paralleled lower wall thickening scores in fibrosis-affected areas. The ischemic myocardium was first appeared in the first week after surgery (involving ten segments), hibernated myocardium was first appeared in the second week after surgery (involving seventeen segments). LGE was first appeared in eight swine in the third weeks after surgery (16 segments). At 4w after surgery, average 9.6 g scar tissue was found among 6 swine. At the same time, histological analysis established the presence of fibrosis and ongoing apoptosis in the infarcted area. In conclusion, our study provided valuable insights into the pathophysiological processes of chronic CAD and its consequences for cardiac structure and function in a large animal model through combining myocardial motion and stress perfusion.
Collapse
Affiliation(s)
- Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, People's Republic of China
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Cui
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian He
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Wang
- Department of Animal Experimental Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Department of Animal Experimental Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxin Sun
- Key Laboratory of Cardiovascular Imaging (cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Li
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Arlene Sirajuddin
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Cardiovascular imaging and intervention Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
- Key Laboratory of Cardiovascular Imaging (cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Zhao N, Curry D, Evans RE, Isguven S, Freeman T, Eisenbrey JR, Forsberg F, Gilbertie JM, Boorman S, Hilliard R, Dastgheyb SS, Machado P, Stanczak M, Harwood M, Chen AF, Parvizi J, Shapiro IM, Hickok NJ, Schaer TP. Microbubble cavitation restores Staphylococcus aureus antibiotic susceptibility in vitro and in a septic arthritis model. Commun Biol 2023; 6:425. [PMID: 37069337 PMCID: PMC10110534 DOI: 10.1038/s42003-023-04752-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Treatment failure in joint infections is associated with fibrinous, antibiotic-resistant, floating and tissue-associated Staphylococcus aureus aggregates formed in synovial fluid (SynF). We explore whether antibiotic activity could be increased against Staphylococcus aureus aggregates using ultrasound-triggered microbubble destruction (UTMD), in vitro and in a porcine model of septic arthritis. In vitro, when bacterially laden SynF is diluted, akin to the dilution achieved clinically with lavage and local injection of antibiotics, amikacin and ultrasound application result in increased bacterial metabolism, aggregate permeabilization, and a 4-5 log decrease in colony forming units, independent of microbubble destruction. Without SynF dilution, amikacin + UTMD does not increase antibiotic activity. Importantly, in the porcine model of septic arthritis, no bacteria are recovered from the SynF after treatment with amikacin and UTMD-ultrasound without UTMD is insufficient. Our data suggest that UTMD + antibiotics may serve as an important adjunct for the treatment of septic arthritis.
Collapse
Affiliation(s)
- Neil Zhao
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dylan Curry
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rachel E Evans
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Selin Isguven
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Theresa Freeman
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica M Gilbertie
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Sophie Boorman
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Rachel Hilliard
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Sana S Dastgheyb
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marc Harwood
- Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Thomas P Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA.
| |
Collapse
|
7
|
Dwivedi KK, Lakhani P, Yadav A, Kumar S, Kumar N. Location specific multi-scale characterization and constitutive modeling of pig aorta. J Mech Behav Biomed Mater 2023; 142:105809. [PMID: 37116311 DOI: 10.1016/j.jmbbm.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The mechanical and structural behavior of the aorta depend on physiological functions and vary from proximal to distal. Understanding the relation between regionally varying mechanical and multi-scale structural response of aorta can be helpful to assess the disease outcomes. Therefore, this study investigated the variation in mechanical and multi-scale structural properties among the major segments of aorta such as ascending aorta (AA), descending aorta (DA) and abdominal aorta (ABA), and established a relation between mechanical and multi-structural parameters. The obtained results showed significant increase in anisotropy and nonlinearity from proximal to distal aorta. The change in periphery length and radii between load and stress free configuration was also found increasing far from the heart. Opening angle was significantly large for ABA than AA and DA (AA/DA vs ABA; p = 0.001). Mean circumferential residual stretch (ratio of mean periphery length at load and stress free configurations) was found decreasing between AA and DA, and then increasing between DA to ABA and its value was significantly more for ABA (AA vs DA; p = 0.041, AA vs ABA; p = 0.001, DA vs ABA; p = 0.001). The waviness of collagen fibers, collagen fiber content, collagen fibril diameter and total protein content were found significantly increasing from proximal to distal. Pearson correlation test showed a significant linear correlation between variation in mechanical and multi-scale structural parameters over the aortic length. Residual stretch was found positively correlated with collagen fiber content (r = 0.82) whereas opening angel was found positively correlated with total protein content (TPC) (r = 0.76).
Collapse
Affiliation(s)
| | | | - Ashu Yadav
- Department of Automobile Engineering, Manipal University Jaipur, Jaipur, India
| | - Sachin Kumar
- Department of Mechanical Engineering, IIT Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
8
|
Colbert CM, Shao J, Hollowed JJ, Currier JW, Ajijola OA, Fishbein GA, Duarte-Vogel SM, Dharmakumar R, Hu P, Nguyen KL. 3D-Printed Coronary Implants Are Effective for Percutaneous Creation of Swine Models with Focal Coronary Stenosis. J Cardiovasc Transl Res 2020; 13:1033-1043. [PMID: 32394352 PMCID: PMC9667863 DOI: 10.1007/s12265-020-10018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/28/2020] [Indexed: 01/17/2023]
Abstract
Reliable, closed-chest methods for creating large animal models of acute myocardial hypoperfusion are limited. We demonstrated the feasibility and efficacy of using magnetic resonance (MR)-compatible 3D-printed coronary implants for establishing swine models of myocardial hypoperfusion. We designed, manufactured, and percutaneously deployed implants in 13 swine to selectively create focal coronary stenosis. To test the efficacy of the implants to cause hypoperfusion or ischemia in the perfused territory, we evaluated regional wall motion, myocardial perfusion, and infarction using MR imaging. The overall swine survival rate was 85% (11 of 13). The implant retrieval rate was 92% (12 of 13). Fluoroscopic angiography confirmed focal stenosis. Cine and perfusion MRI showed regional wall motion abnormalities and inducible ischemia, respectively. Late gadolinium enhancement and histopathology showed no myocardial infarction. Our minimally invasive technique has promising applications for validation of new diagnostic methods in cardiac MR. Graphical abstract Our new minimally invasive, percutaneous method for creating swine models of acute focal coronary stenosis can be used for magnetic resonance imaging studies of myocardial ischemia. Comparable to existing methods in its efficacy and reliability, this rapid prototyping technique will allow researchers to more easily conduct translational cardiac imaging studies of coronary artery disease in large animal models.
Collapse
Affiliation(s)
- Caroline M Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiaxin Shao
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John J Hollowed
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, MC 111E, Los Angeles, CA, 90073, USA
| | - Jesse W Currier
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, MC 111E, Los Angeles, CA, 90073, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandra M Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, MC 111E, Los Angeles, CA, 90073, USA.
| |
Collapse
|
9
|
Abundes-Velasco A, Jiménez-Rodríguez GM, Arias-Sánchez E, Damas-De Los Santos F, Martínez-Ríos MA, Molina-Méndez FJ, Sánchez-Pérez E, Arai-Ito Marco M, Rodríguez-Barriga E, Sánchez-Jara M, Aceves-Díaz González S, Rodríguez-Parra DA, Aranda-Fraustro A, Romero-Ibarra JL, Peña-Duque MA. Histological and Mechanical Behavior of INC 01 and 02 Bare Metal Stents Against a Commercial Stent: A Preclinical Study in a Porcine Model. Arch Med Res 2020; 51:406-412. [PMID: 32376040 DOI: 10.1016/j.arcmed.2020.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/01/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND PCI is an expensive procedure in our population and it implies a huge cost for the institutions and National Health Service. AIM OF THE STUDY The main objective was to evaluate the technical and biological success of two stents designed in Mexico. METHODS Ten York pigs, 4-6 months of age, underwent implantation of the bare metal INC-01 (10 stents) and INC-02 (6 stents) coronary stent in addition to a conventional commercial stent (10 stents). Technical success was evaluated immediately with angiography and Intravascular Ultrasound IVUS, continued by a mean follow-up of 4 month and a final angiographic, IVUS and histological evaluation. RESULTS Initial technical success, angiography and IVUS between the three stents were not significant. One stent presented restenosis in follow-up (commercial stent), but all other stents presented excellent clinical outcome, satisfactory angiographic and IVUS results. Inflammation, proliferation and endothelialization between the stents had no major differences in histological analysis in a mean of 4 months follow-up. CONCLUSIONS In this pig model, the INC 01 and INC 02 stents showed the same delivering technical success, angiographic and IVUS features, biological and histological response compared to commercial last generation stents.
Collapse
Affiliation(s)
- Arturo Abundes-Velasco
- Subdirección de Proyectos de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | - Eduardo Arias-Sánchez
- Departamento de Hemodinámica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Félix Damas-De Los Santos
- Departamento de Hemodinámica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | - Francisco Javier Molina-Méndez
- Departamento de Anestesiología Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Efraín Sánchez-Pérez
- Subdirección de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Minoru Arai-Ito Marco
- Subdirección de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Erika Rodríguez-Barriga
- Departamento de Hemodinámica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Mauricio Sánchez-Jara
- Departamento de Hemodinámica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Sebastián Aceves-Díaz González
- Subdirección de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - David Alexis Rodríguez-Parra
- Subdirección de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alberto Aranda-Fraustro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - José Luis Romero-Ibarra
- Departamento de Hemodinámica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Marco Antonio Peña-Duque
- Subdirección de Innovación y Desarrollo Tecnológico, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México.
| |
Collapse
|
10
|
Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. Basic Res Cardiol 2020; 115:33. [PMID: 32291522 DOI: 10.1007/s00395-020-0788-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.
Collapse
|
11
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
12
|
Niederberger P, Farine E, Raillard M, Dornbierer M, Freed DH, Large SR, Chew HC, MacDonald PS, Messer SJ, White CW, Carrel TP, Tevaearai Stahel HT, Longnus SL. Heart Transplantation With Donation After Circulatory Death. Circ Heart Fail 2020; 12:e005517. [PMID: 30998395 DOI: 10.1161/circheartfailure.118.005517] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heart transplantation remains the preferred option for improving quality of life and survival for patients suffering from end-stage heart failure. Unfortunately, insufficient supply of cardiac grafts has become an obstacle. Increasing organ availability with donation after circulatory death (DCD) may be a promising option to overcome the organ shortage. Unlike conventional donation after brain death, DCD organs undergo a period of warm, global ischemia between circulatory arrest and graft procurement, which raises concerns for graft quality. Nonetheless, the potential of DCD heart transplantation is being reconsidered, after reports of more than 70 cases in Australia and the United Kingdom over the past 3 years. Ensuring optimal patient outcomes and generalized adoption of DCD in heart transplantation, however, requires further development of clinical protocols, which in turn require a better understanding of cardiac ischemia-reperfusion injury and the various possibilities to limit its adverse effects. Thus, we aim to provide an overview of the knowledge obtained with preclinical studies in animal models of DCD heart transplantation, to facilitate and promote the most effective and efficient advancement in preclinical research. A literature search of the PubMed database was performed to identify all relevant preclinical studies in DCD heart transplantation. Specific aspects relevant for DCD heart transplantation were analyzed, including animal models, graft procurement and storage conditions, cardioprotective approaches, and graft evaluation strategies. Several potential therapeutic strategies for optimizing graft quality are identified, and recommendations for further preclinical research are provided.
Collapse
Affiliation(s)
- Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Mathieu Raillard
- Experimental Surgery Unit (ESI), Experimental Surgery Unit, Department for BioMedical Research and Vetsuisse Faculty, Department of Clinical Veterinary Medicine, Institute of Anaesthesiology and Pain Therapy, University of Bern, Switzerland (M.R.)
| | - Monika Dornbierer
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Darren H Freed
- Cardiac Surgery, University of Alberta, Edmonton, Canada (D.H.F., C.W.W.)
| | - Stephen R Large
- Department of Transplantation, Royal Papworth Hospital, Papworth Everard, Cambridge, United Kingdom (S.R.L., S.J.M.)
| | - Hong C Chew
- St Vincent's Hospital, University of New South Wales, Victor Chang Cardiac Research Institute, Sydney, Australia (H.C.C., P.S.M.)
| | - Peter S MacDonald
- St Vincent's Hospital, University of New South Wales, Victor Chang Cardiac Research Institute, Sydney, Australia (H.C.C., P.S.M.)
| | - Simon J Messer
- Department of Transplantation, Royal Papworth Hospital, Papworth Everard, Cambridge, United Kingdom (S.R.L., S.J.M.)
| | | | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Switzerland (P.N., E.F., M.D., T.P.C., H.T.T.S., S.L.L.)
| |
Collapse
|
13
|
Lamby P, Krüger-Genge A, Franke RP, Mrowietz C, Falter J, Graf S, Schellenberg EL, Jung F, Prantl L. Effect of iodinated contrast media on the oxygen tension in the renal cortico-medullary region of pigs. Clin Hemorheol Microcirc 2020; 73:261-270. [PMID: 31322554 DOI: 10.3233/ch-199009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Repeated injections of iodinated contrast media (CM) can lead to a deterioration of the renal blood flow, can redistribute blood from the renal cortex to other parts of the kidney and can cause small decreases of the blood flow in cortical capillaries, a significant reduction in blood flow in peritubular capillaries and a significant reduction in blood flow in the vasa recta. Therefore, a study in pigs was designed, to show whether the repeated injection of CM boli, alone, can cause a reduction of oxygenation in the cortico-medullar renal tissue - the region with the highest oxygen demand in the kidney - of pigs.While the mean pO2-value had only decreased by 0.3 mmHg from 29.9±4.3 mmHg to 29.6±4.3 mmHg (p = 0.8799) after the tenth Iodixanol bolus, it decreased by 5.9 mmHg from 34.0±4.3 mmHg to 28.1±4.3 mmHg after the tenth Iopromide bolus (p = 0.044). This revealed a remarkable difference in the influence of these CM on the oxygen partial pressure in the kidney.Repeated applications of CM had a significant influence on the renal oxygen partial pressure. In line with earlier studies showing a redistribution of blood from the cortex to other renal areas, this study revealed that Iodixanol - in contrast to Iopromide - induced no changes in the pO2 in the cortico-medullar region which confirms that Iodixanol did not hinder the flow of blood through the renal micro-vessels. These results are in favor of a hypothesis from Brezis that a microcirculatory disorder might be the basis for the development of CI-AKI.
Collapse
Affiliation(s)
- P Lamby
- Department of Plastic and Hand Surgery, University Hospital Regensburg, Germany
| | - A Krüger-Genge
- Department of Anaesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - R P Franke
- Central Institute for Biomedical Engineering, Department of Biomaterials, University of Ulm, Ulm, Germany
| | - C Mrowietz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour and Virtual Center for Replacement - Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - J Falter
- Department of Plastic and Hand Surgery, University Hospital Regensburg, Germany
| | - S Graf
- Department of Plastic and Hand Surgery, University Hospital Regensburg, Germany
| | - E L Schellenberg
- Department of Anesthesiology, University Hospital Regensburg, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - L Prantl
- Department of Plastic and Hand Surgery, University Hospital Regensburg, Germany
| |
Collapse
|
14
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
15
|
Piktel JS, Wilson LD. Translational Models of Arrhythmia Mechanisms and Susceptibility: Success and Challenges of Modeling Human Disease. Front Cardiovasc Med 2019; 6:135. [PMID: 31552276 PMCID: PMC6748164 DOI: 10.3389/fcvm.2019.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
We discuss large animal translational models of arrhythmia susceptibility and sudden cardiac death, focusing on important considerations when interpreting the data derived before applying them to human trials. The utility of large animal models of arrhythmia and the pros and cons of specific translational large animals used will be discussed, including the necessary tradeoffs between models designed to derive mechanisms vs. those to test therapies. Recent technical advancements which can be applied to large animal models of arrhythmias to better elucidate mechanistic insights will be introduced. Finally, some specific examples of past successes and challenges in translating the results of large animal models of arrhythmias to clinical trials and practice will be examined, and common themes regarding the success and failure of translating studies to therapy in man will be discussed.
Collapse
Affiliation(s)
| | - Lance D. Wilson
- Department of Emergency Medicine, Emergency Care Research Institute and Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
16
|
Badimon L, Mendieta G, Ben-Aicha S, Vilahur G. Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic. Int J Mol Sci 2019; 20:ijms20030514. [PMID: 30691061 PMCID: PMC6387468 DOI: 10.3390/ijms20030514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Although many cardioprotective strategies have demonstrated benefits in animal models of myocardial infarction, they have failed to demonstrate cardioprotection in the clinical setting highlighting that new therapeutic target and treatment strategies aimed at reducing infarct size are urgently needed. Completion of the Human Genome Project in 2001 fostered the post-genomic research era with the consequent development of high-throughput “omics” platforms including transcriptomics, proteomics, and metabolomics. Implementation of these holistic approaches within the field of cardioprotection has enlarged our understanding of ischemia/reperfusion injury with each approach capturing a different angle of the global picture of the disease. It has also contributed to identify potential prognostic/diagnostic biomarkers and discover novel molecular therapeutic targets. In this latter regard, “omic” data analysis in the setting of ischemic conditioning has allowed depicting potential therapeutic candidates, including non-coding RNAs and molecular chaperones, amenable to pharmacological development. Such discoveries must be tested and validated in a relevant and reliable myocardial infarction animal model before moving towards the clinical setting. Moreover, efforts should also focus on integrating all “omic” datasets rather than working exclusively on a single “omic” approach. In the following manuscript, we will discuss the power of implementing “omic” approaches in preclinical animal models to identify novel molecular targets for cardioprotection of interest for drug development.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program- ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain. (L.B.).
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain..
- Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB) 08025 Barcelona, Spain.
| | - Guiomar Mendieta
- Cardiovascular Program- ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain. (L.B.).
- Department of Cardiology, Hospital Clinic, 08036 Brcelona, Spain.
| | - Soumaya Ben-Aicha
- Cardiovascular Program- ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain. (L.B.).
| | - Gemma Vilahur
- Cardiovascular Program- ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain. (L.B.).
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
17
|
Lamby P, Jung F, Graf S, Schellenberg L, Falter J, Platz-da-Silva N, Schreml S, Prantl L, Franke RP, Jung EM. Effect of iodinated contrast media on renal perfusion: A randomized comparison study in pigs using quantitative contrast-enhanced ultrasound (CEUS). Sci Rep 2017; 7:13125. [PMID: 29030579 PMCID: PMC5640687 DOI: 10.1038/s41598-017-13253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022] Open
Abstract
The administration of iodinated contrast media (CM) can cause microcirculatory disorder leading to acute renal dysfunction. In a prospective, randomized investigation two CM (Iodixanol vs Iopromide) were compared in 16 pigs. Each animal received 10 intra-aortal injections (5 ml Iodixanol or 4.32 ml Iopromide). Microcirculation was assessed using contrast-enhanced ultrasound (CEUS) directly on the kidney surface using time-to-peak (TTP) and blood-volume-analysis. Macroscopic observations were documented. Post mortem residual CM distribution in the kidneys was detected using X-ray. TTP was significantly prolonged over the descending vasa recta of the Iopromide group. This coincided with a visible marble-like pattern on the kidney surface occurring in 30 out of 80 Iopromide-injections but in 4 out of 80 Iodixanol-injections (p = 0.007). The blood volume over the entire kidney did not change after Iodixanol-application, but decreased by about 6.1% after Iopromide-application. The regional blood volume in the renal cortex showed a tendency to decrease by about 13.5% (p = 0.094) after Iodixanol-application, and clearly decreased by about 31.7% (p = 0.022) after Iopromide-application. The study revealed a consistent influence of repeated injections of two different CM on the kidney perfusion using three different imaging methods (CEUS analysis, macroscopic observation and X-ray analysis).
Collapse
Affiliation(s)
- Philipp Lamby
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513, Teltow, Germany
| | - Stefanie Graf
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Lotte Schellenberg
- Department of Anesthesiology, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Johannes Falter
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Natascha Platz-da-Silva
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Ralf P Franke
- Central Institute for Biomedical Engineering, Department of Biomaterials, University of Ulm, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Ernst M Jung
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
18
|
Keeran KJ, Jeffries KR, Zetts AD, Taylor J, Kozlov S, Hunt TJ. A Chronic Cardiac Ischemia Model in Swine Using an Ameroid Constrictor. J Vis Exp 2017. [PMID: 29053673 PMCID: PMC5752388 DOI: 10.3791/56190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease remains the number one cause of mortality in the United States. There are numerous approaches to treating these diseases, but regardless of the approach, an in vivo model is needed to test each treatment. The pig is one of the most used large animal models for cardiovascular disease. Its heart is very similar in anatomy and function to that of a human. The ameroid placement technique creates an ischemic area of the heart, which has many useful applications in studying myocardial infarction. This model has been used for surgical research, pharmaceutical studies, imaging techniques, and cell therapies. There are several ways of inducing an ischemic area in the heart. Each has its advantages and disadvantages, but the placement of an ameroid constrictor remains the most widely used technique. The main advantages to using the ameroid are its prevalence in existing research, its availability in various sizes to accommodate the anatomy and size of the vessel to be constricted, the surgery is a relatively simple procedure, and the post-operative monitoring is minimal, since there are no external devices to maintain. This paper provides a detailed overview of the proper technique for the placement of the ameroid constrictor.
Collapse
Affiliation(s)
- Karen J Keeran
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Arthur D Zetts
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Joni Taylor
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Shawn Kozlov
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Timothy J Hunt
- Animal Surgery and Resources Core, National Heart, Lung, and Blood Institute, National Institutes of Health;
| |
Collapse
|
19
|
Leonard AV, Menendez JY, Pat BM, Hadley MN, Floyd CL. Localization of the corticospinal tract within the porcine spinal cord: Implications for experimental modeling of traumatic spinal cord injury. Neurosci Lett 2017; 648:1-7. [PMID: 28323088 DOI: 10.1016/j.neulet.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) researchers have predominately utilized rodents for SCI modeling and experimentation. Unfortunately, a large number of novel therapies developed in rodent models have failed to demonstrate efficacy in human clinical trials which suggests that improved animal models are an important translational tool. Recently, porcine models of SCI have been identified as a valuable intermediary model for preclinical evaluation of promising therapies to aid clinical translation. However, the localization of the major spinal tracts in pigs has not yet been described. Given that significant differences exist in the location of the corticospinal tract (CST) between rodents and humans, determining its location in pigs will provide important information related to the translational potential of the porcine pre-clinical model of SCI. Thus, the goal of this study is to investigate the localization of the CST within the porcine spinal cord. Mature female domestic pigs (n=4, 60kg) received microinjections of fluorescent dextran tracers (Alexa Fluor, 10,000MW) into the primary motor cortex, using image-guided navigation (StealthStation®), to label the CST. At 5 weeks post-tracer injection animals were euthanized, the entire neuroaxis harvested and processed for histological examination. Serial sections of the brain and spinal cord were prepared and imaged using confocal microscopy to observe the location of the CST in pigs. Results demonstrate that the CST of pigs is located in the lateral white matter, signifying greater similarity to human anatomical structure compared to that of rodents. We conclude that the corticospinal tract in pigs demonstrates anatomical similarity to human, suggesting that the porcine model has importance as a translational intermediary pre-clinical model.
Collapse
Affiliation(s)
- Anna Victoria Leonard
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA; Discipline of Anatomy and Pathology, School of Medicine, The University of Adelaide, Australia.
| | - Joshua York Menendez
- Department of Neurosurgery, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Betty Maki Pat
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Mark N Hadley
- Department of Neurosurgery, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Candace Lorraine Floyd
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA.
| |
Collapse
|
20
|
Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes. Cell Reprogram 2017; 19:88-94. [PMID: 28266869 DOI: 10.1089/cell.2016.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.
Collapse
Affiliation(s)
- Robin L Webb
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Amalia Gallegos-Cárdenas
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Colette N Miller
- 2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Nicholas J Solomotis
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Hong-Xiang Liu
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Steven L Stice
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| |
Collapse
|
21
|
Lamby P, Jung F, Falter J, Mrowietz C, Graf S, Schellenberg L, Platz Batista da Silva N, Prantl L, Franke RP, Jung EM. Effect of radiographic contrast media on renal perfusion - First results. Clin Hemorheol Microcirc 2017; 64:287-295. [PMID: 28128758 DOI: 10.3233/ch-168110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intra-arterial administration of radiographic contrast media (CM) is discussed to impair renal perfusion. The pathogenesis of contrast-induced Nephropathy (CIN) is still not clarified. OBJECTIVE This trial was performed to prove the effects of two CM with different molecular structure on renal perfusion. METHODS A prospective, randomized study on 16 pigs was designed to compare the outcome after application of a low-osmolar iodinated CM (770 mOsm/kg H2O - Group1) and an iso-osmolar iodinated CM (290 mOsm/kg H2o - Group2).Color Coded Doppler Sonography (LOGIQ E9, GE, Milwaukee, USA) was applied for measuring the Renal Resistive Index (RRI) before and after the first, fifth, and tenth bolus of CM. Statistics was performed using analysis of variance for repeated measurements with the Factor "CM". RESULTS All flow spectra were documented free of artifacts and Peak Systolic Velocity (PSV), Enddiastolic Velocity (EDV) and RRI respectively could be calculated. Mean PSV in Group 1 led to a decrease while in Group 2 PSV showed a significant increase after CM (p = 0,042). The course of the mean EDV in both groups deferred accordingly (p = 0,033). Mean RRI over time significantly deferred in both groups (p = 0,001). It showed a biphasic course in Group 2 and a decrease over time in Group 2. CONCLUSION While iso-osmolar CM induced an increase of PSV and EDV together with a decrease of RRI, low-osmolar CM could not show this effect or rather led to the opposite.
Collapse
Affiliation(s)
- P Lamby
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - J Falter
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - C Mrowietz
- Institute for Heart and Circulation Research, Eißendorfer Pferdeweg, Hamburg-Harburg, Germany
| | - S Graf
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - L Schellenberg
- Department of Anesthesiology, University of Regensburg, Regensburg, Germany
| | | | - L Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - R P Franke
- Department of Biomaterials, Central Institute for Biomedical Engineering, University of Ulm, Ulm, Germany
| | - E M Jung
- Department of Anesthesiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Baek S, Han NR, Yun JI, Hwang JY, Kim M, Park CK, Lee E, Lee ST. Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal. Mol Cells 2017; 40:117-122. [PMID: 28196411 PMCID: PMC5339502 DOI: 10.14348/molcells.2017.2223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/02/2023] Open
Abstract
Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs.
Collapse
Affiliation(s)
- Song Baek
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Na Rae Han
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven 06510,
USA
| | - Minseok Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Choon Keun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
23
|
Maratea KA, Snyder PW, Stevenson GW. Vascular Lesions in Nine Göttingen Minipigs with Thrombocytopenic Purpura Syndrome. Vet Pathol 2016; 43:447-54. [PMID: 16846986 DOI: 10.1354/vp.43-4-447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissues from 9 Göttingen minipigs, aged 7 weeks to 1 year, with clinically diagnosed thrombocytopenic purpura syndrome were examined microscopically. All pigs had a history of spontaneous cutaneous purpura that was generally accompanied by disseminated visceral hemorrhages. Hematologic abnormalities included anemia (8 out of 9 pigs) and thrombocytopenia (7 out of 9 pigs), with platelet counts consistently below 20,000/μ. Microscopically, degenerative vascular lesions with morphologic features of arteriosclerosis were present in all 9 pigs. Vascular lesions affected small- to medium-sized muscular arteries and arterioles in various organs and extraparenchymal tissues; vessels of the renal pelvis and coronary arteries were consistently involved. Microscopic lesions in small- to medium-sized muscular arteries consisted of neointimal proliferation, medial thickening, luminal stenosis, thrombosis, disruption and fragmentation of the internal elastic lamina, necrosis of the tunica media, and medial deposits of myxoid matrix material. Microscopic lesions in arterioles included concentric laminar thickening of vessel walls (onion-skin pattern), endothelial cell hypertrophy, smooth muscle cell vacuolation, necrosis of the tunica media, thrombosis, and partial to complete luminal stenosis. Arteritis and/or periarteritis were also noted in 4 out of 9 pigs. Additional microscopic lesions included membranoproliferative glomerulonephritis (3 out of 9), myocardial microinfarcts (4 out of 7), renal interstitial fibrosis (2 out of 9), extramedullary hematopoiesis (6 out of 9), and intracapillary hyaline thrombi (2 out of 9). Degenerative vascular lesions have not been previously described in Göttingen minipigs with thrombocytopenic purpura syndrome. The etiopathogenesis of both the vascular lesions and thrombocytopenic purpura syndrome is currently unknown.
Collapse
Affiliation(s)
- K A Maratea
- Animal Disease Diagnostic Laboratory, Purdue University, 406 South University Street, West Lafayette, IN 49707 (USA).
| | | | | |
Collapse
|
24
|
Caballero M, Morse JC, Halevi AE, Emodi O, Pharaon MR, Wood JS, van Aalst JA. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies. Tissue Eng Part C Methods 2016; 21:898-908. [PMID: 25837453 DOI: 10.1089/ten.tec.2014.0646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect.
Collapse
Affiliation(s)
- Montserrat Caballero
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Justin C Morse
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | | | - Omri Emodi
- 4 Oral and Maxillofacial Surgery, Rambam Medical Center , Haifa, Israel
| | - Michael R Pharaon
- 5 Plastic Surgery, Kapiolani Hospital for Women and Children , Honolulu, Hawaii
| | - Jeyhan S Wood
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - John A van Aalst
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
25
|
Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Sharma D, Kumar V, Lahkar M. Animal models of myocardial infarction: Mainstay in clinical translation. Regul Toxicol Pharmacol 2016; 76:221-30. [PMID: 26988997 DOI: 10.1016/j.yrtph.2016.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 01/04/2023]
Abstract
Preclinical models with high prognostic power are a prerequisite for translational research. The closer the similarity of a model to myocardial infarction (MI), the higher is the prognostic value for clinical trials. An ideal MI model should present cardinal signs and pathology that resemble the human disease. The increasing understanding of MI stratification and etiology, however, complicates the choice of animal model for preclinical studies. An ultimate animal model, relevant to address all MI related pathophysiology is yet to be developed. However, many of the existing MI models comprising small and large animals are useful in answering specific questions. An appropriate MI model should be selected after considering both the context of the research question and the model properties. This review addresses the strengths, and limitations of current MI models for translational research.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India.
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India.
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India.
| | - Vicky Dahiya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India.
| | - Dinesh Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India.
| | - Vikas Kumar
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781032, Assam, India; Department of Pharmacology, Gauhati Medical College, Guwahati 781032, Assam, India.
| |
Collapse
|
26
|
Common swine models of cardiovascular disease for research and training. Lab Anim (NY) 2016; 45:67-74. [DOI: 10.1038/laban.935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
27
|
Chaparro FJ, Matusicky ME, Allen MJ, Lannutti JJ. Biomimetic microstructural reorganization during suture retention strength evaluation of electrospun vascular scaffolds. J Biomed Mater Res B Appl Biomater 2015; 104:1525-1534. [PMID: 26256447 DOI: 10.1002/jbm.b.33493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/29/2015] [Accepted: 07/02/2015] [Indexed: 11/12/2022]
Abstract
Suture retention strength (SRS) is commonly used as a measure the ability of sutures to adhere implants to surrounding tissue. While SRS is widely employed, surprisingly its effects on graft microstructure have not been characterized. This is particularly germane to the broad utilization of electrospun implants in tissue engineering. These implants need to retain their initial nanoscale topography while simultaneously preserving clinically critical mechanical properties. We examined the suture-driven microstructural deformation of polycaprolactone electrospun to form both square and tubular SRS samples. The impact of fiber orientation (generally parallel or random orientation, orthogonally aligned) on the SRS of these vascular tissue equivalents was analyzed and compared to native and decellularized porcine vasculature. The initial state of the fiber clearly dictates the overall efficiency of scaffold utilization. SRS values for as-spun fibers at a thickness of 300 μm were found to be in the range of 1.59-4.78 N for the three orientations. Unexpectedly, random fibers provided the optimal SRS values based on both resistance to suture motion and the percentage of scaffold involvement. A "V-shaped" failure morphology is observed for both electrospun scaffolds and native tissue during SRS testing. Post-test fiber alignment in the tensile direction was visible in all initial fiber orientations similar to that of native tissue. These findings are significant as they allow us to employ new, counterintuitive biomimetic design criteria for nanofiber-based scaffolds in which reliable mechanical integration with the surrounding tissues via suture-based methods is important. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1525-1534, 2016.
Collapse
Affiliation(s)
- Francisco J Chaparro
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, 43210.
| | - Michelle E Matusicky
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, 43210
| | - Matthew J Allen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - John J Lannutti
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
28
|
Hanes DW, Wong ML, Jenny Chang CW, Humphrey S, Grayson JK, Boyd WD, Griffiths LG. Embolization of the first diagonal branch of the left anterior descending coronary artery as a porcine model of chronic trans-mural myocardial infarction. J Transl Med 2015; 13:187. [PMID: 26047812 PMCID: PMC4634919 DOI: 10.1186/s12967-015-0547-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022] Open
Abstract
Background Although the incidence of acute death related to coronary artery disease has decreased with the advent of new interventional therapies, myocardial infarction remains one of the leading causes of death in the US. Current animal models developed to replicate this phenomenon have been associated with unacceptably high morbidity and mortality. A new model utilizing the first diagonal branch of the left anterior descending artery (D1-LAD) was developed to provide a clinically relevant lesion, while attempting to minimize the incidence of adverse complications associated with infarct creation. Methods Eight Yucatan miniature pigs underwent percutaneous embolization of the D1-LAD via injection of 90 µm polystyrene micro-spheres. Cardiac structure and function were monitored at baseline, immediately post-operatively, and at 8-weeks post-infarct using transthoracic echocardiography. Post-mortem histopathology and biochemical analyses were performed to evaluate for changes in myocardial structure and extracellular matrix (ECM) composition respectively. Echocardiographic data were evaluated using a repeated measures analysis of variance followed by Tukey’s HSD post hoc test. Biochemical analyses of infarcted to non-infarcted myocardium were compared using analysis of variance. Results All eight pigs successfully underwent echocardiography prior to catheterization. Overall procedural survival rate was 83% (5/6) with one pig excluded due to failure of infarction and another due to deviation from protocol. Ejection fraction significantly decreased from 69.7 ± 7.8% prior to infarction to 50.6 ± 14.7% immediately post-infarction, and progressed to 48.7 ± 8.9% after 8-weeks (p = 0.011). Left ventricular diameter in systole significantly increased from 22.6 ± 3.8 mm pre-operatively to 30.9 ± 5.0 mm at 8 weeks (p = 0.016). Histopathology showed the presence of disorganized fibrosis on hematoxylin and eosin and Picro Sirius red stains. Collagen I and sulfated glycosaminoglycan content were significantly greater in the infarcted region than in normal myocardium (p = 0.007 and p = 0.018, respectively); however, pyridinoline crosslink content per collagen I content in the infarcted region was significantly less than normal myocardium (p = 0.048). Conclusion Systolic dysfunction and changes in ECM composition induced via embolization of the D1-LAD closely mimic those found in individuals with chronic myocardial infarction (MI), and represents a location visible without the need for anesthesia. As a result, this method represents a useful model for studying chronic MI. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0547-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Derek W Hanes
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| | - Maelene L Wong
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| | - C W Jenny Chang
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| | - Sterling Humphrey
- University of California Davis, Medical Center, 2221 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - J Kevin Grayson
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Circle, Travis AFB, CA, 94535, USA.
| | - Walter D Boyd
- University of California Davis, Medical Center, 2221 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Leigh G Griffiths
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, Honkonen K, Pietilä M, Leppänen O, Kuivanen A, Knuuti J, Ylä-Herttuala S. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol Heart Circ Physiol 2013; 305:H1297-308. [DOI: 10.1152/ajpheart.00561.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large animal model of chronic myocardial ischemia and heart failure is crucial for the development of novel therapeutic approaches. In this study we developed a novel percutaneous one- and two-vessel model for chronic myocardial ischemia using a stent coated with a polytetrafluoroethylene tube formed in a bottleneck shape. The bottleneck stent was implanted in the proximal left anterior descending (LAD) or proximal circumflex artery (LCX), or in both proximal LCX and mid LAD 1 wk later (2-vessel model), and pigs were followed for 4–5 wk. Ejection fraction (EF), infarct size, collateral growth, and myocardial perfusion were assessed. Pigs were given antiarrhythmic medication to prevent sudden death. The occlusion time of the bottleneck stent and the timing of myocardial infarction could be modulated by the duration of antiplatelet medication. Fractional flow reserve measurements and positron emission tomography imaging showed severe ischemia after bottleneck stenting covering over 50% of the left ventricle in the proximal LAD model. Complete coronary occlusion was necessary for significant collateral growth, which mostly had occurred already during the first wk after the stent occlusion. Dynamic and competitive collateral growth patterns were observed. EF declined from 64 to 41% in the LCX model and to 44% in the LAD model 4 wk after stenting with 12 and 21% infarcted left ventricle in the LCX and LAD models, respectively. The mortality was 32 and 37% in the LCX and LAD models but very (71%) high in the two-vessel disease model. The implantation of a novel bottleneck stent in the proximal LAD or LCX is a novel porcine model of reversible myocardial ischemia (open stent) and ischemic heart failure (occluded stent) and is feasible for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Tuomas T. Rissanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Department of Internal Medicine, Central Hospital of North Karelia, Joensuu, Finland
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Paavo J. Halonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Miikka Tarkia
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Markus Rannankari
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Krista Honkonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Pietilä
- Department of Cardiology, Turku University Hospital, Turku, Finland
| | - Olli Leppänen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Center for Research and Development, Uppsala University/County Council of Gävleborg, Gävle, Sweden
| | - Antti Kuivanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland; and
| |
Collapse
|
30
|
Tratsiakovich Y, Gonon AT, Kiss A, Yang J, Böhm F, Tornvall P, Settergren M, Channon KM, Sjöquist PO, Pernow J. Myocardial protection by co-administration of L-arginine and tetrahydrobiopterin during ischemia and reperfusion. Int J Cardiol 2013; 169:83-8. [PMID: 24067598 DOI: 10.1016/j.ijcard.2013.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/31/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Reduced bioavailability of nitric oxide (NO) is a key factor contributing to myocardial ischemia and reperfusion injury. The mechanism behind the reduction of NO is related to deficiency of the NO synthase (NOS) substrate L-arginine and cofactor tetrahydrobiopterin (BH4) resulting in NOS uncoupling. The aim of the study was to investigate if the combination of L-arginine and BH4 given iv or intracoronary before reperfusion protects from reperfusion injury. METHODS Sprague-Dawley rats and pigs were subjected to myocardial ischemia and reperfusion. Rats received vehicle, L-arginine, BH4, L-arginine+BH4 with or without the NOS-inhibitor L-NMMA iv 5 min before reperfusion. Pigs received infusion of vehicle, L-arginine, BH4 or L-arginine+BH4 into the left main coronary artery for 30 min starting 10 min before reperfusion. RESULTS Infarct size was significantly smaller in the rats (50 ± 2%) and pigs (54 ± 5%) given L-arginine+BH4 in comparison with the vehicle groups (rats 65 ± 3% and pigs 86 ± 5%, P<0.05). Neither L-arginine nor BH4 alone significantly reduced infarct size. Administration of L-NMMA abrogated the cardioprotective effect of L-arginine+BH4. Myocardial BH4 levels were 3.5- to 5-fold higher in pigs given L-arginine+BH4 and BH4 alone. The generation of superoxide in the ischemic-reperfused myocardium was reduced in pigs treated with intracoronary L-arginine+BH4 versus the vehicle group (P<0.05). CONCLUSION Administration of L-arginine+BH4 before reperfusion protects the heart from ischemia-reperfusion injury. The cardioprotective effect is mediated via NOS-dependent pathway resulting in diminished superoxide generation.
Collapse
Affiliation(s)
- Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
van Bragt KA, Nasrallah HM, Kuiper M, Luiken JJ, Schotten U, Verheule S. Atrial supply-demand balance in healthy adult pigs: coronary blood flow, oxygen extraction, and lactate production during acute atrial fibrillation. Cardiovasc Res 2013; 101:9-19. [PMID: 24142429 DOI: 10.1093/cvr/cvt239] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Little is known about how atrial oxygen supply responds to increased demand, and under which conditions it falls short (supply-demand mismatch). Here, we have investigated the vasodilator response, oxygen extraction, and lactate production of the left atrium (LA) and left ventricle (LV) in response to atrial pacing and atrial fibrillation (AF). METHODS AND RESULTS Series A (n = 9 Dutch landrace pigs) was instrumented to measure LA and LV vascular conductance in branches of the circumflex artery. Coronary conductance reserve (CCR) was calculated as the ratio between conductance during adenosine infusion and baseline. Series B (n = 7) was instrumented with sampling catheters in LA and LV veins for determination of blood gases and lactate levels. LA CCR (1.76 ± 0.14) was significantly lower than LV CCR (3.16 ± 0.27, P = 0.002). However, basal oxygen extraction was lower in LA (27 ± 3%) than that in the LV (58 ± 6%, P = 0.0006), indicating a larger extraction reserve in the LA than that in the LV (4.68 ± 0.84 vs. 1.88 ± 0.26, P = 0.01). Atrial pacing caused an increase in LA conductance (Series A) and oxygen extraction (Series B). AF increased LA vascular conductance to 177 ± 14% at 1 min, 168 ± 14 at 5 min, and 164 ± 31% at 10 min of AF (P < 0.05 vs. baseline). Atrial oxygen extraction also increased from 26 ± 3% at baseline to 63 ± 5% (P < 0.01) at 5 min and 60 ± 11% (P < 0.01) at 10 min of AF. Arterio-venous lactate difference increased significantly (P = 0.02) during AF. CONCLUSIONS In healthy pigs, the LA has a lower CCR, but a higher extraction reserve compared with the LV. Although both reserves were recruited during AF, atrial lactate production increased significantly.
Collapse
Affiliation(s)
- Kelly A van Bragt
- Department of Physiology, Faculty of Medicine, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Nour S, Yang D, Dai G, Wang Q, Feng M, Lila N, Chachques JC, Wu G. Intrapulmonary shear stress enhancement: a new therapeutic approach in acute myocardial ischemia. Int J Cardiol 2013; 168:4199-208. [PMID: 23932859 DOI: 10.1016/j.ijcard.2013.07.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 02/18/2013] [Accepted: 07/13/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Ischemic heart disease (IHD) is a leading cause of mortality with insufficient results of current therapies, most probably due to maintained endothelial dysfunction conditions. Alternatively, we propose a new treatment that promotes endothelial shear stress (ESS) enhancement using an intrapulmonary pulsatile catheter. METHODS Twelve piglets, divided in equal groups of 6: pulsatile (P) and non-pulsatile (NP), underwent permanent left anterior descending coronary artery ligation through sternotomy. After 1 h of ischemia and heparin injection (150 IU/kg): in P group, a pulsatile catheter was introduced into the pulmonary trunk and pulsated intermittently over 1 h, and irrespective of heart rate (110 bpm). In NP group, nitrates were given (7 ± 2 mg/kg/min) for 1 h. RESULTS In P group all 6 animals survived ischemia for 120 min, but in NP group only 2 animals survived. The 4 animals that died during the experiment in NP group survived for 93 ± 14 min. Hemodynamics and cardiac output (CO) were significantly improved in P group compared with NP group: CO was 0.92 ± 0.15 vs. 0.52 ± 0.08 in NP group (L/min; p < 0.05), respectively. Vascular resistances (dynes.s.cm(-5)/kg) were significantly (p < 0.05) lower in P group versus NP group: pulmonary resistance was 119 ± 13 vs. 400 ± 42 and systemic resistance was 319 ± 43 vs. 1857 ± 326, respectively. Myocardial apoptosis was significantly (p < 0.01) lower in P group (0.66 ± 0.07) vs. (4.18 ± 0.27) in NP group. Myocardial endothelial NO synthase mRNA expression was significantly (p < 0.01) greater in P group (0.90 ± 0.09) vs. (0.25 ± 0.04) in NP group. CONCLUSIONS Intrapulmonary pulsatile catheter could improve hemodynamics and myocardial contractility in acute myocardial ischemia. This represents a cost-effective method, suitable for emergency setting as a first priority, regardless of classical coronary reperfusion.
Collapse
Affiliation(s)
- Sayed Nour
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidou Hospital, University Paris Descartes, 75015 Paris, France; Division of Cardiology and the Key Laboratory on Assisted Circulation, Ministry of Health of China, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gladczak AK, Shires PK, Stevens KA, Clymer JW. Comparison of indirect and direct blood pressure monitoring in normotensive swine. Res Vet Sci 2013; 95:699-702. [PMID: 23790711 DOI: 10.1016/j.rvsc.2013.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/08/2013] [Accepted: 05/26/2013] [Indexed: 11/19/2022]
Abstract
The gold standard for blood pressure measurement in pigs is direct monitoring of arterial pressure, but this is an invasive technique adding complexity to surgical procedures. We sought to compare direct measurements obtained via catheterization to more easily-obtained indirect measurements using a sphygmomanometer with an automated cuff. Simultaneous measurements via an arterial pressure transducer and a child-size cuff were performed in pigs undergoing abdominal surgical procedures under normotensive conditions. Correlation between direct and indirect measurements was good (r=0.881). Systolic blood pressures for the cuff were higher than those for arterial measurements, while diastolic pressures were lower for the cuff than arterial. A Bland-Altman analysis confirmed this bias at the extremes of the normotensive range. For highly accurate readings, especially under stressed conditions, direct arterial catheterization remains the preferred method of measuring blood pressure. When monitoring surgical procedures, the more convenient blood pressure cuff can provide reliable measurements.
Collapse
|
34
|
Foin N, Sen S, Petraco R, Nijjer S, Torii R, Kousera C, Broyd C, Mehta V, Xu Y, Mayet J, Hughes A, Di Mario C, Krams R, Francis D, Davies J. Method for percutaneously introducing, and removing, anatomical stenosis of predetermined severity in vivo: the "stenotic stent". J Cardiovasc Transl Res 2013; 6:640-8. [PMID: 23733543 DOI: 10.1007/s12265-013-9476-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
Current in vivo models of arterial lesions often lead to unpredictable results in terms of lesion anatomy and hemodynamical significance. This study aimed to evaluate the impact of coronary stenosis using a novel in vivo adjustable stenosis model capable of mimicking advanced human coronary lesions. We developed a series of balloon expandable covered coronary stents with a central restriction, mimicking different intermediate to severe stenosis, and implanted them percutaneously in coronary arteries of eight healthy hybrid Landrace pigs. Optical coherence tomography (OCT) pullbacks and fractional flow reserve (FFR) were acquired along the artery after implantation of the stenotic stents for precise evaluation of anatomy and functional impact. Diameter and area stenosis after deployment of the stenosis implant were, on average, respectively, 54.1 ± 5.9 and 78.4 ± 5.8 % and average FFR value was 0.83 (SD 0.13). There was a low correlation between FFR and MLA evaluated by OCT (r = 0.02, p = 0.94), improved with percentage area stenosis (r = -0.55, p = 0.12), or OCT volumetric evaluation of the stenosis taking into account not only the MLA but also the length of the lesion (r = -0.78, p = 0.01). This study presents a method and proof of concept for percutaneously introducing, and removing, anatomical stenosis of predetermined severity in vivo. Such in vivo model may be used to create and evaluate the impact of focal stenoses on physiological parameters such as FFR.
Collapse
Affiliation(s)
- Nicolas Foin
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol Ther 2013; 21:725-38. [PMID: 23403495 DOI: 10.1038/mt.2013.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stimulation of collateral vessel development in the heart by angiogenic growth factor therapy has been tested in animals and humans for almost two decades. Discordance between the outcome of preclinical studies and clinical trials pointed to the difficulties of translation from animal models to patients. Lessons learned in this process identified specific mechanistic, technical, and clinical hurdles, which need to be overcome. This review summarizes current understanding of the mechanisms leading to the establishment of a functional coronary collateral network and the biological processes growth factor therapies should stimulate even under conditions of impaired natural adaptive vascular response. Vector delivery methods are recommended to maximize angiogenic gene therapy efficiency and reduce side effects. Optimization of clinical trial design should include the choice of clinical end points which provide mechanistic proof-of-concept and also reflect clinical benefits (e.g., surrogates to assess increased collateral flow reserve, such as myocardial perfusion imaging). Guidelines are proposed to select patients who may respond to the therapy with high(er) probability. Both short and longer term strategies are outlined which may help to make therapeutic angiogenesis (TA) work in the future.
Collapse
|
36
|
Dragneva G, Korpisalo P, Ylä-Herttuala S. Promoting blood vessel growth in ischemic diseases: challenges in translating preclinical potential into clinical success. Dis Model Mech 2013; 6:312-22. [PMID: 23471910 PMCID: PMC3597014 DOI: 10.1242/dmm.010413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Angiogenic therapy, which involves the use of an exogenous stimulus to promote blood vessel growth, is an attractive approach for the treatment of ischemic diseases. It has been shown in animal models that the stimulation of blood vessel growth leads to the growth of the whole vascular tree, improvement of ischemic tissue perfusion and improved muscle aerobic energy metabolism. However, very few positive results have been gained from Phase 2 and 3 clinical angiogenesis trials. Many reasons have been given for the failures of clinical trials, including poor transgene expression (in gene-therapy trials) and instability of the vessels induced by therapy. In this Review, we discuss the selection of preclinical models as one of the main reasons why clinical translation has been unsuccessful thus far. This issue has received little attention, but could have had dramatic implications on the expectations of clinical trials. We highlight crucial differences between human patients and animal models with regards to blood flow and pressure, as well as issues concerning the chronic nature of ischemic diseases in humans. We use these as examples to demonstrate why the results from preclinical trials might have overestimated the efficacy of angiogenic therapies developed to date. We also suggest ways in which currently available animal models of ischemic disease could be improved to better mimic human disease conditions, and offer advice on how to work with existing models to avoid overestimating the efficacy of new angiogenic therapies.
Collapse
Affiliation(s)
- Galina Dragneva
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | | |
Collapse
|
37
|
Oostindjer M, Amdam GV. Systems integrity in health and aging - an animal model approach. LONGEVITY & HEALTHSPAN 2013; 2:2. [PMID: 24472488 PMCID: PMC3922947 DOI: 10.1186/2046-2395-2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees' performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people.
Collapse
Affiliation(s)
- Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
- School of Life Sciences, Arizona State University, PO Box 874501, 85287, Tempe, AZ, USA
| |
Collapse
|
38
|
Kimura M, Toyoda M, Gojo S, Itakura Y, Kami D, Miyoshi S, Kyo S, Ono M, Umezawa A. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia. J Stem Cells Regen Med 2012. [PMID: 24693195 PMCID: PMC3908291 DOI: 10.46582/jsrm.0803010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC) transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP)-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.
Collapse
Affiliation(s)
- M Kimura
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan ; Equally contributed to the study
| | - M Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo, Japan ; Equally contributed to the study
| | - S Gojo
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - Y Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo, Japan
| | - D Kami
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - S Miyoshi
- Department of Cardiology, Keio University School of Medicine , Tokyo, Japan
| | - S Kyo
- Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - M Ono
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - A Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development , Tokyo, Japan
| |
Collapse
|
39
|
Keyes JT, Lockwood DR, Utzinger U, Montilla LG, Witte RS, Vande Geest JP. Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries. Ann Biomed Eng 2012; 41:1579-91. [PMID: 23132151 DOI: 10.1007/s10439-012-0679-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
To identify the orthotropic biomechanical behavior of arteries, researchers typically perform stretch-pressure-inflation tests on tube-form arteries or planar biaxial testing of splayed sections. We examined variations in finite element simulations (FESs) driven from planar or tubular testing of the same coronary arteries to determine what differences exist when picking one testing technique vs. another. Arteries were tested in tube-form first, then tested in planar-form, and fit to a Fung-type strain energy density function. Afterwards, arteries were modeled via finite element analysis looking at stress and displacement behavior in different scenarios (e.g., tube FESs with tube- or planar-driven constitutive models). When performing FESs of tube inflation from a planar-driven constitutive model, pressure-diameter results had an error of 12.3% compared to pressure-inflation data. Circumferential stresses were different between tube- and planar-driven pressure-inflation models by 50.4% with the planar-driven model having higher stresses. This reduced to 3.9% when rolling the sample to a tube first with planar-driven properties, then inflating with tubular-driven properties. Microstructure showed primarily axial orientation in the tubular and opening-angle configurations. There was a shift towards the circumferential direction upon flattening of 8.0°. There was also noticeable collagen uncrimping in the flattened tissue.
Collapse
Affiliation(s)
- Joseph T Keyes
- Graduate Interdisciplinary Program in Biomedical Engineering, The University of Arizona, P.O. Box 210119, Tucson, AZ 85721-0119, USA
| | | | | | | | | | | |
Collapse
|
40
|
Katz MG, Fargnoli AS, Tomasulo CE, Pritchette LA, Bridges CR. Model-specific selection of molecular targets for heart failure gene therapy. J Gene Med 2012; 13:573-86. [PMID: 21954055 DOI: 10.1002/jgm.1610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
41
|
Hiebl B, Müller C, Görs J, Jung F, Lendlein A, Jünger M, Hamm B, Niehues SM. A NiTi alloy-based cuff for external banding valvuloplasty: a six-week follow-up study in pigs. Phlebology 2011; 27:337-46. [PMID: 22174094 DOI: 10.1258/phleb.2011.011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The study aimed to test a Nitinol(®)-based vein cuff model for external banding valvuloplasty. METHOD In 12 adult minipigs, the vena jugularis externa was covered for 42 days by a cuff with an inner diameter adapted to the outer vein diameter in supine position. By changing from supine into prone position hypostatically vein dilation was induced to simulate varicose vein dilation. Cuff position and the inner diameter of the vein lumen under the cuff were examined by computer tomography scanning. Also, histological analysis of the vein wall within the cuff was performed. RESULTS The preset tubular shape of the cuff and the cuff position did not change in both prone and supine position, but due to fibrosis the luminal vein diameter within the cuff was decreased (P < 0.01) already after 21 days. CONCLUSION A foreign body response resulted in a fibrous capsule covering the cuff which might limit cuff functionality.
Collapse
Affiliation(s)
- B Hiebl
- Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Influence of polymeric microspheres on the myocardial oxygen partial pressure in the beating heart of pigs. Microvasc Res 2011; 82:52-7. [DOI: 10.1016/j.mvr.2011.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/03/2011] [Indexed: 11/18/2022]
|
43
|
Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, Sakata S, Badimon JJ, Hajjar RJ, Kawase Y. Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 2011; 301:H530-7. [PMID: 21551276 DOI: 10.1152/ajpheart.01103.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of promising therapies for ischemic cardiomyopathy are emerging, and the role of translational research in testing the efficacy and safety of these agents in relevant clinical models has become important. The goal of this study was to develop a chronic model of ischemic cardiomyopathy in a large animal model. In this study, 40 consecutive pigs were initially enrolled. To induce progressive stenosis, a plastic occluder with a fixed diameter of 1.0 mm fitted with an 18-gauge copper wire was placed around the proximal left anterior descending (LAD) coronary artery. Coronary angiography, hemodynamic measurements, and echocardiography were performed at 2 wk and 1, 2, and 3 mo. Overall mortality was 26% at 3 mo, and up to 80% of the pigs showed total occlusion of LAD at 1 mo. A significant depression of peak LV pressure rate of rise (+dP/dt(max)) was observed in the animals showing total artery occlusion throughout the study. Left ventricular ejection fraction was also impaired, and the left ventricular volumes tended to be larger in the pigs with occlusion. Approximately 10% of scar tissue was found in the LAD occluded pigs, whereas the coronary flow pattern in the rest of the area took the pattern of hibernating myocardium. At the same time, histological and protein analysis established the presence of fibrosis and ongoing apoptosis in the ischemic area. In this model, the timing and incidence of total occlusion and low mortality offer significant advantages over other ischemic cardiomyopathy models in conducting preclinical studies.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tuzun E, Oliveira E, Narin C, Khalil H, Jimenez-Quevedo P, Perin E, Silva G. Correlation of Ischemic Area and Coronary Flow With Ameroid Size in a Porcine Model. J Surg Res 2010; 164:38-42. [DOI: 10.1016/j.jss.2009.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/17/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
45
|
Krause K, Schneider C, Kuck KH, Jaquet K. REVIEW: Stem Cell Therapy in Cardiovascular Disorders. Cardiovasc Ther 2010; 28:e101-10. [DOI: 10.1111/j.1755-5922.2010.00208.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Li H, Ganta S, Fong P. Altered ion transport by thyroid epithelia from CFTR(-/-) pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Exp Physiol 2010; 95:1132-44. [PMID: 20729267 DOI: 10.1113/expphysiol.2010.054700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subclinical hypothyroidism has been linked to cystic fibrosis, and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl⁻ and absorbs Na(+) in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (pendrin)-mediated I⁻ secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na(+) absorption. Whether CFTR mediates the secretory Cl⁻ current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR(-/-) model, generated primary pig thyroid epithelial cell cultures (pThECs), analysed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored the following parameters: (1) the Cl⁻ secretory response to the cAMP agonist, isoprenaline; and (2) the amiloride-sensitive Na(+) current. Baseline short-circuit current (I(sc)) did not differ between CFTR(+/+) and CFTR(-/-) cultures. Serosal isoprenaline increased I(sc) in CFTR(+/+), but not CFTR(-/-), monolayers. Compared with CFTR(+/+) thyroid cultures, amiloride-sensitive Na(+) absorption measured in CFTR(-/-) pThECs represented a greater fraction of the resting I(sc). However, levels of transcripts encoding epithelial sodium channel (ENaC) subunits did not differ between CFTR(+/+) and CFTR(-/-) pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl⁻ secretion in a well-differentiated thyroid culture model and that knockout of CFTR promotes increased Na(+) absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of cystic fibrosis-associated hypothyroidism.
Collapse
Affiliation(s)
- Hui Li
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, 1600 Denison Avenue, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
47
|
Jensen TW, Mazur MJ, Pettigew JE, Perez-Mendoza VG, Zachary J, Schook LB. A Cloned Pig Model for Examining Atherosclerosis Induced by High Fat, High Cholesterol Diets. Anim Biotechnol 2010; 21:179-87. [DOI: 10.1080/10495398.2010.490693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Krause K, Schneider C, Jaquet K, Kuck KH. Potential and clinical utility of stem cells in cardiovascular disease. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:49-56. [PMID: 24198510 PMCID: PMC3781732 DOI: 10.2147/sccaa.s5867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recent identification of bone marrow-derived adult stem cells and other types of stem cells that could improve heart function after transplantation have raised high expectations. The basic mechanisms have been studied mostly in murine models. However, these experiments revealed controversial results on transdifferentiation vs transfusion of adult stem cells vs paracrine effects of these cells, which is still being debated. Moreover, the reproducibility of these results in precisely translated large animal models is still less well investigated. Despite these weaknesses results of several clinical trials including several hundreds of patients with ischemic heart disease have been published. However, there are no solid data showing that any of these approaches can regenerate human myocardium. Even the effectiveness of cell therapy in these approaches is doubtful. In future we need in this important field of regenerative medicine: i) more experimental data in large animals that are closer to the anatomy and physiology of humans, including data on dose effects, comparison of different cell types and different delivery routes; ii) a better understanding of the molecular mechanisms involved in the fate of transplanted cells; iii) more intensive research on genuine regenerative medicine, applying genetic regulation and cell engineering.
Collapse
Affiliation(s)
- Korff Krause
- Hanseatic Heart Center Hamburg, Department of Cardiology, Asklepios Hospital St. Georg, Hamburg, Germany
| | | | | | | |
Collapse
|
49
|
Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 2010; 4:899-920. [DOI: 10.1017/s1751731110000200] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Closed-chest animal model of chronic coronary artery stenosis. Assessment with magnetic resonance imaging. Int J Cardiovasc Imaging 2009; 26:299-308. [DOI: 10.1007/s10554-009-9551-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|