1
|
Edman S, Jones Iii RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Chambers TL, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth. EMBO Rep 2024; 25:5810-5837. [PMID: 39482487 PMCID: PMC11624283 DOI: 10.1038/s44319-024-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.
Collapse
Affiliation(s)
- Sebastian Edman
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Ronald G Jones Iii
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Paulo R Jannig
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Pieter J Koopmans
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Toby L Chambers
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Calvin S Peterson
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Logan N Scott
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Vandre C Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Biological Sciences, Oakland University, Rochester Hills, MI, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Liu Zhengye
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopaedic Surgery, Region Jönköping County, Eksjö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA.
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA.
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Kusano T, Sotani Y, Takeda R, Hatano A, Kawata K, Kano R, Matsumoto M, Kano Y, Hoshino D. Time-series transcriptomics reveals distinctive mRNA expression dynamics associated with gene ontology specificity and protein expression in skeletal muscle after electrical stimulation-induced resistance exercise. FASEB J 2024; 38:e70153. [PMID: 39545720 DOI: 10.1096/fj.202401420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Resistance exercise upregulates and downregulates the expression of a wide range of genes in skeletal muscle. However, detailed analysis of mRNA dynamics such as response rates and temporal patterns of the transcriptome after resistance exercise has not been performed. We aimed to clarify the dynamics of time-series transcriptomics after resistance exercise. We used electrical stimulation-induced muscle contraction as a resistance exercise model (5 sets × 10 times of 3 s of 100-Hz electrical stimulation) on the tibialis anterior muscle of rats and measured the transcriptome in the muscle before and at 0, 1, 3, 6, and 12 h after muscle contractions by RNA sequencing. We also examined the relationship between the parameters of mRNA dynamics and the increase in protein expression at 12 h after muscle contractions. We found that the function of the upregulated genes differed after muscle contractions depending on their response rate. Genes related to muscle differentiation and response to mechanical stimulus were enriched in the sustainedly upregulated genes. Furthermore, there was a positive correlation between the magnitude of upregulated mRNA expression and the corresponding protein expression level at 12 h after muscle contractions. Although it has been theoretically suggested, this study experimentally demonstrated that the magnitude of the mRNA response after electrical stimulation-induced resistance exercise contributes to skeletal muscle adaptation via increases in protein expression. These findings suggest that mRNA expression dynamics such as response rate, a sustained upregulated expression pattern, and the magnitude of the response contribute to mechanisms underlying adaptation to resistance exercise.
Collapse
Affiliation(s)
- Tatsuya Kusano
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Yuta Sotani
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Reo Takeda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Kentaro Kawata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryotaro Kano
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
3
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The combined influences of local heat application and resistance exercise on the acute mRNA response of skeletal muscle. Front Physiol 2024; 15:1473241. [PMID: 39497702 PMCID: PMC11532036 DOI: 10.3389/fphys.2024.1473241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction The development and maintenance of the skeletal muscle is crucial for the support of daily function. Heat, when applied locally, has shown substantial promise in the maintenance of the muscle. The purpose of this study was to determine the combined effects of local heat application and acute resistance exercise on gene expression associated with the human muscle growth program. Materials and methods Participants (n = 12, 26 ± 7 years, 1.77 ± 0.07 m, 79.6 ± 15.4 kg, and 16.1 ± 11.6 %BF) completed an acute bilateral bout of resistance exercise consisting of leg press (11 ± 2 reps; 170 ± 37 kg) and leg extension (11 ± 1 reps; 58 ± 18 kg). Participants wore a thermal wrap containing circulating fluid (40°C, exercise + heat; EX + HT) during the entire experimental period and 4 h post-exercise, while the other leg served as an exercise-only (EX) control. Biopsies of the vastus lateralis were collected (Pre, Post, and 4hPost) for gene expression analyses. Results Intramuscular temperatures increased (Post, +2.2°C ± 0.7°C, and p < 0.001; 4hPost, +2.5°C ± 0.6°C, and p < 0.001) and were greater in the EX + HT leg post-exercise (+0.35°C ± 0.3°C, and p = 0.005) and after 4hPost (+2.1°C ± 0.8°C and p < 0.001). MYO-D1 mRNA was greater in the EX + HT leg vs. the EX (fold change = 2.74 ± 0.42 vs. 1.70 ± 0.28, p = 0.037). No other genes demonstrated temperature sensitivity when comparing both legs (p > 0.05). mRNA associated with the negative regulator, myostatin (MSTN), decreased post-exercise (p = 0.001) and after 4 h (p = 0.001). mRNA associated with proteolysis decreased post-exercise (FBXO32, p = 0.001; FOXO3a, p = 0.001) and after 4 h (FBXO32, p = 0.001; FOXO3a, p = 0.027). Conclusion The elevated transcription of the myogenic differentiation factor 1 (MYO-D1) after exercise in the heated condition may provide a mechanism by which muscle growth could be enhanced.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alejandro M. Rosales
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| | - Christopher W. Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| |
Collapse
|
4
|
Jakicic JM, Kohrt WM, Houmard JA, Miller ME, Radom-Aizik S, Rasmussen BB, Ravussin E, Serra M, Stowe CL, Trappe S, Abouassi H, Adkins JN, Alekel DL, Ashley E, Bamman MM, Bergman BC, Bessesen DH, Broskey NT, Buford TW, Burant CF, Chen H, Christle JW, Clish CB, Coen PM, Collier D, Collins KA, Cooper DM, Cortes T, Cutter GR, Dubis G, Fernández FM, Firnhaber J, Forman DE, Gaul DA, Gay N, Gerszten RE, Goodpaster BH, Gritsenko MA, Haddad F, Huffman KM, Ilkayeva O, Jankowski CM, Jin C, Johannsen NM, Johnson J, Kelly L, Kershaw E, Kraus WE, Laughlin M, Lester B, Lindholm ME, Lowe A, Lu CJ, McGowan J, Melanson EL, Montgomery S, Moore SG, Moreau KL, Muehlbauer M, Musi N, Nair VD, Newgard CB, Newman AB, Nicklas B, Nindl BC, Ormond K, Piehowski PD, Qian WJ, Rankinen T, Rejeski WJ, Robbins J, Rogers RJ, Rooney JL, Rushing S, Sanford JA, Schauer IE, Schwartz RS, Sealfon SC, Slentz C, Sloan R, Smith KS, Snyder M, Spahn J, Sparks LM, Stefanovic-Racic M, Tanner CJ, Thalacker-Mercer A, Tracy R, Trappe TA, Volpi E, Walsh MJ, Wheeler MT, Willis L. Molecular Transducers of Physical Activity Consortium (MoTrPAC): human studies design and protocol. J Appl Physiol (1985) 2024; 137:473-493. [PMID: 38634503 PMCID: PMC11427038 DOI: 10.1152/japplphysiol.00102.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a preclinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 wk of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 wk. The adult component also includes recruitment of highly active endurance-trained or resistance-trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.NEW & NOTEWORTHY The Molecular Transducers of Physical Activity Consortium (MoTrPAC) will be the first large trial to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. By generating a compendium of the molecular responses to exercise, MoTrPAC will lay the foundation for a new era of biomedical research on Precision Exercise Medicine. Presented here is the design, protocols, and procedures for the MoTrPAC human studies.
Collapse
Affiliation(s)
- John M Jakicic
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Wendy M Kohrt
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joseph A Houmard
- East Carolina University, Greenville, North Carolina, United States
| | - Michael E Miller
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | | | - Blake B Rasmussen
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Monica Serra
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Cynthia L Stowe
- Wake Forest University School of Medicine, Biostatistics and Data Science, Winston-Salem, North Carolina, United States
| | - Scott Trappe
- Ball State University, Muncie, Indiana, United States
| | - Hiba Abouassi
- Duke University, Durham, North Carolina, United States
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - D Lee Alekel
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Euan Ashley
- Stanford University, Stanford, California, United States
| | - Marcas M Bamman
- The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bryan C Bergman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel H Bessesen
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Thomas W Buford
- The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Haiying Chen
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | | | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Paul M Coen
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | - David Collier
- East Carolina University, Greenville, North Carolina, United States
| | | | - Daniel M Cooper
- University of California, Irvine, Irvine, California, United States
| | - Tiffany Cortes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Gary R Cutter
- The University of Alabama at Birmingham, School of Public Health, Birmingham, Alabama, United States
| | - Gabriel Dubis
- East Carolina University, Greenville, North Carolina, United States
| | | | | | - Daniel E Forman
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Gaul
- Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Nicole Gay
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Robert E Gerszten
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Bret H Goodpaster
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | - Marina A Gritsenko
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Fadia Haddad
- University of California, Irvine, Irvine, California, United States
| | - Kim M Huffman
- Duke University, Durham, North Carolina, United States
| | - Olga Ilkayeva
- Duke University Medical Center, Durham, North Carolina, United States
| | | | - Christopher Jin
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Neil M Johannsen
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | | | - Leslie Kelly
- Duke University, Durham, North Carolina, United States
| | - Erin Kershaw
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William E Kraus
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Adam Lowe
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Ching-Ju Lu
- University of Florida, Gainesville, Florida, United States
| | - Joan McGowan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Edward L Melanson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Stephen Montgomery
- Department of Pathology, Stanford University, Stanford, California, United States
| | - Samuel G Moore
- Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Nicolas Musi
- Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Venugopalan D Nair
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | | | - Anne B Newman
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Barbara Nicklas
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Bradley C Nindl
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kelly Ormond
- Stanford University, Stanford, California, United States
- ETH-Zurich, Zurich, Switzerland
| | - Paul D Piehowski
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Tuomo Rankinen
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - W Jack Rejeski
- Wake Forest University, Winston-Salem, North Carolina, United States
| | - Jeremy Robbins
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Renee J Rogers
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jessica L Rooney
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, United States
| | - Scott Rushing
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - James A Sanford
- Pacific Northwest National Laboratory, Oregon Health and Science University, Portland, Oregon, United States
| | - Irene E Schauer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Robert S Schwartz
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Stuart C Sealfon
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Cris Slentz
- Duke University, Durham, North Carolina, United States
| | - Ruben Sloan
- East Carolina University, Greenville, North Carolina, United States
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California, United States
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California, United States
| | - Jessica Spahn
- University of Texas Medical Branch, Galveston, Texas, United States
| | - Lauren M Sparks
- Advent Health - Translational Research Institute, Orlando, Florida, United States
| | | | - Charles J Tanner
- East Carolina University, Greenville, North Carolina, United States
| | | | - Russell Tracy
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, United States
| | - Todd A Trappe
- Ball State University, Muncie, Indiana, United States
| | - Elena Volpi
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | | | - Leslie Willis
- Duke University, Durham, North Carolina, United States
| |
Collapse
|
5
|
Knowles OE, Soria M, Saner NJ, Trewin AJ, Alexander SE, Roberts SSH, Hiam D, Garnham AP, Drinkwater EJ, Aisbett B, Lamon S. The interactive effect of sustained sleep restriction and resistance exercise on skeletal muscle transcriptomics in young females. Physiol Genomics 2024; 56:506-518. [PMID: 38766755 DOI: 10.1152/physiolgenomics.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Both sleep loss and exercise regulate gene expression in skeletal muscle, yet little is known about how the interaction of these stressors affects the transcriptome. The aim of this study was to investigate the effect of nine nights of sleep restriction (SR), with repeated resistance exercise (REx) sessions, on the skeletal muscle transcriptome of young, trained females. Ten healthy females aged 18-35 yr old undertook a randomized cross-over study of nine nights of SR (5 h time in bed) and normal sleep (NS; ≥7 h time in bed) with a minimum 6-wk washout. Participants completed four REx sessions per condition (days 3, 5, 7, and 9). Muscle biopsies were collected both pre- and post-REx on days 3 and 9. Gene and protein expression were assessed by RNA sequencing and Western blot, respectively. Three or nine nights of SR had no effect on the muscle transcriptome independently of exercise. However, close to 3,000 transcripts were differentially regulated (false discovery rate < 0.05) 48 h after the completion of three resistance exercise sessions in both NS and SR conditions. Only 39% of downregulated genes and 18% of upregulated genes were common between both conditions, indicating a moderating effect of SR on the response to exercise. SR and REx interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.NEW & NOTEWORTHY This study investigated the effect of nine nights of sleep restriction, with repeated resistance exercise sessions, on the skeletal muscle transcriptome of young, trained females. Sleep restriction and resistance exercise interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.
Collapse
Affiliation(s)
- Olivia E Knowles
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Megan Soria
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sarah E Alexander
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Spencer S H Roberts
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew P Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Eric J Drinkwater
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Voss AC, Chambers TL, Gries KJ, Jemiolo B, Raue U, Minchev K, Begue G, Lee GA, Trappe TA, Trappe SW. Exercise microdosing for skeletal muscle health applications to spaceflight. J Appl Physiol (1985) 2024; 136:1040-1052. [PMID: 38205550 PMCID: PMC11365549 DOI: 10.1152/japplphysiol.00491.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Findings from a recent 70-day bedrest investigation suggested intermittent exercise testing in the control group may have served as a partial countermeasure for skeletal muscle size, function, and fiber-type shifts. The purpose of the current study was to investigate the metabolic and skeletal muscle molecular responses to the testing protocols. Eight males (29 ± 2 yr) completed muscle power (6 × 4 s; peak muscle power: 1,369 ± 86 W) and V̇o2max (13 ± 1 min; 3.2 ± 0.2 L/min) tests on specially designed supine cycle ergometers during two separate trials. Blood catecholamines and lactate were measured pre-, immediately post-, and 4-h postexercise. Muscle homogenate and muscle fiber-type-specific [myosin heavy chain (MHC) I and MHC IIa] mRNA levels of exercise markers (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4) and MHC I, IIa, and IIx were measured from vastus lateralis muscle biopsies obtained pre- and 4-h postexercise. The muscle power test altered (P ≤ 0.05) norepinephrine (+124%), epinephrine (+145%), lactate (+300%), and muscle homogenate mRNA (IκBα, myogenin, MuRF-1, RRAD, Fn14). The V̇o2max test altered (P ≤ 0.05) norepinephrine (+1,394%), epinephrine (+1,412%), lactate (+736%), and muscle homogenate mRNA (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4). In general, both tests influenced MHC IIa muscle fibers more than MHC I with respect to the number of genes that responded and the magnitude of response. Both tests also influenced MHC mRNA expression in a muscle fiber-type-specific manner. These findings provide unique insights into the adaptive response of skeletal muscle to small doses of exercise and could help shape exercise dosing for astronauts and Earth-based individuals.NEW & NOTEWORTHY Declines in skeletal muscle health are a concern for astronauts on long-duration spaceflights. The current findings add to the growing body of exercise countermeasures data, suggesting that small doses of specific exercise can be beneficial for certain aspects of skeletal muscle health. This information can be used in conjunction with other components of existing exercise programs for astronauts and might translate to other areas focused on skeletal muscle health (e.g., sports medicine, rehabilitation, aging).
Collapse
Affiliation(s)
- Adam C Voss
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
7
|
Edman S, Jones RG, Jannig PR, Fernandez-Gonzalo R, Norrbom J, Thomas NT, Khadgi S, Koopmans PJ, Morena F, Peterson CS, Scott LN, Greene NP, Figueiredo VC, Fry CS, Zhengye L, Lanner JT, Wen Y, Alkner B, Murach KA, von Walden F. The 24-Hour Time Course of Integrated Molecular Responses to Resistance Exercise in Human Skeletal Muscle Implicates MYC as a Hypertrophic Regulator That is Sufficient for Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586857. [PMID: 38586026 PMCID: PMC10996609 DOI: 10.1101/2024.03.26.586857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing defined the transcriptome while DNA methylomics and computational approaches complemented these data. The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and hypertrophy.
Collapse
Affiliation(s)
- Sebastian Edman
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Paulo R. Jannig
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Karolinska Institute, Division of Clinical Physiology, Department of Laboratory Medicine, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Huddinge, Sweden
| | - Jessica Norrbom
- Karolinska Institute, Molecular Exercise Physiology Group, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Nicholas T. Thomas
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Pieter Jan Koopmans
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Francielly Morena
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Calvin S. Peterson
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Logan N. Scott
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Vandre C. Figueiredo
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- Oakland University, Department of Biological Sciences, Rochester Hills, MI, USA
| | - Christopher S. Fry
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Liu Zhengye
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Johanna T. Lanner
- Karolinska Institute, Molecular Muscle Physiology & Pathophysiology Group, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Yuan Wen
- University of Kentucky, Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
- University of Kentucky, Department of Internal Medicine, Division of Biomedical Informatics, Lexington, KY, USA
| | - Björn Alkner
- Department of Orthopedics, Eksjö, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Ferdinand von Walden
- Karolinska Institute, Division of Pediatric Neurology, Department of Women’s and Children’s Health, Stockholm, Sweden
| |
Collapse
|
8
|
Perkins RK, Lavin KM, Raue U, Jemiolo B, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on expression of innate immune components in skeletal muscle of women. J Appl Physiol (1985) 2024; 136:482-491. [PMID: 38205547 PMCID: PMC11212804 DOI: 10.1152/japplphysiol.00444.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
This study examined the effects of aging and lifelong aerobic exercise on innate immune system components in the skeletal muscle of healthy women in the basal state and after an unaccustomed resistance exercise (RE) challenge. We also made exploratory between-sex comparisons with our previous report on men. Three groups of women were studied: young exercisers (YE, n = 10, 25 ± 1 yr, V̇o2max: 44 ± 2 mL/kg/min), lifelong aerobic exercisers with a 48 ± 2 yr training history (LLE, n = 7, 72 ± 2 yr, V̇o2max: 26 ± 2 mL/kg/min), and old healthy nonexercisers (OH, n = 10, 75 ± 1 yr, V̇o2max: 18 ± 1 mL/kg/min). Ten Toll-like receptors (TLRs)1-10, TLR adaptors (Myd88, TRIF), and NF-κB pathway components (IκBα, IKKβ) were assessed at the mRNA level in vastus lateralis biopsies before and 4 h after RE [3×10 repetitions, 70% 1-repetition maximum (1RM)]. Basal TLR1-10 expression was minimally influenced by age or LLE in women (TLR9 only; OH > YE, +43%, P < 0.05; OH > LLE, +30%, P < 0.10) and was on average 24% higher in women versus men. Similarly, basal adaptor expression was not influenced (P > 0.05) by age or LLE in women but was on average 26% higher (myeloid differentiation primary response 88, Myd88) and 23% lower [Toll interleukin (IL)-1 receptor-containing adaptor-inducing interferon-γ, TRIF] in women versus men. RE-induced changes in women, independent of the group, in TLR3, TLR4, TLR6 (∼2.1-fold, P < 0.05), Myd88 (∼1.2-fold, P < 0.10), and IκBα (∼0.3-fold, P < 0.05). Although there were some similar RE responses in men (TLR4: 2.1-fold, Myd88: 1.2-fold, IκBα: 0.4-fold), several components responded only in men to RE (TLR1, TLR8, TRIF, and IKKβ). Our findings support the sexual dimorphism of immunity, with women having greater basal skeletal muscle TLR expression and differential response to unaccustomed exercise than men.NEW & NOTEWORTHY We recently reported that aging increases basal expression of many Toll-like receptors (TLRs) in men and lifelong aerobic exercise does not prevent this effect. In addition, a resistance exercise (RE) challenge increased the expression of many TLRs. Here we show that basal TLR expression is minimally influenced by aging in women and findings support the sexual dimorphism of immunity, with women having greater basal skeletal muscle TLR expression and a differential response to unaccustomed exercise than men.
Collapse
Affiliation(s)
- Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
9
|
Lynch CE, Brandt AR, Vincenty CS, Robbins E, Skiles C, Minchev K, Chambers TL, Belangee A, Trappe TA, Trappe SW. Adipose biopsy techniques for studies in human exercise physiology. Am J Physiol Regul Integr Comp Physiol 2024; 326:R220-R229. [PMID: 38223939 DOI: 10.1152/ajpregu.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Adipose biopsy techniques are relatively undefined for exercise physiology research in individuals at or near normal weight. The purpose of this study was to compare the influence of two adipose biopsy techniques on tissue quality through measurements of adipocyte cell size, as well as mRNA and protein levels of select pro- and anti-inflammatory cytokines and adipokines. Thirteen participants (9 M, 4 W; 28 ± 4 yr; 27 ± 3 kg·m-2; V̇o2max: 3.3 ± 0.7 L·min-1) underwent subcutaneous adipose biopsies on either side of the umbilicus (incision: ∼8 cm lateral, sampling area: ∼5 cm lateral) using 1) a 6-mm Bergström biopsy needle and 2) a mini-liposuction approach with a 4-mm Mercedes biopsy needle that used prebiopsy tumescent delivery (∼30 mL 0.9% NaCl solution) into the sampling area (i.e., 'wet' technique). Tissue obtained was processed identically for analysis and both techniques returned high-quality tissue for histology (similar % intact adipocytes), mRNA (RNA integrity numbers >7.0), and protein. Adipocyte size was similar (P > 0.05) between both techniques (Bergström: 6,116 ± 1,652 μm2, 554-23,522 µm2; Mercedes: 6,517 ± 952 μm2, 926-21,969 µm2). There were also no differences (P > 0.05) between the two techniques for the measured cytokines (pro- and anti-inflammatory) and adipokines at the mRNA and protein levels. Adipocyte size was positively correlated with body mass index and body fat percentage, and negatively correlated with V̇o2max (P < 0.05). These results suggest both adipose biopsy techniques used in the current investigation are appropriate for histological, transcriptional, and translational level measurements in exercise physiology studies of nonobese women and men.NEW & NOTEWORTHY This study provides investigators with useful information related to adipose biopsy sampling approaches that can be used when planning studies that use measurements of adipose histology, as well as measurements at the mRNA and protein level. Adipose periumbilical sampling with the Bergström biopsy needle and the Mercedes wet mini-liposuction technique are both appropriate options for studies in exercise physiology and in nonobese individuals.
Collapse
Affiliation(s)
- Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Caroline S Vincenty
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ethan Robbins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Chad Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alicia Belangee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
10
|
Shahidi B, Anderson B, Ordaz A, Berry DB, Ruoss S, Zlomislic V, Allen RT, Garfin SR, Farshad M, Schenk S, Ward SR. Paraspinal muscles in individuals undergoing surgery for lumbar spine pathology lack a myogenic response to an acute bout of resistance exercise. JOR Spine 2024; 7:e1291. [PMID: 38222805 PMCID: PMC10782077 DOI: 10.1002/jsp2.1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise. Methods Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes. Results The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles. Conclusion An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.
Collapse
Affiliation(s)
- Bahar Shahidi
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Bradley Anderson
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Angel Ordaz
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - David B. Berry
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
- UC San Diego Department of RadiologyLa JollaCaliforniaUSA
| | - Severin Ruoss
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Vinko Zlomislic
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - R. Todd Allen
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Steven R. Garfin
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Mazda Farshad
- Balgrist University HospitalUniversity of ZurichZürichSwitzerland
| | - Simon Schenk
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
| | - Samuel R. Ward
- UC San Diego Department of Orthopaedic SurgeryLa JollaCaliforniaUSA
- UC San Diego Department of RadiologyLa JollaCaliforniaUSA
- UC San Diego Department of BioengineeringLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Raue U, Begue G, Minchev K, Jemiolo B, Gries KJ, Chambers T, Rubenstein A, Zaslavsky E, Sealfon SC, Trappe T, Trappe S. Fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. J Appl Physiol (1985) 2024; 136:244-261. [PMID: 38095016 PMCID: PMC11219013 DOI: 10.1152/japplphysiol.00442.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
We investigated fast and slow muscle fiber transcriptome exercise dynamics among three groups of men: lifelong exercisers (LLE, n = 8, 74 ± 1 yr), old healthy nonexercisers (OH, n = 9, 75 ± 1 yr), and young exercisers (YE, n = 8, 25 ± 1 yr). On average, LLE had exercised ∼4 day·wk-1 for ∼8 h·wk-1 over 53 ± 2 years. Muscle biopsies were obtained pre- and 4 h postresistance exercise (3 × 10 knee extensions at 70% 1-RM). Fast and slow fiber size and function were assessed preexercise with fast and slow RNA-seq profiles examined pre- and postexercise. LLE fast fiber size was similar to OH, which was ∼30% smaller than YE (P < 0.05) with contractile function variables among groups, resulting in lower power in LLE (P < 0.05). LLE slow fibers were ∼30% larger and more powerful compared with YE and OH (P < 0.05). At the transcriptome level, fast fibers were more responsive to resistance exercise compared with slow fibers among all three cohorts (P < 0.05). Exercise induced a comprehensive biological response in fast fibers (P < 0.05) including transcription, signaling, skeletal muscle cell differentiation, and metabolism with vast differences among the groups. Fast fibers from YE exhibited a growth and metabolic signature, with LLE being primarily metabolic, and OH showing a strong stress-related response. In slow fibers, only LLE exhibited a biological response to exercise (P < 0.05), which was related to ketone and lipid metabolism. The divergent exercise transcriptome signatures provide novel insight into the molecular regulation in fast and slow fibers with age and exercise and suggest that the ∼5% weekly exercise time commitment of the lifelong exercisers provided a powerful investment for fast and slow muscle fiber metabolic health at the molecular level.NEW & NOTEWORTHY This study provides the first insights into fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. The fast fibers were more responsive to exercise with divergent transcriptome signatures among young exercisers (growth and metabolic), lifelong exercisers (metabolic), and old healthy nonexercisers (stress). Only lifelong exercisers had a biological response in slow fibers (metabolic). These data provide novel insights into fast and slow muscle fiber health at the molecular level with age and exercise.
Collapse
Affiliation(s)
- Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Aliza Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Todd Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
12
|
Emanuelsson EB, Arif M, Reitzner SM, Perez S, Lindholm ME, Mardinoglu A, Daub C, Sundberg CJ, Chapman MA. Remodeling of the human skeletal muscle proteome found after long-term endurance training but not after strength training. iScience 2024; 27:108638. [PMID: 38213622 PMCID: PMC10783619 DOI: 10.1016/j.isci.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.
Collapse
Affiliation(s)
- Eric B. Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
| | - Stefan M. Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sean Perez
- Department of Biology, Pomona College, Claremont, CA 91711, USA
| | - Maléne E. Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Carsten Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark A. Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, CA 92110, USA
| |
Collapse
|
13
|
Reitzner SM, Emanuelsson EB, Arif M, Kaczkowski B, Kwon AT, Mardinoglu A, Arner E, Chapman MA, Sundberg CJ. Molecular profiling of high-level athlete skeletal muscle after acute endurance or resistance exercise - A systems biology approach. Mol Metab 2024; 79:101857. [PMID: 38141850 PMCID: PMC10805945 DOI: 10.1016/j.molmet.2023.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Long-term high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously investigated, it remains unclear how training history influences human multi-omics responses to acute exercise. METHODS We recruited and extensively characterized 24 individuals categorized as endurance athletes with >15 years of training history, strength athletes or control subjects. Timeseries skeletal muscle biopsies were taken from M. vastus lateralis at three time-points after endurance or resistance exercise was performed and multi-omics molecular analysis performed. RESULTS Our analyses revealed distinct activation differences of molecular processes such as fatty- and amino acid metabolism and transcription factors such as HIF1A and the MYF-family. We show that endurance athletes have an increased abundance of carnitine-derivates while strength athletes increase specific phospholipid metabolites compared to control subjects. Additionally, for the first time, we show the metabolite sorbitol to be substantially increased with acute exercise. On transcriptional level, we show that acute resistance exercise stimulates more gene expression than acute endurance exercise. This follows a specific pattern, with endurance athletes uniquely down-regulating pathways related to mitochondria, translation and ribosomes. Finally, both forms of exercise training specialize in diverging transcriptional directions, differentiating themselves from the transcriptome of the untrained control group. CONCLUSIONS We identify a "transcriptional specialization effect" by transcriptional narrowing and intensification, and molecular specialization effects on metabolomic level Additionally, we performed multi-omics network and cluster analysis, providing a novel resource of skeletal muscle transcriptomic and metabolomic profiling in highly trained and untrained individuals.
Collapse
Affiliation(s)
- Stefan M Reitzner
- Department Physiology & Pharmacology, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden.
| | - Eric B Emanuelsson
- Department Physiology & Pharmacology, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden
| | - Bogumil Kaczkowski
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew Tj Kwon
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 1UL, United Kingdom
| | - Erik Arner
- Center for Integrative Medical Sciences, RIKEN Yokohama, 1 Chome-7-22 Suehirocho, Tsurumi Ward, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1 Chome-3-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mark A Chapman
- Department Physiology & Pharmacology, Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department of Integrated Engineering, University of San Diego, 5998 Alcalà Park, San Diego, CA 92110, USA
| | - Carl Johan Sundberg
- Department Physiology & Pharmacology, Department Women's and Children's Health, Karolinska Institutet, Solnavägen 9, 171 77 Stockholm, Sweden; Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Tomtebodavägen 18A, 171 65 Solna, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 141 52 Huddinge, Sweden
| |
Collapse
|
14
|
Sad EP, Hess TM, Santos HA, Lessa DAB, Botteon PDTL. Molecular and Cellular Evaluation of Horses With Summer Pasture Associated Asthma Syndrome. J Equine Vet Sci 2023; 131:104928. [PMID: 37730075 DOI: 10.1016/j.jevs.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Equine asthma is an airway disease that affects a large number of horses annually leading to considerable economic losses in the horse industry. Despite advances in research in this area, there is still a lack of information on its etiology and molecular characterization in pasture associated asthma. The objective of the current study was to characterize the inflammatory disease of lower airways in horses maintained on pasture through cytologic and immunologic profile during the summer in a tropical environment by analysis of the gene expression of Th1 cytokines (IFN- λ, IL-8), Th2 cytokines (IL-4 and IL-5), and pro-inflammatory cytokines (IL-1, TNF-α) in the bronchoalveolar lavage (BAL) fluid in healthy and asthma horses on pasture. A group 39 of clinically healthy horses maintained on native pasture and supplemented with concentrate was evaluated by BAL analyzed for differential cellular count and assigned into a control and an asthma group. The gene expression of pro-inflammatory cytokines was analyzed in the BAL by reverse time PCR (RT-PCR) (IL-1α (alpha), IL-4, IL-5, IL-8, TNF-α alpha and IFN-λ), using β-actin as housekeeping gene. Higher gene expression of IL-1, IL-4, IL-5, IL-8, IFN-λ in the BAL of asthma horses was found. Current results indicate an increase in Th2, characterizing an allergic inflammatory reaction due to the significant increase in IL-5 in asthmatic horses (10.3 ± 1.13), when compared to the values obtained in normal horses (3.27 ± 0.46). The only down regulated cytokine in the asthma group was TNF-α, suggesting a chronic antigenic reaction.
Collapse
Affiliation(s)
| | - Tanja M Hess
- Colorado State University, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
15
|
Rubenstein AB, Smith GR, Zhang Z, Chen X, Chambers TL, Ruf-Zamojski F, Mendelev N, Cheng WS, Zamojski M, Amper MAS, Nair VD, Marderstein AR, Montgomery SB, Troyanskaya OG, Zaslavsky E, Trappe T, Trappe S, Sealfon SC. Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558914. [PMID: 37808658 PMCID: PMC10557702 DOI: 10.1101/2023.09.26.558914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO2max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise.
Collapse
Affiliation(s)
- Aliza B. Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Gregory R. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Zidong Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Toby L. Chambers
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Natalia Mendelev
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Wan Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Michel Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mary Anne S. Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Andrew R. Marderstein
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Todd Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
- Senior author
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Gallagher H, Hendrickse PW, Pereira MG, Bowen TS. Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:557-567. [PMID: 37040849 PMCID: PMC10466197 DOI: 10.1016/j.jshs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/31/2023]
Abstract
This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling, satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration. Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics remain poorly explored.
Collapse
Affiliation(s)
- Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Paul W Hendrickse
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcelo G Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
Chambers TL, Stroh AM, Chavez C, Brandt AR, Claiborne A, Fountain WA, Gries KJ, Jones AM, Kuszmaul DJ, Lee GA, Lester BE, Lynch CE, Minchev K, Montenegro CF, Naruse M, Raue U, Trappe TA, Trappe S. Multitissue responses to exercise: a MoTrPAC feasibility study. J Appl Physiol (1985) 2023; 135:302-315. [PMID: 37318985 PMCID: PMC10393343 DOI: 10.1152/japplphysiol.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
We assessed the feasibility of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) human adult clinical exercise protocols, while also documenting select cardiovascular, metabolic, and molecular responses to these protocols. After phenotyping and familiarization sessions, 20 subjects (25 ± 2 yr, 12 M, 8 W) completed an endurance exercise bout (n = 8, 40 min cycling at 70% V̇o2max), a resistance exercise bout (n = 6, ∼45 min, 3 sets of ∼10 repetition maximum, 8 exercises), or a resting control period (n = 6, 40 min rest). Blood samples were taken before, during, and after (10 min, 2 h, and 3.5 h) exercise or rest for levels of catecholamines, cortisol, glucagon, insulin, glucose, free fatty acids, and lactate. Heart rate was recorded throughout exercise (or rest). Skeletal muscle (vastus lateralis) and adipose (periumbilical) biopsies were taken before and ∼4 h following exercise or rest for mRNA levels of genes related to energy metabolism, growth, angiogenesis, and circadian processes. Coordination of the timing of procedural components (e.g., local anesthetic delivery, biopsy incisions, tumescent delivery, intravenous line flushes, sample collection and processing, exercise transitions, and team dynamics) was reasonable to orchestrate while considering subject burden and scientific objectives. The cardiovascular and metabolic alterations reflected a dynamic and unique response to endurance and resistance exercise, whereas skeletal muscle was transcriptionally more responsive than adipose 4 h postexercise. In summary, the current report provides the first evidence of protocol execution and feasibility of key components of the MoTrPAC human adult clinical exercise protocols. Scientists should consider designing exercise studies in various populations to interface with the MoTrPAC protocols and DataHub.NEW & NOTEWORTHY This study highlights the feasibility of key aspects of the MoTrPAC adult human clinical protocols. This initial preview of what can be expected from acute exercise trial data from MoTrPAC provides an impetus for scientists to design exercise studies to interlace with the rich phenotypic and -omics data that will populate the MoTrPAC DataHub at the completion of the parent protocol.
Collapse
Affiliation(s)
- Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Stroh
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Clarisa Chavez
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alex Claiborne
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - William A Fountain
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Andrew M Jones
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Dillon J Kuszmaul
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | | | - Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
18
|
Naruse M, Vincenty CS, Konopka AR, Trappe SW, Harber MP, Trappe TA. Cycle exercise training and muscle mass: A preliminary investigation of 17 lower limb muscles in older men. Physiol Rep 2023; 11:e15781. [PMID: 37606179 PMCID: PMC10442866 DOI: 10.14814/phy2.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Cycling exercise in older individuals is beneficial for the cardiovascular system and quadriceps muscles, including partially reversing the age-related loss of quadriceps muscle mass. However, the effect of cycling exercise on the numerous other lower limb muscles is unknown. Six older men (74 ± 8 years) underwent MRI before and after 12-weeks of progressive aerobic cycle exercise training (3-4 days/week, 60-180 min/week, 60%-80% heart rate reserve, VO2 max: +13%) for upper (rectus femoris, vastii, adductor longus, adductor magnus, gracilis, sartorius, biceps femoris long head, biceps femoris short head, semimembranosus, semitendinosus) and lower (anterior tibial, posterior tibialis, peroneals, flexor digitorum longus, lateral gastrocnemius, medial gastrocnemius, soleus) leg muscle volumes. In the upper leg, cycle exercise training induced hypertrophy (p ≤ 0.05) in the vastii (+7%) and sartorius (+6%), with a trend to increase biceps femoris short head (+5%, p = 0.1). Additionally, there was a trend to decrease muscle volume in the adductor longus (-6%, p = 0.1) and biceps femoris long head (-5%, p = 0.09). In the lower leg, all 7 muscle volumes assessed were unaltered pre- to post-training (-2% to -3%, p > 0.05). This new evidence related to cycle exercise training in older individuals clarifies the specific upper leg muscles that are highly impacted, while revealing all the lower leg muscles do not appear responsive, in the context of muscle mass and sarcopenia. This study provides information for exercise program development in older individuals, suggesting other specific exercises are needed for the rectus femoris and adductors, certain hamstrings, and the anterior and posterior lower leg muscles to augment the beneficial effects of cycling exercise for older adults.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Adam R. Konopka
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Scott W. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | | | - Todd A. Trappe
- Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
19
|
Kang JS, Kim D, Rhee J, Seo JY, Park I, Kim JH, Lee D, Lee W, Kim YL, Yoo K, Bae S, Chung J, Seong RH, Kong YY. Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLoS Biol 2023; 21:e3002192. [PMID: 37478146 PMCID: PMC10396025 DOI: 10.1371/journal.pbio.3002192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 07/23/2023] Open
Abstract
During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.
Collapse
Affiliation(s)
- Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - WonUk Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sunghwan Bae
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Horwath O, Nordström F, von Walden F, Apró W, Moberg M. Acute hypoxia attenuates resistance exercise-induced ribosome signaling but does not impact satellite cell pool expansion in human skeletal muscle. FASEB J 2023; 37:e22811. [PMID: 36786723 DOI: 10.1096/fj.202202065rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Cumulative evidence supports the hypothesis that hypoxia acts as a regulator of muscle mass. However, the underlying molecular mechanisms remain incompletely understood, particularly in human muscle. Here we examined the effect of hypoxia on signaling pathways related to ribosome biogenesis and myogenic activity following an acute bout of resistance exercise. We also investigated whether hypoxia influenced the satellite cell response to resistance exercise. Employing a randomized, crossover design, eight men performed resistance exercise in normoxia (FiO2 21%) or normobaric hypoxia (FiO2 12%). Muscle biopsies were collected in a time-course manner (before, 0, 90, 180 min and 24 h after exercise) and were analyzed with respect to cell signaling, gene expression and satellite cell content using immunoblotting, RT-qPCR and immunofluorescence, respectively. In normoxia, resistance exercise increased the phosphorylation of RPS6, TIF-1A and UBF above resting levels. Hypoxia reduced the phosphorylation of these targets by ~37%, ~43% and ~ 67% throughout the recovery period, respectively (p < .05 vs. normoxia). Resistance exercise also increased 45 S pre-rRNA expression and mRNA expression of c-Myc, Pol I and TAF-1A above resting levels, but no differences were observed between conditions. Similarly, resistance exercise increased mRNA expression of myogenic regulatory factors throughout the recovery period and Pax7+ cells were elevated 24 h following exercise in mixed and type II muscle fibers, with no differences observed between normoxia and hypoxia. In conclusion, acute hypoxia attenuates ribosome signaling, but does not impact satellite cell pool expansion and myogenic gene expression following a bout of resistance exercise in human skeletal muscle.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Fabian Nordström
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Solna, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
21
|
Dam TV, Dalgaard LB, Johansen FT, Bengtsen MB, Mose M, Lauritsen KM, Gravholt CH, Hansen M. Effects of transdermal estrogen therapy on satellite cell number and molecular markers for muscle hypertrophy in response to resistance training in early postmenopausal women. Eur J Appl Physiol 2023; 123:667-681. [PMID: 36585491 DOI: 10.1007/s00421-022-05093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the effects of resistance training with or without transdermal estrogen therapy (ET) on satellite cell (SC) number and molecular markers for muscle hypertrophy in early postmenopausal women. METHODS Using a double-blinded randomized controlled design, we allocated healthy, untrained postmenopausal women to perform 12 weeks of resistance training with placebo (PLC, n = 16) or ET (n = 15). Muscle biopsies obtained before and after the intervention, and two hours after the last training session were analyzed for fiber type, SC number and molecular markers for muscle hypertrophy and degradation (real-time PCR, western blotting). RESULTS The analysis of SCs per Type I fiber showed a time x treatment interaction caused by a 47% decrease in PLC, and a 26% increase after ET after the training period. Also, SCs per Type II fiber area was lower after the intervention driven by a 57% decrease in PLC. Most molecular markers changed similarly in the two groups. CONCLUSION A decline in SC per muscle fiber was observed after the 12-week training period in postmenopausal women, which was counteracted when combined with use of transdermal ET. CLINICAL TRIAL REGISTRATION NUMBER nct03020953.
Collapse
Affiliation(s)
- Tine Vrist Dam
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
22
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, Mangone FRR, Pavanelli AC, Nagai MA, Camera DM, Hawley JA, Ugrinowitsch C. Interrelated but Not Time-Aligned Response in Myogenic Regulatory Factors Demethylation and mRNA Expression after Divergent Exercise Bouts. Med Sci Sports Exerc 2023; 55:199-208. [PMID: 36136603 DOI: 10.1249/mss.0000000000003049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | | | | | | | | | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, VIC, AUSTRALIA
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Exercise and Nutrition Research Program, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| |
Collapse
|
23
|
Kent E, Coleman S, Bruemmer J, Casagrande RR, Levihn C, Romo G, Herkelman K, Hess T. Comparison of an Antioxidant Source and Antioxidant Plus BCAA on Athletic Performance and Post Exercise Recovery of Horses. J Equine Vet Sci 2023; 121:104200. [PMID: 36577471 DOI: 10.1016/j.jevs.2022.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Antioxidant supplementation decreases postexercise oxidative stress but could also decrease muscle protein synthesis. This study compared the effects of three diets: low antioxidant (control, CON), high antioxidant (AO), and branched-chain amino acid high antioxidant (BCAO) supplementation on postexercise protein synthesis and oxidative stress. We hypothesized that supplementing antioxidants with branched-chain amino acids(BCAA) would reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed-breed polo horses (11 mares and 7 geldings, with age range between 5 and 18 years, were on CON diet for 30 days (from day -45 until day 0) and then were assigned to one of the treatments after the first lactate threshold test (day 0, LT). LT were also conducted on days 15 and 30 of supplemenation. Oxidative stress was assessed by measuring blood glutathione peroxidase, superoxide dismutase, and malondialdehyde concentrations before 2 and 4 hours after each LT. Muscle biopsies were taken before and 4 hours after each LT and analyzed for gene expression of protein synthesis by RTqPCR. Data were analyzed by ANOVA and compared by least-square means. A reduction in oxidative stress occurred over time (P < .05), from day 0 to day 30. An up-regulation in the abundance of muscle protein mRNA transcripts was found for CD36, CPT1, PDK4, MYF5, and MYOG (P < .05) after all lactate threshold tests, without a treatment effect. A treatment-by-exercise effect was observed for MYOD1 (P = .0041). Transcript abundance was upregulated in AO samples post exercise compared to other treatments. MYF6 exhibited a time-by-treatment effect (P = .045), where abundance increased more in AO samples from day 0 to day 15 and 30 compared to other treatments. Transcript abundance for metabolic and myogenic genes was upregulated in post exercise muscle samples with no advantage from supplementation of antioxidants with branched-chain amino acids compared to antioxidants alone.
Collapse
Affiliation(s)
- Emily Kent
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Stephen Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Jason Bruemmer
- USDA APHIS WS, National Wildlife Research Center, Fort Collins, CO
| | - Regan R Casagrande
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Christine Levihn
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Grace Romo
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | | | - Tanja Hess
- Department of Animal Sciences, Colorado State University, Fort Collins CO.
| |
Collapse
|
24
|
Pearson JR, Moodie N, Stout KW, Hawkins WC, Matuszek M, Graham ZA, Siedlik JA, Vardiman JP, Gallagher PM. Similar Responses in the Akt/Protein Kinase B Signaling Pathway Following Different Lower-Body Exercise Volumes in Recreationally Active Men. J Strength Cond Res 2023; 37:1034-1041. [PMID: 36727994 DOI: 10.1519/jsc.0000000000004363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Pearson, JR, Moodie, N, Stout, KW, Hawkins, WC, Matuszek, M, Graham, ZA, Siedlik, JA, Vardiman, JP, and Gallagher, PM. Similar responses in the Akt/protein kinase B (PKB) signaling pathway after different lower-body exercise volumes in recreationally active men. J Strength Cond Res XX(X): 000-000, 2022-This project examined the differences between a single set (SS) compared to multiple sets (MS) of resistance exercise on the Akt/protein kinase B (PKB) signaling pathway, the expression of insulin-like growth factor-1 (IGF-1), and the receptor for IGF-1 (IGF-1R) to better understand the types of resistance training protocols that are most beneficial in stimulating the muscle hypertrophic response. Sixteen healthy men were randomly selected into 2 groups of 8. Subjects in each group received 3 biopsies: (a) before exercise, (b) 15 minutes postexercise, and (c) 180 minutes postexercise. Subjects in the SS group performed 1 set of leg press to failure at 80% of their predetermined 1 repetition maximum (1RM). Subjects in the MS group performed 2 sets of 10 repetitions and 1 set to failure at 80% of their predetermined 1RM, with 3 minutes of rest between each set. Our results indicated no group × time interactions in the concentration of Akt signaling proteins. Furthermore, there were no group × time interactions in IGF-1 or IGF-1R expression. However, phosphorylated 4E-binding protein 1 levels increased 150% from pre to 180 minutes post (p = 0.005). In addition, there was a significantly greater increase in IGF-1R expression in the SS group compared with the MS group (7.99 ± 10.07 vs. 4.41 ± 6.28; p = 0.026). Collectively, we found that a SS of resistance training evokes a similar acute Akt/PKB pathway response as MS in recreationally active men.
Collapse
Affiliation(s)
- Jeremy R Pearson
- Applied Physiology Laboratory and Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| | - Nicole Moodie
- Department of Health, Physics and Applied Sciences, Rockhurst University, Kansas City, Missouri
| | - Kevan W Stout
- Applied Physiology Laboratory and Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| | - William C Hawkins
- Department of Kinesiology and Sport, Southern Indiana University, Evansville, Indiana
| | - Mallory Matuszek
- Applied Physiology Laboratory and Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| | - Zachary A Graham
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Jacob A Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, Nebraska; and
| | - John P Vardiman
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas
| | - Philip M Gallagher
- Applied Physiology Laboratory and Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| |
Collapse
|
25
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
26
|
Kim HK, Radak Z, Takahashi M, Inami T, Shibata S. Chrono-exercise: Time-of-day-dependent physiological responses to exercise. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:50-58. [PMID: 36994180 PMCID: PMC10040331 DOI: 10.1016/j.smhs.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Exercise is an effective strategy to prevent and improve obesity and related metabolic diseases. Exercise increases the metabolic demand in the body. Although many of the metabolic health benefits of exercise depend on skeletal muscle adaptations, exercise exerts many of its metabolic effects through the liver, adipose tissue, and pancreas. Therefore, exercise is the physiological state in which inter-organ signaling is most important. By contrast, circadian rhythms in mammals are associated with the regulation of several physiological and biological functions, including body temperature, sleep-wake cycle, physical activity, hormone secretion, and metabolism, which are controlled by clock genes. Glucose and lipid tolerance reportedly exhibit diurnal variations, being lower in the evening than in the morning. Therefore, the effects of exercise on substrate metabolism at different times of the day may differ. In this review, the importance of exercise timing considerations will be outlined, incorporating a chrono-exercise perspective.
Collapse
|
27
|
Exe-Muscle: An Exercised Human Skeletal Muscle Gene Expression Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148806. [PMID: 35886662 PMCID: PMC9325005 DOI: 10.3390/ijerph19148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Human muscle tissue undergoes dynamic changes in gene expression during exercise, and the dynamics of these genes are correlated with muscle adaptation to exercise. A database of gene expression changes in human muscle before and after exercise was established for data mining. A web-based searchable database, Exe-muscle, was developed using microarray sequencing data, which can help users to retrieve gene expression at different times. Search results provide a complete description of target genes or genes with specific expression patterns. We can explore the molecular mechanisms behind exercise science by studying the changes in muscle gene expression over time before and after exercise. Based on the high-throughput microarray data before and after human exercise, a human pre- and post-exercise database was created using web-based database technology, which researchers can use or share their gene expression data. The Exe-muscle database is accessible online.
Collapse
|
28
|
Peñín-Grandes S, Martín-Hernández J, Valenzuela PL, López-Ortiz S, Pinto-Fraga J, Solá LDR, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Exercise and the hallmarks of peripheral arterial disease. Atherosclerosis 2022; 350:41-50. [DOI: 10.1016/j.atherosclerosis.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
|
29
|
Kuang J, McGinley C, Lee MJC, Saner NJ, Garnham A, Bishop DJ. Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies. PeerJ 2022; 10:e12856. [PMID: 35186464 PMCID: PMC8820226 DOI: 10.7717/peerj.12856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Exercise elicits a range of adaptive responses in skeletal muscle, which include changes in mRNA expression. To better understand the health benefits of exercise training, it is important to investigate the underlying molecular mechanisms of skeletal muscle adaptation to exercise. However, most studies have assessed the molecular events at only a few time-points within a short time frame post-exercise, and the variations of gene expression kinetics have not been addressed systematically. METHODS We assessed the mRNA expression of 23 gene isoforms implicated in the adaptive response to exercise at six time-points (0, 3, 9, 24, 48, and 72 h post exercise) over a 3-day period following a single session of high-intensity interval exercise. RESULTS The temporal patterns of target gene expression were highly variable and the expression of mRNA transcripts detected was largely dependent on the timing of muscle sampling. The largest fold change in mRNA expression of each tested target gene was observed between 3 and 72 h post-exercise. DISCUSSION AND CONCLUSIONS Our findings highlight an important gap in knowledge regarding the molecular response to exercise, where the use of limited time-points within a short period post-exercise has led to an incomplete understanding of the molecular response to exercise. Muscle sampling timing for individual studies needs to be carefully chosen based on existing literature and preliminary analysis of the molecular targets of interest. We propose that a comprehensive time-course analysis on the exercise-induced transcriptional response in humans will significantly benefit the field of exercise molecular biology.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Australia Institute for Musculoskeletal Sciences, Melbourne, Victoria, Australia
| | - Cian McGinley
- Sportscotland Institute of Sport, Stirling, United Kingdom
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
31
|
Stroh AM, Lynch CE, Lester BE, Minchev K, Chambers TL, Montenegro CF, Chavez Martinez C, Fountain WA, Trappe TA, Trappe SW. Human adipose and skeletal muscle tissue DNA, RNA, and protein content. J Appl Physiol (1985) 2021; 131:1370-1379. [PMID: 34435508 DOI: 10.1152/japplphysiol.00343.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this project was to provide a profile of DNA, RNA, and protein content in adipose tissue, which is relatively understudied in humans, to gain more insight into the amount of tissue that may be required for various analyses. Skeletal muscle tissue was also investigated to provide a direct comparison into potential differences between these two highly metabolically active tissues. Basal adipose and skeletal muscle tissue samples were obtained from 10 (7 M, 3 W) recreationally active participants [25 ± 1 yr; 84 ± 3 kg, maximal oxygen consumption (V̇o2max): 3.5 ± 0.2 L/min, body fat: 29 ± 2%]. DNA, RNA, and protein were extracted and subsequently analyzed for quantity and quality. DNA content of adipose and skeletal muscle tissue was 52 ± 14 and 189 ± 44 ng DNA·mg tissue-1, respectively (P < 0.05). RNA content of adipose and skeletal muscle tissue was 46 ± 14 and 537 ± 72 ng RNA·mg tissue-1, respectively (P < 0.05). Protein content of adipose and skeletal muscle tissue was 4 ± 1 and 177 ± 10 µg protein·mg tissue-1, respectively (P < 0.05). In summary, human adipose had 28% of the DNA, 9% of the RNA, and 2% of the protein found in skeletal muscle per mg of tissue. This information should be useful across a wide range of human clinical investigation designs and various laboratory analyses.NEW & NOTEWORTHY This investigation studied DNA, RNA, and protein contents of adipose and skeletal muscle tissues from young active individuals. A series of optimization steps were investigated to aid in determining the optimal approach to extract high-yield and high-quality biomolecules. These findings contribute to the knowledge gap in adipose tissue requirements for molecular biology assays, which is of increasing importance due to the growing interest in adipose tissue research involving human exercise physiology research.
Collapse
Affiliation(s)
- Andrew M Stroh
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | | | | | | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
32
|
Turner DC, Gorski PP, Seaborne RA, Viggars M, Murphy M, Jarvis JC, Martin NR, Stewart CE, Sharples AP. Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo. J Cell Physiol 2021; 236:6534-6547. [PMID: 33586196 PMCID: PMC8653897 DOI: 10.1002/jcp.30328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 11/10/2022]
Abstract
Understanding the role of mechanical loading and exercise in skeletal muscle (SkM) is paramount for delineating the molecular mechanisms that govern changes in muscle mass. However, it is unknown whether loading of bioengineered SkM in vitro adequately recapitulates the molecular responses observed after resistance exercise (RE) in vivo. To address this, the transcriptional and epigenetic (DNA methylation) responses were compared after mechanical loading in bioengineered SkM in vitro and after RE in vivo. Specifically, genes known to be upregulated/hypomethylated after RE in humans were analyzed. Ninety-three percent of these genes demonstrated similar changes in gene expression post-loading in the bioengineered muscle when compared to acute RE in humans. Furthermore, similar differences in gene expression were observed between loaded bioengineered SkM and after programmed RT in rat SkM tissue. Hypomethylation occurred for only one of the genes analysed (GRIK2) post-loading in bioengineered SkM. To further validate these findings, DNA methylation and mRNA expression of known hypomethylated and upregulated genes post-acute RE in humans were also analyzed at 0.5, 3, and 24 h post-loading in bioengineered muscle. The largest changes in gene expression occurred at 3 h, whereby 82% and 91% of genes responded similarly when compared to human and rodent SkM respectively. DNA methylation of only a small proportion of genes analyzed (TRAF1, MSN, and CTTN) significantly increased post-loading in bioengineered SkM alone. Overall, mechanical loading of bioengineered SkM in vitro recapitulates the gene expression profile of human and rodent SkM after RE in vivo. Although some genes demonstrated differential DNA methylation post-loading in bioengineered SkM, such changes across the majority of genes analyzed did not closely mimic the epigenetic response to acute-RE in humans.
Collapse
Affiliation(s)
- Daniel C. Turner
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical BiosciencesKing's College LondonLondonUK
| | - Piotr P. Gorski
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
- Institute for Physical PerformanceNorwegian School of Sport Sciences (NiH)OsloNorway
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
- Center for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Mark Viggars
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Mark Murphy
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Jonathan C. Jarvis
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Neil R.W. Martin
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Adam P. Sharples
- Institute for Physical PerformanceNorwegian School of Sport Sciences (NiH)OsloNorway
| |
Collapse
|
33
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, DE Andrade ALL, Guedes DN, Ugrinowitsch C, Camera DM. Time Course of Skeletal Muscle miRNA Expression after Resistance, High-Intensity Interval, and Concurrent Exercise. Med Sci Sports Exerc 2021; 53:1708-1718. [PMID: 33731656 DOI: 10.1249/mss.0000000000002632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Exercise-induced microRNA (miRNA) expression has been implicated in the regulation of skeletal muscle plasticity. However, the specificity and acute time course in miRNA expression after divergent exercise modes are unknown. In a randomized crossover design, we compared the acute expression profile of eight skeletal muscle miRNAs previously reported to be involved in skeletal muscle development, growth, and maintenance after a bout of either resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent resistance and high-intensity interval exercises (CE). METHODS Nine untrained young men (23.9 ± 2.8 yr, 70.1 ± 14.9 kg, 177.2 ± 3.0 cm, 41.4 ± 5.2 mL·kg-1·min-1) underwent a counterbalanced crossover design in which they performed bouts of RE (2 × 10 repetitions maximum 45° leg press and leg extension exercises), HIEE (12 × 1-min sprints at V˙O2peak with 1-min rest intervals between sprints), and CE (RE followed by HIIE), separated by 1 wk. Vastus lateralis biopsies were harvested immediately before (Pre) and immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS There were similar increases (main effect of time; P < 0.05) in miR-1-3p, miR-133a-3p, miR-133b, miR-181a-3p, and miR-486 expression at 8 h from Pre with all exercise modes. Besides a main effect of time, miR-23a-3p and miR-206 presented a main effect of condition with lower expression after HIIE compared with RE and CE. CONCLUSIONS Select miRNAs (miR-1-3p, miR-133a-3p, miR-133b, miR-23a-3p, miR-181a-3p, miR-206, miR-486) do not exhibit an expression specificity in the acute recovery period after a single bout of RE, HIIE, or CE in skeletal muscle. Our data also indicate that RE has a higher effect on the expression of miR-23a-3p and miR-206 than HIIE. As upregulation of these miRNAs seems to be confined to the 8-h period after exercise, this may subsequently affect the expression patterns of target mRNAs forming the basis of exercise-induced adaptive responses.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Manoel Emílio Lixandrão
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | | | | | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, São Paulo, BRAZIL
| | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, Victoria, AUSTRALIA
| |
Collapse
|
34
|
The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle. Eur J Appl Physiol 2021; 121:2913-2924. [PMID: 34196787 PMCID: PMC10150453 DOI: 10.1007/s00421-021-04758-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Aerobic (AE) and resistance (RE) exercise elicit unique adaptations in skeletal muscle. The purpose here was to compare the post-exercise response of mTOR signaling and select autophagy markers in skeletal muscle to acute AE and RE. METHODS In a randomized, cross-over design, six untrained men (27 ± 3 years) completed acute AE (40 min cycling, 70% HRmax) and RE (8 sets, 10 repetitions, 65% 1RM). Muscle biopsies were taken at baseline, and at 1 h and 4 h following each exercise. Western blot analyses were performed to examine total and phosphorylated protein levels. Upstream regulator analyses of skeletal muscle transcriptomics were performed to discern the predicted activation states of mTOR and FOXO3. RESULTS Compared to AE, acute RE resulted in greater phosphorylation (P < 0.05) of mTORSer2448 at 4 h, S6K1Thr389 at 1 h, and 4E- BP1Thr37/46 during the post-exercise period. However, both AE and RE increased mTORSer2448 and S6K1Thr389 phosphorylation at 4 h (P < 0.05). Upstream regulator analyses revealed the activation state of mTOR was increased for both AE (z score, 2.617) and RE (z score, 2.789). No changes in LC3BI protein were observed following AE or RE (P > 0.05), however, LC3BII protein was decreased after both AE and RE at 1 h and 4 h (P < 0.05). p62 protein content was also decreased at 4 h following AE and RE (P < 0.05). CONCLUSION Both acute AE and RE stimulate mTOR signaling and similarly impact select markers of autophagy. These findings indicate the early adaptive response of untrained human skeletal muscle to divergent exercise modes is not likely mediated through large differences in mTOR signaling or autophagy.
Collapse
|
35
|
Maunder E, Bradley HE, Deane CS, Hodgson AB, Jones M, Joanisse S, Turner AM, Breen L, Philp A, Wallis GA. Effects of short-term graded dietary carbohydrate intake on intramuscular and whole body metabolism during moderate-intensity exercise. J Appl Physiol (1985) 2021; 131:376-387. [PMID: 34043470 DOI: 10.1152/japplphysiol.00811.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 wk) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower [LOW, 2.40 ± 0.66 g CHO·kg-1·day-1, 21.3 ± 0.5% of energy intake (EI)], moderate (MOD, 4.98 ± 1.31 g CHO·kg-1·day-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO·kg-1·day-1, 60.5 ± 1.6% EI) CHO. Preexercise muscle glycogen content was lower in LOW [54.3 ± 26.4 mmol·kg-1 wet weight (ww)] compared with MOD (82.6 ± 18.8 mmol·kg -1 ww) and HIGH (80.4 ± 26.0 mmol·kg-1 ww, P < 0.001; MOD vs. HIGH, P = 0.85). Whole body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW [respiratory exchange ratio (RER): 0.81 ± 0.01] compared with MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P = 0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ∼5.0 to ∼6.5 g CHO·kg-1·day-1 (46% to 61% EI), while muscle glycogen, gene expression, and metabolic responses were sensitive to more marked reductions in CHO intake (∼2.4 g CHO·kg-1·day-1, ∼21% EI).NEW & NOTEWORTHY The data presented here suggest that metabolic responses to steady-state aerobic exercise are somewhat resistant to short-term changes in dietary carbohydrate (CHO) intake within the 5-6.5 g CHO·kg-1·day-1 [46-61% energy intake (EI)] range. In contrast, reduction in short-term dietary CHO intake to ∼2.4 g CHO·kg-1·day-1 (21% EI) evoked clear changes indicative of increased fat and decreased CHO metabolism during exercise.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Helen E Bradley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael Jones
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Joanisse
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alice M Turner
- Institute for Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham National Health Services Foundation Trust, Heartlands Hospital, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Philp
- Healthy Ageing Research Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Medical School, University of New South Wales Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Gareth A Wallis
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Harzer W, Augstein A, Olbert C, Juenger D, Keil C, Weiland B. Satellite cell capacity for functional adaptation of masseter muscle in Class II and Class III patients after orthognathic surgery-a pilot study. Eur J Orthod 2021; 43:234-240. [PMID: 32452521 DOI: 10.1093/ejo/cjaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The aim of the prospective pilot study was to analyze the biomarkers CD34, Pax7, Myf5, and MyoD for stimulation of satellite cells (SCs), which are responsible for functional adaptation. SUBJECTS AND METHODS Forty-five Caucasian patients were consecutively recruited from the Maxillo-Facial-Surgery at TU Dresden. Eleven orthognathic Class III patients, 24 Class II patients, and 10 controls with Class I were involved in the study. Tissue samples from masseter muscle were taken from the patients pre-surgically (T1) and 7 months later (T2). Samples from controls were taken during the extraction of third molars in the mandible. Polymerase chain reaction (PCR) for relative quantification of gene expression was calculated with the delta delta cycle threshold (ΔΔCT) method. RESULTS The results show significant differences for the marker of SC stimulation between the controls, the patient groups, males, and females. The gene expression of CD34 was post-surgically upregulated for Class III (0.35-0.77, standard deviation [SD] = 0.39, P < 0.05) in comparison with controls. For Pax7, there was a significant difference shown between the retrognathic and the prognathic group because of downregulation in Class II patients (1.64-0.76, SD = 0.55, P < 0.05). In Class III patients, there was a significant upregulation for Myf5 (0.56-1.05, SD = 0.52, P < 0.05) after surgery too. CONCLUSIONS The significant decline of Pax7 in Class II patients indicates a deficiency of stimulated SC post-surgically. The expression of CD34 and Myf5 in Class II stayed unchanged. In contrast, there was an upregulation for all Class III patients, mainly in females, shown post-surgically. This may be one reason for weak functional adaptation and relapse in Class II patients.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Antje Augstein
- Center for Heart Diseases, Technical University of Dresden, Germany
| | - Christin Olbert
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| |
Collapse
|
37
|
Warren JL, Hunter GR, Gower BA, Bamman MM, Windham ST, Moellering DR, Fisher G. Exercise Effects on Mitochondrial Function and Lipid Metabolism during Energy Balance. Med Sci Sports Exerc 2020; 52:827-834. [PMID: 31652245 DOI: 10.1249/mss.0000000000002190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE Aerobic exercise training (AET) has been shown to improve mitochondrial bioenergetics and upregulate proteins related to lipid metabolism. However, it remains to be determined if these alterations associated with AET persist when measured in energy balance (EB) in the days after the last bout of training. The purpose of the study was to test the hypothesis that improvements in skeletal muscle mitochondrial function induced by AET observed in previous literature would persist when measured after restoring EB conditions 72 h removed from the last exercise bout. METHODS Participants were 14 premenopausal women (age = 31.2 ± 6.7 yr, BMI = 26.6 ± 5.1 kg·m). The AET program required three monitored training sessions per week for 8-16 wk. Skeletal muscle biopsies were obtained at baseline and after 8-16 wk of AET (≥72 h after the last exercise bout). All food was provided for 72 h before biopsies, and EB was managed 24 h before testing within ±100 kcal of measured energy requirements using a whole-room calorimeter. Mitochondrial oxidative capacity was quantified in permeabilized muscle fibers from the vastus lateralis. RESULTS We found that AET increased coupled respiration (154%) and uncoupled respiration (90%) rates using a fatty acid substrate (palmitoyl carnitine) (P < 0.05). However, when rates were normalized to complex IV activity (a marker of mitochondrial content), no significant differences were observed. In addition, there were no changes in proteins known to mediate mitochondrial biogenesis or lipid transport and metabolism after AET. CONCLUSION Eight to 16 wk of AET improved mitochondrial capacity under fatty acid substrate when assessed in EB, which appears to be due to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jonathan L Warren
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Marcas M Bamman
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
38
|
Harzer W, Augstein A, Juenger D, Keil C, Weiland B. Notch expression profile and satellite cell stimulation in masseter muscle before and after orthognathic surgery. J Craniomaxillofac Surg 2020; 49:93-97. [PMID: 33357968 DOI: 10.1016/j.jcms.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022] Open
Abstract
The aim of this prospective study was to compare the expression of the Notch receptor family with the biomarker for stimulation of satellite cells (SC), which are responsible for functional adaptation. Tissue samples from the masseter muscle were taken presurgically and 7 months later. Samples from controls came from the extraction of third molars. The expression of Notch 1 to 4 and the satellite cell markers CD34, Pax7, and MyoD1 were investigated. PCR was used for relative quantification of gene expression, which was calculated with the ΔΔCT method. The study involved 38 white patients - 10 prognathic, 18 retrognathic, and 10 orthognathic controls. The median value for Notch 1 was significantly reduced presurgically for prognathic (0.46, SD 0.45) and retrognathic (0.57, SD 0.35) patients compared with the controls. Postsurgically, Notch 2 was significantly upregulated in the prognathic group (0.55, SD 0.28/1.37, SD 0.85). Similarly, there was upregulation of Notch 3 in the prognathic group (0.33, SD 0.42/0.59, SD 1.37) and downregulation in retrognathic patients (0.59, SD 0.79/0.52, SD 0.97). Upregulations for the satellite cell markers CD34 and Pax7 were also found in prognathic patients. The significant upregulation of Notch 1-3 and CD34 in prognathics, but unchanged MyoD expression, signals high stimulation for SC and maintenance of the regeneration cell pool. A lower expression of Notch and SC in retrognathic patients could be responsible for weak functional adaptation.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Antje Augstein
- Center for Heart Diseases, Fetscherstr. 76, 01307, Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
39
|
Seaborne RA, Sharples AP. The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling. Exerc Sport Sci Rev 2020; 48:188-200. [PMID: 32658040 DOI: 10.1249/jes.0000000000000227] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explore work from within the field of skeletal muscle and across the broader field of molecular biology, to propose that the link between exercise and skeletal muscle adaptation lies in the interplay between metabolism and epigenetics. Future investigations into such an interaction are crucial to advance our understanding of the beneficial effects of exercise on performance and health.
Collapse
|
40
|
Almquist NW, Ellefsen S, Sandbakk Ø, Rønnestad BR. Effects of including sprints during prolonged cycling on hormonal and muscular responses and recovery in elite cyclists. Scand J Med Sci Sports 2020; 31:529-541. [PMID: 33113253 PMCID: PMC7984145 DOI: 10.1111/sms.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022]
Abstract
This study investigated the acute effects of including 30‐second sprints during prolonged low‐intensity cycling on muscular and hormonal responses and recovery in elite cyclists. Twelve male cyclists (VO2max, 73.4 ± 4.0 mL/kg/min) completed a randomized crossover protocol, wherein 4 hours of cycling at 50% of VO2max were performed with and without inclusion of three sets of 3 × 30 seconds maximal sprints (E&S vs E, work‐matched). Muscle biopsies (m. vastus lateralis) and blood were sampled at Pre, immediately after (Post) and 3 hours after (3 h) finalizing sessions. E&S led to greater increases in mRNA levels compared with E for markers of fat metabolism (PDK4, Δ‐Log2 fold change between E&S and E ± 95%CI Post; 2.1 ± 0.9, Δ3h; 1.3 ± 0.7) and angiogenesis (VEGFA, Δ3h; 0.3 ± 0.3), and greater changes in markers of muscle protein turnover (myostatin, ΔPost; −1.4 ± 1.2, Δ3h; −1.3 ± 1.3; MuRF1, ΔPost; 1.5 ± 1.2, all P < .05). E&S showed decreased mRNA levels for markers of ion transport at 3h (Na+‐K+ α1; −0.6 ± 0.6, CLC1; −1.0 ± 0.8 and NHE1; −0.3 ± 0.2, all P < .05) and blunted responses for a marker of mitochondrial biogenesis (PGC‐1α, Post; −0.3 ± 0.3, 3h; −0.4 ± 0.3, P < .05) compared with EE&S and E showed similar endocrine responses, with exceptions of GH and SHBG, where E&S displayed lower responses at Post (GH; −4.1 ± 3.2 μg/L, SHBG; −2.2 ± 1.9 nmol/L, P < .05). Both E&S and E demonstrated complete recovery in isokinetic knee extension torque 24 hours after exercise. In conclusion, we demonstrate E&S to be an effective exercise protocol for elite cyclists, which potentially leads to beneficial adaptations in skeletal muscle without impairing muscle recovery 24 hours after exercise.
Collapse
Affiliation(s)
- Nicki Winfield Almquist
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.,Center for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Ellefsen
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Øyvind Sandbakk
- Center for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bent R Rønnestad
- Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
41
|
Lavin KM, Perkins RK, Jemiolo B, Raue U, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation in women. J Appl Physiol (1985) 2020; 129:1493-1504. [PMID: 33054657 DOI: 10.1152/japplphysiol.00655.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Low muscle mass and frailty are especially prevalent in older women and may be accelerated by age-related inflammation. Habitual physical activity throughout the life span (lifelong exercise) may prevent muscle inflammation and associated pathologies, but this is unexplored in women. This investigation assessed basal and acute exercise-induced inflammation in three cohorts of women: young exercisers (YE, n = 10, 25 ± 1 yr, [Formula: see text]: 44 ± 2 mL/kg/min, quadriceps size: 59 ± 2 cm2), old healthy nonexercisers (OH, n = 10, 75 ± 1 yr, [Formula: see text]: 18 ± 1 mL/kg/min, quadriceps size: 40 ± 1 cm2), and lifelong aerobic exercisers with a 48 ± 2 yr aerobic training history (LLE, n = 7, 72 ± 2 yr, [Formula: see text]: 26 ± 2 mL/kg/min, quadriceps size: 42 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein (CRP), and IGF-1 were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 reps, 70% 1-repetition maximum) to assess gene expression of cytokines (IL-6, TNF-α, IL-1β, IL-10, IL-4, IL-1Ra, TGF-β), chemokines (IL-8, MCP-1), cyclooxygenase enzymes (COX-1, COX-2), prostaglandin E2 synthases (mPGES-1, cPGES) and receptors (EP3-4), and macrophage markers (CD16b, CD163), as well as basal macrophage abundance (CD68+ cells). The older cohorts (LLE + OH combined) demonstrated higher muscle IL-6 and COX-1 (P ≤ 0.05) than YE, whereas LLE expressed lower muscle IL-1β (P ≤ 0.05 vs. OH). Acute exercise increased muscle IL-6 expression in YE only, whereas the older cohorts combined had the higher postexercise expression of IL-8 and TNF-α (P ≤ 0.05 vs. YE). Only LLE had increased postexercise expression of muscle IL-1β and MCP-1 (P ≤ 0.05 vs. preexercise). Thus, aging in women led to mild basal and exercise-induced inflammation that was unaffected by lifelong aerobic exercise, which may have implications for long-term function and adaptability.NEW & NOTEWORTHY We previously reported a positive effect of lifelong exercise on skeletal muscle inflammation in aging men. This parallel investigation in women revealed that lifelong exercise did not protect against age-related increases in circulating or muscle inflammation and that preparedness to handle loading stress was not preserved by lifelong exercise. Further investigation is necessary to understand why lifelong aerobic exercise may not confer the same anti-inflammatory benefits in women as it does in men.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
42
|
Howard EE, Margolis LM, Berryman CE, Lieberman HR, Karl JP, Young AJ, Montano MA, Evans WJ, Rodriguez NR, Johannsen NM, Gadde KM, Harris MN, Rood JC, Pasiakos SM. Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit. Am J Physiol Endocrinol Metab 2020; 319:E678-E688. [PMID: 32776828 PMCID: PMC7750513 DOI: 10.1152/ajpendo.00157.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P < 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P < 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- University of Connecticut, Storrs, Connecticut
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- Florida State University, Tallahassee, Florida
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - William J Evans
- University of California at Berkeley, Berkeley, California
- Duke University, Durham, North Carolina
| | | | - Neil M Johannsen
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Kishore M Gadde
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa N Harris
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jennifer C Rood
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
43
|
Perkins RK, Lavin KM, Raue U, Jemiolo B, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on expression of innate immune components in human skeletal muscle. J Appl Physiol (1985) 2020; 129:1483-1492. [PMID: 32969782 DOI: 10.1152/japplphysiol.00615.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this investigation was to evaluate the effects of aging and lifelong exercise on skeletal muscle components of the innate immune system. Additionally, the effects of an acute resistance exercise (RE) challenge were explored. Three groups of men were studied: young exercisers (YE: n = 10, 25 ± 1 yr; V̇o2max: 53 ± 3 mL/kg/min; quadriceps size: 78 ± 3 cm2), lifelong aerobic exercisers with a 53 ± 1 yr training history (LLE; n = 21, 74 ± 1 yr; V̇o2max: 34 ± 1 mL/kg/min; quadriceps size: 67 ± 2 cm2), and old healthy nonexercisers (OH: n = 10, 75 ± 1 yr; V̇o2max: 22 ± 1 mL/kg/min, quadriceps size: 56 ± 3 cm2). Vastus lateralis muscle biopsies were obtained in the basal state and 4 h after RE (3 × 10 reps, 70% of 1 repetition maximum) to assess Toll-like receptors (TLR)1-10, TLR adaptors (Myd88 and TRIF), and NF-κB pathway components (IκΒα and IKKβ) mRNA expression. Basal TLR3, TLR6, and TLR7 tended to be higher (P ≤ 0.10) with aging (LLE and OH combined). In general, RE increased expression of TLR1 and TLR8 (P ≤ 0.10) and TLR3 and TLR4 (P < 0.05), although TLR3 did not respond in OH. Both TLR adaptors also responded to the exercise bout; these were primarily (Myd88, main effect P ≤ 0.10) or exclusively (TRIF, P < 0.05) driven by the OH group. In summary, aging appears to increase basal expression of some innate immune components in human skeletal muscle, and lifelong aerobic exercise does not affect this age-related increase. An exercise challenge stimulates the expression of several TLRs, while the TLR adaptor response appears to be dysregulated with aging and maintained with lifelong exercise. Partially preserved muscle mass, coupled with a notable immunity profile, suggests lifelong exercisers are likely better prepared for a stress that challenges the immune system.NEW & NOTEWORTHY Findings from this investigation provide novel insight into the effect of aging and lifelong aerobic exercise on structural components of the innate immune system in skeletal muscle of humans. Data presented here suggest aging increases basal expression of select Toll-like receptors (TLRs), and lifelong exercise does not impact this age-related increase. Additionally, acute exercise stimulates gene expression of several TLRs, while the adaptor response is likely dysregulated with aging and maintained with lifelong exercise.
Collapse
Affiliation(s)
- Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
44
|
Vitamin C and E Treatment Blunts Sprint Interval Training-Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans. Antioxidants (Basel) 2020; 9:antiox9090879. [PMID: 32957522 PMCID: PMC7555371 DOI: 10.3390/antiox9090879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Sprint interval training (SIT) has emerged as a time-efficient training regimen for young individuals. Here, we studied whether SIT is effective also in elderly individuals and whether the training response was affected by treatment with the antioxidants vitamin C and E. Recreationally active elderly (mean age 65) men received either vitamin C (1 g/day) and vitamin E (235 mg/day) or placebo. Training consisted of nine SIT sessions (three sessions/week for three weeks of 4-6 repetitions of 30-s all-out cycling sprints) interposed by 4 min rest. Vastus lateralis muscle biopsies were taken before, 1 h after, and 24 h after the first and last SIT sessions. At the end of the three weeks of training, SIT-induced changes in relative mRNA expression of reactive oxygen/nitrogen species (ROS)- and mitochondria-related proteins, inflammatory mediators, and the sarcoplasmic reticulum Ca2+ channel, the ryanodine receptor 1 (RyR1), were blunted in the vitamin treated group. Western blots frequently showed a major (>50%) decrease in the full-length expression of RyR1 24 h after SIT sessions; in the trained state, vitamin treatment seemed to provide protection against this severe RyR1 modification. Power at exhaustion during an incremental cycling test was increased by ~5% at the end of the training period, whereas maximal oxygen uptake remained unchanged; vitamin treatment did not affect these measures. In conclusion, treatment with the antioxidants vitamin C and E blunts SIT-induced cellular signaling in skeletal muscle of elderly individuals, while the present training regimen was too short or too intense for the changes in signaling to be translated into a clear-cut change in physical performance.
Collapse
|
45
|
Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ, Adkins JN, Amar D, Dasari S, Drugan JK, Evans CR, Fernandez FM, Li Y, Lindholm ME, Nogiec CD, Radom-Aizik S, Sanford JA, Schenk S, Snyder MP, Tomlinson L, Tracy RP, Trappe S, Vanderboom P, Walsh MJ, Lee Alekel D, Bekirov I, Boyce AT, Boyington J, Fleg JL, Joseph LJ, Laughlin MR, Maruvada P, Morris SA, McGowan JA, Nierras C, Pai V, Peterson C, Ramos E, Roary MC, Williams JP, Xia A, Cornell E, Rooney J, Miller ME, Ambrosius WT, Rushing S, Stowe CL, Jack Rejeski W, Nicklas BJ, Pahor M, Lu CJ, Trappe T, Chambers T, Raue U, Lester B, Bergman BC, Bessesen DH, Jankowski CM, Kohrt WM, Melanson EL, Moreau KL, Schauer IE, Schwartz RS, Kraus WE, Slentz CA, Huffman KM, Johnson JL, Willis LH, Kelly L, Houmard JA, Dubis G, Broskey N, Goodpaster BH, Sparks LM, Coen PM, Cooper DM, Haddad F, Rankinen T, Ravussin E, Johannsen N, Harris M, Jakicic JM, Newman AB, Forman DD, Kershaw E, Rogers RJ, Nindl BC, Page LC, Stefanovic-Racic M, Barr SL, Rasmussen BB, Moro T, Paddon-Jones D, Volpi E, Spratt H, Musi N, Espinoza S, Patel D, Serra M, Gelfond J, Burns A, Bamman MM, Buford TW, Cutter GR, Bodine SC, Esser K, Farrar RP, Goodyear LJ, Hirshman MF, Albertson BG, Qian WJ, Piehowski P, Gritsenko MA, Monore ME, Petyuk VA, McDermott JE, Hansen JN, Hutchison C, Moore S, Gaul DA, Clish CB, Avila-Pacheco J, Dennis C, Kellis M, Carr S, Jean-Beltran PM, Keshishian H, Mani D, Clauser K, Krug K, Mundorff C, Pearce C, Ivanova AA, Ortlund EA, Maner-Smith K, Uppal K, Zhang T, Sealfon SC, Zaslavsky E, Nair V, Li S, Jain N, Ge Y, Sun Y, Nudelman G, Ruf-zamojski F, Smith G, Pincas N, Rubenstein A, Anne Amper M, Seenarine N, Lappalainen T, Lanza IR, Sreekumaran Nair K, Klaus K, Montgomery SB, Smith KS, Gay NR, Zhao B, Hung CJ, Zebarjadi N, Balliu B, Fresard L, Burant CF, Li JZ, Kachman M, Soni T, Raskind AB, Gerszten R, Robbins J, Ilkayeva O, Muehlbauer MJ, Newgard CB, Ashley EA, Wheeler MT, Jimenez-Morales D, Raja A, Dalton KP, Zhen J, Suk Kim Y, Christle JW, Marwaha S, Chin ET, Hershman SG, Hastie T, Tibshirani R, Rivas MA. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell 2020; 181:1464-1474. [DOI: 10.1016/j.cell.2020.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
|
46
|
Lavin KM, Perkins RK, Jemiolo B, Raue U, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol (1985) 2020; 128:87-99. [PMID: 31751180 PMCID: PMC6985808 DOI: 10.1152/japplphysiol.00495.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg-1·min-1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg-1·min-1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg-1·min-1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1β, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-β (TGF-β)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher (P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels (P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 (P ≤ 0.05 vs. YE), TNF-α, TGF-β, and EP4 levels (P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-β, and IL-8 (P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 (P ≤ 0.10), mPGES-1, and EP3 expression (P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle.NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
47
|
Gries KJ, Minchev K, Raue U, Grosicki GJ, Begue G, Finch WH, Graham B, Trappe TA, Trappe S. Single-muscle fiber contractile properties in lifelong aerobic exercising women. J Appl Physiol (1985) 2019; 127:1710-1719. [PMID: 31670601 PMCID: PMC6962607 DOI: 10.1152/japplphysiol.00459.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased (P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful (P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging (P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level.NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.
Collapse
Affiliation(s)
- Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | | - Gwénaëlle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bruce Graham
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
48
|
Sabaratnam R, Pedersen AJ, Eskildsen TV, Kristensen JM, Wojtaszewski JFP, Højlund K. Exercise Induction of Key Transcriptional Regulators of Metabolic Adaptation in Muscle Is Preserved in Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:4909-4920. [PMID: 31135885 DOI: 10.1210/jc.2018-02679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Type 2 diabetes (T2D) is characterized by insulin resistance in skeletal muscle. Regular exercise improves insulin sensitivity, mitochondrial function, and energy metabolism. Thus, an impaired response to exercise may contribute to insulin resistance. OBJECTIVE We hypothesized that key transcriptional regulators of metabolic adaptation to exercise show an attenuated response in skeletal muscle in T2D. DESIGN AND PATIENTS Skeletal muscle biopsies were obtained from 13 patients with T2D and 14 age- and weight-matched controls before, immediately after 1 hour acute exercise (70% maximal pulmonary oxygen uptake), and 3 hours into recovery to examine mRNA expression of key transcription factors and downstream targets and activity of key upstream kinases underlying the metabolic adaptation to exercise. RESULTS Acute exercise increased gene expression of the nuclear hormone receptor 4A (NR4A) subfamily (∼4- to 36-fold) and other key transcription factors, including ATF3, EGR1, JUNB, SIK1, PPARA, and PPARG (∼1.5- to 12-fold), but with no differences between groups. The expression of NR4A1 (approximately eightfold) and NR4A3 (∼75-fold) was further increased 3 hours into recovery, whereas most muscle transcripts sustained elevated or returned to basal levels, again with no differences between groups. Muscle expression of HKII and SLC2A4 and hexokinase II protein content were reduced in patients with T2D. The phosphorylation of p38 MAPK, Erk1/2, Ca2+/calmodulin-dependent kinase II, and cAMP-responsive element-binding protein was equally increased in response to exercise and/or recovery in both groups. CONCLUSION Acute exercise elicits a pronounced and overall similar increase in expression of key transcription factors and activation of key upstream kinases involved in muscle metabolic adaptation to exercise in patients with T2D and weight-matched controls.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Andreas J Pedersen
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense M, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jonas M Kristensen
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
49
|
Wu J, Saovieng S, Cheng IS, Jensen J, Jean WH, Alkhatib A, Kao CL, Huang CY, Kuo CH. Satellite cells depletion in exercising human skeletal muscle is restored by ginseng component Rg1 supplementation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Wessner B, Ploder M, Tschan H, Ferunaj P, Erindi A, Strasser EM, Bachl N. Effects of acute resistance exercise on proteolytic and myogenic markers in skeletal muscles of former weightlifters and age-matched sedentary controls. J Sports Med Phys Fitness 2019; 59:1915-1924. [PMID: 31219250 DOI: 10.23736/s0022-4707.19.09740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Former athletes who continue a regular, performance-oriented training throughout life provide a unique model for studying successful aging. With this in mind, the current study aimed to compare the effects of an acute resistance exercise on proteolytic and myogenic markers in older weightlifters and untrained participants. METHODS Sixteen older men (8 former weightlifters, 8 age-matched untrained controls) with an age of 61.2±8.2 years volunteered to participate in the study. Two days after assessing 1-RM, an acute exercise protocol (3 sets, 70-75% of one-repetition maximum until voluntary fatigue) was applied unilaterally on the dominant leg while the other leg served as control. Three hours after termination of the exercise, skeletal muscle tissue was obtained from m. vastus lateralis of both legs. RESULTS Acute resistance exercise led to an up-regulation (>1.5-fold) of 14 genes in controls and of 13 genes in weightlifters. The transcription factors FOS and early growth response 1 (EGR1), as well as the E3 protein ligase TRIM63 comprised the most responsive genes to resistance exercise (EGR1:15.7-fold increase, P=0.003, FOS: 36.3-fold increase, P<0.001; TRIM63: 2.9-fold increase, P<0.001). In addition, myostatin levels were decreased in the exercised leg (0.6-fold, P<0.001). FOXO3 gene expression was significantly higher in weightlifters than in untrained controls (1.5-fold, P=0.042). CONCLUSIONS Trained and untrained older adults respond to an acute bout of resistance exercise in a very similar way irrespective of training status, although some differences exist in FOXO3, potentially reflecting the superior capacity of trained persons in regulating cellular homeostasis.
Collapse
Affiliation(s)
- Barbara Wessner
- Center for Sport Science and University Sports, University of Vienna, Vienna, Austria -
| | - Martin Ploder
- Danube Hospital, Social Medical Center East, Vienna, Austria
| | - Harald Tschan
- Center for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | | | | | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Center South, Vienna, Austria
| | - Norbert Bachl
- Center for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Austrian Institute for Sports Medicine, Vienna, Austria
| |
Collapse
|