1
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Ualiyeva S, Lemire E, Wong C, Perniss A, Boyd A, Avilés EC, Minichetti DG, Maxfield A, Roditi R, Matsumoto I, Wang X, Deng W, Barrett NA, Buchheit KM, Laidlaw TM, Boyce JA, Bankova LG, Haber AL. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci Immunol 2024; 9:eabq4341. [PMID: 38306414 PMCID: PMC11127180 DOI: 10.1126/sciimmunol.abq4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evan Lemire
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Amelia Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evelyn C. Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA; currently at Faculty of Biological Sciences, Pontificia Universidad Católica de Chile
| | - Dante G. Minichetti
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alice Maxfield
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Rachel Roditi
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | | | - Xin Wang
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Wenjiang Deng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. Buchheit
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Lora G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
3
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
4
|
Savory Signaling: T1R Umami Receptor Modulates Endoplasmic Reticulum Calcium Store Content and Release Dynamics in Airway Epithelial Cells. Nutrients 2023; 15:nu15030493. [PMID: 36771200 PMCID: PMC9919336 DOI: 10.3390/nu15030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
T1Rs are expressed in solitary chemosensory cells of the upper airway where they detect apical glucose levels and repress bitter taste receptor Ca2+ signaling pathways. Microbial growth leads to a decrease in apical glucose levels. T1Rs detect this change and liberate bitter taste receptor signaling, initiating an innate immune response to both kill and expel pathogens through releasing antimicrobial peptides and increasing nitric oxide production and ciliary beat frequency. However, chronic inflammation due to disease, smoking, or viral infections causes a remodeling of the epithelial airway. The resulting squamous metaplasia causes a loss of multi-ciliated cells and solitary chemosensory cells, replaced by basal epithelial cells. To understand how T1R function is altered during disease, we used basal epithelial cells as a model to study the function of T1R3 on Ca2+ signaling dynamics. We found that both T1R1 and T1R3 detect amino acids and signal via cAMP, increasing the responsiveness of the cells to Ca2+ signaling stimuli. Either knocking down T1R1/3 or treating wild-type cells with MEM amino acids caused a reduction in ER Ca2+ content through a non-cAMP signaled pathway. Treatment with amino acids led to a reduction in downstream denatonium-induced Ca2+-signaled caspase activity. Thus, amino acids may be used to reduce unwanted apoptosis signaling in treatments containing bitter compounds.
Collapse
|
5
|
Surendran H, Kumar S, Narasimhaiah S, Ananthamurthy A, Varghese PS, D'Souza GA, Medigeshi G, Pal R. SARS-CoV-2 infection of human-induced pluripotent stem cells-derived lung lineage cells evokes inflammatory and chemosensory responses by targeting mitochondrial pathways. J Cell Physiol 2022; 237:2913-2928. [PMID: 35460571 PMCID: PMC9088312 DOI: 10.1002/jcp.30755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
The COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the lung, particularly the proximal airway and distal alveolar cells. NKX2.1+ primordial lung progenitors of the foregut (anterior) endoderm are the developmental precursors to all adult lung epithelial lineages and are postulated to play an important role in viral tropism. Here, we show that SARS-CoV-2 readily infected and replicated in human-induced pluripotent stem cell-derived proximal airway cells, distal alveolar cells, and lung progenitors. In addition to the upregulation of antiviral defense and immune responses, transcriptomics data uncovered a robust epithelial cell-specific response, including perturbation of metabolic processes and disruption in the alveolar maturation program. We also identified spatiotemporal dysregulation of mitochondrial heme oxygenase 1 (HMOX1), which is associated with defense against antioxidant-induced lung injury. Cytokines, such as TNF-α, INF-γ, IL-6, and IL-13, were upregulated in infected cells sparking mitochondrial ROS production and change in electron transport chain complexes. Increased mitochondrial ROS then activated additional proinflammatory cytokines leading to an aberrant cell cycle resulting in apoptosis. Notably, we are the first to report a chemosensory response resulting from SARS-CoV-2 infection similar to that seen in COVID-19 patients. Some of our key findings were validated using COVID-19-affected postmortem lung tissue sections. These results suggest that our in vitro system could serve as a suitable model to investigate the pathogenetic mechanisms of SARS-CoV-2 infection and to discover and test therapeutic drugs against COVID-19 or its consequences.
Collapse
Affiliation(s)
- Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
| | - Saurabh Kumar
- Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute (THSTI)FaridabadHaryanaIndia
| | - Swathi Narasimhaiah
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
| | | | - PS Varghese
- St John's Medical CollegeBengaluruKarnatakaIndia
| | | | - Guruprasad Medigeshi
- Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute (THSTI)FaridabadHaryanaIndia
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (C‐CAMP)BengaluruKarnatakaIndia
- The University of Trans‐disciplinary Health Sciences and Technology (TDU)BengaluruKarnatakaIndia
| |
Collapse
|
6
|
Behrens M, Lang T. Extra-Oral Taste Receptors-Function, Disease, and Perspectives. Front Nutr 2022; 9:881177. [PMID: 35445064 PMCID: PMC9014832 DOI: 10.3389/fnut.2022.881177] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Taste perception is crucial for the critical evaluation of food constituents in human and other vertebrates. The five basic taste qualities salty, sour, sweet, umami (in humans mainly the taste of L-glutamic acid) and bitter provide important information on the energy content, the concentration of electrolytes and the presence of potentially harmful components in food items. Detection of the various taste stimuli is facilitated by specialized receptor proteins that are expressed in taste buds distributed on the tongue and the oral cavity. Whereas, salty and sour receptors represent ion channels, the receptors for sweet, umami and bitter belong to the G protein-coupled receptor superfamily. In particular, the G protein-coupled taste receptors have been located in a growing number of tissues outside the oral cavity, where they mediate important processes. This article will provide a brief introduction into the human taste perception, the corresponding receptive molecules and their signal transduction. Then, we will focus on taste receptors in the gastrointestinal tract, which participate in a variety of processes including the regulation of metabolic functions, hunger/satiety regulation as well as in digestion and pathogen defense reactions. These important non-gustatory functions suggest that complex selective forces have contributed to shape taste receptors during evolution.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Ualiyeva S, Bankova LG. Isolation, Ex Vivo Culture, and Stimulation of Tracheal and Nasal Chemosensory Cells. Methods Mol Biol 2022; 2506:151-165. [PMID: 35771470 DOI: 10.1007/978-1-0716-2364-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brush cells are chemosensory epithelial cells present at most mucosal surfaces.Brush cells are a dominant source of cysteinyl leukotrienes and IL-25 in the airway epithelium and are equipped with the machinery to generate prostaglandins and acetylcholine. Activation of innate type 2 lymphoid cells and dendritic cells triggered by brush cell-derived mediators skew the immune response in the airway to type 2 inflammation that underlies atopic disease such as asthma. This chapter describes an effective method of brush cell isolation from the mouse trachea for transcriptional analysis and from the nasal cavity for transcriptional analysis and ex vivo stimulation.The nasal or tracheal mucosa is first incubated in a dispase solution for easy mechanical separation of the epithelial layer from the underlying submucosa. The detached epithelium is then digested with a papain solution. This method provides high yields of viable brush cells in a single-cell suspension, which can be used for flow cytometric analysis, single-cell sorting, cell culture, and functional assays.In the nose, where brush cells are more abundant, we present two methods of isolation of brush cells: (1) using fluorescent reporter mice that mark brush cells or (2) using a combination of high expression of EpCAM and low expression of CD45 to obtain a population of cells that is enriched for nasal chemosensory brush cells.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, Lai J, Liu T, Matsumoto I, Barrett NA, Boyce JA, Haber AL, Bankova LG. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci Immunol 2021; 6:eabj0474. [PMID: 34932383 DOI: 10.1126/sciimmunol.abj0474] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Evelyn C Aviles
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Caretta A, Mucignat-Caretta C. Are Multiple Chemosensory Systems Accountable for COVID-19 Outcome? J Clin Med 2021; 10:5601. [PMID: 34884303 PMCID: PMC8658083 DOI: 10.3390/jcm10235601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Chemosensory systems (olfaction, taste, trigeminus nerve, solitary chemoreceptor cells, neuroendocrine pulmonary cells, and carotid body, etc.) detect molecules outside or inside our body and may share common molecular markers. In addition to the impairment of taste and olfaction, the detection of the internal chemical environment may also be incapacitated by COVID-19. If this is the case, different consequences can be expected. (1) In some patients, hypoxia does not trigger distressing dyspnea ("silent" hypoxia): Long-term follow-up may determine whether silent hypoxia is related to malfunctioning of carotid body chemoreceptors. Moreover, taste/olfaction and oxygen chemoreceptors may be hit simultaneously: Testing olfaction, taste, and oxygen chemoreceptor functions in the early stages of COVID-19 allows one to unravel their connections and trace the recovery path. (2) Solitary chemosensory cells are also involved in the regulation of the innate mucosal immune response: If these cells are affected in some COVID-19 patients, the mucosal innate immune response would be dysregulated, opening one up to massive infection, thus explaining why COVID-19 has lethal consequences in some patients. Similar to taste and olfaction, oxygen chemosensory function can be easily tested with a non-invasive procedure in humans, while functional tests for solitary chemosensory or pulmonary neuroendocrine cells are not available, and autoptic investigation is required to ascertain their involvement.
Collapse
Affiliation(s)
- Antonio Caretta
- Department of Food and Drug Science, University of Parma, 43100 Parma, Italy;
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Carla Mucignat-Caretta
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
11
|
Schneider C. Tuft cell integration of luminal states and interaction modules in tissues. Pflugers Arch 2021; 473:1713-1722. [PMID: 34635955 PMCID: PMC8528756 DOI: 10.1007/s00424-021-02630-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Chemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.
Collapse
Affiliation(s)
- Christoph Schneider
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
12
|
Ualiyeva S, Boyd AA, Barrett NA, Bankova LG. Isolation of Nasal Brush Cells for Single-cell Preparations. Bio Protoc 2021; 11:e4163. [PMID: 34692913 DOI: 10.21769/bioprotoc.4163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 11/02/2022] Open
Abstract
Solitary chemosensory epithelial cells are scattered in most mucosal surfaces. They are referred to as tuft cells in the intestinal mucosa, brush cells in the trachea, and solitary chemosensory and microvillous cells in the nasal mucosa. They are the primary source of IL-25 in the epithelium and are also engaged in acetylcholine generation. We recently demonstrated that nasal solitary chemosensory (brush) cells can generate robust levels of cysteinyl leukotrienes in response to stimulation with calcium ionophore, aeroallergens, and danger-associated molecules, such as ATP and UTP, and this mechanism depends on brush cell expression of the purinergic receptor P2Y2. This protocol describes an effective method of nasal brush cell isolation in the mouse. The method is based on physical separation of the mucosal layer of the nasal cavity and pre-incubation with dispase, followed by digestion with papain solution. The single cell suspension obtained this way contains a high yield of brush cells for fluorescence-activated cell sorting (FACS), RNA-sequencing, and ex vivo assays. Graphic abstract: Workflow of nasal digestion for brush cell isolation.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Yamamoto Y, Yokoyama T, Nakamuta N. Morphology of GNAT3-immunoreactive chemosensory cells in the nasal cavity and pharynx of the rat. J Anat 2021; 239:290-306. [PMID: 33677835 PMCID: PMC8273592 DOI: 10.1111/joa.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022] Open
Abstract
Solitary chemosensory cells and chemosensory cell clusters are distributed in the pharynx and larynx. In the present study, the morphology and reflexogenic function of solitary chemosensory cells and chemosensory cell clusters in the nasal cavity and pharynx were examined using immunofluorescence for GNAT3 and electrophysiology. In the nasal cavity, GNAT3-immunoreactive solitary chemosensory cells were widely distributed in the nasal mucosa, particularly in the cranial region near the nostrils. Solitary chemosensory cells were also observed in the nasopharynx. Solitary chemosensory cells in the nasopharyngeal cavity were barrel like or slender in shape with long lateral processes within the epithelial layer to attach surrounding ciliated epithelial cells. Chemosensory cell clusters containing GNAT3-immunoreactive cells were also detected in the pharynx. GNAT3-immunoreactive cells gathered with SNAP25-immunoreactive cells in chemosensory clusters. GNAT3-immunoreactive chemosensory cells were in close contact with a few SP- or CGRP-immunoreactive nerve endings. In the pharynx, GNAT3-immunoreactive chemosensory cells were also attached to P2X3-immunoreactive nerve endings. Physiologically, the perfusion of 10 mM quinine hydrochloride (QHCl) solution induced ventilatory depression. The QHCl-induced reflex was diminished by bilateral section of the glossopharyngeal nerve, suggesting autonomic reflex were evoked by chemosensory cells in pharynx but not in nasal mucosa. The present results indicate that complex shape of nasopharyngeal solitary chemosensory cells may contribute to intercellular communication, and pharyngeal chemosensory cells may play a role in respiratory depression.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell BiologyFaculty of AgricultureIwate UniversityMoriokaJapan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology)Iwate Medical UniversityYahabaJapan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell BiologyFaculty of AgricultureIwate UniversityMoriokaJapan
| |
Collapse
|
14
|
Trevisi P, Luise D, Correa F, Messori S, Mazzoni M, Lallès JP, Bosi P. Maternal antibiotic treatment affects offspring gastric sensing for umami taste and ghrelin regulation in the pig. J Anim Sci Biotechnol 2021; 12:31. [PMID: 33731211 PMCID: PMC7972225 DOI: 10.1186/s40104-021-00557-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Scarce is knowledge on the process regulating the development of acid secretion, orexigenic signaling, and chemosensing in the stomach of young pigs. Changes of early microbial encounters by suckling pigs can interact with the gut maturation, by the induction of different molecular signaling. Our goal was to assess if the age of offspring and the maternal environment, influenced by sow antibiotic treatment peripartum, could affect gastric morphology and the expression of genes involved in the control of hydrochloric secretion, feed intake, taste, and inflammation in offspring stomach. Methods 84 pigs from sows fed a diet with amoxicillin (on –d10 to +d21 from farrowing, ANT) or without (CON) were sacrificed at d14, d21, d28 (weaning) or d42. Samples of oxyntic (OXY), pyloric (PY) and cardiac mucosae close to OXY were collected and parietal and enteroendocrine cells (EECs) were counted. Relative gene expression of a set of 11 key genes (ATP4A, SSTR2, GAST, GHRL, MBOAT4, PCSK1, GNAT1, TAS1R1, TAS1R3, IL8 and TNF) was assessed by qRT-PCR. In addition, 40 offspring obtained from the same ANT and CON sows were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 d of age, and then OXY and PY were sampled. Results The number of parietal and EECs increased with age (P < 0.001). ATP4A increased with age (within suckling, P = 0.043, post-weaning vs. suckling, P < 0.001), SSTR2 increased only after weaning (P < 0.001). In OXY, GHRL increased during suckling (P = 0.012), and post-weaning as a trend (P = 0.088). MBOAT4 tended to increase during suckling (P = 0.062). TAS1R1 increased from suckling to post-weaning period (P =0.001) and was lower in ANT offspring (P = 0.013). GNAT1 in PY was higher in ANT offspring (P = 0.041). Antibiotic treatment of sows peripartum increased expression of GHRL and MBOAT4 in OXY of growing-finishing offspring aged 5 months. Conclusions Data show that sensing for umami taste and ghrelin regulation can be affected by maternal environment, but the development of acid secretion, orexigenic signaling and taste perception in the stomach are mostly developmentally controlled. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00557-3.
Collapse
Affiliation(s)
- P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - D Luise
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - S Messori
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.,Present Address: World Organisation for Animal Health (OIE), Scientific Secretariat for the STAR-IDAZ International Research Consortium on animal health, 12 rue de Prony, 75017, Paris, France
| | - M Mazzoni
- Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, Ozzano nell'Emilia (BO), Bologna, Italy
| | - J P Lallès
- INRAE, Human Nutrition Division, Site of Theix, 63122, Saint-Genès-Champanelle, France
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
15
|
Development of epithelial cholinergic chemosensory cells of the urethra and trachea of mice. Cell Tissue Res 2021; 385:21-35. [PMID: 33616728 PMCID: PMC8270884 DOI: 10.1007/s00441-021-03424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/24/2021] [Indexed: 12/24/2022]
Abstract
Cholinergic chemosensory cells (CCC) are infrequent epithelial cells with immunosensor function, positioned in mucosal epithelia preferentially near body entry sites in mammals including man. Given their adaptive capacity in response to infection and their role in combatting pathogens, we here addressed the time points of their initial emergence as well as their postnatal development from first exposure to environmental microbiota (i.e., birth) to adulthood in urethra and trachea, utilizing choline acetyltransferase (ChAT)-eGFP reporter mice, mice with genetic deletion of MyD88, toll-like receptor-2 (TLR2), TLR4, TLR2/TLR4, and germ-free mice. Appearance of CCC differs between the investigated organs. CCC of the trachea emerge during embryonic development at E18 and expand further after birth. Urethral CCC show gender diversity and appear first at P6-P10 in male and at P11-P20 in female mice. Urethrae and tracheae of MyD88- and TLR-deficient mice showed significantly fewer CCC in all four investigated deficient strains, with the effect being most prominent in the urethra. In germ-free mice, however, CCC numbers were not reduced, indicating that TLR2/4-MyD88 signaling, but not vita-PAMPs, governs CCC development. Collectively, our data show a marked postnatal expansion of CCC populations with distinct organ-specific features, including the relative impact of TLR2/4-MyD88 signaling. Strong dependency on this pathway (urethra) correlates with absence of CCC at birth and gender-specific initial development and expansion dynamics, whereas moderate dependency (trachea) coincides with presence of first CCC at E18 and sex-independent further development.
Collapse
|
16
|
Kohanski MA, Brown L, Orr M, Tan LH, Adappa ND, Palmer JN, Rubenstein RC, Cohen NA. Bitter taste receptor agonists regulate epithelial two-pore potassium channels via cAMP signaling. Respir Res 2021; 22:31. [PMID: 33509163 PMCID: PMC7844973 DOI: 10.1186/s12931-021-01631-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial solitary chemosensory cell (tuft cell) bitter taste signal transduction occurs through G protein coupled receptors and calcium-dependent signaling pathways. Type II taste cells, which utilize the same bitter taste signal transduction pathways, may also utilize cyclic adenosine monophosphate (cAMP) as an independent signaling messenger in addition to calcium. Methods In this work we utilized specific pharmacologic inhibitors to interrogate the short circuit current (Isc) of polarized nasal epithelial cells mounted in Ussing chambers to assess the electrophysiologic changes associated with bitter agonist (denatonium) treatment. We also assessed release of human β-defensin-2 from polarized nasal epithelial cultures following treatment with denatonium benzoate and/or potassium channel inhibitors. Results We demonstrate that the bitter taste receptor agonist, denatonium, decreases human respiratory epithelial two-pore potassium (K2P) current in polarized nasal epithelial cells mounted in Ussing chambers. Our data further suggest that this occurs via a cAMP-dependent signaling pathway. We also demonstrate that this decrease in potassium current lowers the threshold for denatonium to stimulate human β-defensin-2 release. Conclusions These data thus demonstrate that, in addition to taste transducing calcium-dependent signaling, bitter taste receptor agonists can also activate cAMP-dependent respiratory epithelial signaling pathways to modulate K2P currents. Bitter-agonist regulation of potassium currents may therefore serve as a means of rapid regional epithelial signaling, and further study of these pathways may provide new insights into regulation of mucosal ionic composition and innate mechanisms of epithelial defense.
Collapse
Affiliation(s)
- Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA.
| | - Lauren Brown
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melissa Orr
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - Ronald C Rubenstein
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA.,Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA.,Monell Chemical Senses Institute, Philadelphia, PA, USA
| |
Collapse
|
17
|
Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, Long D, Benitz S, Yan W, Margolskee RF, Bednar F, Pasca di Magliano M, Wen HJ, Crawford HC. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:349-369. [PMID: 32882403 PMCID: PMC7779788 DOI: 10.1016/j.jcmgh.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression. METHODS Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks. RESULTS Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls. CONCLUSIONS Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.
Collapse
Affiliation(s)
- Megan T Hoffman
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Salas-Escabillas
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simone Benitz
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Lin C, Civantos AM, Arnold M, Stevens EM, Cowart BJ, Colquitt LR, Mansfield C, Kennedy DW, Brooks SG, Workman AD, Blasetti MT, Kohanski MA, Doghramji L, Douglas JE, Maina IW, Palmer JN, Adappa ND, Reed DR, Cohen NA. Divergent bitter and sweet taste perception intensity in chronic rhinosinusitis patients. Int Forum Allergy Rhinol 2020; 11:857-865. [PMID: 32846055 DOI: 10.1002/alr.22686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bitter and sweet taste receptors are present in the human upper airway, where they have roles in innate immunity. Previous studies have shown that 1 of the 25 bitter receptors, TAS2R38, responds to specific bacterial signaling molecules and evokes 1 type of a defense response in the upper airway, whereas ligands of sweet receptors suppress other types of defense responses. METHODS We examined whether other bitter taste receptors might also be involved in innate immunity by using sensory responses to bitter compounds that are not ligands of TAS2R38 (quinine and denatonium benzoate) to assess the sensitivity of other bitter receptors in chronic rhinosinusitis (CRS) patients. CRS patients with (n = 426) and without (n = 226) nasal polyps and controls (n = 356) rated the intensity of quinine, denatonium benzoate, phenylthiocarbamide (PTC; a ligand for TAS2R38), sucrose, and salt. RESULTS CRS patients rated the bitter compounds denatonium benzoate and quinine as less intense and sucrose as more intense than did controls (false discovery rate [FDR] <0.05) and CRS patients and controls did not differ in their ratings of salt (FDR >0.05). PTC bitter taste intensity differed between patient and control groups but were less marked than those previously reported. Though differences were statistically significant, overall effect sizes were small. CONCLUSION CRS patients report bitter stimuli as less intense but sweet stimuli as more intense than do control subjects. We speculate that taste responses may reflect the competence of sinonasal innate immunity mediated by taste receptor function, and thus a taste test may have potential for clinical utility in CRS patients.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA
| | - Alyssa M Civantos
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Monique Arnold
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Elizabeth M Stevens
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | | | | | | | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Steven G Brooks
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Mariel T Blasetti
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Laurel Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Jennifer E Douglas
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | | | - Noam A Cohen
- Monell Chemical Senses Center, Philadelphia, PA.,Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA.,Michael J. Crescenz Veterans Affairs (VA) Medical Center, Philadelphia, PA
| |
Collapse
|
19
|
Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, Weinreb C, Joseph PV, Larson ED, Parma V, Albers MW, Barlow LA, Datta SR, Di Pizio A. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron 2020; 107:219-233. [PMID: 32640192 PMCID: PMC7328585 DOI: 10.1016/j.neuron.2020.06.032] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.
Collapse
Affiliation(s)
- Keiland W Cooper
- Interdepartmental Neuroscience Program, University of California Irvine, Irvine, CA, USA
| | - David H Brann
- Harvard Medical School Department of Neurobiology, Boston, MA, USA
| | | | - Surabhi Bhutani
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Robert Pellegrino
- Department of Food Science, Institute of Agriculture, University of Tennessee, Knoxville, TN, USA; Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Caleb Weinreb
- Harvard Medical School Department of Neurobiology, Boston, MA, USA
| | - Paule V Joseph
- Division of Intramural Research, National Institute of Nursing Research (NINR) National Institutes of Health, Bethesda, MD, USA; National Institute on Alcohol Abuse and Alcoholism (NIAAA) National Institutes of Health, Bethesda, MD, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA and the Rocky Mountain Taste and Smell Center, Aurora, CO, USA
| | - Valentina Parma
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology, Graduate Program in Cell Biology, Stem Cells and Development and the Rocky Mountain Taste and Smell Center, University of Colorado, School Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | | | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
20
|
Wang Q, Liszt KI, Depoortere I. Extra-oral bitter taste receptors: New targets against obesity? Peptides 2020; 127:170284. [PMID: 32092303 DOI: 10.1016/j.peptides.2020.170284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Taste perception on the tongue is essential to help us to identify nutritious or potential toxic food substances. Emerging evidence has demonstrated the expression and function of bitter taste receptors (TAS2Rs) in a wide range of extra-oral tissues. In particular, TAS2Rs in gastrointestinal enteroendocrine cells control the secretion of appetite regulating gut hormones and influence hunger and food intake. Furthermore, these effects may be reinforced by the presence of TAS2Rs on intestinal smooth muscle cells, adipocytes and the brain. This review summarises how activation of extra-oral TAS2Rs can influence appetite and body weight control and how obesity impacts the expression and function of TAS2Rs. Region-selective targeting of bitter taste receptors may be promising targets for the treatment of obesity.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I, Junger W, Barrett N, Bankova L. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci Immunol 2020; 5:5/43/eaax7224. [PMID: 31953256 PMCID: PMC7176051 DOI: 10.1126/sciimmunol.aax7224] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Chemosensory epithelial cells (EpCs) are specialized cells that promote innate type 2 immunity and protective neurally mediated reflexes in the airway. Their effector programs and modes of activation are not fully understood. Here, we define the transcriptional signature of two choline acetyltransferase-expressing nasal EpC populations. They are found in the respiratory and olfactory mucosa and express key chemosensory cell genes including the transcription factor Pou2f3, the cation channel Trpm5, and the cytokine Il25 Moreover, these cells share a core transcriptional signature with chemosensory cells from intestine, trachea and thymus, and cluster with tracheal brush cells (BrCs) independently from other respiratory EpCs, indicating that they are part of the brush/tuft cell family. Both nasal BrC subsets express high levels of transcripts encoding cysteinyl leukotriene (CysLT) biosynthetic enzymes. In response to ionophore, unfractionated nasal BrCs generate CysLTs at levels exceeding that of the adjacent hematopoietic cells isolated from naïve mucosa. Among activating receptors, BrCs express the purinergic receptor P2Y2. Accordingly, the epithelial stress signal ATP and aeroallergens that elicit ATP release trigger BrC CysLT generation, which is mediated by the P2Y2 receptor. ATP- and aeroallergen-elicited CysLT generation in the nasal lavage is reduced in mice lacking Pou2f3, a requisite transcription factor for BrC development. Last, aeroallergen-induced airway eosinophilia is reduced in BrC-deficient mice. These results identify a previously undescribed BrC sensor and effector pathway leading to generation of lipid mediators in response to luminal signals. Further, they suggest that BrC sensing of local damage may provide an important sentinel immune function.
Collapse
Affiliation(s)
- S. Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - N. Hallen
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Y. Kanaoka
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - C. Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - W. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - N.A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - L.G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
23
|
Suntres TE, Daghfous G, Ananvoranich S, Dubuc R, Zielinski BS. Sensory cutaneous papillae in the sea lamprey (
Petromyzon marinus
L.): II. Ontogeny and immunocytochemical characterization of solitary chemosensory cells. J Comp Neurol 2019; 528:865-878. [DOI: 10.1002/cne.24794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Tina E. Suntres
- Department of Biological Sciences University of Windsor Windsor Ontario Canada
| | - Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Université de Montréal Montréal Quebec Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité Physique Université du Québec à Montréal Montréal Quebec Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry University of Windsor Windsor Ontario Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Université de Montréal Montréal Quebec Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité Physique Université du Québec à Montréal Montréal Quebec Canada
| | - Barbara S. Zielinski
- Department of Biological Sciences University of Windsor Windsor Ontario Canada
- Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario Canada
| |
Collapse
|
24
|
Daghfous G, Auclair F, Blumenthal F, Suntres T, Lamarre-Bourret J, Mansouri M, Zielinski B, Dubuc R. Sensory cutaneous papillae in the sea lamprey (Petromyzon marinus L.): I. Neuroanatomy and physiology. J Comp Neurol 2019; 528:664-686. [PMID: 31605382 DOI: 10.1002/cne.24787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Molecules present in an animal's environment can indicate the presence of predators, food, or sexual partners and consequently, induce migratory, reproductive, foraging, or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitary chemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While a great deal of research has focused on the olfactory and gustatory system over the years, it is only recently that significant attention has been devoted to the SCC system. The SCCs are microvillous cells that were first discovered on the skin of fish, and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that are particularly numerous on cutaneous papillae. However, little is known regarding their precise distribution, innervation, and function. Here, we show that sea lampreys (Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril, gill pores, and on the dorsal fins and that SCCs are particularly numerous on these papillae. Tract-tracing experiments demonstrated that the oral and nasal papillae are innervated by the trigeminal nerve, the gill pore papillae are innervated by branchial nerves, and the dorsal fin papillae are innervated by spinal nerves. We also characterized the response profile of gill pore papillae to some chemicals and showed that trout-derived chemicals, amino acids, and a bile acid produced potent responses. Together with a companion study (Suntres et al., Journal of Comparative Neurology, this issue), our results provide new insights on the function and evolution of the SCC system in vertebrates.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Felix Blumenthal
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Tina Suntres
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Jessica Lamarre-Bourret
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Masoud Mansouri
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Barbara Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Carey RM, Lee RJ. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019; 11:nu11092017. [PMID: 31466230 PMCID: PMC6770031 DOI: 10.3390/nu11092017] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Nayak AP, Shah SD, Michael JV, Deshpande DA. Bitter Taste Receptors for Asthma Therapeutics. Front Physiol 2019; 10:884. [PMID: 31379597 PMCID: PMC6647873 DOI: 10.3389/fphys.2019.00884] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR in vitro and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.
Collapse
Affiliation(s)
- Ajay P Nayak
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sushrut D Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - James V Michael
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deepak A Deshpande
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Lasconi C, Pifferi S, Hernandez-Clavijo A, Merigo F, Cecchini MP, Gonzalez-Velandia KY, Agostinelli E, Sbarbati A, Menini A. Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Sci Rep 2019; 9:8834. [PMID: 31222082 PMCID: PMC6586933 DOI: 10.1038/s41598-019-45456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.
Collapse
Affiliation(s)
- Chiara Lasconi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy.
| | | | - Flavia Merigo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy.
| | | | - Emilio Agostinelli
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
28
|
Mouse Parabrachial Neurons Signal a Relationship between Bitter Taste and Nociceptive Stimuli. J Neurosci 2019; 39:1631-1648. [PMID: 30606758 DOI: 10.1523/jneurosci.2000-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
Taste and somatosensation both mediate protective behaviors. Bitter taste guides avoidance of ingestion of toxins while pain sensations, such as noxious heat, signal adverse conditions to ward off harm. Although brain pathways for taste and somatosensation are typically studied independently, prior data suggest that they intersect, potentially reflecting their common protective role. To investigate this, we applied electrophysiologic and optogenetic techniques in anesthetized mice of both sexes to evaluate relationships between oral somatosensory and taste activity in the parabrachial nucleus (PbN), implicated for roles in gustation and pain. Spikes were recorded from taste-active PbN neurons tested with oral delivery of thermal and chemesthetic stimuli, including agonists of nocisensitive transient receptor potential (TRP) ion channels on somatosensory fibers. Gustatory neurons were also tested to follow electrical pulse stimulation of an oral somatosensory region of the spinal trigeminal subnucleus caudalis (Vc), which projects to the PbN. Neurons composed classic taste groups, including sodium, electrolyte, appetitive, or bitter cells. Across groups, most neurons spiked to Vc pulse stimulation, implying that trigeminal projections reach PbN gustatory neurons. Among such cells, a subpopulation responsive to the bitter taste stimuli quinine and cycloheximide, and aversive concentrations of sodium, cofired to agonists of nocisensitive TRP channels, including capsaicin, mustard oil, and noxious heat. Such neurons populated the lateral PbN. Further, nociceptive activity in PbN bitter taste neurons was suppressed during optogenetic-assisted inhibition of the Vc, implying convergent trigeminal input contributed to such activity. Our results reveal a novel role for PbN gustatory cells in cross-system signaling related to protection.SIGNIFICANCE STATEMENT Prior data suggest that gustatory and trigeminal neural pathways intersect and overlap in the parabrachial area. However, no study has directly examined such overlap and why it may exist. Here we found that parabrachial gustatory neurons can receive afferent projections from trigeminal nuclei and fire to oral nociceptive stimuli that excite somatosensory receptors and fibers. Activation to aversive nociceptive stimuli in gustatory cells was associated with responding to behaviorally avoided bitter tastants. We were further able to show that silencing trigeminal projections inhibited nociceptive activity in parabrachial bitter taste neurons. Our results imply that in the parabrachial area, there is predictable overlap between taste and somatosensory processing related to protective coding and that classically defined taste neurons contribute to this process.
Collapse
|
29
|
Abstract
Many odors activate the intranasal chemosensory trigeminal system where they produce cooling and other somatic sensations such as tingling, burning, or stinging. Specific trigeminal receptors are involved in the mediation of these sensations. Importantly, the trigeminal system also mediates sensitivity to airflow. The intranasal trigeminal and the olfactory system are closely connected. With regard to central nervous processing, it is most interesting that trigeminal stimuli can activate the piriform cortex, which is typically viewed as the primary olfactory cortex. This suggests that interactions between the two systems may form at a relatively early stage of processing. For example, there is evidence showing that acquired olfactory loss leads to reduced trigeminal sensitivity, probably on account of the lack of interaction in the central nervous system. Decreased trigeminal sensitivity may also be responsible for changes in airflow perception, leading to the impression of congested nasal airways.
Collapse
Affiliation(s)
- Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany.
| | - Johannes Frasnelli
- Université du Québec à Trois-Rivières, Department of Anatomy, Trois-Rivières, QC, Canada
| |
Collapse
|
30
|
Masuda H, Nakamuta N, Yamamoto Y. Morphology of GNAT3-immunoreactive chemosensory cells in the rat larynx. J Anat 2018; 234:149-164. [PMID: 30467855 DOI: 10.1111/joa.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
The upper airways play important roles in respiratory defensive reflexes. Although solitary chemosensory cells and chemosensory cell clusters have been reported in the laryngeal mucosa of mammalian species, the distribution and cellular morphology of chemosensory cells remain unclear. In the present study, the distribution and morphology of solitary chemosensory cells and chemosensory cell clusters were examined by immunofluorescence for GNAT3 on whole-mount preparations of the rat laryngeal mucosa. Electrophysiological experiments were performed to analyze the respiratory reflexes evoked by bitter stimuli to the laryngeal cavity. In the whole area of the laryngeal mucosa, the numbers of GNAT3-immunoreactive solitary chemosensory cells and chemosensory clusters were 421.0 ± 20.3 and 62.7 ± 6.9, respectively. GNAT3-immunoreactive solitary chemosensory cells were mainly distributed in the mucosa overlying epiglottic and arytenoid cartilage, and chemosensory clusters were mainly distributed on the edge of the epiglottis and aryepiglottic fold. GNAT3-immunoreactive solitary chemosensory cells were slender with elongated processes or had a flask-like/columnar shape. The number of GNAT3-immunoreactive cells in chemosensory clusters was 6.1 ± 0.4, ranging between 2 and 14 cells. GNAT3-immunoreactive cells in the cluster were variform and the tips of apical processes gathered at one point at the surface of the epithelium. The tips of apical cytoplasmic processes in solitary chemosensory cells and cells in the cluster were immunoreactive for espin, and faced the laryngeal cavity. Physiological experiments showed that the application of 10 mm quinine hydrochloride to the laryngeal cavity decreased respiratory frequency. The present results revealed the chemosensory field of the larynx and the morphological characteristics of the laryngeal chemosensory system for respiratory depression.
Collapse
Affiliation(s)
- Haruka Masuda
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
31
|
Carr R, Frings S. Neuropeptides in sensory signal processing. Cell Tissue Res 2018; 375:217-225. [PMID: 30377783 DOI: 10.1007/s00441-018-2946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Abstract
Peptides released from trigeminal fibers fulfill well-understood functions in neuroinflammatory processes and in the modulation of nociceptive signal processing. In particular, calcitonin gene-related peptide (CGRP) and substance P (SP), released from afferent nerve terminals, exert paracrine effects on the surrounding tissue and this has been recently highlighted by the prominent parcrine role of CGRP in the development of headache and migraine. Some recent communications suggest that these sensory neuropeptides may also modulate the workings of sensory organs and influence afferent signals from nose, tongue, eyes and ears. Here, we briefly review the evidence for modulatory effects of CGRP and SP in the sensory periphery.
Collapse
Affiliation(s)
- Richard Carr
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Stephan Frings
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Genovese F, Tizzano M. Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade. PLoS One 2018; 13:e0202754. [PMID: 30212469 PMCID: PMC6136699 DOI: 10.1371/journal.pone.0202754] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022] Open
Abstract
The nasal cavity hosts an array of chemoresponsive cells, including the extended olfactory system and several other cells involved in detection of and responses to irritants. Solitary chemosensory cells (SCCs), which respond to irritants and bacteria, express the transient receptor potential channel TRPM5 an essential element of the taste transduction-signaling cascade. Microvillous cells (MVCs), non-neuronal cells situated in the apical layer of the main olfactory epithelium, also express TRPM5, but their function has not yet been clarified. TRPM5-positive MVCs, like SCCs, show a cholinergic phenotype expressing choline acetyl transferase (ChAT), but none of the other elements of the bitter taste transduction cascade could be detected. We reexamined TRPM5-positive MVCs with more sensitive gene expression and staining techniques to clarify whether they rely only on TRPM5 and ChAT or express other elements of the taste/SCC transduction cascade. Analyzing existing RNA sequencing data from whole olfactory mucosa and isolated olfactory sensory neurons, we determined that several elements of the taste/SCC transduction cascade, including taste receptors, are expressed in the olfactory mucosa in cells other than olfactory sensory neurons. Immunostaining confirmed the presence TRPM5 and ChAT in a subset of cells of the olfactory mucosa, which also showed the expression of PLCB2, gustducin, and T1R3. Specifically, these cells were identified as TRPM5-positive MVCs. Furthermore, we examined whether MVCs are innervated by trigeminal fibers, similarly to SCCs. Using antibodies against trigeminal nerve markers calcitonin gene-related peptide and substance P, we determined that, despite the cholinergic phenotype, most MVCs in the olfactory mucosa lacked consistent trigeminal innervation. Our findings indicate that MVCs, like SCCs, express all the elements of the bitter taste transduction cascade but that, unlike SCCs, they possess only sparse trigeminal innervation. The cholinergic phenotype of MVCs suggests a modulatory function of the surrounding olfactory epithelium, through the release of acetylcholine.
Collapse
Affiliation(s)
- Federica Genovese
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Marco Tizzano
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Ramos MF, Baker J, Atzpodien EA, Bach U, Brassard J, Cartwright J, Farman C, Fishman C, Jacobsen M, Junker-Walker U, Kuper F, Moreno MCR, Rittinghausen S, Schafer K, Tanaka K, Teixeira L, Yoshizawa K, Zhang H. Nonproliferative and Proliferative Lesions of the Ratand Mouse Special Sense Organs(Ocular [eye and glands], Olfactory and Otic). J Toxicol Pathol 2018; 31:97S-214S. [PMID: 30158741 PMCID: PMC6108092 DOI: 10.1293/tox.31.97s] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Julia Baker
- Member of eye subgroup
- Charles River Laboratories, Inc., Frederick, MD, USA
| | | | - Ute Bach
- Member of eye subgroup
- Bayer AG, Wuppertal, Germany
| | | | | | | | - Cindy Fishman
- Member of eye subgroup
- Member of glands of the eye subgroup
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Frieke Kuper
- Member of olfactory subgroup
- Retired; formerly The Netherlands Organization for Applied
Scientific Research (TNO), Zeist, the Netherlands
| | | | | | - Ken Schafer
- Member of eye subgroup
- Member of otic subgroup
- Vet Path Services, Inc., Mason, OH, USA
| | - Kohji Tanaka
- Member of eye subgroup
- Nippon Boehringer Ingelheim, Japan
| | | | | | | |
Collapse
|
34
|
Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 2018; 128:1711-1719. [PMID: 29714721 DOI: 10.1172/jci120330] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Ibrahim D. Immunolocalization of Receptor and Chemoreceptor Modules in the Sheep Vomeronasal Organ. Cells Tissues Organs 2018; 205:85-92. [PMID: 29672316 DOI: 10.1159/000487758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023] Open
Abstract
The vomeronasal organ (VNO) is the peripheral receptor organ of the accessory olfactory system, which is responsible for both sexual and innate behaviors. The degree of neuronal differentiation and maturation of the vomeronasal receptor cells together with the verification of the presence of the solitary chemoreceptor cells (SCCs) in the VNO of Corriedale sheep were assessed using immunofluorescence. A protein gene product 9.5 (PGP 9.5), which is a neuronal marker recognized to be expressed in most neurons of vertebrate species, an olfactory marker protein (OMP) that is precise for mature olfactory receptor cells, and lastly phospholipase C-β2 (PLC-β2), a marker in the signal transduction pathway of SCCs, were all tested. The cell bodies and dendrites of almost all receptor cells in the sensory epithelium were strongly positive for PGP 9.5 and to a lesser extent for OMP. In the nonsensory wall, all cells were negative for both PGP 9.5 and OMP; however, some positive PGP 9.5 immunoreactive fibers were identified. For PLC-β2, only 1 basally situated SCC could be identified in the sensory epithelium. A higher number was demonstrated in the nonsensory wall. Corriedale sheep possess matured, fully differentiated vomeronasal receptor cells in their sensory wall, suggesting an appropriate pheromone perception. Additionally, the VNO in sheep may participate in the usual transduction mechanisms, though it is seemingly not a chemoreceptor organ.
Collapse
|
36
|
Fu Z, Ogura T, Luo W, Lin W. ATP and Odor Mixture Activate TRPM5-Expressing Microvillous Cells and Potentially Induce Acetylcholine Release to Enhance Supporting Cell Endocytosis in Mouse Main Olfactory Epithelium. Front Cell Neurosci 2018; 12:71. [PMID: 29615870 PMCID: PMC5869921 DOI: 10.3389/fncel.2018.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
The main olfactory epithelium (MOE) functions to detect odor molecules, provide an epithelial surface barrier, and remove xenobiotics from inhaled air. Mechanisms coordinating the activities of different cell types within the MOE to maintain these functions are poorly understood. Previously, we showed that superficially located microvillous cells (MCs) in the MOE expressing transient receptor potential channel M5 (TRPM5) are cholinergic and chemoresponsive and that they play an important role in maintaining odor responses and olfactory-guided behavior under challenging chemical environment. Here we investigated TRPM5-MC activation and subsequent paracrine regulation. Ca2+ imaging showed that TRPM5-MCs dose-dependently increase their intracellular Ca2+ levels in response to ATP, an important signaling molecule for airway mucociliary movement, and to an odor mixture. Pharmacological examination showed that the ATP responses are primarily mediated by P2X purinergic receptors. Interestingly, using the endocytosis dye pHrodo Red dextran, we found that chemical-activated TRPM5-MCs significantly increase the number of pHrodo-labeled puncta compared to controls without stimulation and compared to cells that do not respond to ATP or to the odor mixture. These results indicate potential vesicle recycling after release of the signaling molecule acetylcholine (ACh). Interestingly, TRPM5 knockout (KO) results in a decrease in ATP-induced pHrodo internalization. We further investigated cholinergic regulation of neighboring supporting cells (SCs). We found that ACh strongly elevates intracellular Ca2+ and potentiates pHrodo endocytosis in SCs. The ACh effects are diminished in the presence of atropine or M3 muscarinic receptor antagonist and in SCs lacking M3 receptors. Collectively, these data suggest that TRPM5-MCs may regulate the MOE’s multicellular network activity via cholinergic paracrine signaling for functional maintenance and adaptive plasticity.
Collapse
Affiliation(s)
- Ziying Fu
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Wangmei Luo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| |
Collapse
|
37
|
Ibrahim D. Glycoconjugates pattern and chemosensory cells in the camel respiratory mucosa: Lectin and immunohistochemical studies. Tissue Cell 2018; 51:84-90. [PMID: 29622093 DOI: 10.1016/j.tice.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/15/2022]
Abstract
The glycoconjugates pattern of acidic secretions and distribution of chemosensory cells (SCCs) in the respiratory mucosa of dromedary camels were analyzed so as to identify their functional role. Secretions of the goblet cells and mucous glandular cells were analyzed to evaluate the variety of sugar chains, focusing on the acidic glycoconjugates. Using lectin histochemistry, WGA, STL, DBA, SBA, VVA and RCA-120 intensely bound to the goblet cells. PNA and ECL labeled the goblet cells with moderate intensity. While, s-WGA, UEA-I faintly bound to them. Lectins bound to the glycocalyx: WGA, LEL, STL, DSL, DBA, SBA, VVA, RCA-120, ECL and PHA-L (tetra- and tri-antennary N-glycans). The mucous secretory cells reacted with: WGA, s-WGA, STL, DBA, SBA, ECL and Con A. Glycoconjugates secreted by the camel respiratory mucosa are rich in sialomucins, glucosaminy-lated residuals with some galactosyl/galactosaminylated residues; few L-fucose and mannosylated sugar residues are also included. For identification of SCCs, the camel respiratory mucosa was immunostained with phospholipase C-β2 (PLC-β2), a taste signaling marker. Several PLC-β2 immunoreactive cells were detected in camel respiratory epithelium. Finally, prevalence of sialomucins and SCCs which can respond to noxious chemicals may suggest a vital role in optimizing physiological and pathological reactions in camel respiratory mucosa.
Collapse
Affiliation(s)
- Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt.
| |
Collapse
|
38
|
Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Jiang P, Margolskee RF, Cohen NA. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci Signal 2017; 10:10/495/eaam7703. [PMID: 28874606 DOI: 10.1126/scisignal.aam7703] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of bitter taste receptors (T2Rs) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. This mechanism is thought to control the magnitude of antimicrobial peptide release based on the sugar content of airway surface liquid. We hypothesized that d-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. We showed that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) were present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two d-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, d-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. d-Amino acid-mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter receptor-activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial d-amino acids and the mammalian sweet taste receptor in airway chemosensory cells.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin M Hariri
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laurel Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. .,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Philadelphia Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 2017. [PMID: 28612045 DOI: 10.1523/eneuro.0135‐17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE.
Collapse
|
40
|
Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 2017; 4:eN-NWR-0135-17. [PMID: 28612045 PMCID: PMC5467397 DOI: 10.1523/eneuro.0135-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 11/21/2022] Open
Abstract
The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE.
Collapse
|
41
|
Lu P, Zhang CH, Lifshitz LM, ZhuGe R. Extraoral bitter taste receptors in health and disease. J Gen Physiol 2017; 149:181-197. [PMID: 28053191 PMCID: PMC5299619 DOI: 10.1085/jgp.201611637] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Bitter taste receptors (TAS2Rs or T2Rs) belong to the superfamily of seven-transmembrane G protein-coupled receptors, which are the targets of >50% of drugs currently on the market. Canonically, T2Rs are located in taste buds of the tongue, where they initiate bitter taste perception. However, accumulating evidence indicates that T2Rs are widely expressed throughout the body and mediate diverse nontasting roles through various specialized mechanisms. It has also become apparent that T2Rs and their polymorphisms are associated with human disorders. In this review, we summarize the physiological and pathophysiological roles that extraoral T2Rs play in processes as diverse as innate immunity and reproduction, and the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lawrence M Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 .,Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
42
|
Kook JH, Kim HK, Kim HJ, Kim KW, Kim TH, Kang KR, Oh DJ, Lee SH. Increased expression of bitter taste receptors in human allergic nasal mucosa and their contribution to the shrinkage of human nasal mucosa. Clin Exp Allergy 2016; 46:584-601. [PMID: 26931803 DOI: 10.1111/cea.12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/19/2016] [Accepted: 02/07/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Bitter taste receptors (TAS2Rs) are expressed in the extraoral tissues, where they possess various physiological functions. This study is to characterize TAS2Rs expression in normal and allergic nasal mucosa and analyse nasal symptom after challenge with bitter tastes to evaluate their pathophysiological function in normal and allergic nasal mucosa. METHODS The expression levels of TAS2Rs (TAS2R4, 5, 7, 10, 14, 39, and 43) in nasal mucosa were investigated by real-time PCR, Western blot, and immunohistochemistry. The expression levels of TAS2Rs and Ca(2+) imaging in cultured epithelial cells were measured after stimulation with type 2 cytokines (IL-4, IL-5, and IL-13) or bitter tastes. Nasal symptoms in control subjects and allergic rhinitis patients using visual analogue score and acoustic rhinometry were evaluated before and after stimulation with bitter tastes. Vascular diameter of rat nasal septum was measured before and after treatment with bitter tastes. RESULTS TAS2Rs tested here were expressed in nasal mucosa where they were commonly distributed in superficial epithelium, submucosal glands, and endothelium. Their expression levels are increased in allergic nasal mucosa and up-regulated in cultured epithelial cells simulated with type 2 cytokines. After treatment with bitter tastes, intracellular Ca(2+) signalling was increased in cultured epithelial cells, and vascular constriction was found in rat nasal septum. Increased nasal patency was observed in human nasal mucosa without pain or sneezing. CONCLUSION AND CLINICAL RELEVANCE TAS2Rs are constitutively expressed in human nasal mucosa and their expression levels are increased in allergic nasal mucosa, where they could potentially contribute to shrinkage of normal and allergic nasal mucosa.
Collapse
Affiliation(s)
- J H Kook
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Hallym University, ChunCheon, South Korea
| | - H K Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - H J Kim
- College of Medicine, Korea University, Seoul, South Korea
| | - K W Kim
- College of Medicine, Korea University, Seoul, South Korea
| | - T H Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - K R Kang
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - D J Oh
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - S H Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
43
|
Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem Cell Biol 2016; 146:673-683. [PMID: 27680547 DOI: 10.1007/s00418-016-1504-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
Abstract
A peculiar cell type of the respiratory and gastrointestinal epithelia, originally termed "brush cell" or "tuft cell" by electron microscopists because of its apical tuft of microvilli, utilizes the canonical bitter taste transduction cascade known from oropharyngeal taste buds to detect potential hazardous compounds, e.g. bacterial products. Upon stimulation, this cell initiates protective reflexes and local inflammatory responses through release of acetylcholine and chemokines. Guided by the understanding of these cells as sentinels, they have been newly discovered at previously unrecognized anatomical locations, including the urethra. Solitary cholinergic urethral cells express canonical taste receptors and are polymodal chemosensors for certain bitter substances, glutamate (umami) and uropathogenic Escherichia coli. Intraurethral bitter stimulation triggers cholinergic reflex activation of bladder detrusor activity, which is interpreted as cleaning flushing of the urethra. The currently known scenario suggests the presence of at least two more urethral chemosensory cell types: non-cholinergic brush cells and neuroendocrine serotonergic cells. The potential implications are enormous and far reaching, as these cells might be involved in monitoring and preventing ascending urinary tract infection and triggering of inappropriate detrusor activity. However, although appealing, this is still highly speculative, since the actual number of distinct chemosensory cell types needs to be finally clarified, as well as their embryological origin, developmental dynamics, receptor equipment, modes of signalling to adjacent nerve fibres and other cells, repertoire of chemo- and cytokines, involvement in pathogenesis of diseases and many other aspects.
Collapse
|
44
|
Carey RM, Adappa ND, Palmer JN, Lee RJ, Cohen NA. Taste Receptors: Regulators of Sinonasal Innate Immunity. Laryngoscope Investig Otolaryngol 2016; 1:88-95. [PMID: 27819057 PMCID: PMC5089074 DOI: 10.1002/lio2.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Taste receptors in the oral cavity guide our preferences for foods, preventing toxic ingestions and encouraging proper nutrient consumption. More recently, expression of taste receptors has been demonstrated in other locations throughout the body, including the airway, gastrointestinal tract, pancreas, and brain. The extent and specific roles of extraoral taste receptors are largely unknown, but a growing body of evidence suggests that taste receptors in the airway serve a critical role in sensing bacteria and regulating innate immunity. This review will focus on the function of bitter and sweet taste receptors in the human airway, with particular emphasis on T2R38, a bitter taste receptor found in sinonasal ciliated cells, and the bitter and sweet receptors found on specialized sinonasal solitary chemosensory cells. The importance of these novel taste receptor‐immune circuits in the human airway and their clinical relevance in airway disease will also be reviewed.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5 floor, Philadelphia, PA 19104
| | - Nithin D Adappa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5 floor, Philadelphia, PA 19104
| | - James N Palmer
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5 floor, Philadelphia, PA 19104
| | - Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5 floor, Philadelphia, PA 19104
| | - Noam A Cohen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5 floor, Philadelphia, PA 19104
| |
Collapse
|
45
|
Avau B, Depoortere I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol (Oxf) 2016; 216:407-20. [PMID: 26493384 DOI: 10.1111/apha.12621] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
The bitter taste receptor (TAS2R)-family of G-protein-coupled receptors has been identified on the tongue as detectors of bitter taste over a decade ago. In the last few years, they have been discovered in an ever growing number of extra-oral tissues, including the airways, the gut, the brain and even the testis. In tissues that contact the exterior, protective functions for TAS2Rs have been proposed, in analogy to their function on the tongue as toxicity detector. However, TAS2Rs have also been found in internal organs, suggesting other roles for these receptors, perhaps involving as yet unidentified endogenous ligands. The current review gives an overview of the different proposed functions for TAS2Rs in tissues other than the oral cavity; from appetite regulation to the treatment of asthma, regulation of gastrointestinal motility and control of airway innate immunity.
Collapse
Affiliation(s)
- B. Avau
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| | - I. Depoortere
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| |
Collapse
|
46
|
Douglas JE, Saunders CJ, Reed DR, Cohen NA. A role for airway taste receptor modulation in the treatment of upper respiratory infections. Expert Rev Respir Med 2016; 10:157-70. [PMID: 26731661 DOI: 10.1586/17476348.2016.1135742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Taste receptors, initially identified in the oral epithelium, have since been shown to be widely distributed, being found in the upper and lower respiratory tracts, gastrointestinal epithelium, thyroid, and brain. The presence of taste receptors in the nasal epithelium has led to the discovery of their role in innate immunity, defending the paranasal sinuses against pathogens. This article addresses the current paradigm for understanding the role of extraoral taste receptors, specifically the T2R38 bitter taste receptor and the T1R2+3 sweet taste receptor, in respiratory innate defenses and presents evidence for the use of these and other taste receptors as therapeutic targets in the management of chronic rhinosinusitis. Future studies should focus on understanding the polymorphisms of taste receptors beyond T2R38 to fully elucidate their potential therapeutic use and lay the groundwork for their modulation in a clinical setting to decrease the health impact and economic burden of upper respiratory disease.
Collapse
Affiliation(s)
- Jennifer E Douglas
- a Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.,b Department of Otorhinolaryngology-Head and Neck Surgery , University of Pennsylvania Health System , Philadelphia , PA , USA.,c Monell Chemical Senses Center , Philadelphia , PA , USA
| | - Cecil J Saunders
- b Department of Otorhinolaryngology-Head and Neck Surgery , University of Pennsylvania Health System , Philadelphia , PA , USA
| | | | - Noam A Cohen
- a Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.,b Department of Otorhinolaryngology-Head and Neck Surgery , University of Pennsylvania Health System , Philadelphia , PA , USA.,c Monell Chemical Senses Center , Philadelphia , PA , USA.,d Philadelphia Veterans Affairs Medical Center Surgical Services , Philadelphia , PA , USA
| |
Collapse
|
47
|
Voigt A, Hübner S, Döring L, Perlach N, Hermans-Borgmeyer I, Boehm U, Meyerhof W. Cre-Mediated Recombination in Tas2r131 Cells-A Unique Way to Explore Bitter Taste Receptor Function Inside and Outside of the Taste System. Chem Senses 2015; 40:627-39. [PMID: 26377344 DOI: 10.1093/chemse/bjv049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The type 2 taste receptors (Tas2rs) comprise a large family of G protein-coupled receptors that recognize compounds bitter to humans and aversive to vertebrates. Tas2rs are expressed in both gustatory and nongustatory tissues, however, identification and functional analyses of T2R-expressing cells have been difficult in most tissues. To overcome these limitations and to be able to manipulate Tas2r-expressing cells in vivo, we used gene-targeting to generate a Tas2r131-specific Cre knock-in mouse strain. We then employed a binary genetic approach to characterize Cre-mediated recombination in these animals and to investigate Tas2r131 expression during postnatal development. We demonstrate that a Cre-activated fluorescent reporter reliably visualizes Tas2r131-cells in gustatory tissue. We show that the onset of Tas2r131 as well as of α-Gustducin expression is initiated at different developmental stages depending on the type of taste bud. Furthermore, the number of Tas2r131- and α-Gustducin-expressing cells increased during postnatal development. Our results demonstrate that the Tas2r131-expressing cells constitute a subpopulation of α-Gustducin positive cells at all stages. We detected Tas2r131-expressing cells in several nongustatory tissues including lung, trachea, ovary, ganglia, and brain. Thus, the Tas2r131-Cre strain will help to dissect the functional role of Tas2r131 cells in both gustatory and nongustatory tissues in the future.
Collapse
Affiliation(s)
- Anja Voigt
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany, Institute for Neural Signal Transduction, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251 Hamburg, Germany and
| | - Sandra Hübner
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Linda Döring
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Nathalie Perlach
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animals Service Group, Center for Molecular Neurobiology Hamburg, UKE, Martinistraße 52, 20246 Hamburg, Germany
| | - Ulrich Boehm
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251 Hamburg, Germany and Present address: Department of Pharmacology and Toxicology, University of Saarland, School of Medicine, 66421 Homburg, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany,
| |
Collapse
|
48
|
Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2015; 15:14-20. [PMID: 25304231 DOI: 10.1097/aci.0000000000000120] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Taste receptor family 2 (T2R) bitter taste receptors were originally identified and named on the basis of their role in type 2 taste cells of the tongue, in which they serve to detect the presence of potentially harmful ingested chemicals. In 2009, researchers demonstrated that airway epithelial cells also express T2R receptors, but their role in airway physiology and human disease has only recently begun to be identified. RECENT FINDINGS Recent research has demonstrated that at least one airway T2R receptor, taste receptor family 2 isoform 38 protein (T2R38) is activated by secreted bacterial products. Activation of T2R38 in sinonasal epithelial cells stimulates nitric oxide production, increasing ciliary beating and directly killing bacteria. Clinical studies have also found correlations of TAS2R38 genotype with susceptibility to gram-negative upper respiratory infection and established T2R38 as an independent risk factor for chronic rhinosinusitis requiring sinus surgery. SUMMARY These recent studies identify a role for T2R38 in sinonasal innate immunity and chronic rhinosinusitis. Clinical implications include the potential development of T2R38-directed topical therapies, as well as using taste testing and/or genotyping to predict susceptibility to infection. Further studies are needed to more clearly determine how TAS2R38 genotype affects patient outcomes in chronic rhinosinusitis and other upper airway diseases.
Collapse
|
49
|
Devillier P, Naline E, Grassin-Delyle S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol Ther 2015; 155:11-21. [PMID: 26272040 DOI: 10.1016/j.pharmthera.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Philippe Devillier
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Emmanuel Naline
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Stanislas Grassin-Delyle
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
50
|
Lee RJ, Cohen NA. Sinonasal solitary chemosensory cells "taste" the upper respiratory environment to regulate innate immunity. Am J Rhinol Allergy 2015; 28:366-73. [PMID: 25198020 DOI: 10.2500/ajra.2014.28.4077] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND It is not fully understood how sinonasal epithelial cells detect the presence of pathogens and activate innate defense responses necessary for protecting the upper airway from infection. One mechanism is through bitter taste receptors (T2Rs), which are expressed in the sinonasal cavity. One T2R isoform, T2R38, is expressed in ciliated cells and detects quorum-sensing molecules from gram-negative bacteria, activating antimicrobial nitric oxide production. More recent studies have examined the role of T2Rs expressed in a sinonasal cell type that has only recently been identified in humans, the solitary chemosensory cell (SCC). We sought to provide an overview of SCCs and taste receptor function in human sinonasal defense as well as implications for chronic rhinosinusitis (CRS). METHODS A literature review of the current knowledge of SCCs and taste receptors in sinonasal physiology and CRS was conducted. RESULTS Human sinonasal SCCs express both bitter T2R and sweet T1R2/3 receptors. Activation of SCC T2Rs activates a calcium signal that propagates to the surrounding epithelial cells and causes secretion of antimicrobial peptides. T1R2/3 sweet receptor activation by physiological airway surface liquid (ASL) glucose concentrations attenuates the T2R response, likely as a mechanism to prevent full activation of the T2R pathway except during times of infection, when pathogens may consume ASL glucose and reduce its concentration. CONCLUSION SCCs appear to be important mediators of upper airway innate immunity, as the SCC T2Rs regulate antimicrobial peptide secretion, but further study is needed to determine the specific T2R isoforms involved as well as whether polymorphisms in these isoforms affect susceptibility to infection or patient outcomes in CRS. The inhibitory role of T1R2/3 sweet receptor suggests that T1R2/3 blockers may have therapeutic potential in some CRS patients, particularly those with diabetes mellitus. However, further clinical study of the relationship between infection and T1R2/3 genotype is required.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|