1
|
Hiraga T, Miyoshi K, Shimizu R, Yook JS, Okamoto M, Soya H. Very-light-intensity exercise as minimal intensity threshold for activating dorsal hippocampal neurons: Evidence from rat physiological exercise model. Biochem Biophys Res Commun 2025; 746:151243. [PMID: 39752975 DOI: 10.1016/j.bbrc.2024.151243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons. Here, we aimed to clarify this question using a physiologically sound rat exercise model. We used a previously established rat treadmill running model within a metabolic chamber and measured maximal oxygen uptake (V˙O2max) during an incremental running test. Referring to the American College of Sports Medicine's V˙O2max-based intensity classification, rats were assigned to one of five groups: resting control, very-light, light, moderate, and vigorous exercise intensity. We immunohistochemically assessed the effects of a single bout of exercise on dHPC neuronal activity and measured V˙O2 and blood lactate as exercise intensity indicators. dHPC neuronal activity increased with exercise intensity, even at light-intensity without blood lactate accumulation, and correlated positively with increasing V˙O2. The dorsal dentate gyrus and CA1 sub-regions were markedly activated even by very-light-intensity exercise. Our findings demonstrate the intensity-dependent activation of dHPC neurons, with very-light-intensity exercise as the minimal intensity threshold. These strongly support our hypothesis that very-light-intensity exercise serves as a viable memory-enhancing strategy, beneficial for various populations including low-fitness individuals and the elderly.
Collapse
Affiliation(s)
- Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Kota Miyoshi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Ryo Shimizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Jang Soo Yook
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Institute of Sports and Arts Convergence (ISAC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
2
|
Boykin JR, Steiner JL, Laskin GR, Roberts MD, Vied C, Willis CRG, Etheridge T, Gordon BS. Comparative analysis of acute eccentric contraction-induced changes to the skeletal muscle transcriptome in young and aged mice and humans. Am J Physiol Regul Integr Comp Physiol 2025; 328:R45-R58. [PMID: 39495237 DOI: 10.1152/ajpregu.00224.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Adaptations to skeletal muscle following resistance exercise are due in part to changes to the skeletal muscle transcriptome. Although transcriptional changes in response to resistance exercise occur in young and aged muscles, aging alters this response. Rodent models have served great utility in defining regulatory factors that underscore the influence of mechanical load and aging on changes to skeletal muscle phenotype. Unilateral eccentric contractions in young and aged rodents are widely used to model resistance exercises in humans. However, the extent to which unilateral eccentric contractions in young and aged rodents mimic the transcriptional response in humans remains unknown. We reanalyzed two publicly available RNA sequencing datasets from young and aged mice and humans that were subjected to acute eccentric contractions to define key similarities and differences in the muscle transcriptional response following this exercise modality. The effect of aging on the number of contraction-sensitive genes, the distribution patterns of those genes into unique/common categories, and the cellular pathways associated with the differentially expressed genes (DEGs) were similar in mice and humans. However, there was little overlap between species when comparing specific contraction-sensitive DEGs within the same age group. There were strong intraspecies relationships for the common transcription factors predicted to influence the contraction-sensitive gene sets, whereas interspecies relationships were weak. Overall, these data demonstrate key similarities between mice and humans for the contraction-induced changes to the muscle transcriptome, but we posit species-specific responses exist and should be taken into consideration when attempting to translate rodent eccentric exercise models.NEW & NOTEWORTHY Acute eccentric muscle contractions in rodents are used to model resistance exercise in young and aged humans, including changes to the muscle transcriptome. This work defines the utility of the rodent model at mimicking the transcriptional features observed in young and aged humans.
Collapse
Affiliation(s)
- Jake R Boykin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Grant R Laskin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida, United States
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Bradley S Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review. Eat Weight Disord 2024; 29:77. [PMID: 39719521 DOI: 10.1007/s40519-024-01709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Time-restricted feeding (TRF), an intermittent fasting approach involving a shortened eating window within 24 h, has gained popularity as a weight management approach. This review addresses how TRF may favor fat redistribution and the function of the adipose organ. TRF trials (mainly 16:8 model, with a duration of 5-48 weeks) reported a significant weight loss (1.2-10.2%, ~ 1.4-9.4 kg), with a considerable decrease in total fat mass (1.6-21%, ~ 0.5-7 kg) and visceral adipose compartment (VAC, 11-27%) in overweight and obese subjects. Experimental TRF in normal-fed and obesogenic-diet-fed mice and rats (with a fasting duration ranging between 9 and 21 h within 1-17 weeks) reported a significant reduction in body weight (~ 7-40%), total fat mass (~ 17-71%), and intrahepatic fat (~ 25-72%). TRF also improves VAC and subcutaneous adipose compartment (SAC) function by decreasing adipocyte size, macrophage infiltration, M1-macrophage polarity, and downregulating inflammatory genes. In conclusion, beyond its effect on body weight loss, total fat mass, and intrahepatic fat accumulation, TRF favors adipose organ fat redistribution in overweight and obese subjects by decreasing VAC and improving the function of VAC and SAC.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran.
| |
Collapse
|
4
|
Hiraga T, Hata T, Soya S, Shimoda R, Takahashi K, Soya M, Inoue K, Johansen JP, Okamoto M, Soya H. Light-exercise-induced dopaminergic and noradrenergic stimulation in the dorsal hippocampus: Using a rat physiological exercise model. FASEB J 2024; 38:e70215. [PMID: 39668509 PMCID: PMC11638517 DOI: 10.1096/fj.202400418rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Exercise activates the dorsal hippocampus that triggers synaptic and cellar plasticity and ultimately promotes memory formation. For decades, these benefits have been explored using demanding and stress-response-inducing exercise at moderate-to-vigorous intensities. In contrast, our translational research with animals and humans has focused on light-intensity exercise (light exercise) below the lactate threshold (LT), which almost anyone can safely perform with minimal stress. We found that even light exercise can stimulate hippocampal activity and enhance memory performance. Although the circuit mechanism of this boost remains unclear, arousal promotion even with light exercise implies the involvement of the ascending monoaminergic system that is essential to modulate hippocampal activity and impact memory. To test this hypothesis, we employed our physiological exercise model based on the LT of rats and immunohistochemically assessed the neuronal activation of the dorsal hippocampal sub-regions and brainstem monoaminergic neurons. Also, we monitored the extracellular concentration of monoamines in the dorsal hippocampus using in vivo microdialysis. We found that even light exercise increased neuronal activity in the dorsal hippocampal sub-regions and elevated the extracellular concentrations of noradrenaline and dopamine. Furthermore, we found that tyrosine hydroxylase-positive neurons in the locus coeruleus (LC) and the ventral tegmental area (VTA) were activated even by light exercise and were both positively correlated with the dorsal hippocampal activation. In conclusion, our findings demonstrate that light exercise stimulates dorsal hippocampal neurons, which are associated with LC-noradrenergic and VTA-dopaminergic activation. This shed light on the circuit mechanisms responsible for hippocampal neural activation during exercise, consequently enhancing memory function.
Collapse
Affiliation(s)
- Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Toshiaki Hata
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaJapan
- Department of Molecular Behavioral Physiology, Institute of MedicineUniversity of TsukubaTsukubaJapan
| | - Ryo Shimoda
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Kanako Takahashi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Department of Anatomy and Neuroscience, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Center for Education in Liberal Arts and SciencesHealth Sciences University of HokkaidoIshikariJapan
| | - Joshua P. Johansen
- Laboratory for Neural Circuitry of MemoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
- Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
5
|
Shiba A, de Goede P, Tandari R, Foppen E, Korpel NL, Coopmans TV, Hellings TP, Jansen MW, Ruitenberg A, Ritsema WI, Yi CX, Mul JD, Stenvers DJ, Kalsbeek A. Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats. Neurobiol Sleep Circadian Rhythms 2024; 17:100106. [PMID: 39387098 PMCID: PMC11462373 DOI: 10.1016/j.nbscr.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
Collapse
Affiliation(s)
- Ayano Shiba
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
| | - Paul de Goede
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
| | - Roberta Tandari
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ewout Foppen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nikita L. Korpel
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom V. Coopmans
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom P. Hellings
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Merel W. Jansen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Annelou Ruitenberg
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Wayne I.G.R. Ritsema
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| | - Joram D. Mul
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, Science Park 904, 1098XH, Amsterdam, the Netherlands
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Jan Stenvers
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105BA, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol 2024; 12:1421566. [PMID: 39156974 PMCID: PMC11327861 DOI: 10.3389/fcell.2024.1421566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.
Collapse
Affiliation(s)
- Gianmarco Fenili
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Scaricamazza
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alberto Ferri
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Cristiana Valle
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
7
|
Winn NC, Schleh MW, Garcia JN, Lantier L, McGuinness OP, Blair JA, Hasty AH, Wasserman DH. Insulin at the intersection of thermoregulation and glucose homeostasis. Mol Metab 2024; 81:101901. [PMID: 38354854 PMCID: PMC10877958 DOI: 10.1016/j.molmet.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28 °C) and room (laboratory) temperature (RT, ∼22 °C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue-specific glucose metabolic index were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole-body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Joslin A Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| |
Collapse
|
8
|
Nemec-Bakk AS, Bel J, Niccoli S, Boreham DR, Tai TC, Lees SJ, Khaper N. Effects of prenatal dexamethasone exposure on adult C57BL/6J mouse metabolism and oxidative stress. Can J Physiol Pharmacol 2024; 102:180-195. [PMID: 38329060 DOI: 10.1139/cjpp-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Prenatal glucocorticoid exposure has been shown to alter hypothalamic-pituitary-adrenal axis function resulting in altered fetal development that can persist through adulthood. Fetal exposure to excess dexamethasone, a synthetic glucocorticoid, has been shown to alter adult behaviour and metabolism. This study investigated the effects prenatal dexamethasone exposure had on adult offspring cardiac and liver metabolism and oxidative stress. Pregnant C57BL/6 mice received a dose of 0.4 mg/kg dexamethasone on gestational days 15-17. Once pups were approximately 7 months old, glucose uptake was determined using positron emission tomography and insulin resistance (IR) was determined by homeostatic model assessment (HOMA) IR calculation. Oxidative stress was assessed by measuring 4-hydroxynonenal protein adduct formation and total reactive oxygen species. Female dexamethasone group had significantly increased glucose uptake when insulin stimulated compared to vehicle-treated mice. HOMA IR revealed no evidence of IR in either male or female offspring. There was also no change in oxidative stress markers in either cardiac or liver tissues of male or female offspring. These data suggest that prenatal dexamethasone exposure in male mice does not alter oxidative stress or metabolism. However, prenatal dexamethasone exposure increased glucocorticoids, cardiac glucose uptake, and pAkt signaling in female heart tissues in adult mice, suggesting there are sex differences in prenatal dexamethasone exposure.
Collapse
Affiliation(s)
- A S Nemec-Bakk
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - J Bel
- Department of Science and Environmental studies, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - S Niccoli
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
| | - D R Boreham
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - S J Lees
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - N Khaper
- Medical Science Division, NOSM University, Thunder Bay, ON P7B 5E1, Canada
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
9
|
Calente TJN, Albino LB, de Oliveira JG, Delfrate G, Sordi R, Santos FA, Fernandes D. EARLY BLOOD LACTATE AS A BIOMARKER FOR CARDIOVASCULAR COLLAPSE IN EXPERIMENTAL SEPSIS. Shock 2024; 61:142-149. [PMID: 38010082 DOI: 10.1097/shk.0000000000002265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Cecal ligation and puncture (CLP) is the gold standard model for studying septic shock, which is characterized by hypotension and hyporeactivity to vasoconstrictors. However, approximately 30% of CLP animals do not exhibit cardiovascular changes, requiring more replicates because of the high variability of the model. Therefore, biomarkers enabling the early prediction of cardiovascular collapse in sepsis would greatly benefit sepsis nonclinical studies, refining experimental models and improving clinical translation. Thus, this study aimed to test whether the early increase in lactate levels could predict hypotension and hyporesponsiveness to vasoconstrictors in a rat model of sepsis. Male and female Wistar rats were subjected to CLP or sham procedure. Tail blood lactate was measured 6, 12, and 24 h after surgery. Then, inflammatory, biochemical, and hemodynamic parameters were evaluated. Rats subjected to CLP developed hypotension, hyporesponsiveness to vasoconstrictors, an intense inflammatory process, and increased plasma markers of organ dysfunction. By using receiver operating characteristics curve analysis, we have established that a lactate value of 2.45 mmol/L can accurately discriminate between a rat exhibiting a normal vasoconstrictive response and a vasoplegic rat with 84% accuracy (area under the curve: 0.84; confidence interval [CI]: 0.67-1.00). The sensitivity, which is the ability to identify a diseased rat (true positive), was 75% (CI: 41-95), and the true negative rate was 81% (CI: 57-93). Therefore, early measurement of lactate levels in sepsis could serve as a valuable biomarker for distinguishing vasoplegic rats from those exhibiting normal vasoconstrictive responses.
Collapse
Affiliation(s)
| | - Lucas Braga Albino
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Gabrielle Delfrate
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Fábio André Santos
- Department of Dentistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | |
Collapse
|
10
|
Winn NC, Schleh MW, Garcia JN, Lantier L, McGuinness OP, Blair JA, Hasty AH, Wasserman DH. Insulin at the Intersection of Thermoregulation and Glucose Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.566254. [PMID: 38014310 PMCID: PMC10680846 DOI: 10.1101/2023.11.17.566254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ~28°C) and room (laboratory) temperature (RT, ~22°C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue specific glucose uptake were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (~50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ~50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Joslin A. Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Bashiri H, Rostamzadeh F, Sabet N, Moslemizadeh A, Rajizadeh MA, Jafari E. Sex-related beneficial effects of exercise on cardiac function and rhythm in autistic rats. Birth Defects Res 2023; 115:1486-1499. [PMID: 37522293 DOI: 10.1002/bdr2.2230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiovascular diseases are prevalent in autistic patients. As exercise is useful in the treatment of medical conditions, this study aimed to identify the effect of low-intensity endurance exercise (LIEE) and moderate-intensity endurance exercise (MIEE) on cardiovascular events in autistic rats. METHODS Valproic acid (VPA) was administrated once on gestational day 12.5 to pregnant rats to produce autism-like symptoms in offspring. Thirty-day-old offspring were divided into 12 groups: Male-CTL, Male-VPA, Male-CTL + LIEE, Male-CTL + MIEE, Male-VPA + LIEE, Male-VPA + MIEE, Female-CTL, Female-VPA, Female-CTL + LIEE, Female-CTL + MIEE, Female-VPA + LIEE, and Female-VPA + MIEE. LIEE and MIEE were performed 5 days a week for 30 days. Twenty-four hours after the last exercise session, electrocardiogram and hemodynamic and cardiac function indices were recorded. RESULTS The results indicated that +dp/dt max and contractility index (CI) decreased in the Female-VPA group compared to the Female-CTL group. LIEE increased these parameters in the Female-VPA + LIEE group. However, MIEE normalized CI in the Male-VPA + MIEE compared to the Male-VPA group. Tau increased in the Female-VPA group compared to the Female-CTL group and it decreased in the Female-VPA + MIEE group compared to the Female-VPA group. LIEE and MIEE recovered the reduction of heart rate and the increase in P, R, and T amplitudes in Male-VPA group. LIEE and MIEE increased heart rate variability in the Male-VPA and Female-VPA groups. CONCLUSIONS The findings showed that LIEE and MIEE alleviated cardiac dysfunction and disturbances in heart rhythm in the autistic offspring. Exercise may be recommended as a routine program for autistic patients to prevent and treat the harmful cardiovascular consequences of autism.
Collapse
Affiliation(s)
- Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
12
|
Ortiz SR, Field MS. Sucrose Intake Elevates Erythritol in Plasma and Urine in Male Mice. J Nutr 2023; 153:1889-1902. [PMID: 37245661 DOI: 10.1016/j.tjnut.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Elevated serum erythritol concentration is a predictive biomarker of diabetes and cardiovascular incidence and complications. Erythritol is synthesized endogenously from glucose, but little is known regarding the origin of elevated circulating erythritol in vivo. OBJECTIVES In vitro evidence indicates that intracellular erythritol is elevated by high-glucose cell culture conditions and that final step of erythritol synthesis is catalyzed by the enzymes sorbitol dehydrogenase (SORD) and alcohol dehydrogenase (ADH) 1. The purpose of this study was to determine whether dietary intake and/or diet-induced obesity affect erythritol synthesis in mice and whether this relationship is modified by the loss of the enzymes SORD or ADH1. METHODS First, 8-wk-old male Sord+/+, Sord-/-, Adh1+/+, and Adh1-/- mice were fed either low-fat diet (LFD) with 10% fat-derived calories or diet-induced obesity high-fat diet (HFD) with 60% fat-derived calories for 8 wk. Plasma and tissue erythritol concentrations were measured using gas chromatography-mass spectrometry. Second, male wild-type 8-wk-old C57BL/6J mice were fed LFD or HFD with plain drinking water or 30% sucrose water for 8 wk. Blood glucose and plasma and urinary erythritol concentrations were measured in nonfasted and fasted samples. Tissue erythritol was measured after killing. Finally, male Sord+/+ and Sord-/- mice were fed LFD with 30% sucrose water for 2 wk; then, nonfasted plasma, urine, and tissue erythritol concentrations were quantified. RESULTS Plasma and tissue erythritol concentrations were not affected by loss of Sord or Adh1 in mice fed LFD or HFD. In wild-type mice, consumption of 30% sucrose water significantly elevated plasma and urinary erythritol concentrations on both LFD-fed and HFD-fed mice compared with that of plain water. Sord genotype did not affect plasma or urinary erythritol concentration in response to sucrose feeding, but Sord-/- mice had reduced kidney erythritol content compared with wild-type littermates in response to sucrose. CONCLUSIONS Sucrose intake, not HFD, elevates erythritol synthesis and excretion in mice. Loss of ADH1 or SORD does not significantly affect erythritol concentration in mice.
Collapse
Affiliation(s)
- Semira R Ortiz
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Robbins JM, Gerszten RE. Exercise, exerkines, and cardiometabolic health: from individual players to a team sport. J Clin Invest 2023; 133:e168121. [PMID: 37259917 PMCID: PMC10231996 DOI: 10.1172/jci168121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Exercise confers numerous salutary effects that extend beyond individual organ systems to provide systemic health benefits. Here, we discuss the role of exercise in cardiovascular health. We summarize major findings from human exercise studies in cardiometabolic disease. We next describe our current understanding of cardiac-specific substrate metabolism that occurs with acute exercise and in response to exercise training. We subsequently focus on exercise-stimulated circulating biochemicals ("exerkines") as a paradigm for understanding the global health circuitry of exercise, and discuss important concepts in this emerging field before highlighting exerkines relevant in cardiovascular health and disease. Finally, this Review identifies gaps that remain in the field of exercise science and opportunities that exist to translate biologic insights into human health improvement.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine and
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
15
|
Lee GH, Jo W, Kang TK, Oh T, Kim K. Assessment of Stress Caused by Environmental Changes for Improving the Welfare of Laboratory Beagle Dogs. Animals (Basel) 2023; 13:1095. [PMID: 36978636 PMCID: PMC10044678 DOI: 10.3390/ani13061095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Animal stress is influenced by environmental factors, yet only a few studies have evaluated the effects of environmental stress on captive dogs. This study aimed to evaluate the effects of environmental and social enrichment on the stress levels of captive dogs housed in a lab. We assessed stress levels in eight Beagle dogs by measuring their body weight, cortisol levels, a stress hormone, the alkaline phosphatase activity in serum, the number of steps per hour, as well as clinical sign observations in a changed environment for 6 weeks. Four dogs assigned to a control group were raised alone in a relatively narrow place without toys; four dogs assigned to an experimental group were raised together in a relatively large place with toys. The body weight of the control group remained unchanged, while that of the experimental group decreased. Cortisol levels in the control group increased throughout, whereas those in the experimental group increased for up to 2 weeks and decreased thereafter. Consequently, cortisol levels in the experimental group significantly decreased compared to the control group at 6 weeks (p = 0.048). Fighting was observed among the dogs in the experimental group at 3 weeks; thus, one dog was separated from the group. The number of steps per hour was more than twice as high in the experimental than in the control group. Thereby, we determined that social housing, with appropriate companions and environmental enrichment materials, can reduce stress levels in captive dogs more efficiently than in single housing without such materials. Our study provides useful insights for captive animal organizations, such as kenneled dogs' management, to improve animal welfare.
Collapse
Affiliation(s)
- Gwang-Hoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Woori Jo
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Tae-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Taeho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Kugler BA, Thyfault JP, McCoin CS. Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review. J Appl Physiol (1985) 2023; 134:685-691. [PMID: 36701482 PMCID: PMC10027083 DOI: 10.1152/japplphysiol.00711.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Exercise is a physiological stress that disrupts tissue and cellular homeostasis while enhancing systemic metabolic energy demand mainly through the increased workload of skeletal muscle. Although the extensive focus has been on skeletal muscle adaptations to exercise, the liver senses these disruptions in metabolic energy homeostasis and responds to provide the required substrates to sustain increased demand. Hepatic metabolic flexibility is an energetically costly process that requires continuous mitochondrial production of the cellular currency ATP. To do so, the liver must maintain a healthy functioning mitochondrial pool, attained through well-regulated and dynamic processes. Intriguingly, some of these responses are sex-dependent. This mini-review examines the hepatic mitochondrial adaptations to exercise with a focus on sexual dimorphism.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| |
Collapse
|
17
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
19
|
Schmitt EE, McNair BD, Polson SM, Cook RF, Bruns DR. Mechanisms of Exercise-Induced Cardiac Remodeling Differ Between Young and Aged Hearts. Exerc Sport Sci Rev 2022; 50:137-144. [PMID: 35522248 PMCID: PMC9203913 DOI: 10.1249/jes.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.
Collapse
Affiliation(s)
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Sydney M Polson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | | |
Collapse
|
20
|
Rosa-Caldwell ME, Poole KE, Seija A, Harris MP, Greene NP, Wooten JS. Exercise during weight-loss improves hepatic mitophagy. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:183-189. [PMID: 36090917 PMCID: PMC9453692 DOI: 10.1016/j.smhs.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become a public health concern concurrent with the obesity crisis. Previous work has shown aberrant mitochondrial content/quality and autophagy in models of NAFLD, whereas exercise is known to improve these derangements. The purpose of this study was to examine the effect of different weight-loss modalities on hepatic mitochondrial content, autophagy and mitophagy in NAFLD. Forty-eight male C57BL/6J mice were divided into 1 of 4 groups: low fat diet (LFD, 10% fat, 18 weeks), high fat diet (HFD, 60% fat diet, 18 weeks), weight-loss by diet (D, 60% fat diet for 10 weeks then 10% fat diet for 8 weeks) or weight-loss by diet and physical activity (D/PA, 60% fat diet for 10 weeks, then 10% fat diet plus a running wheel for 8 weeks). Immunoblot data were analyzed by one-way analysis of variance (ANOVA) with significance denoted at p < 0.05. COX-IV protein contents were approximately 50% less in HFD compared to LFD. D/PA had 50% more BNIP3 compared to HFD. PINK1 content was 40% higher in D and D/PA compared to LFD. P-PARKIN/PARKIN levels were 40% lower in HFD, D, and D/PA compared to LFD. Whereas p-UbSer65 was 3-fold higher in HFD. LC3II/I ratio was 50% greater in HFD and D/PA, yet p62 protein content was 2.5 fold higher in HFD. High-fat diet causes disruptions in markers of mitochondrial quality control. Physical activity combined with diet were able to ameliorate these derangements and seemingly improve hepatic mitochondrial quality above control values.
Collapse
|
21
|
Hook MA, Falck A, Dundumulla R, Terminel M, Cunningham R, Sefiani A, Callaway K, Gaddy D, Geoffroy CG. Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function. BIOLOGY 2022; 11:biology11020189. [PMID: 35205056 PMCID: PMC8869334 DOI: 10.3390/biology11020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In the first two years following spinal cord injury, people lose up to 50% of bone below the injury. This injury-induced bone loss significantly affects rehabilitation and leaves people vulnerable to fractures and post-fracture complications, including lung and urinary tract infections, blood clots in the veins, and depression. Unfortunately, little is known about the factors driving this bone loss. In fact, even though we know that injury, age, and sex independently increase bone loss, there have been no studies looking at the cumulative effects of these variables. People with spinal injury are aging, and the age at which injuries occur is increasing. It is essential to know whether these factors together will further compromise bone. To examine this, we assessed bone loss in young and old, male and female mice after spinal injury. As expected, we found that aging alone decreased motor activity and bone volume. Spinal injury also reduced bone volume, but it did not worsen the effects of age. Instead, injury effects appeared related to reduced rearing activity. The data suggest that although partial weight-bearing does not reduce bone loss after spinal cord injury, therapies that put full weight on the legs may be clinically effective. Abstract After spinal cord injury (SCI), 80% of individuals are diagnosed with osteopenia or osteoporosis. The dramatic loss of bone after SCI increases the potential for fractures 100-fold, with post-fracture complications occurring in 54% of cases. With the age of new SCI injuries increasing, we hypothesized that a SCI-induced reduction in weight bearing could further exacerbate age-induced bone loss. To test this, young (2–3 months) and old (20–30 months) male and female mice were given a moderate spinal contusion injury (T9–T10), and recovery was assessed for 28 days (BMS, rearing counts, distance traveled). Tibial trabecular bone volume was measured after 28 days with ex vivo microCT. While BMS scores did not differ across groups, older subjects travelled less in the open field and there was a decrease in rearing with age and SCI. As expected, aging decreased trabecular bone volume and cortical thickness in both old male and female mice. SCI alone also reduced trabecular bone volume in young mice, but did not have an additional effect beyond the age-dependent decrease in trabecular and cortical bone volume seen in both sexes. Interestingly, both rearing and total activity correlated with decreased bone volume. These data underscore the importance of load and use on bone mass. While partial weight-bearing does not stabilize/reverse bone loss in humans, our data suggest that therapies that simulate complete loading may be effective after SCI.
Collapse
Affiliation(s)
- Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
- Correspondence: ; Tel.: +1-979-436-0568
| | - Alyssa Falck
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Ravali Dundumulla
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Kayla Callaway
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Dana Gaddy
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| |
Collapse
|
22
|
Acosta FM, Stojkova K, Zhang J, Garcia Huitron EI, Jiang JX, Rathbone CR, Brey EM. Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions. J Tissue Eng 2022; 13:20417314221109337. [PMID: 35782994 PMCID: PMC9248044 DOI: 10.1177/20417314221109337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Engineered beige adipose tissues could be used for screening therapeutic strategies or as a direct treatment for obesity and metabolic disease. Microvascular fragments are vessel structures that can be directly isolated from adipose tissue and may contain cells capable of differentiation into thermogenic, or beige, adipocytes. In this study, culture conditions were investigated to engineer three-dimensional, vascularized functional beige adipose tissue using microvascular fragments isolated from both healthy animals and a model of type II diabetes (T2D). Vascularized beige adipose tissues were engineered and exhibited increased expression of beige adipose markers, enhanced function, and improved cellular respiration. While microvascular fragments isolated from both lean and diabetic models were able to generate functional tissues, differences were observed in regard to vessel assembly and tissue function. This study introduces an approach that could be employed to engineer vascularized beige adipose tissues from a single, potentially autologous source of cells.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Katerina Stojkova
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jingruo Zhang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Eric Ivan Garcia Huitron
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jean X. Jiang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| | - Eric M. Brey
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| |
Collapse
|
23
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
24
|
Darragh IAJ, O’Driscoll L, Egan B. Exercise Training and Circulating Small Extracellular Vesicles: Appraisal of Methodological Approaches and Current Knowledge. Front Physiol 2021; 12:738333. [PMID: 34777006 PMCID: PMC8581208 DOI: 10.3389/fphys.2021.738333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
In response to acute exercise, an array of metabolites, nucleic acids, and proteins are enriched in circulation. Collectively termed "exercise factors," these molecules represent a topical area of research given their speculated contribution to both acute exercise metabolism and adaptation to exercise training. In addition to acute changes induced by exercise, the resting profile of circulating exercise factors may be altered by exercise training. Many exercise factors are speculated to be transported in circulation as the cargo of extracellular vesicles (EVs), and in particular, a sub-category termed "small EVs." This review describes an overview of exercise factors, small EVs and the effects of exercise, but is specifically focused on a critical appraisal of methodological approaches and current knowledge in the context of changes in the resting profile small EVs induced by exercise training, and the potential bioactivities of preparations of these "exercise-trained" small EVs. Research to date can only be considered preliminary, with interpretation of many studies hindered by limited evidence for the rigorous identification of small EVs, and the conflation of acute and chronic responses to exercise due to sample timing in proximity to exercise. Further research that places a greater emphasis on the rigorous identification of small EVs, and interrogation of potential bioactivity is required to establish more detailed descriptions of the response of small EVs to exercise training, and consequent effects on exercise adaptation.
Collapse
Affiliation(s)
- Ian A. J. Darragh
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|
25
|
Ostrom EL, Valencia AP, Marcinek DJ, Traustadóttir T. High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response. Free Radic Biol Med 2021; 172:82-89. [PMID: 34089788 PMCID: PMC8355059 DOI: 10.1016/j.freeradbiomed.2021.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
High intensity exercise is a popular mode of exercise to elicit similar or greater adaptive responses compared to traditional moderate intensity continuous exercise. However, the molecular mechanisms underlying these adaptive responses are still unclear. The purpose of this pilot study was to compare high and low intensity contractile stimulus on the Nrf2-mediated redox stress response in mouse skeletal muscle. An intra-animal design was used to control for variations in individual responses to muscle stimulation by comparing a stimulated limb (STIM) to the contralateral unstimulated control limb (CON). High Intensity (HI - 100Hz), Low Intensity (LI - 50Hz), and Naïve Control (NC - Mock stimulation vs CON) groups were used to compare these effects on Nrf2-ARE binding, Keap1 protein, and downstream gene and protein expression of Nrf2 target genes. Muscle stimulation significantly increased Nrf2-ARE binding in LI-STIM compared to LI-CON (p = 0.0098), while Nrf2-ARE binding was elevated in both HI-CON and HI-STIM compared to NC (p = 0.0007). The Nrf2-ARE results were mirrored in the downregulation of Keap1, where Keap1 expression in HI-CON and HI-STIM were both significantly lower than NC (p = 0.008) and decreased in LI-STIM compared to LI-CON (p = 0.015). In addition, stimulation increased NQO1 protein compared to contralateral control regardless of stimulation intensity (p = 0.019), and HO1 protein was significantly higher in high intensity compared to the Naïve control group (p = 0.002). Taken together, these data suggest a systemic redox signaling exerkine is activating Nrf2-ARE binding and is intensity gated, where Nrf2-ARE activation in contralateral control limbs were only seen in the HI group. Other research in exercise induced Nrf2 signaling support the general finding that Nrf2 is activated in peripheral tissues in response to exercise, however the specific exerkine responsible for the systemic signaling effects is not known. Future work should aim to delineate these redox sensitive systemic signaling mechanisms.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington School of Medicine, United States
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, United States.
| |
Collapse
|
26
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|