1
|
Risvanli A, Tanyeri B, Yildirim G, Tatar Y, Gedikpinar M, Kalender H, Safak T, Yuksel B, Karagulle B, Yilmaz O, Kilinc MA. Metrisor: A novel diagnostic method for metritis detection in cattle based on machine learning and sensors. Theriogenology 2024; 223:115-121. [PMID: 38714077 DOI: 10.1016/j.theriogenology.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
The Metrisor device has been developed using gas sensors for rapid, highly accurate and effective diagnosis of metritis. 513 cattle uteri were collected from abattoirs and swabs were taken for microbiological testing. The Metrisor device was used to measure intrauterine gases. The results showed a bacterial growth rate of 75.75 % in uteri with clinical metritis. In uteri positive for clinical metritis, the most commonly isolated and identified bacteria were Trueperella pyogenes, Fusobacterium necrophorum and Escherichia coli. Measurements taken with Metrisor to determine the presence of metritis in the uterus yielded the most successful results in evaluations of relevant machine learning algorithms. The ICO (Iterative Classifier Optimizer) algorithm achieved 71.22 % accuracy, 64.40 % precision and 71.20 % recall. Experiments were conducted to examine bacterial growth in the uterus and the random forest algorithm produced the most successful results with accuracy, precision and recall values of 78.16 %, 75.30 % and 78.20 % respectively. ICO also showed high performance in experiments to determine bacterial growth in metritis-positive uteri, with accuracy, precision and recall values of 78.97 %, 77.20 % and 79.00 %, respectively. In conclusion, the Metrisor device demonstrated high accuracy in detecting metritis and bacterial growth in uteri and could identify bacteria such as E. coli, S. aureus, coagulase-negative staphylococci, T. pyogenes, Bacillus spp., Clostridium spp. and F. necrophorum with rates up to 80 %. It provides a reliable, rapid and effective means of detecting metritis in animals in the field without the need for laboratory facilities.
Collapse
Affiliation(s)
- Ali Risvanli
- Kyrgyz-Turkish Manas University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Bishkek, Kyrgyzstan; University of Firat, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 23100, Elazig, Turkey.
| | - Burak Tanyeri
- Firat University, Civil Aviation School, Department of Airframe & Powerplant Maintenance, Elazig, Turkey
| | - Güngör Yildirim
- Firat University, Faculty of Engineer, Department of Computer Engineer, Elazig, Turkey
| | - Yetkin Tatar
- Firat University, Faculty of Engineer, Department of Computer Engineer, Elazig, Turkey
| | - Mehmet Gedikpinar
- Firat University, Faculty of Technology, Department of Electrical Engineer, Elazig, Turkey
| | - Hakan Kalender
- University of Firat, Faculty of Veterinary Medicine, Department of Microbiology, 23100, Elazig, Turkey
| | - Tarik Safak
- University of Kastamonu, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 37100, Kastamonu, Turkey
| | - Burak Yuksel
- University of Firat, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 23100, Elazig, Turkey
| | - Burcu Karagulle
- University of Firat, Faculty of Veterinary Medicine, Department of Microbiology, 23100, Elazig, Turkey
| | - Oznur Yilmaz
- University of Siirt, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 56100, Siirt, Turkey
| | - Mehmet Akif Kilinc
- University of Bingol, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 12100, Bingol, Turkey
| |
Collapse
|
2
|
Dragonieri S, Quaranta VN, Portacci A, Ahroud M, Di Marco M, Ranieri T, Carpagnano GE. Effect of Food Intake on Exhaled Volatile Organic Compounds Profile Analyzed by an Electronic Nose. Molecules 2023; 28:5755. [PMID: 37570725 PMCID: PMC10420885 DOI: 10.3390/molecules28155755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Exhaled breath analysis using an e-nose is a groundbreaking tool for exhaled volatile organic compound (VOC) analysis, which has already shown its applicability in several respiratory and systemic diseases. It is still unclear whether food intake can be considered a confounder when analyzing the VOC-profile. We aimed to assess whether an e-nose can discriminate exhaled breath before and after predefined food intake at different time periods. We enrolled 28 healthy non-smoking adults and collected their exhaled breath as follows: (a) before food intake, (b) within 5 min after food consumption, (c) within 1 h after eating, and (d) within 2 h after eating. Exhaled breath was collected by a formerly validated method and analyzed by an e-nose (Cyranose 320). By principal component analysis, significant variations in the exhaled VOC-profile were shown for principal component 1 (capturing 63.4% of total variance) when comparing baseline vs. 5 min and vs. 1 h after food intake (both p < 0.05). No significance was shown in the comparison between baseline and 2 h after food intake. Therefore, the exhaled VOC-profile seems to be influenced by very recent food intake. Interestingly, two hours might be sufficient to avoid food induced alterations of exhaled VOC-spectrum when sampling for research protocols.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.N.Q.); (A.P.); (M.A.); (M.D.M.); (T.R.); (G.E.C.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Neyrinck AM, Rodriguez J, Zhang Z, Nazare JA, Bindels LB, Cani PD, Maquet V, Laville M, Bischoff SC, Walter J, Delzenne NM. Breath volatile metabolome reveals the impact of dietary fibres on the gut microbiota: Proof of concept in healthy volunteers. EBioMedicine 2022; 80:104051. [PMID: 35561452 PMCID: PMC9108873 DOI: 10.1016/j.ebiom.2022.104051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023] Open
Abstract
Background Current data suggest that dietary fibre (DF) interaction with the gut microbiota largely contributes to their physiological effects. The bacterial fermentation of DF leads to the production of metabolites, most of them are volatile. This study analyzed the breath volatile metabolites (BVM) profile in healthy individuals (n=15) prior and after a 3-week intervention with chitin-glucan (CG, 4.5 g/day), an insoluble fermentable DF. Methods The present exploratory study presents the original data related to the secondary outcomes, notably the analysis of BVM. BVM were analyzed throughout the test days -in fasting state and after standardized meals - using selected ion flow tube mass spectrometry (SIFT-MS). BVM production was correlated to the gut microbiota composition (Illumina sequencing, primary outcome), analyzed before and after the intervention. Findings The data reveal that the post-prandial state versus fasting state is a key determinant of BVM fingerprint. Correlation analyses with fecal microbiota spotlighted butyrate-producing bacteria, notably Faecalibacterium, as dominant bacteria involved in butyrate and other BVM expiration. CG intervention promotes interindividual variations of fasting BVM, and decreases or delays the expiration of most exhaled BVM in favor of H2 expiration, without any consequence on gastrointestinal tolerance. Interpretation Assessing BVM is a non-invasive methodology allowing to analyze the influence of DF intervention on the gut microbiota. Funding FiberTAG project was initiated from a European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL) and was supported by the Service Public de Wallonie (SPW-EER, convention 1610365, Belgium).
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), avenue E. Mounier box B1.73.11, Brussels B-1200, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), avenue E. Mounier box B1.73.11, Brussels B-1200, Belgium
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Canada; College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Julie-Anne Nazare
- Rhône-Alpes Research Center for Human Nutrition, CarMeN Laboratory, Hospices Civils de Lyon, Université-Lyon, France
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), avenue E. Mounier box B1.73.11, Brussels B-1200, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), avenue E. Mounier box B1.73.11, Brussels B-1200, Belgium; WELBIO- Walloon Excellence in Life Sciences and Biotechnology, UCLouvain (Université catholique de Louvain), Brussels, Belgium
| | - Véronique Maquet
- KitoZyme, Parc Industriel des Hauts-Sart, Zone 2, Rue de Milmort 680, Herstal 4040, Belgium
| | - Martine Laville
- Rhône-Alpes Research Center for Human Nutrition, CarMeN Laboratory, Hospices Civils de Lyon, Université-Lyon, France
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Walter
- Department of Medicine, APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), avenue E. Mounier box B1.73.11, Brussels B-1200, Belgium.
| |
Collapse
|
4
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
5
|
Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules 2021; 26:molecules26092667. [PMID: 34063191 PMCID: PMC8125105 DOI: 10.3390/molecules26092667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Exhaled breath is a potential noninvasive matrix to give new information about metabolic effects of diets. In this pilot study, non-targeted analysis of exhaled breath volatile organic compounds (VOCs) was made by comprehensive two-dimensional gas chromatography-mass spectrometry (GCxGC-MS) to explore compounds relating to whole grain (WG) diets. Nine healthy subjects participated in the dietary intervention with parallel crossover design, consisting of two high-fiber diets containing whole grain rye bread (WGR) or whole grain wheat bread (WGW) and 1-week control diets with refined wheat bread (WW) before both diet periods. Large interindividual differences were detected in the VOC composition. About 260 VOCs were detected from exhaled breath samples, in which 40 of the compounds were present in more than half of the samples. Various derivatives of benzoic acid and phenolic compounds, as well as some furanones existed in exhaled breath samples only after the WG diets, making them interesting compounds to study further.
Collapse
|
6
|
Neyrinck AM, Rodriguez J, Zhang Z, Seethaler B, Mailleux F, Vercammen J, Bindels LB, Cani PD, Nazare JA, Maquet V, Laville M, Bischoff SC, Walter J, Delzenne NM. Noninvasive monitoring of fibre fermentation in healthy volunteers by analyzing breath volatile metabolites: lessons from the FiberTAG intervention study. Gut Microbes 2021; 13:1-16. [PMID: 33461385 PMCID: PMC7833774 DOI: 10.1080/19490976.2020.1862028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023] Open
Abstract
The fermentation of dietary fibre (DF) leads to the production of bioactive metabolites, the most volatile ones being excreted in the breath. The aim of this study was to analyze the profile of exhaled breath volatile metabolites (BVM) and gastrointestinal symptoms in healthy volunteers after a single ingestion of maltodextrin (placebo) versus chitin-glucan (CG), an insoluble DF previously shown to be fermented into short-chain fatty acids (SCFA) by the human microbiota in vitro. Maltodextrin (4.5 g at day 0) or CG (4.5 g at day 2) were added to a standardized breakfast in fasting healthy volunteers (n = 15). BVM were measured using selected ion flow tube mass spectrometry (SIFT-MS) throughout the day. A single ingestion of 4.5 g CG did not induce significant gastrointestinal discomfort. Untargeted metabolomics analysis of breath highlighted that 13 MS-fragments (among 408 obtained from ionizations of breath) discriminated CG versus maltodextrin acute intake in the posprandial state. The targeted analysis revealed that CG increased exhaled butyrate and 5 other BVM - including the microbial metabolites 2,3-butanedione and 3-hydroxybutanone - with a peak observed 6 h after CG intake. Correlation analyses with fecal microbiota (Illumina 16S rRNA sequencing) spotlighted Mitsuokella as a potential genus responsible for the presence of butyric acid, triethylamine and 3-hydroxybutanone in the breath. In conclusion, measuring BMV in the breath reveals the microbial signature of the fermentation of DF after a single ingestion. This protocol allows to analyze the time-course of released bioactive metabolites that could be proposed as new biomarkers of DF fermentation, potentially linked to their biological properties. Trial registration: Clinical Trials NCT03494491. Registered 11 April 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03494491.
Collapse
Affiliation(s)
- Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Florence Mailleux
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Joeri Vercammen
- Interscience, Louvain-la-Neuve, Belgium
- Engineering, Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Ghent, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie-Anne Nazare
- Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, Lyon, France
| | | | - Martine Laville
- Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, Lyon, France
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork – National University of Ireland, Cork, Ireland
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Zhang Y, Shaikh N, Ferey JL, Wankhade UD, Chintapalli SV, Higgins CB, Crowley JR, Heitmeier MR, Stothard AI, Mihi B, Good M, Higashiyama T, Swarts BM, Hruz PW, Shankar K, Tarr PI, DeBosch BJ. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology 2020; 158:1402-1416.e2. [PMID: 31838076 PMCID: PMC7103499 DOI: 10.1053/j.gastro.2019.11.295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/20/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Trehalose is a disaccharide that might be used in the treatment of cardiometabolic diseases. However, trehalose consumption promotes the expansion of Clostridioides difficile ribotypes that metabolize trehalose via trehalose-6-phosphate hydrolase. Furthermore, brush border and renal trehalases can reduce the efficacy of trehalose by cleaving it into monosaccharides. We investigated whether a trehalase-resistant analogue of trehalose (lactotrehalose) has the same metabolic effects of trehalose without expanding C difficile. METHODS We performed studies with HEK293 and Caco2 cells, primary hepatocytes from mice, and human intestinal organoids. Glucose transporters were overexpressed in HEK293 cells, and glucose tra2nsport was quantified. Primary hepatocytes were cultured with or without trehalose or lactotrehalose, and gene expression patterns were analyzed. C57B6/J mice were given oral antibiotics and trehalose or lactotrehalose in drinking water, or only water (control), followed by gavage with the virulent C difficile ribotype 027 (CD027); fecal samples were analyzed for toxins A (ToxA) or B (ToxB) by enzyme-linked immunosorbent assay. Other mice were given trehalose or lactotrehalose in drinking water for 2 days before placement on a chow or 60% fructose diet for 10 days. Liver tissues were collected and analyzed by histologic, serum biochemical, RNA sequencing, autophagic flux, and thermogenesis analyses. We quantified portal trehalose and lactotrehalose bioavailability by gas chromatography mass spectrometry. Fecal microbiomes were analyzed by 16S ribosomal RNA sequencing and principal component analyses. RESULTS Lactotrehalose and trehalose each blocked glucose transport in HEK293 cells and induced a gene expression pattern associated with fasting in primary hepatocytes. Compared with mice on the chow diet, mice on the high-fructose diet had increased circulating cholesterol, higher ratios of liver weight-to-body weight, hepatic lipid accumulation (steatosis), and liver gene expression patterns of carbohydrate-responsive de novo lipogenesis. Mice given lactotrehalose while on the high-fructose diet did not develop any of these features and had increased whole-body caloric expenditure compared with mice given trehalose or water and fed a high-fructose diet. Livers from mice given lactotrehalose had increased transcription of genes that regulate mitochondrial energy metabolism compared with liver from mice given trehalose or controls. Lactotrehalose was bioavailable in venous and portal circulation and fecal samples. Lactotrehalose reduced fecal markers of microbial branched-chain amino acid biosynthesis and increased expression of microbial genes that regulate insulin signaling. In mice given antibiotics followed by CD027, neither lactotrehalose nor trehalose increased levels of the bacteria or its toxin in stool-in fact, trehalose reduced the abundance of CD027 in stool. Lactotrehalose and trehalose reduced markers of inflammation in rectal tissue after CD027 infection. CONCLUSIONS Lactotrehalose is a trehalase-resistant analogue that increases metabolic parameters, compared with trehalose, without increasing the abundance or virulence of C difficile strain CD027. Trehalase-resistant trehalose analogues might be developed as next-generation fasting-mimetics for the treatment of diabetes and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeremie L. Ferey
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO 63110
| | - Umesh D. Wankhade
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Sree V. Chintapalli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jan R. Crowley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Monique R. Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alicyn I. Stothard
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859
| | - Belgacem Mihi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Benjamin M. Swarts
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859
| | - Paul W. Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Kartik Shankar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110,Correspondence: Brian DeBosch, Departments of Pediatrics and Cell Biology and Physiology, Washington University School of Medicine, 5107 McDonnell Pediatrics Research Building, 660 S. Euclid Ave, Box 8208, St. Louis, MO 63110. Telephone: 314-454-6173; FAX: 314-454-2412;
| |
Collapse
|
8
|
The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls. GeroScience 2019; 42:201-216. [PMID: 31808027 DOI: 10.1007/s11357-019-00143-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by dynamic changes at metabolic level that lead to modifications in the composition of the metabolome. Since the identification of biomarkers that can discriminate people of different age and health status has recently attracted a great interest, we wondered whether age-specific changes in the metabolome could be identified and serve as new and informative biomarkers of aging and longevity. In the last few years, a specific branch of metabonomics devoted to the study of volatile organic compounds (VOCs) has been developed. To date, little is known about the profile of specific VOCs in healthy aging and longevity in humans; therefore, we investigated the profile of VOCs in both urine and feces samples from 73 volunteers of different age including centenarians that represent useful "super-controls" to identify potential biomarkers of successful aging and footprints of longevity. To this purpose, we performed a discriminant analysis by which we were able to identify specific profiles of urinary and fecal VOCs. Such profiles can discriminate different age groups, from young to centenarians, and, even more interesting, centenarians' offspring from age-matched controls. Moreover, we were able to identify VOCs that are specific for the couples "centenarians - offspring" or the trios "centenarians - offspring - spouse," suggesting the possible existence of a familiar component also for VOCs profile.
Collapse
|
9
|
Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer DC. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: results from a cross-sectional study. Sci Rep 2019; 9:15707. [PMID: 31673076 PMCID: PMC6823423 DOI: 10.1038/s41598-019-52165-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Monitoring metabolic adaptation to type 1 diabetes mellitus in children is challenging. Analysis of volatile organic compounds (VOCs) in exhaled breath is non-invasive and appears as a promising tool. However, data on breath VOC profiles in pediatric patients are limited. We conducted a cross-sectional study and applied quantitative analysis of exhaled VOCs in children suffering from type 1 diabetes mellitus (T1DM) (n = 53) and healthy controls (n = 60). Both groups were matched for sex and age. For breath gas analysis, a very sensitive direct mass spectrometric technique (PTR-TOF) was applied. The duration of disease, the mode of insulin application (continuous subcutaneous insulin infusion vs. multiple daily insulin injection) and long-term metabolic control were considered as classifiers in patients. The concentration of exhaled VOCs differed between T1DM patients and healthy children. In particular, T1DM patients exhaled significantly higher amounts of ethanol, isopropanol, dimethylsulfid, isoprene and pentanal compared to healthy controls (171, 1223, 19.6, 112 and 13.5 ppbV vs. 82.4, 784, 11.3, 49.6, and 5.30 ppbV). The most remarkable differences in concentrations were found in patients with poor metabolic control, i.e. those with a mean HbA1c above 8%. In conclusion, non-invasive breath testing may support the discovery of basic metabolic mechanisms and adaptation early in the progress of T1DM.
Collapse
Affiliation(s)
- Phillip Trefz
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany.
| | - Juliane Obermeier
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | - Ruth Lehbrink
- Department of Pediatrics, Rostock University Medical Centre, Rostock, Germany
| | - Jochen K Schubert
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, Rostock, Germany
| | | |
Collapse
|
10
|
Leopold JH, Philipp A, Bein T, Redel A, Gruber M, Schultz MJ, Abu-Hanna A, Brinkman P, Janssen HG, Bos LDJ. Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients. ERJ Open Res 2019; 5:00134-2018. [PMID: 30949490 PMCID: PMC6441674 DOI: 10.1183/23120541.00134-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/15/2018] [Indexed: 11/05/2022] Open
Abstract
Introduction It is highly uncertain whether volatile organic compounds (VOCs) in exhaled breath of critically ill intensive care unit patients are formed in the lung locally, in the air compartment or lung tissue, or elsewhere in the body and transported to the lung via the bloodstream. We compared VOC mixtures in exhaled breath and in air coming from extracorporeal support devices in critically ill patients to address this issue. Methods First, we investigated whether it was safe to connect an electronic nose (eNose) or a gas sampling pump to extracorporeal support membranes. Then, breath and air from extracorporeal support devices were collected simultaneously for continuous monitoring of VOC mixtures using an eNose. In addition, samples for gas chromatography/mass spectrometry (GC-MS) analysis were taken daily at the two measurement sites. Results 10 critically ill patients were monitored for a median (interquartile range) duration of 73 (72-113) h; in total, we had 887 h of air sampling. The eNose signals of breath correlated moderately with signals of air from the extracorporeal support devices (R2=0.25-0.44). After GC-MS analysis, 96 VOCs were found both in breath and air from the extracorporeal support devices; of these, 29 (30%) showed a significant correlation (p<0.05) between the two measurement sites, of which 17 were identified. VOCs that did not correlate were found in a higher concentration in breath than in air from the extracorporeal support devices. Conclusion This study suggests VOC analysis in the extracorporeal circulation is safe, and that VOCs of nonpulmonary origin can be measured in the breath and in the extracorporeal circulation of critically ill patients. For VOCs that did not correlate between the two measurement sites, the breath concentration was higher, suggesting pulmonary production of these molecules in a highly selected population of patients that received extracorporeal support.
Collapse
Affiliation(s)
- Jan Hendrik Leopold
- Dept of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alois Philipp
- Dept of Intensive Care, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Bein
- Dept of Intensive Care, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Redel
- Dept of Intensive Care, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gruber
- Dept of Intensive Care, University Hospital Regensburg, Regensburg, Germany
| | - Marcus J Schultz
- Dept of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Intensive Care, Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Ameen Abu-Hanna
- Dept of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans-Gerd Janssen
- Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Dept of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymers (Basel) 2019; 11:polym11030423. [PMID: 30960407 PMCID: PMC6473577 DOI: 10.3390/polym11030423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
There is a need to develop a chemiresistive gas sensor equipped with a thermostat over a wide area for the sensor, which can protect the sensor from the influence of ambient temperature due to the uniform temperature of the thermostat. In this paper, we demonstrated an acetone gas sensor based on a polyethylene glycol (PEG)/Multi-walled Carbon Nanotubes (MWCNTs) composite film, which was equipped with a thermostat. The sensor was operated at modest working temperatures for sensor sensitivity enhancement. The optimum design of the polyimide-based thermostat with widely uniform thermal distribution was investigated in detail. It was found that the temperature uniformity of the thermostat was achieved using double spiral geometry. The experimental results of the sensor response showed that the PEG/MWCNTs composite film with a moderate working temperature revealed a higher sensitivity than that without thermal treatment. Moreover, the sensing mechanisms of the PEG/MWCNTs composite gas sensor to acetone vapor were studied as well.
Collapse
|
12
|
ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. BIOSENSORS-BASEL 2018; 9:bios9010004. [PMID: 30587840 PMCID: PMC6468395 DOI: 10.3390/bios9010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022]
Abstract
In the present work, a novel, portable and innovative eNose composed of a surface acoustic wave (SAW) sensor array based on zeolitic imidazolate frameworks, ZIF-8 and ZIF-67 nanocrystals (pure and combined with gold nanoparticles), as sensitive layers has been tested as a non-invasive system to detect different disease markers, such as acetone, ethanol and ammonia, related to the diagnosis and control of diabetes mellitus through exhaled breath. The sensors have been prepared by spin coating, achieving continuous sensitive layers at the surface of the SAW device. Low concentrations (5 ppm, 10 ppm and 25 ppm) of the marker analytes were measured, obtaining high sensitivities, good reproducibility, short time response and fast signal recovery.
Collapse
|
13
|
Highly Sensitive Room-Temperature Sensor Based on Nanostructured K₂W₇O 22 for Application in the Non-Invasive Diagnosis of Diabetes. SENSORS 2018; 18:s18113703. [PMID: 30384465 PMCID: PMC6263376 DOI: 10.3390/s18113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Diabetes is one of the most rapidly-growing chronic diseases in the world. Acetone, a volatile organic compound in exhaled breath, shows a positive correlation with blood glucose and has proven to be a biomarker for type-1 diabetes. Measuring the level of acetone in exhaled breath can provide a non-invasive, low risk of infection, low cost, and convenient way to monitor the health condition of diabetics. There has been continuous demand for the improvement of this non-invasive, sensitive sensor system to provide a fast and real-time electronic readout of blood glucose levels. A novel nanostructured K2W7O22 has been recently used to test acetone with concentration from 0 parts-per-million (ppm) to 50 ppm at room temperature. The results revealed that a K2W7O22 sensor shows a sensitive response to acetone, but the detection limit is not ideal due to the limitations of the detection system of the device. In this paper, we report a K2W7O22 sensor with an improved sensitivity and detection limit by using an optimized circuit to minimize the electronic noise and increase the signal to noise ratio for the purpose of weak signal detection while the concentration of acetone is very low.
Collapse
|
14
|
Development of an analytical chip for detecting acetone using a reaction between acetone and 2,4-dinitrophenylhidrazine in a porous glass. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Saasa V, Malwela T, Beukes M, Mokgotho M, Liu CP, Mwakikunga B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics (Basel) 2018; 8:E12. [PMID: 29385067 PMCID: PMC5871995 DOI: 10.3390/diagnostics8010012] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
The review describes the technologies used in the field of breath analysis to diagnose and monitor diabetes mellitus. Currently the diagnosis and monitoring of blood glucose and ketone bodies that are used in clinical studies involve the use of blood tests. This method entails pricking fingers for a drop of blood and placing a drop on a sensitive area of a strip which is pre-inserted into an electronic reading instrument. Furthermore, it is painful, invasive and expensive, and can be unsafe if proper handling is not undertaken. Human breath analysis offers a non-invasive and rapid method for detecting various volatile organic compounds thatare indicators for different diseases. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetoacetate, beta-hydroxybutyrate and acetone. Acetone is exhaled during respiration. The production of acetone is a result of the body metabolising fats instead of glucose to produce energy. There are various techniques that are used to analyse exhaled breath including Gas Chromatography Mass Spectrometry (GC-MS), Proton Transfer Reaction Mass Spectrometry (PTR-MS), Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS), laser photoacoustic spectrometry and so on. All these techniques are not portable, therefore this review places emphasis on how nanotechnology, through semiconductor sensing nanomaterials, has the potential to help individuals living with diabetes mellitus monitor their disease with cheap and portable devices.
Collapse
Affiliation(s)
- Valentine Saasa
- DST/CSIR, PO BOX 395, Pretoria 0001, South Africa.
- Departmentof Biochemistry, University of Pretoria, Pretoria 0001, South Africa.
| | | | - Mervyn Beukes
- Departmentof Biochemistry, University of Pretoria, Pretoria 0001, South Africa.
| | - Matlou Mokgotho
- Department of Biochemistry, University of Limpopo, P/Bag x1106, Sovenga 0727, South Africa.
| | - Chaun-Pu Liu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | | |
Collapse
|
16
|
Li W, Liu Y, Liu Y, Cheng S, Duan Y. Exhaled isopropanol: new potential biomarker in diabetic breathomics and its metabolic correlations with acetone. RSC Adv 2017. [DOI: 10.1039/c7ra00815e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Concomitant findings of acetone (ACE) and isopropanol (IPA) in blood and other biological samples have been reported in diabetic decedents and clinic cases, but exhaled IPA has rarely been studied in breath research.
Collapse
Affiliation(s)
- Wenwen Li
- Research Center of Analytical Instrumentation
- Analytical and Testing Center
- Sichuan University
- Chengdu
- P. R. China
| | - Yong Liu
- Research Center of Analytical Instrumentation
- Analytical and Testing Center
- Sichuan University
- Chengdu
- P. R. China
| | - Yu Liu
- Department of Endocrinology
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Shouquan Cheng
- 208 Hospital of People's Liberation Army
- Changchun
- P. R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation
- Key Laboratory of Bio-resource and Eco-environment
- Ministry of Education
- College of Life Science
- Sichuan University
| |
Collapse
|
17
|
Raninen KJ, Lappi JE, Mukkala ML, Tuomainen TP, Mykkänen HM, Poutanen KS, Raatikainen OJ. Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study. Nutr Res 2016; 36:612-9. [PMID: 27188907 DOI: 10.1016/j.nutres.2016.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/23/2023]
Abstract
Our pilot study examined the potential of exhaled breath analysis in studying the metabolic effects of dietary fiber (DF). We hypothesized that a high-fiber diet (HFD) containing whole grain rye changes volatile organic compound (VOC) levels in exhaled breath and that consuming a single meal affects these levels. Seven healthy men followed a week-long low-fiber diet (17 g/d) and HFD (44 g/d) in a randomized crossover design. A test meal containing 50 g of the available carbohydrates from wheat bread was served as breakfast after each week. Alveolar exhaled breath samples were analyzed at fasting state and 30, 60, and 120 minutes after this meal parallel to plasma glucose, insulin, and serum lipids. We used solid-phase microextraction and gas chromatography-mass spectrometry for detecting changes in 15 VOCs. These VOCs were acetone, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, hexanoic acid, acetoin, diacetyl, and phenol. Exhaled breath 2-methylbutyric acid in the fasting state and 1-propanol at 120 minutes decreased (P = .091 for both) after an HFD. Ingestion of the test meal increased ethanol, 1-propanol, acetoin, propionic acid, and butyric acid levels while reducing acetone, 1-butanol, diacetyl, and phenol levels. Both DF diet content and having a single meal affected breathVOCs. Exploring exhaled breath further could help to develop tools for monitoring the metabolic effects of DF.
Collapse
Affiliation(s)
- Kaisa J Raninen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Jenni E Lappi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Maria L Mukkala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Hannu M Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Olavi J Raatikainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
18
|
Kistler M, Muntean A, Szymczak W, Rink N, Fuchs H, Gailus-Durner V, Wurst W, Hoeschen C, Klingenspor M, Hrabě de Angelis M, Rozman J. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice. J Breath Res 2016; 10:016009. [PMID: 26860833 DOI: 10.1088/1752-7155/10/1/016009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis.
Collapse
Affiliation(s)
- Martin Kistler
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany. German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany. German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bikov A, Pako J, Montvai D, Kovacs D, Koller Z, Losonczy G, Horvath I. Exhaled breath condensate pH decreases following oral glucose tolerance test. J Breath Res 2015; 9:047112. [DOI: 10.1088/1752-7155/9/4/047112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Fink T, Albrecht FW, Maurer F, Kleber A, Hüppe T, Schnauber K, Wolf B, Baumbach JI, Volk T, Kreuer S. Exhalation pattern changes during fasting and low dose glucose treatment in rats. Anal Bioanal Chem 2015; 407:3763-73. [DOI: 10.1007/s00216-015-8602-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 12/30/2022]
|
21
|
Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015; 5:140-63. [PMID: 25738426 PMCID: PMC4381294 DOI: 10.3390/metabo5010140] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs) and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.
Collapse
|
22
|
|
23
|
Tanda N, Hinokio Y, Washio J, Takahashi N, Koseki T. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. J Breath Res 2014; 8:046008. [DOI: 10.1088/1752-7155/8/4/046008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 2014; 6:357-76. [PMID: 24471956 DOI: 10.4155/bio.13.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the last few decades intense scientific research has been placed on the relationship between trace substances found in exhaled breath such as volatile organic compounds (VOC) and a wide range of local or systemic diseases. Although currently there is no general consensus, results imply that VOC have a different profile depending on the organ or disease that generates them. The association between a specific pathology and exhaled breath odor is particularly evident in patients with medical conditions such as liver, renal or oral diseases. In other cases the unpleasant odors can be associated with the whole body and have a genetic underlying cause. The present review describes the current advances in identifying and quantifying VOC used as biomarkers for a number of systemic diseases. A special focus will be placed on volatiles that characterize unpleasant breath 'fingerprints' such as fetor hepaticus; uremic fetor; fetor ex ore or trimethylaminuria.
Collapse
|
25
|
Leopold JH, van Hooijdonk RTM, Sterk PJ, Abu-Hanna A, Schultz MJ, Bos LDJ. Glucose prediction by analysis of exhaled metabolites - a systematic review. BMC Anesthesiol 2014; 14:46. [PMID: 24963286 PMCID: PMC4068184 DOI: 10.1186/1471-2253-14-46] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/03/2014] [Indexed: 12/25/2022] Open
Abstract
Background In critically ill patients, glucose control with insulin mandates time– and blood–consuming glucose monitoring. Blood glucose level fluctuations are accompanied by metabolomic changes that alter the composition of volatile organic compounds (VOC), which are detectable in exhaled breath. This review systematically summarizes the available data on the ability of changes in VOC composition to predict blood glucose levels and changes in blood glucose levels. Methods A systematic search was performed in PubMed. Studies were included when an association between blood glucose levels and VOCs in exhaled air was investigated, using a technique that allows for separation, quantification and identification of individual VOCs. Only studies on humans were included. Results Nine studies were included out of 1041 identified in the search. Authors of seven studies observed a significant correlation between blood glucose levels and selected VOCs in exhaled air. Authors of two studies did not observe a strong correlation. Blood glucose levels were associated with the following VOCs: ketone bodies (e.g., acetone), VOCs produced by gut flora (e.g., ethanol, methanol, and propane), exogenous compounds (e.g., ethyl benzene, o–xylene, and m/p–xylene) and markers of oxidative stress (e.g., methyl nitrate, 2–pentyl nitrate, and CO). Conclusion There is a relation between blood glucose levels and VOC composition in exhaled air. These results warrant clinical validation of exhaled breath analysis to monitor blood glucose levels.
Collapse
Affiliation(s)
- Jan Hendrik Leopold
- Department of Intensive Care, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Department of Medical Informatics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ameen Abu-Hanna
- Department of Medical Informatics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ; Department of Respiratory Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Yan K, Zhang D, Wu D, Wei H, Lu G. Design of a breath analysis system for diabetes screening and blood glucose level prediction. IEEE Trans Biomed Eng 2014; 61:2787-95. [PMID: 24951676 DOI: 10.1109/tbme.2014.2329753] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been reported that concentrations of several biomarkers in diabetics' breath show significant difference from those in healthy people's breath. Concentrations of some biomarkers are also correlated with the blood glucose levels (BGLs) of diabetics. Therefore, it is possible to screen for diabetes and predict BGLs by analyzing one's breath. In this paper, we describe the design of a novel breath analysis system for this purpose. The system uses carefully selected chemical sensors to detect biomarkers in breath. Common interferential factors, including humidity and the ratio of alveolar air in breath, are compensated or handled in the algorithm. Considering the intersubject variance of the components in breath, we build subject-specific prediction models to improve the accuracy of BGL prediction. A total of 295 breath samples from healthy subjects and 279 samples from diabetic subjects were collected to evaluate the performance of the system. The sensitivity and specificity of diabetes screening are 91.51% and 90.77%, respectively. The mean relative absolute error for BGL prediction is 21.7%. Experiments show that the system is effective and that the strategies adopted in the system can improve its accuracy. The system potentially provides a noninvasive and convenient method for diabetes screening and BGL monitoring as an adjunct to the standard criteria.
Collapse
|
27
|
Turner C. Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes. Expert Rev Mol Diagn 2014; 11:497-503. [DOI: 10.1586/erm.11.31] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond) 2013; 8:785-806. [PMID: 23656265 DOI: 10.2217/nnm.13.64] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of developing new diagnostic and detection technologies for the growing number of clinical challenges is rising each year. Here, we present a concise, yet didactic review on a new diagnostics frontier based on the detection of disease-related volatile organic compounds (VOCs) by means of nanomaterial-based sensors. Nanomaterials are ideal for such sensor arrays because they are easily fabricated, chemically versatile and can be integrated into currently available sensing platforms. Following a general introduction, we provide a brief description of the VOC-related diseases concept. Then, we focus on detection of VOC-related diseases by selective and crossreactive sensing approaches, through chemical, optical and mechanical transducers incorporating the most important classes of nanomaterials. Selected examples of the integration of nanomaterials into selective sensors and crossreactive sensor arrays are given. We conclude with a brief discussion on the integration possibilities of different types of nanomaterials into sensor arrays, and the expected outcomes and limitations.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200002, Israel
| | | |
Collapse
|
29
|
Righettoni M, Schmid A, Amann A, Pratsinis SE. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 2013; 7:037110. [DOI: 10.1088/1752-7155/7/3/037110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Worrall AD, Bernstein JA, Angelopoulos AP. Portable method of measuring gaseous acetone concentrations. Talanta 2013; 112:26-30. [DOI: 10.1016/j.talanta.2013.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/28/2022]
|
31
|
Umber BJ, Shin HW, Meinardi S, Leu SY, Zaldivar F, Cooper DM, Blake DR. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood. Clin Transl Med 2013; 2:13. [PMID: 23842518 PMCID: PMC3716923 DOI: 10.1186/2001-1326-2-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The gaseous headspace above naïve Escherichia Coli (E. coli) cultures and whole human blood inoculated with E. coli were collected and analyzed for the presence of trace gases that may have the potential to be used as novel, non-invasive markers of infectious disease. METHODS The naïve E. coli culture, LB broth, and human whole blood or E. coli inoculated whole blood were incubated in hermetically sealable glass bioreactors at 37°C for 24 hrs. LB broth and whole human blood were used as controls for background volatile organic compounds (VOCs). The headspace gases were collected after incubation and analyzed using a gas chromatographic system with multiple column/detector combinations. RESULTS Six VOCs were observed to be produced by E. coli-infected whole blood while there existed nearly zero to relatively negligible amounts of these gases in the whole blood alone, LB broth, or E. coli-inoculated LB broth. These VOCs included dimethyl sulfide (DMS), carbon disulfide (CS2), ethanol, acetaldehyde, methyl butanoate, and an unidentified gas S. In contrast, there were several VOCs significantly elevated in the headspace above the E. coli in LB broth, but not present in the E. coli/blood mixture. These VOCs included dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), methyl propanoate, 1-propanol, methylcyclohexane, and unidentified gases R2 and Q. CONCLUSIONS This study demonstrates 1) that cultivated E. coli in LB broth produce distinct gas profiles, 2) for the first time, the ability to modify E. coli-specific gas profiles by the addition of whole human blood, and 3) that E. coli-human whole blood interactions present different gas emission profiles that have the potential to be used as non-invasive volatile biomarkers of E. coli infection.
Collapse
Affiliation(s)
- Brandon J Umber
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Hye-Won Shin
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Simone Meinardi
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Szu-Yun Leu
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Frank Zaldivar
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Dan M Cooper
- Department of Pediatrics, University of California, Irvine, CA 92697, USA ; Institute for Clinical and Translational Sciences, University of California, Irvine, CA 92697, USA
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Dowlaty N, Yoon A, Galassetti P. Monitoring states of altered carbohydrate metabolism via breath analysis: are times ripe for transition from potential to reality? Curr Opin Clin Nutr Metab Care 2013; 16:466-72. [PMID: 23739629 PMCID: PMC4060961 DOI: 10.1097/mco.0b013e328361f91f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To introduce the potential of breath analysis as a diagnostic or monitoring tool in diabetes. RECENT FINDINGS Blood testing for plasma glucose and other metabolic variables is the base for the diagnosis and management of diabetes, whose two main types (type 1 and type 2, T1DM, T2DM) are projected to affect 450 million by 2030. As blood testing is often uncomfortable, painful, costly, and in some situations unreliable, the quest for alternative, noninvasive methods has been ongoing for decades. Breath analysis has emerged as an ideal alternative as sample collection is easy, painless, flexible, noninvasive, practical, and inexpensive. No single exhaled gas can reflect systemic glucose concentrations. Multiple gases, however, have been linked to various aspects of glucose metabolism, and integrated analysis of their simultaneous profiles during prolonged glycemic fluctuations has yielded accurate predictions of plasma values, building expectation that a clinically usable breath-based glucometer may be developed within a few years. SUMMARY While prototypes of hand-held breath testing glucometers may still be several years away, current research shows the imminent promise of this methodology and the widening support for its development.
Collapse
Affiliation(s)
- Newsha Dowlaty
- Institute for Clinical and Translational Science, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
33
|
Modak AS. Regulatory issues on breath tests and updates of recent advances on [
13
C]-breath tests. J Breath Res 2013; 7:037103. [DOI: 10.1088/1752-7155/7/3/037103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Ghimenti S, Tabucchi S, Lomonaco T, Di Francesco F, Fuoco R, Onor M, Lenzi S, Trivella MG. Monitoring breath during oral glucose tolerance tests. J Breath Res 2013; 7:017115. [DOI: 10.1088/1752-7155/7/1/017115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Halbritter S, Fedrigo M, Höllriegl V, Szymczak W, Maier JM, Ziegler AG, Hummel M. Human breath gas analysis in the screening of gestational diabetes mellitus. Diabetes Technol Ther 2012; 14:917-25. [PMID: 22775148 PMCID: PMC3459034 DOI: 10.1089/dia.2012.0076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We present a pilot study on the feasibility of the application and advantages of online, noninvasive breath gas analysis (BGA) by proton transfer reaction quadrupole mass spectrometry for the screening of gestational diabetes mellitus (GDM) in 52 pregnant women by means of an oral glucose tolerance test (OGTT). SUBJECTS AND METHODS We collected and identified samples of end-tidal breath gas from patients during OGTT. Time evolution parameters of challenge-responsive volatile organic compounds (VOCs) in human breath gas were estimated. Multivariate analysis of variance and permutation analysis were used to assess feasibility of BGA as a diagnostic tool for GDM. RESULTS Standard OGTT diagnosis identified pregnant women as having GDM (n = 8), impaired glucose tolerance (n = 12), and normal glucose tolerance (n = 32); a part of this latter group was further subdivided into a "marginal" group (n = 9) because of a marginal high 1-h or 2-h OGTT value. We observed that OGTT diagnosis (four metabolic groups) could be mapped into breath gas data. The time evolution of oxidation products of glucose and lipids, acetone metabolites, and thiols in breath gas after a glucose challenge was correlated with GDM diagnosis (P = 0.035). Furthermore, basal (fasting) values of dimethyl sulfide and values of methanol in breath gas were inversely correlated with phenotype characteristics such as homeostasis model assessment of insulin resistance index (R = -0.538; P = 0.0002, P(corrected) = 0.0034) and pregestational body mass index (R = -0.433; P = 0.0013, P(corrected) = 0.022). CONCLUSIONS Noninvasive BGA in challenge response studies was successfully applied to GDM diagnosis and offered an insight into metabolic pathways involved. We propose a new approach to the identification of diagnosis thresholds for GDM screening.
Collapse
Affiliation(s)
- Susanne Halbritter
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Center Munich, Neuherberg, Germany
| | - Mattia Fedrigo
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Center Munich, Neuherberg, Germany
| | - Vera Höllriegl
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Center Munich, Neuherberg, Germany
| | - Wilfried Szymczak
- Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Center Munich, Neuherberg, Germany
| | - Joerg M. Maier
- Institute of Diabetes Research, Helmholtz Center Munich, Munich, Germany
- Diabetes Research Group, Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- Diabetes Research Group e.V., Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Center Munich, Munich, Germany
- Diabetes Research Group, Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- Diabetes Research Group e.V., Munich-Neuherberg, Germany
| | - Michael Hummel
- Diabetes Research Group e.V., Munich-Neuherberg, Germany
| |
Collapse
|
36
|
Minh TDC, Blake DR, Galassetti PR. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res Clin Pract 2012; 97:195-205. [PMID: 22410396 PMCID: PMC3384765 DOI: 10.1016/j.diabres.2012.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 01/15/2023]
Abstract
Various compounds in present human breath have long been loosely associated with pathological states (including acetone smell in uncontrolled diabetes). Only recently, however, the precise measurement of exhaled volatile organic compounds (VOCs) and aerosolized particles was made possible at extremely low concentrations by advances in several analytical methodologies, described in detail in the international literature and each suitable for specific subsets of exhaled compounds. Exhaled gases may be generated endogenously (in the pulmonary tract, blood, or peripheral tissues), as metabolic by-products of human cells or colonizing micro-organisms, or may be inhaled as atmospheric pollutants; growing evidence indicates that several of these molecules have distinct cell-to-cell signaling functions. Independent of origin and physiological role, exhaled VOCs are attractive candidates as biomarkers of cellular activity/metabolism, and could be incorporated in future non-invasive clinical testing devices. Indeed, several recent studies reported altered exhaled gas profiles in dysmetabolic conditions and relatively accurate predictions of glucose concentrations, at least in controlled experimental conditions, for healthy and diabetic subjects over a broad range of glycemic values. Optimization of this methodology and validation in large-scale trials under a wider range of conditions is needed to determine its true potential to transition into practical clinical use.
Collapse
Affiliation(s)
- Timothy Do Chau Minh
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697-1385, United States.
| | | | | |
Collapse
|
37
|
Minh TDC, Oliver SR, Flores RL, Ngo J, Meinardi S, Carlson MK, Midyett J, Rowland FS, Blake DR, Galassetti PR. Noninvasive measurement of plasma triglycerides and free fatty acids from exhaled breath. J Diabetes Sci Technol 2012; 6:86-101. [PMID: 22401327 PMCID: PMC3320826 DOI: 10.1177/193229681200600112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Although altered metabolism has long been known to affect human breath, generating clinically usable metabolic tests from exhaled compounds has proven challenging. If developed, a breath-based lipid test would greatly simplify management of diabetes and serious pathological conditions (e.g., obesity, familial hyperlipidemia, and coronary artery disease), in which systemic lipid levels are a critical risk factor for onset and development of future cardiovascular events. METHODS We, therefore, induced controlled fluctuations of plasma lipids (insulin-induced lipid suppression or intravenous infusion of Intralipid) during 4-h in vivo experiments on 23 healthy volunteers (12 males/11 females, 28.0 ± 0.3 years) to find correlations between exhaled volatile organic compounds and plasma lipids. In each subject, plasma triglycerides (TG) and free fatty acids (FFA) concentrations were both directly measured and calculated via individualized prediction equations based on the multiple linear regression analysis of a cluster of 4 gases. In the lipid infusion protocol, we also generated common prediction equations using a maximum of 10 gases. RESULTS This analysis yielded strong correlations between measured and predicted values during both lipid suppression (r = 0.97 for TG; r = 0.90 for FFA) and lipid infusion (r = 0.97 for TG; r = 0.94 for FFA) studies. In our most accurate common prediction model, measured and predicted TG and FFA values also displayed very strong statistical agreement (r = 0.86 and r = 0.81, respectively). CONCLUSIONS Our results demonstrate the feasibility of measuring plasma lipids through breath analysis. Optimization of this technology may ultimately lead to the development of portable breath analyzers for plasma lipids, replacing blood-based bioassays.
Collapse
Affiliation(s)
- Timothy Do Chau Minh
- Department of Pharmacology, University of California, Irvine, Irvine, California 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bikov A, Pako J, Kovacs D, Tamasi L, Lazar Z, Rigo J, Losonczy G, Horvath I. Exhaled breath volatile alterations in pregnancy assessed with electronic nose. Biomarkers 2011; 16:476-84. [DOI: 10.3109/1354750x.2011.598562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Minh TDC, Oliver SR, Ngo J, Flores R, Midyett J, Meinardi S, Carlson MK, Rowland FS, Blake DR, Galassetti PR. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am J Physiol Endocrinol Metab 2011; 300:E1166-75. [PMID: 21467303 PMCID: PMC3118590 DOI: 10.1152/ajpendo.00634.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ~100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects.
Collapse
Affiliation(s)
- Timothy D C Minh
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith D, Spaněl P, Fryer AA, Hanna F, Ferns GAA. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J Breath Res 2011; 5:022001. [PMID: 21512208 DOI: 10.1088/1752-7155/5/2/022001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although it has been known for centuries that there are compounds in exhaled breath that are altered in disease, it is only in the last few decades that it has been possible to measure them with sufficient accuracy and precision to make them clinically useful. The clinical utility of breath analysis has also been limited by the practical difficulties of collecting representative breath samples, free from contaminants. More recent methods of breath analysis have allowed real-time analysis of breath, eliminating the need for sample collection, and therefore potentially allowing the rapid feedback of results to patient and clinician. One possible future application of breath analysis may be the monitoring of metabolic control in patients with diabetes mellitus. This perspective article provides an overview of the studies of breath analysis in diabetes, focusing on the breath metabolites; acetone, isoprene and also methyl nitrate that have previously been reported to be altered in diabetes, highlighting the factors that may potentially confound their interpretation. Specific attention is given to selected ion flow tube mass spectrometry (SIFT-MS) and proton transfer reaction mass spectrometry (PTR-MS), because they are techniques that have been developed specifically for the absolute quantification of breath metabolites in real time, although reference is made to some of the alternative techniques, including sensors and optical devices. Whilst breath analysis, using SIFT-MS, PTR-MS and other sensitive techniques, can potentially be used for the non-invasive monitoring of metabolic conditions that may include diabetes mellitus, further work is required in terms of the clinical and analytical validation. Furthermore, it is unclear at present what breath metabolites should be monitored and what factors may confound their interpretation. Although a non-invasive method of monitoring glycaemic control is clearly desirable, it will be important to demonstrate its analytical comparability with the well-established and validated methods for blood glucose measurement.
Collapse
Affiliation(s)
- David Smith
- Guy Hilton Research Centre, Institute for Science & Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | | | | | | | | |
Collapse
|
41
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
42
|
Abstract
Personalized medicine, in the near future, has the potential to revolutionize healthcare by allowing physicians to individualize therapy for patients through the early diagnosis of disease and risk assessment to optimize clinical response with minimal toxicity. The identification of biomarkers could detect, diagnose and help guide therapy to improve survival and quality of life by the early identification of responders to the drugs. Volatile organic compounds and stable isotope-labeled 13CO2 in breath can be uniquely utilized as in vivo diagnostic biomarkers of disease and/or lack of enzyme activity to aid physicians to personalize medication. Noninvasive detection of ailments and monitoring therapy by human breath analysis is an emerging field of medical diagnostics representing a rapid, economic and simple alternative to standard invasive blood analysis, endoscopy or harmful imaging techniques such as x-ray and CT scans.
Collapse
Affiliation(s)
- Anil S Modak
- Cambridge Isotope Laboratories Inc., Andover, MA 01810, USA
| |
Collapse
|