1
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
2
|
Sarlak Z, Eidi A, Ghorbanzadeh V, Moghaddasi M, Mortazavi P. miR-34a/SIRT1/HIF-1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise. Biofactors 2023; 49:1085-1098. [PMID: 37560982 DOI: 10.1002/biof.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders worldwide. Recent research has indicated that sodium butyrate (NaB) affects glucose metabolism and exercise has an anti-hyperglycemic effect in diabetes. This study aimed to evaluate the effects of NaB and treadmill exercise on heart angiogenesis through the miR-34a/SIRT1/FOXO1-HIF-1α pathway. Diabetic animals received NaB (400 mg/kg daily, orally) and treadmill exercise for 6 weeks. The effect of NaB and treadmill exercise, alone or combined, on miR-34a expression, SIRT1, FOXO1, HIF-1α levels, and angiogenesis in diabetic heart tissue was measured. Diabetes caused increased miR-34a (p < 0.01) and FOXO1 (p < 0.001) expression levels. Also, SIRT1 (p < 0.001) and HIF-1α (not significant) expression levels were reduced in diabetic rats. NaB and treadmill exercise decreased miR-34a (respectively p < 0.05 and not significant) and FOXO1 (both p < 0.001) expression levels and improved SIRT1 (both not significant) and HIF-1α (respectively p < 0.01 and p < 0.001) levels. Also, NaB combined with treadmill exercise decreased miR-34a (p < 0.001) and FOXO1 (p < 0.001) expression levels, and elevated SIRT1 (p < 0.05) and HIF-1α (p < 0.001) levels in comparison with the diabetic group. NaB and treadmill exercises modulate the expression of miR-34a and the levels of SIRT1, FOXO1, and HIF-1α proteins, thus increasing angiogenesis in the heart tissue of diabetic rats. It can be concluded that NaB and treadmill exercise, alone or combined, may be useful in the treatment of diabetes through the miR-34a/SIRT1/FOXO1-HIF-1α pathway.
Collapse
Affiliation(s)
- Zeynab Sarlak
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
4
|
Chen X, Yu H, Li Z, Ye W, Liu Z, Gao J, Wang Y, Li X, Zhang L, Alenina N, Bader M, Ding H, Li P, Aung LHH. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol 2022; 13:725919. [PMID: 35418873 PMCID: PMC8995861 DOI: 10.3389/fphys.2022.725919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Zhe Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Hongyan Ding
- School of Bioengineering, Suqian University, Suqian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Peifeng Li, ; Lynn Htet Htet Aung,
| |
Collapse
|
5
|
Neurohr JM, Paulson ET, Kinsey ST. A higher mitochondrial content is associated with greater oxidative damage, oxidative defenses, protein synthesis and ATP turnover in resting skeletal muscle. J Exp Biol 2021; 224:jeb242462. [PMID: 34581401 PMCID: PMC8541733 DOI: 10.1242/jeb.242462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
An unavoidable consequence of aerobic metabolism is the production of reactive oxygen species (ROS). Mitochondria have historically been considered the primary source of ROS; however, recent literature has highlighted the uncertainty in primary ROS production sites and it is unclear how variation in mitochondrial density influences ROS-induced damage and protein turnover. Fish skeletal muscle is composed of distinct, highly aerobic red muscle and anaerobic white muscle, offering an excellent model system in which to evaluate the relationship of tissue aerobic capacity and ROS-induced damage under baseline conditions. The present study used a suite of indices to better understand potential consequences of aerobic tissue capacity in red and white muscle of the pinfish, Lagodon rhomboides. Red muscle had a 7-fold greater mitochondrial volume density than white muscle, and more oxidative damage despite also having higher activity of the antioxidant enzymes superoxide dismutase and catalase. The dominant protein degradation system appears to be tissue dependent. Lysosomal degradation markers and autophagosome volume density were greater in white muscle, while ubiquitin expression and 20S proteasome activity were significantly greater in red muscle. However, ubiquitin ligase expression was significantly higher in white muscle. Red muscle had a more than 2-fold greater rate of translation and total ATP turnover than white muscle, results that may be due in part to the higher mitochondrial density and the associated increase in oxidative damage. Together, these results support the concept that an elevated aerobic capacity is associated with greater oxidative damage and higher costs of protein turnover.
Collapse
Affiliation(s)
| | | | - Stephen T. Kinsey
- University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
6
|
Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in aged skeletal muscle: a comparison of different modalities in preventing sarcopenia. J Transl Med 2021; 19:71. [PMID: 33593349 PMCID: PMC7885447 DOI: 10.1186/s12967-021-02737-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle aging is associated with a decline in motor function and loss of muscle mass- a condition known as sarcopenia. The underlying mechanisms that drive this pathology are associated with a failure in energy generation in skeletal muscle, either from age-related decline in mitochondrial function, or from disuse. To an extent, lifelong exercise is efficacious in preserving the energetic properties of skeletal muscle and thus may delay the onset of sarcopenia. This review discusses the cellular and molecular changes in skeletal muscle mitochondria during the aging process and how different exercise modalities work to reverse these changes. A key factor that will be described is the efficiency of mitochondrial coupling—ATP production relative to O2 uptake in myocytes and how that efficiency is a main driver for age-associated decline in skeletal muscle function. With that, we postulate the most effective exercise modality and protocol for reversing the molecular hallmarks of skeletal muscle aging and staving off sarcopenia. Two other concepts pertinent to mitochondrial efficiency in exercise-trained skeletal muscle will be integrated in this review, including- mitophagy, the removal of dysfunctional mitochondrial via autophagy, as well as the implications of muscle fiber type changes with sarcopenia on mitochondrial function.
Collapse
Affiliation(s)
- Colin Harper
- Clinical Translation Unit (CTU), Tulane University, New Orleans, USA
| | - Venkatesh Gopalan
- Agency for Science, Technology & Research (A*STAR), Singapore Bioimaging Consortium (SBIC), Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
| |
Collapse
|
7
|
Moreno-Villanueva M, Kramer A, Hammes T, Venegas-Carro M, Thumm P, Bürkle A, Gruber M. Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals. Int J Mol Sci 2019; 20:E2999. [PMID: 31248182 PMCID: PMC6628277 DOI: 10.3390/ijms20122999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V'O2max > 55 mL/min/kg) and untrained (V'O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Tabea Hammes
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Maria Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Patrick Thumm
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
8
|
Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019; 692:185-194. [PMID: 30682386 DOI: 10.1016/j.gene.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Exercise intensity is known to affect neuroplasticity. Although corticosterone and lactate levels have been linked to neuroplasticity, the effect of different endurance exercise intensity-dependent production of these biochemicals on the behaviour of hippocampal growth cone markers remains incompletely explored. Here, we investigated the effects of three different endurance treadmill training episodes for six weeks on GAP-43 and CAP-1 expression in the hippocampus of adult male Wistar rats. Our findings showed that mild exercise intensity (MEI) with a lactate production slightly higher than the lactate threshold (LT) is the optimal form of physical activity for elevating GAP-43 without changing CAP-1 expression. It was further observed that high exercise intensity (HEI) with the highest level of corticosterone and lactate production, reduced GAP-43 expression, yet increased CAP-1 expression in the hippocampus. Like HEI, we further identified similar expression patterns for these markers in low exercise intensity (LEI) with blood lactate production below LT and corticosterone level similar to MEI. The findings suggested that in high-intensity exercise, the negative pattern of hippocampal neuroplasticity depends on both corticosterone and lactate levels, whereas in low-intensity exercise, the most important factor determining this negative pattern is the lactate level. Generally, MEI with a lactate production of slightly higher than LT is the most optimal intensity for improving hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
9
|
The beneficial effect of α-tocopherol succinate supplementation on DNA oxidation induced by intensive exercise training. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Radak Z, Torma F, Berkes I, Goto S, Mimura T, Posa A, Balogh L, Boldogh I, Suzuki K, Higuchi M, Koltai E. Exercise effects on physiological function during aging. Free Radic Biol Med 2019; 132:33-41. [PMID: 30389495 DOI: 10.1016/j.freeradbiomed.2018.10.444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
The decrease in cognitive/motor functions and physical abilities severely affects the aging population in carrying out daily activities. These disabilities become a burden on individuals, families and society in general. It is known that aging conditions are ameliorated with regular exercise, which attenuates the age-associated decline in maximal oxygen uptake (VO2max), production of reactive oxygen species (ROS), decreases in oxidative damage to molecules, and functional impairment in various organs. While benefits of physical exercise are well-documented, the molecular mechanisms responsible for functional improvement and increases in health span are not well understood. Recent findings imply that exercise training attenuates the age-related deterioration in the cellular housekeeping system, which includes the proteasome, Lon protease, autophagy, mitophagy, and DNA repair systems, which beneficially impacts multiple organ functions. Accumulating evidence suggests that exercise lessens the deleterious effects of aging. However, it seems unlikely that systemic effects are mediated through a specific biomarker. Rather, complex multifactorial mechanisms are involved to maintain homeostatic functions that tend to decline with age.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Sataro Goto
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan, Hungary
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Laszlo Balogh
- Institute of Sport Science, University of Debrecen, Debrecen, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| |
Collapse
|
11
|
Abstract
The interest about circulating cell-free DNA (cfDNA) concentration increased from several years because of its correlation with various conditions like osteoarthritis, cancers, stroke, and sepsis; recently it has become an important marker for overtraining syndrome or performance diagnostics.Several studies have demonstrated that cfDNA increases in vigorous and exhausting exercise but also endurance exercise. Acute effect of exercise on cfDNA concentration seems to be correlated to stress factor, while chronic effect is associated with necrosis and apoptosis.The intensity and duration seem to have effects on the variation of cfDNA concentration that is strongly correlated with other metabolic markers like acid lactate and creatine kinase, recognized as markers of muscle damage. Variation of cfDNA value could be used to predict overtraining syndrome.
Collapse
Affiliation(s)
- Leydi Natalia Vittori
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | |
Collapse
|
12
|
Nemes R, Koltai E, Taylor AW, Suzuki K, Gyori F, Radak Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants (Basel) 2018; 7:antiox7070085. [PMID: 29976853 PMCID: PMC6071245 DOI: 10.3390/antiox7070085] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are important cellular regulators of key physiological processes in skeletal muscle. In this review, we explain how RONS regulate muscle contraction and signaling, and why they are important for membrane remodeling, protein turnover, gene expression, and epigenetic adaptation. We discuss how RONS regulate carbohydrate uptake and metabolism of skeletal muscle, and how they indirectly regulate fat metabolism through silent mating type information regulation 2 homolog 3 (SIRT3). RONS are causative/associative signaling molecules, which cause sarcopenia or muscle hypertrophy. Regular exercise influences redox biology, metabolism, and anabolic/catabolic pathways in skeletal muscle in an intensity dependent manner.
Collapse
Affiliation(s)
- Roland Nemes
- Faculty of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan.
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
| | - Albert W Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 1H1, Canada.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| | - Ferenc Gyori
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
13
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
14
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
15
|
Franzke B, Neubauer O, Wagner KH. Super DNAging—New insights into DNA integrity, genome stability and telomeres in the oldest old. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:48-57. [DOI: 10.1016/j.mrrev.2015.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023]
|
16
|
Chahal KS, Prakash A, Majeed ABA. The role of multifunctional drug therapy against carbamate induced neuronal toxicity during acute and chronic phase in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:220-229. [PMID: 26151868 DOI: 10.1016/j.etap.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The current study has been designed to examine the effect of multifunctional drug therapy on carbofuran induced acute (2.187 mg/kg, s.c.) and sub-acute (0.2187 mg/kg, s.c.) neurotoxicity in male wistar rats. Drug treatment which includes nimodipine (Ca(2+) channel blocker), diazepam, ropinirole (dopamine agonist) and GSPE (antioxidant) was started 2h after carbofuran administration. Morris water maze was employed for aiming spatial memory. Narrow beam walk and rotarod were employed for testing motor functions. Brain acetylcholinesterase activity, thiobarbituric acid reactive species, nitrite, reduced glutathione, catalase levels, and mitochondrial complexes were also estimated. Carbofuran treatment resulted in significant development of cognitive and motor functions manifested as impairment in learning and memory along with increased thiobarbituric acid reactive species, nitrite levels and decreased acetylcholinesterase activity, reduced glutathione, catalase levels, and mitochondrial complexes. The standard antidote therapy (atropine) was not able to provide neuroprotection but was able to provide symptomatic relief. The multifunctional drug therapy attenuated carbofuran induced cognitive and motor dysfunction, acetylcholinesterase activity and other biochemical parameters. The triple combination in sub-acute study may be avoided in future as two drug combinations provide adequate neuroprotection. Thus it can be concluded that standard antidotal therapy may not provide neuroprotection while the multifunctional drug therapy offers neuroprotection against carbofuran and may dramatically increase survival and life quality.
Collapse
Affiliation(s)
- Karan Singh Chahal
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India; Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
17
|
Soares JP, Silva AM, Oliveira MM, Peixoto F, Gaivão I, Mota MP. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9799. [PMID: 26044257 PMCID: PMC4456486 DOI: 10.1007/s11357-015-9799-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 05/30/2023]
Abstract
Regular physical exercise has been shown to be one of the most important lifestyle influences on improving functional performance, decreasing morbidity and all causes of mortality among older people. However, it is known that acute physical exercise may induce an increase in oxidative stress and oxidative damage in several structures, including DNA. Considering this, the purpose of this study was to identify the effects of 16 weeks of combined physical exercise in DNA damage and repair capacity in lymphocytes. In addition, we aimed to investigate the role of oxidative stress involved in those changes. Fifty-seven healthy men (40 to 74 years) were enrolled in this study. The sample was divided into two groups: the experimental group (EG), composed of 31 individuals, submitted to 16 weeks of combined physical exercise training; and the control group (CG), composed of 26 individuals, who did not undergo any specifically orientated physical activity. We observed an improvement of overall physical performance in the EG, after the physical exercise training. A significant decrease in DNA strand breaks and FPG-sensitive sites was found after the physical exercise training, with no significant changes in 8-oxoguanine DNA glycosylase enzyme activity. An increase was observed in antioxidant activity, and a decrease was found in lipid peroxidation levels after physical exercise training. These results suggest that physical exercise training induces protective effects against DNA damage in lymphocytes possibly related to the increase in antioxidant capacity.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- Research Center in Sports Sciences, Health and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, P-5001-801, Vila Real, Portugal,
| | | | | | | | | | | |
Collapse
|
18
|
Yasuda N, Bolin C, Cardozo-Pelaez F, Ruby BC. Effects of repeated bouts of long-duration endurance exercise on muscle and urinary levels of 8-hydroxy-2'-deoxyguanosine in moderately trained cyclists. J Sports Sci 2015; 33:1692-701. [PMID: 25620316 DOI: 10.1080/02640414.2015.1004637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to determine the effects of repeated bouts of long-duration endurance exercise on both muscle and urinary levels of oxidative DNA damage in moderately trained individuals. Seven moderately trained male cyclists participated in this study. All participants repeated two sessions consisting of a 5-h cycling period (equivalent to approximately 52%[Formula: see text]O2peak) followed by a 15-h rest, then a 40-km time trial. During the sessions, participants were instructed to take water ad libitum and to consume a standard sports drink consisting of 0.12 g·kg(-1) body weight·hr(-1) of carbohydrates. For each session, 24 h urine output was collected on the day before the 5-h exercise, and also between the 5-h exercise and 40-km time trial, in addition to between days 1-5 post-exercise. Subsequently, muscle and urinary levels of 8-hydroxy-2'- deoxyguanosine (8-OHdG) were determined using high performance liquid chromatography with electrochemical detection. No significant alterations were observed between two sessions at the muscle or urinary levels of 8-OHdG. These results suggest that repeated bouts of exercise with a 7-day washout period may not lead to an accumulation of DNA damage products after a second 5-h stationary cycling bout.
Collapse
Affiliation(s)
- Nobuo Yasuda
- a Departments of Health and Human Performance , The University of Montana , Missoula , MT , USA
| | | | | | | |
Collapse
|
19
|
Danta CC, Piplani P. The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases. Expert Opin Drug Discov 2014; 9:1205-22. [PMID: 25056182 DOI: 10.1517/17460441.2014.942218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several neurodegenerative disorders (NDs) including Alzheimer's and Huntington's diseases have had associations with the oxidative process and free radical damage. Consequently, in past decades, several natural and synthetic antioxidants have been assessed as therapeutic agents but have shown limitations in bioavailability, metabolic susceptibility and permeability to the blood brain barrier. Given these issues, medicinal chemists are hard at work to modify/improve the chemical structures of these antioxidants, thereby improving their efficacy. AREAS COVERED In this review, the authors critically analyze several biological mechanisms involved in the generation of free radicals. Additionally, they analyze free radicals' role in the generation of oxidative stress and in the progression of many NDs. Further, the authors review a collection of natural and synthetic antioxidants, their role as free radical scavengers along with their mechanisms of action and their potential for preventing neurodegenerative diseases. EXPERT OPINION So far, preclinical studies on several antioxidants have shown promise for treating NDs, despite their limitations. The authors do highlight the lack of the adequate animal models for preclinical assessment and this does hinder further progression into clinical trials. Further studies are necessary to fully investigate the potential of these antioxidants as ND therapeutic options.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Panjab University, University Institute of Pharmaceutical Sciences , Chandigarh-160014 , India
| | | |
Collapse
|
20
|
Kabasakalis A, Tsalis G, Zafrana E, Loupos D, Mougios V. Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers. J Sports Sci 2014; 32:747-56. [DOI: 10.1080/02640414.2013.850595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Athanasios Kabasakalis
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsalis
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Demetrios Loupos
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Mougios
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Ben-Zaken S, Eliakim A, Nemet D, Kassem E, Meckel Y. Increased prevalence of MnSOD genetic polymorphism in endurance and power athletes. Free Radic Res 2013; 47:1002-8. [DOI: 10.3109/10715762.2013.838627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Sarga L, Hart N, Koch LG, Britton SL, Hajas G, Boldogh I, Ba X, Radak Z. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair. Neuroscience 2013; 252:326-36. [PMID: 23973402 DOI: 10.1016/j.neuroscience.2013.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high-running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and post-translational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG.
Collapse
Affiliation(s)
- L Sarga
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest H-1123, Hungary; Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pagano G, Talamanca AA, Castello G, d'Ischia M, Pallardó FV, Petrović S, Porto B, Tiano L, Zatterale A. Bone marrow cell transcripts from Fanconi anaemia patients reveal in vivo alterations in mitochondrial, redox and DNA repair pathways. Eur J Haematol 2013; 91:141-51. [PMID: 23646927 DOI: 10.1111/ejh.12131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 12/14/2022]
Abstract
Fanconi anaemia (FA) is a genetic cancer predisposition disorder associated with cytogenetic instability, bone marrow failure and a pleiotropic cellular phenotype, including low thresholds of responses to oxidative stress, cross-linking agents and selected cytokines. This study was aimed at defining the scope of abnormalities in gene expression using the publicly available FA Transcriptome Consortium (FTC) database (Gene Expression Omnibus, 2009 and publicly available as GSE16334). We evaluated the data set that included transcriptomal analyses on RNA obtained from low-density bone marrow cells (BMC) from 20 patients with FA and 11 healthy volunteers, by seeking to identify changes in expression of over 22,000 genes, including a set of genes involved in: (i) bioenergetic pathways; (ii) antioxidant activities; (iii) response to stress and metal-chelating proteins; (iv) inflammation-related cytokines and (v) DNA repair. Ontological analysis of genes expressed at magnitudes of 1.5-fold or greater demonstrated significant suppression of genes in the categories of (i) energy metabolism; (ii) antioxidant activities; and (iii) stress and chelating proteins. Enhanced expression was found for 16 of 26 genes encoding inflammatory cytokines. A set of 20 of 21 transcripts for DNA repair activities were down-regulated; four of these transcripts related to type II topoisomerase. The data provide evidence for alterations in gene regulation of bioenergetic activities, redox-related activities, stress and metal-chelating proteins, and of some selected DNA repair activities in patients with FA.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Association of oxidative stress and memory performance in postmenopausal women receiving estrogen-progestin therapy. Menopause 2013; 20:661-6. [DOI: 10.1097/gme.0b013e31827758c6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
26
|
Molecular mechanisms for age-associated mitochondrial deficiency in skeletal muscle. J Aging Res 2012; 2012:768304. [PMID: 22548174 PMCID: PMC3324903 DOI: 10.1155/2012/768304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/23/2012] [Indexed: 01/01/2023] Open
Abstract
The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA) repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene expression and respiratory chain complex enzymes. However, mtDNA mutations have shown to be accumulated with age in skeletal muscle. When damaged mitochondria are eliminated by autophagy, mitochondrial biogenesis plays an important role in sustaining energy production and physiological homeostasis. The capacity for mitochondrial biogenesis has shown to decrease with age in skeletal muscle, contributing to progressive mitochondrial deficiency. Understanding how these endogenous systems adapt to altered physiological conditions during the process of ageing will provide a valuable insight into the underlying mechanisms that regulate cellular homeostasis. Here we will summarize the current knowledge about the molecular mechanisms responsible for age-associated mitochondrial deficiency in skeletal muscle. In particular, recent findings on the role of mtDNA repair and mitochondrial biogenesis in maintaining mitochondrial functionality in aged skeletal muscle will be highlighted.
Collapse
|
27
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
28
|
Miranda-Vilela AL, Akimoto AK, Lordelo GS, Pereira LCS, Grisolia CK, Klautau-Guimarães MDN. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels. Eur J Appl Physiol 2011; 112:941-50. [PMID: 21706313 DOI: 10.1007/s00421-011-1961-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
|
29
|
De Lisio M, Phan N, Boreham DR, Parise G. Exercise-induced protection of bone marrow cells following exposure to radiation. Appl Physiol Nutr Metab 2011; 36:80-7. [PMID: 21326381 DOI: 10.1139/h10-087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hormetic effects of exercise training have previously been shown to enhance cellular protection against oxidative stress. Therefore, adaptations to exercise training may attenuate the harmful effects of radiation induced by oxidative stress. Flow cytometric analysis of genotoxicity (γH2AX foci and micronucleated reticulocytes (MN-RET)) and cytotoxicity (apoptosis and percentage of reticulocytes) were conducted on bone marrow cells isolated from acutely exercised (Acute EX), exercise-trained (EX), and sedentary (SED) mice following 1 and 2 Gy radiation challenges in vitro. Acute EX increased the percentage of cells with activated caspase-3 and -7 (32%, p < 0.001) and γH2AX foci formation in response to 2 Gy radiation challenge (10%, p < 0.05). Exercise training significantly attenuated γH2AX foci formation and MN-RET production in response to 1 Gy radiation challenge (18%, p < 0.05 and 22%, p < 0.05, respectively). Exercise training also significantly reduced basal percentages of cells with activated caspase-3 and -7 and in response to radiation in bone marrow cells (11%, p < 0.05). These results suggest that oxidative stress caused by acute exercise induces an adaptive response responsible for the radioprotective effects of exercise training.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
30
|
Miranda-Vilela AL, Akimoto AK, Lordelo GS, Pereira LCS, Grisolia CK, Klautau-Guimarães MDN. Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels. Eur J Appl Physiol 2011; 112:183-92. [PMID: 21516340 DOI: 10.1007/s00421-011-1967-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/09/2011] [Indexed: 11/26/2022]
Abstract
Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. Results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.
Collapse
|
31
|
Miranda-Vilela AL, Lordelo GS, Akimoto AK, Alves PCZ, Pereira LCDS, Klautau-Guimarães MDN, Grisolia CK. Genetic polymorphisms influence runners' responses to the dietary ingestion of antioxidant supplementation based on pequi oil (Caryocar brasiliense Camb.): a before-after study. GENES AND NUTRITION 2011; 6:369-95. [PMID: 21484158 DOI: 10.1007/s12263-011-0217-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022]
Abstract
Genes have been implicated in the levels of oxidative stress, lipids, CVD risk, immune reactivity, and performance. Pequi oil (Caryocar brasiliense) has shown anti-inflammatory and hypotensive effects, besides reducing exercise-induced DNA, tissue damages, and anisocytosis. Given that diet can interact with the human genome to influence health and disease, and because genetic variability can influence response to diet, we aim to investigate the influence of 12 gene polymorphisms on inflammatory markers, postprandial lipids, arterial pressure, and plasma lipid peroxidation of runners (N = 125), before and after 14 days of 400 mg pequi-oil supplementation, after races under closely comparable conditions. Arterial pressure was checked before races; blood samples were taken immediately after racing to perform leukogram and plateletgram, Tbars assay, lipid, and CRP dosages and genotyping. CAT, GST-M1/T1, CRP-G1059C, and MTHFR-C677T polymorphisms influenced post-pequi-oil responses in leukogram; Hp and MTHFR-C677T, in plateletgram; Hp, ACE, GSTT1, and MTHFR-A1298C, in lipid profile; MTHFR-A1298C, in C-reactive protein (CRP) levels; and Hp and MnSOD, in Tbars assay. Differences between ACE genotypes in leukogram and total cholesterol disappeared after pequi, and the same occurred for Hp and MnSOD in Tbars assay and for MTHFR-A1298C with CRP levels. Because genetic inheritance is one of the factors that drive atherosclerosis-related lipid abnormalities, results can contribute to a greater understanding of the influence of genetic polymorphisms in situations that push up free radicals. Knowledge is also expanded on how antioxidant supplementation affects an individual's genes and how athletic genetic makeup can affect the way a person responds to antioxidant supplements.
Collapse
Affiliation(s)
- Ana Luisa Miranda-Vilela
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil,
| | | | | | | | | | | | | |
Collapse
|
32
|
Vázquez-Medina JP, Olguín-Monroy NO, Maldonado PD, Santamaría A, Königsberg M, Elsner R, Hammill MO, Burns JM, Zenteno-Savín T. Maturation increases superoxide radical production without increasing oxidative damage in the skeletal muscle of hooded seals (Cystophora cristata). CAN J ZOOL 2011. [DOI: 10.1139/z10-107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diving vertebrates represent unique models for the study of the physiological responses to reactive oxygen species (ROS) production and oxidative stress because of their adaptability to cope with dive-derived ROS production. We hypothesized that in the skeletal muscle of a diving mammal, the hooded seal ( Cystophora cristata (Erxleben, 1777)), ROS production increases with maturation but the accumulation of oxidative damage does not. To test this, we analyzed the tissue capacity to produce ROS, the accumulation of oxidative damage, and the activity and protein content of the cooper, zinc, and manganese dependent superoxide dismutases (Cu,ZnSOD, MnSOD) in skeletal muscle from neonates, weaned pups, and adult hooded seals. Our results showed higher tissue capacity to produce ROS, higher Cu,ZnSOD and MnSOD activities, and higher MnSOD protein content in adult seals than in pups. No differences in oxidative damage to lipids, proteins, or DNA were detected among groups. Results suggest that increased SOD activity likely counters the oxidative damage commonly associated with increased ROS production. These findings highlight the unusual tolerance of skeletal muscle of seals to increased ROS production.
Collapse
Affiliation(s)
- J. P. Vázquez-Medina
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - N. O. Olguín-Monroy
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - P. D. Maldonado
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - A. Santamaría
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - M. Königsberg
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - R. Elsner
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - M. O. Hammill
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - J. M. Burns
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| | - T. Zenteno-Savín
- Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C, Mar Bermejo 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23090, Mexico
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Dr. Manuel Velasco Suárez”, Insurgentes sur 3877, Colonia La Fama, Tlalpan, Mexico City, 14269, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City, 09340, Mexico
- Institute of Marine Sciences, University of Alaska Fairbanks, P.O. Box 757220, Fairbanks, AK 99775-7220, USA
| |
Collapse
|
33
|
De Lisio M, Kaczor JJ, Phan N, Tarnopolsky MA, Boreham DR, Parise G. Exercise training enhances the skeletal muscle response to radiation-induced oxidative stress. Muscle Nerve 2011; 43:58-64. [PMID: 21171096 DOI: 10.1002/mus.21797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overproduction of reactive oxygen species (ROS) can damage cellular macromolecules and lead to cellular dysfunction or death. Exercise training induces beneficial adaptations in skeletal muscle that may reduce cellular damage from exposure to ROS. To determine the response of exercise-conditioned muscle to acute increases in ROS, four groups of mice were used: non-trained (NT, n = 12); NT + high-dose radiation (HDR, n = 3); exercise-trained (EX, n = 13, 3 days/week for 10 weeks, 10 m/min to 18 m/min); and EX + HDR (n = 3/group). Quadriceps muscle was harvested 3-5 days following the last exercise bout in the training program for measurement of antioxidant enzyme and metabolic enzyme activity. Total superoxide dismutase (41%), and manganese sodium oxide dismutase (51%) activities were significantly increased in radiation-challenged EX mice as compared with unchallenged EX mice (all P ≤ 0.05). No such increase was observed in NT mice. Citrate synthase (42%) and cytochrome c oxidase (38%) activities were both elevated in radiation-challenged EX mice as compared with unchallenged EX mice (both P < 0.05), and no such increase was observed in NT. We demonstrate that preconditioning skeletal muscle with EX enhances the response of antioxidant and mitochondrial enzymes to radiation.
Collapse
Affiliation(s)
- Michael De Lisio
- Department of Kinesiology, McMaster University, Ivor Wynn Centre, Room 215, Hamilton, Ontario L8S 4L8, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Tweedie C, Romestaing C, Burelle Y, Safdar A, Tarnopolsky MA, Seadon S, Britton SL, Koch LG, Hepple RT. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. Am J Physiol Regul Integr Comp Physiol 2010; 300:R544-53. [PMID: 21148474 DOI: 10.1152/ajpregu.00250.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.
Collapse
Affiliation(s)
- Constance Tweedie
- Muscle and Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miranda-Vilela AL, Alves PCZ, Akimoto AK, Pereira LCS, Nazaré Klautau-Guimarães MD, Grisolia CK. The effect of hydrogen peroxide-induced oxidative stress on leukocytes depends on age and physical training in healthy human subjects carrying the same genotypes of antioxidant enzymes' gene polymorphisms. Am J Hum Biol 2010; 22:807-12. [PMID: 20878976 DOI: 10.1002/ajhb.21086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Reactive oxygen species account for the background levels of oxidatively damaged DNA in normal tissues. Physical exercise increases oxygen consumption and can cause oxidative stress. This stress can also involve deficient antioxidant defenses, which can be influenced by certain genetic polymorphisms. Because regular exercise is a known inducer of antioxidant enzymes, the objective of this study was to compare, by comet assay, differences in the DNA damage between apparently healthy individuals and trained aerobic sportsmen carrying the same single nucleotide polymorphisms of manganese superoxide dismutase (Val9Ala), catalase (-21A/T), glutathione peroxidase 1 (Pro198Leu), before and after exposing leukocytes from peripheral blood to hydrogen peroxide (H₂O₂). METHODS Athletes were compared with nonathletes after a situation that promotes reactive oxygen species increase (a race). Blood samples were submitted to genotyping and comet assay, and the athletes and nonathletes were paired according to their gender, age, and MnSOD, CAT, and GPx-1 genotypes. RESULTS For nonathletes, there was a positive correlation between H₂O₂ concentrations and DNA damage levels. For athletes, these correlations showed differences between sexes, indicating that running may impose higher oxidative stress on the DNA of women than of men. Significant differences appeared for nonathletes in the comparisons between younger and older age groups after treatment with H₂O₂ at 250 μM. CONCLUSIONS This suggests that, for individuals carrying the same genotypes of antioxidant enzymes' genes, the effect of H₂O₂-induced oxidative stress depends mainly on age and physical training. It also suggests that aerobic physical training can reduce oxidative damages to DNA, preventing related diseases in older people.
Collapse
Affiliation(s)
- Ana Luisa Miranda-Vilela
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília/DF, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Mota MP, Peixoto FM, Soares JF, Figueiredo PA, Leitão JC, Gaivão I, Duarte JA. Influence of aerobic fitness on age-related lymphocyte DNA damage in humans: relationship with mitochondria respiratory chain and hydrogen peroxide production. AGE (DORDRECHT, NETHERLANDS) 2010; 32:337-346. [PMID: 20640548 PMCID: PMC2926856 DOI: 10.1007/s11357-010-9138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/22/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to analyze the influence of aerobic fitness (AF) on age-related lymphocyte DNA damage in humans, giving special attention to the role of the mitochondrial respiratory chain and hydrogen peroxide production. Considering age and AF (as assessed by VO(2)max), 66 males (19-59 years old) were classified as high fitness (HF) or low fitness (LF) and distributed into one of the following groups: young adults (19-29 years old), adults (30-39 years old), and middle-aged adults (over 40 years old). Peripheral lymphocytes obtained at rest were used to assess DNA damage (strand breaks and formamidopyrimidine DNA glycosylase (FPG) sites through the comet assay), activity of mitochondrial complexes I and II (polarographically measured), and the hydrogen peroxide production rate (assayed by fluorescence). Results revealed a significant interaction between age groups and AF for DNA strand breaks (F = 8.415, p = .000), FPG sites (F = 11.766, p = .000), mitochondrial complex I activity (F = 7.555, p = .000), and H(2)O(2) production (F = 7.500, p = .000). Except for mitochondrial complex II activity, the age variation of the remaining parameters was significantly attenuated by HF. Considering each AF level, an increase in DNA strand breaks and FPG sites with age (r = 0.655, p = 0.000, and r = 0.738, p = 0.000, respectively) was only observed in LF. Moreover, decreased mitochondrial complex I activity with age (r = -.470, p = .009) was reported in LF. These results allow the conclusion that high AF seems to play a key role in attenuating the biological aging process.
Collapse
Affiliation(s)
- Maria Paula Mota
- University of Trás-os-Montes and Alto Douro, Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
37
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
38
|
Marfe G, Tafani M, Pucci B, Di Stefano C, Indelicato M, Andreoli A, Russo MA, Sinibaldi-Salimei P, Manzi V. The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners. BMC PHYSIOLOGY 2010; 10:7. [PMID: 20462402 PMCID: PMC2893521 DOI: 10.1186/1472-6793-10-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 05/12/2010] [Indexed: 01/10/2023]
Abstract
Background A large body of evidence shows that a single bout of strenuous exercise induces oxidative stress in circulating human lymphocytes leading to lipid peroxidation, DNA damage, mitochondrial perturbations, and protein oxidation. In our research, we investigated the effect of physical load on the extent of apoptosis in primary cells derived from blood samples of sixteen healthy amateur runners after marathon (a.m.). Results Blood samples were collected from ten healthy amateur runners peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and bcl-2, bax, heat shock protein (HSP)70, Cu-Zn superoxide dismutase (SOD), Mn-SOD, inducible nitric oxide synthase (i-NOS), SIRT1, SIRT3 and SIRT4 (Sirtuins) RNA levels were determined by Northern Blot analysis. Strenuous physical load significantly increased HSP70, HSP32, Mn-SOD, Cu-Zn SOD, iNOS, GADD45, bcl-2, forkhead box O (FOXO3A) and SIRT1 expression after the marathon, while decreasing bax, SIRT3 and SIRT4 expression (P < 0.0001). Conclusion These data suggest that the physiological load imposed in amateur runners during marathon attenuates the extent of apoptosis and may interfere with sirtuin expression.
Collapse
Affiliation(s)
- Gabriella Marfe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata" Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Akimoto AK, Miranda-Vilela AL, Alves PCZ, Pereira LCDS, Lordelo GS, Hiragi CDO, da Silva ICR, Grisolia CK, Klautau-Guimarães MDN. Evaluation of gene polymorphisms in exercise-induced oxidative stress and damage. Free Radic Res 2010; 44:322-31. [PMID: 20109103 DOI: 10.3109/10715760903494176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many potentially significant genetic variants related to oxidative stress have been identified and performance in endurance sports is a multi-factorial phenotype. Thus, it was decided to investigate the influences of the haptoglobin (Hp), MnSOD (Val9Ala), CAT (21A/T), GPX1 (Pro198Leu), ACE, glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) genes' polymorphisms on the oxidative stress and damage suffered by human athletes (runners). Blood samples taken immediately after a race were submitted to genotyping, comet and TBARS assays, biochemical analyses of creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). MnSOD significantly influenced results of CK and a possible association between Hp1F-1S and Hp1S-2 genotypes with a superior TBARS values was found. Higher or lower TBARS and CK values or DNA damage also depended on the interaction between Hp and ACE or GST genotypes, indicating that MnSOD and Hp polymorphisms can be determining factors in performance, at least for runners.
Collapse
Affiliation(s)
- Arthur Kenji Akimoto
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miranda-Vilela AL, Alves PCZ, Akimoto AK, Lordelo GS, Gonçalves CA, Grisolia CK, Klautau-Guimarães MN. Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study. Environ Health 2010; 9:21. [PMID: 20444272 PMCID: PMC2881052 DOI: 10.1186/1476-069x-9-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Normal cellular metabolism is well established as the source of endogenous reactive oxygen species which account for the background levels of oxidative DNA damage detected in normal tissue. Hydrogen peroxide imposes an oxidative stress condition on cells that can result in DNA damage, leading to mutagenesis and cell death. Several potentially significant genetic variants related to oxidative stress have already been identified, and angiotensin I-converting enzyme (ACE) inhibitors have been reported as possible antioxidant agents that can reduce vascular oxidative stress in cardiovascular events. METHODS We investigate the influences of haptoglobin, manganese superoxide dismutase (MnSOD Val9Ala), catalase (CAT -21A/T), glutathione peroxidase 1 (GPx-1 Pro198Leu), ACE (I/D) and gluthatione S-transferases GSTM1 and GSTT1 gene polymorphisms against DNA damage and oxidative stress. These were induced by exposing leukocytes from peripheral blood of healthy humans (N = 135) to hydrogen peroxide (H2O2), and the effects were tested by comet assay. Blood samples were submitted to genotyping and comet assay (before and after treatment with H2O2 at 250 microM and 1 mM). RESULTS After treatment with H2O2 at 250 microM, the GPx-1 polymorphism significantly influenced results of comet assay and a possible association of the Pro/Leu genotype with higher DNA damage was found. The highest or lowest DNA damage also depended on interaction between GPX-1/ACE and Hp/GSTM1T1 polymorphisms when hydrogen peroxide treatment increased oxidative stress. CONCLUSIONS The GPx-1 polymorphism and the interactions between GPX-1/ACE and Hp/GSTM1T1 can be determining factors for DNA oxidation provoked by hydrogen peroxide, and thus for higher susceptibility to or protection against oxidative stress suffered by healthy individuals.
Collapse
Affiliation(s)
- Ana L Miranda-Vilela
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Penha CZ Alves
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Arthur K Akimoto
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Graciana S Lordelo
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Carlos A Gonçalves
- Departamento de Ciências Fisiológicas, Laboratório Integrado, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Cesar K Grisolia
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| | - Maria N Klautau-Guimarães
- Departamento de Genética e Morfologia, Laboratório de Genética, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília/DF, Brasil
| |
Collapse
|
41
|
Szczesny B, Tann AW, Mitra S. Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: Susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 2010; 131:330-7. [PMID: 20363243 DOI: 10.1016/j.mad.2010.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 12/25/2022]
Abstract
In this study, we investigated age- and tissue-dependent changes in the DNA base excision repair (BER) of oxidative lesions in mitochondrial and nuclear extracts by measuring single-nucleotide (SN)- and long-patch (LP)-BER activities in five tissues isolated from 4-, 10- and 20-month-old mice. Age-dependent SN-BER and LP-BER activity was increased in the mitochondria of liver, kidney and heart, but generally decreased in skeletal muscles. In contrast, no significant changes in repair activity were observed in nuclear extracts of the same tissues, except for quadriceps, where the SN-BER activity was higher in the old animals. Moreover, the BER activities in both the nucleus and the mitochondria were significantly lower in skeletal muscles compared to liver or kidney of the same mice. The protein level of three antioxidant enzymes, Mn and Cu/Zn superoxide dismutases (SOD) and catalase, was also significantly lower in skeletal muscle compared to liver or kidney. In addition, we found higher levels of protein carbonylation in the mitochondria of skeletal muscle relative to other tissues. Thus, it appears likely that mouse skeletal muscle is highly susceptible to oxidative stress due to deficiency in both repair of oxidative DNA damage and antioxidant enzymes, contributing to age-dependent muscle loss.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1079, USA.
| | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE The potential relation between metabolic activity within the central nervous system and retention of cognitive functioning capacity was assessed. METHODS A detailed literature review was conducted and summarized. RESULTS A large body of scientific evidence describes the interactions among cognitive activity, oxidative stress, neurodegeneration, neuroprotection, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Maintenance of redox balance within the central nervous system can forestall cognitive decline and promote cognitive longevity.
Collapse
|
43
|
Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 2009; 131:21-8. [PMID: 19913571 DOI: 10.1016/j.mad.2009.11.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022]
Abstract
Silent information regulators are potent NAD(+)-dependent protein deacetylases, which have been shown to regulate gene silencing, muscle differentiation and DNA damage repair. Here, changes in the level and activity of sirtuin 1 (SIRT1) in response to exercise in groups of young and old rats were studied. There was an age-related increase in SIRT1 level, while exercise training significantly increased the relative activity of SIRT1. A strong inverse correlation was found between the nuclear activity of SIRT1 and the level of acetylated proteins. Exercise training induced SIRT1 activity due to the positive effect of exercise on the activity of nicotinamide phosphoribosyltransferase (NAMPT) and thereby the production of sirtuin-fueling NAD(+). Exercise training normalized the age-associated shift in redox balance, since exercised animals had significantly lower levels of carbonylated proteins, expression of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor. The age-associated increase in the level of SIRT6 was attenuated by exercise training. On the other hand, aging did not significantly increase the level of DNA damage, which was in line with the activity of 8-oxoguanine DNA glycosylase, while exercise training increased the level of this enzyme. Regular exercise decelerates the deleterious effects of the aging process via SIRT1-dependent pathways through the stimulation of NAD(+) biosynthesis by NAMPT.
Collapse
|
44
|
Radak Z, Atalay M, Jakus J, Boldogh I, Davies K, Goto S. Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 2009; 46:238-43. [PMID: 18992806 PMCID: PMC3032603 DOI: 10.1016/j.freeradbiomed.2008.10.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 08/31/2008] [Accepted: 10/01/2008] [Indexed: 12/16/2022]
Abstract
Exercise has been shown to modify the level/activity of the DNA damage repair enzyme 8-oxoguanine-DNA glycosylase (OGG1) in skeletal muscle. We have studied the impact of regular physical training (8 weeks of swimming) and detraining (8 weeks of rest after an 8-week training session) on the activity of OGG1 in the nucleus and mitochondria as well as its targeting to the mitochondrial matrix in skeletal muscle. Neither exercise training nor detraining altered the overall levels of reactive species; however, mitochondrial levels of carbonylated proteins were decreased in the trained group as assessed by electron spin resonance and biochemical approaches. Importantly, nuclear OGG1 activity was increased by daily exercise training, whereas detraining reversed the up-regulating effect of training. Interestingly, training decreased the outer-membrane-associated mitochondrial OGG1 levels, whereas detraining reversed this effect. These results suggest that exercise training improves OGG1 import into the mitochondrial matrix, thereby increasing OGG1-mediated repair of oxidized guanine bases. Taken together, our data suggest that physical inactivity could impair the mitochondrial targeting of OGG1; however, exercise training increases OGG1 levels/activity in the nucleus and specific activity of OGG1 in mitochondrial compartments, thereby augmenting the repair of oxidized nuclear and mitochondrial DNA bases.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, H-1123 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D. The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med 2008; 38:579-606. [PMID: 18557660 DOI: 10.2165/00007256-200838070-00005] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this article is to present the effects of acute muscle-damaging exercise on oxidative stress/damage of animal and human tissues using a quantitative approach and focusing on the time-course of exercise effects. The reviewed studies employed eccentric contractions on a dynamometer or downhill running. The statistical power of each study to detect a 20% or 40% post-exercise change compared with pre-exercise value in each oxidative stress/damage biomarker was calculated. Muscle-damaging exercise can increase free radical levels and augment oxidation of lipids, proteins, glutathione and possibly DNA in the blood. In contrast, the effect of muscle-damaging exercise on concentration of antioxidants in the blood, except for glutathione, was little. Muscle-damaging exercise induces oxidative stress/damage in skeletal muscle, even though this is not fully supported by the original statistical analysis of some studies. In contrast, muscle-damaging exercise does not appear to affect--at least to similar extent as the oxidative stress/damage markers--the levels of antioxidants in skeletal muscle. Based on the rather limited data available, the oxidative stress response of skeletal muscle to exercise was generally independent of muscle fibre type. Most of the changes in oxidative stress/damage appeared and were sustained for days after muscle-damaging exercise. The major part of the delayed oxidative stress/damage production that follows muscle-damaging exercise probably comes from phagocytic cells that are activated and recruited to the site of the initial damage. A point that emerged and potentially explains much of the lack of consensus among studies is the low statistical power of many of them. In summary, muscle-damaging exercise can increase oxidative stress/damage in blood and skeletal muscle of rats and humans that may persist for and/or appear several days after exercise.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly, Trikala, Greece.
| | | | | | | | | | | |
Collapse
|
46
|
Xu G, Herzig M, Rotrekl V, Walter CA. Base excision repair, aging and health span. Mech Ageing Dev 2008; 129:366-82. [PMID: 18423806 PMCID: PMC2526234 DOI: 10.1016/j.mad.2008.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 12/18/2022]
Abstract
DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-beta is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Maryanne Herzig
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Vladimir Rotrekl
- Institute of Experimental Medicine, Department of Molecular Embryology, Masaryk University, Faculty of Medicine, Department of Biology, Kamenice 5, Building A6, 62500 Brno, Czech Republic
| | - Christi A. Walter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
- South Texas Veteran’s Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229
| |
Collapse
|
47
|
Huffman DM, Moellering DR, Grizzle WE, Stockard CR, Johnson MS, Nagy TR. Effect of exercise and calorie restriction on biomarkers of aging in mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1618-27. [PMID: 18321952 PMCID: PMC4332519 DOI: 10.1152/ajpregu.00890.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike calorie restriction, exercise fails to extend maximum life span, but the mechanisms that explain this disparate effect are unknown. We used a 24-wk protocol of treadmill running, weight matching, and pair feeding to compare the effects of exercise and calorie restriction on biomarkers related to aging. This study consisted of young controls, an ad libitum-fed sedentary group, two groups that were weight matched by exercise or 9% calorie restriction, and two groups that were weight matched by 9% calorie restriction + exercise or 18% calorie restriction. After 24 wk, ad libitum-fed sedentary mice were the heaviest and fattest. When weight-matched groups were compared, mice that exercised were leaner than calorie-restricted mice. Ad libitum-fed exercise mice tended to have lower serum IGF-1 than fully-fed controls, but no difference in fasting insulin. Mice that underwent 9% calorie restriction or 9% calorie restriction + exercise, had lower insulin levels; the lowest concentrations of serum insulin and IGF-1 were observed in 18% calorie-restricted mice. Exercise resulted in elevated levels of tissue heat shock proteins, but did not accelerate the accumulation of oxidative damage. Thus, failure of exercise to slow aging in previous studies is not likely the result of increased accrual of oxidative damage and may instead be due to an inability to fully mimic the hormonal and/or metabolic response to calorie restriction.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Boveris A, Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med 2008; 44:224-9. [PMID: 18191758 DOI: 10.1016/j.freeradbiomed.2007.08.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 11/22/2022]
Abstract
The systemic and nonmuscular adaptive response to moderate exercise is reviewed and compared with muscle responses to moderate and exhaustive exercise. Rats participating in voluntary wheel running and mice subjected to treadmill exercise on a lifelong basis showed 10-19% increased median life span. Mice also showed improved neurological functions, such as better (35-216%) neuromuscular coordination (tightrope test) and better (11-27%) exploratory activity (T maze). These effects are consistent with the systemic effects of moderate exercise lowering hyperglycemia, hypercholesterolemia, and hypertension. Mitochondria isolated from brain, liver, heart, and kidney of exercised mice show a 12-32% selectively increased complex IV activity, with a significant correlation between complex IV activity and performance in the tightrope test. Chronic exercise decreases (10-20%) the mitochondrial content of TBARS and protein carbonyls in the four organs after 24 weeks of training. Protein carbonyls were linearly and negatively related to complex IV activity. Exercise increased the levels of nNOSmu in human muscle and of nNOS in mouse brain. It is concluded that chronic moderate exercise exerts a whole-body beneficial effect that exceeds muscle adaptation, likely through mechanosensitive afferent nerves and beta-endorphin release to brain and plasma that promote mitochondrial biogenesis in distant organs.
Collapse
Affiliation(s)
- Alberto Boveris
- School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina
| | | |
Collapse
|
49
|
Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev 2008; 7:34-42. [PMID: 17869589 DOI: 10.1016/j.arr.2007.04.004] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 01/11/2023]
Abstract
Physical inactivity leads to increased incidence of a variety of diseases and it can be regarded as one of the end points of the exercise-associated hormesis curve. On the other hand, regular exercise, with moderate intensity and duration, has a wide range of beneficial effects on the body including the fact that it improves cardio-vascular function, partly by a nitric oxide-mediated adaptation, and may reduce the incidence of Alzheimer's disease by enhanced concentration of neurotrophins and by the modulation of redox homeostasis. Mechanical damage-mediated adaptation results in increased muscle mass and increased resistance to stressors. Physical inactivity or strenuous exercise bouts increase the risk of infection, while moderate exercise up-regulates the immune system. Single bouts of exercise increases, and regular exercise decreases the oxidative challenge to the body, whereas excessive exercise and overtraining lead to damaging oxidative stress and thus are an indication of the other end point of the hormetic response. Based upon the genetic setup, regular moderate physical exercise/activity provides systemic beneficial effects, including improved physiological function, decreased incidence of disease and a higher quality of life.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|