1
|
Zak JD, Reddy G, Konanur V, Murthy VN. Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex. Nat Commun 2024; 15:3268. [PMID: 38627390 PMCID: PMC11021479 DOI: 10.1038/s41467-024-47366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Psychology, University of Illinois Chicago, Chicago, IL, 60607, USA.
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, 94085, USA
- Department of Physics, Princeton University, Princeton, NJ, 08540, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Vaibhav Konanur
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, 02134, USA
| |
Collapse
|
2
|
Lindeman S, Fu X, Reinert JK, Fukunaga I. Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells. PLoS Biol 2024; 22:e3002536. [PMID: 38427708 PMCID: PMC10936853 DOI: 10.1371/journal.pbio.3002536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/13/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.
Collapse
Affiliation(s)
- Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xiaochen Fu
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Zhu P, Liu S, Tian Y, Chen Y, Chen W, Wang P, Du L, Wu C. Odor-induced modification of oscillations and related theta-higher gamma coupling in olfactory bulb neurons of awake and anesthetized rats. Front Chem 2022; 10:865006. [PMID: 35978860 PMCID: PMC9376862 DOI: 10.3389/fchem.2022.865006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory gamma oscillations (40–100 Hz) are generated spontaneously in animals and represent the activity of local olfactory bulb (OB) networks, which play important roles in cognitive mechanisms. In addition, high-frequency oscillations (HFO, 130–180 Hz) have attracted widespread attention and are novel neuronal oscillations with a frequency range closer to high gamma oscillations (60–100 Hz, HGOs). Both HGOs and HFOs are distinctly regulated by θ rhythm in the hippocampus. To understand their mediation mechanisms in the OB, we investigated whether local field potential (LFP) oscillations including HGOs and HFOs and even their coupling with theta rhythm are modified by odor stimulation in both freely moving and anesthetized rats. Therefore, we combined electrophysiological technology and cross-frequency coupling analysis approaches to determine the difference in the odor-modulated LFP oscillations between awake and anesthetized rats. The obtained results indicate that LFP oscillations including HGOs and HFOs were differently modified by odor stimulation in animals of both states. However, θ-HGO and θ-HFO coupling were modified in only awake animals. It is suggested that these oscillations and their interactions with theta oscillations may play crucial roles in olfactory network activity. This could pave the way for further understanding the underlying mechanisms of oscillations in OB neurons towards odor sensation.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Shuge Liu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yulan Tian
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yating Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Wei Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liping Du
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| | - Chunsheng Wu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| |
Collapse
|
4
|
Kersen DEC, Tavoni G, Balasubramanian V. Connectivity and dynamics in the olfactory bulb. PLoS Comput Biol 2022; 18:e1009856. [PMID: 35130267 PMCID: PMC8853646 DOI: 10.1371/journal.pcbi.1009856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/17/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells in the olfactory bulb create a dense interaction network, reorganizing sensory representations of odors and, consequently, perception. Large-scale computational models are needed for revealing how the collective behavior of this network emerges from its global architecture. We propose an approach where we summarize anatomical information through dendritic geometry and density distributions which we use to calculate the connection probability between mitral and granule cells, while capturing activity patterns of each cell type in the neural dynamical systems theory of Izhikevich. In this way, we generate an efficient, anatomically and physiologically realistic large-scale model of the olfactory bulb network. Our model reproduces known connectivity between sister vs. non-sister mitral cells; measured patterns of lateral inhibition; and theta, beta, and gamma oscillations. The model in turn predicts testable relationships between network structure and several functional properties, including lateral inhibition, odor pattern decorrelation, and LFP oscillation frequency. We use the model to explore the influence of cortex on the olfactory bulb, demonstrating possible mechanisms by which cortical feedback to mitral cells or granule cells can influence bulbar activity, as well as how neurogenesis can improve bulbar decorrelation without requiring cell death. Our methodology provides a tractable tool for other researchers.
Collapse
Affiliation(s)
- David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Wu J, Liu P, Mao X, Qiu F, Gong L, Wu J, Wang D, He M, Li A. Ablation of microRNAs in VIP + interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiol (Oxf) 2022; 234:e13767. [PMID: 34981885 DOI: 10.1111/apha.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
AIM MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
- Department of Anesthesiology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
6
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med 2020; 70:492-498. [PMID: 33168131 DOI: 10.30802/aalas-cm-20-990015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural oscillations of the mammalian olfactory system have been studied for decades. This research suggests they are linked to various processes involved in odor information analysis, depending on the vigilance state and presentation of stimuli. In addition, the effects of various anesthetics, including commonly used ones like chloral hydrate, pentobarbital, ketamine, and urethane, on the local field potential (LFP) in the olfactory bulb (OB) have been studied. In particular, the combination of xylazine and tiletamine-zolazepam has been shown to produce steady anesthesia for an extended period and relatively few adverse effects; however, their effects on the LFP in the OB remain unknown. To study those effects, we recorded the LFP in the OB of rats under xylazine-tiletamine-zolazepam anesthesia. During the period of anesthesia, the spectral powers of the 1-4, 9-16, 31-64, 65-90 frequency bands increased significantly, and that of 91-170 Hz frequency band decreased significantly, whereas no significant changes were observed in the 5-8 and 17-30 Hz ranges. These results reveal dynamic changes in the time and frequency characteristics of the LFP in the OB of rats under xylazine-tiletamine- zolazepam anesthesia and suggest that this combination of anesthetics could be used for studying oscillatory processes in the OB of rats.
Collapse
|
8
|
Fourcaud-Trocmé N, Lefèvre L, Garcia S, Messaoudi B, Buonviso N. High beta rhythm amplitude in olfactory learning signs a well-consolidated and non-flexible behavioral state. Sci Rep 2019; 9:20259. [PMID: 31889074 PMCID: PMC6937317 DOI: 10.1038/s41598-019-56340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/07/2019] [Indexed: 02/04/2023] Open
Abstract
Beta rhythm (15-30 Hz) is a major candidate underlying long-range communication in the brain. In olfactory tasks, beta activity is strongly modulated by learning but its condition of expression and the network(s) responsible for its generation are unclear. Here we analyzed the emergence of beta activity in local field potentials recorded from olfactory, sensorimotor and limbic structures of rats performing an olfactory task. Rats performed successively simple discrimination, rule transfer, memory recall tests and contingency reversal. Beta rhythm amplitude progressively increased over learning in most recorded areas. Beta amplitude reduced to baseline when new odors were introduced, but remained high during memory recall. Intra-session analysis showed that even expert rats required several trials to reach a good performance level, with beta rhythm amplitude increasing in parallel. Notably, at the beginning of the reversal task, beta amplitude remained high while performance was low and, in all tested animals, beta amplitude decreased before rats were able to learn the new contingencies. Connectivity analysis showed that beta activity was highly coherent between all structures where it was expressed. Overall, our results suggest that beta rhythm is expressed in a highly coherent network when context learning - including both odors and reward - is consolidated and signals behavioral inflexibility.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France.
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Samuel Garcia
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Belkacem Messaoudi
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, Inserm U 1028, CNRS UMR 5292, University Lyon 1, Bron, 69675, France
| |
Collapse
|
9
|
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex. J Neurosci 2019; 39:10002-10018. [PMID: 31672791 DOI: 10.1523/jneurosci.1234-19.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 02/03/2023] Open
Abstract
In awake rodents, the neural representation of olfactory information in the olfactory bulb is largely dependent on brain state and behavioral context. Learning-modified neural plasticity has been observed in mitral/tufted cells, the main output neurons of the olfactory bulb. Here, we propose that the odor information encoded by mitral/tufted cell responses in awake mice is highly dependent on the behavioral task demands. We used fiber photometry to record calcium signals from the mitral/tufted cell population in awake, head-fixed male mice under different task demands. We found that the mitral/tufted cell population showed similar responses to two distinct odors when the odors were presented in the context of a go/go task, in which the mice received a water reward regardless of the identity of the odor presented. However, when the same odors were presented in a go/no-go task, in which one odor was rewarded and the other was not, then the mitral cell population responded very differently to the two odors, characterized by a robust reduction in the response to the nonrewarded odor. Thus, the representation of odors in the mitral/tufted cell population depends on whether the task requires discrimination of the odors. Strikingly, downstream of the olfactory bulb, pyramidal neurons in the posterior piriform cortex also displayed a task-demand-dependent neural representation of odors, but the anterior piriform cortex did not, indicating that these two important higher olfactory centers use different strategies for neural representation.SIGNIFICANCE STATEMENT The most important task of the olfactory system is to generate a precise representation of odor information under different brain states. Whether the representation of odors by neurons in olfactory centers such as the olfactory bulb and the piriform cortex depends on task demands remains elusive. We find that odor representation in the mitral/tufted cells of the olfactory bulb depends on whether the task requires odor discrimination. A similar neural representation is found in the posterior piriform cortex but not the anterior piriform cortex, indicating that these higher olfactory centers use different representational strategies. The task-demand-dependent representational strategy is likely important for facilitating information processing in higher brain centers responsible for decision making and encoding of salience.
Collapse
|
10
|
Multisensory learning between odor and sound enhances beta oscillations. Sci Rep 2019; 9:11236. [PMID: 31375760 PMCID: PMC6677763 DOI: 10.1038/s41598-019-47503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022] Open
Abstract
Multisensory interactions are essential to make sense of the environment by transforming the mosaic of sensory inputs received by the organism into a unified perception. Brain rhythms allow coherent processing within areas or between distant brain regions and could thus be instrumental in functionally connecting remote brain areas in the context of multisensory interactions. Still, odor and sound processing relate to two sensory systems with specific anatomofunctional characteristics. How does the brain handle their association? Rats were challenged to discriminate between unisensory stimulation (odor or sound) and the multisensory combination of both. During learning, we observed a progressive establishment of high power beta oscillations (15–35 Hz) spanning on the olfactory bulb, the piriform cortex and the perirhinal cortex, but not the primary auditory cortex. In the piriform cortex, beta oscillations power was higher in the multisensory condition compared to the presentation of the odor alone. Furthermore, in the olfactory structures, the sound alone was able to elicit a beta oscillatory response. These findings emphasize the functional differences between olfactory and auditory cortices and reveal that beta oscillations contribute to the memory formation of the multisensory association.
Collapse
|
11
|
Jordan R, Fukunaga I, Kollo M, Schaefer AT. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation. Neuron 2018; 98:1214-1228.e5. [PMID: 29861286 PMCID: PMC6030445 DOI: 10.1016/j.neuron.2018.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 11/06/2022]
Abstract
The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales.
Collapse
Affiliation(s)
- Rebecca Jordan
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Izumi Fukunaga
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Li WL, Chu MW, Wu A, Suzuki Y, Imayoshi I, Komiyama T. Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. eLife 2018; 7:e33006. [PMID: 29533179 PMCID: PMC5912906 DOI: 10.7554/elife.33006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.
Collapse
Affiliation(s)
- Wankun L Li
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Monica W Chu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - An Wu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Yusuke Suzuki
- Medical Innovation Center/SK Project, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
13
|
Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017; 8:2. [PMID: 28154537 PMCID: PMC5244437 DOI: 10.3389/fphys.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.
Collapse
Affiliation(s)
- Yan Chelminski
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot University Orsay, France
| | - Christophe Magnan
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Serge H Luquet
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Amandine Everard
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'OlfactionJouy-en-Josas, France; Université de Versailles St-Quentin en YvelinesVersailles, France
| | - Hirac Gurden
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| | - Claire Martin
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| |
Collapse
|
14
|
Behavioral Status Influences the Dependence of Odorant-Induced Change in Firing on Prestimulus Firing Rate. J Neurosci 2017; 37:1835-1852. [PMID: 28093474 DOI: 10.1523/jneurosci.3132-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 11/21/2022] Open
Abstract
The firing rate of the mitral/tufted cells in the olfactory bulb is known to undergo significant trial-to-trial variability and is affected by anesthesia. Here we ask whether odorant-elicited changes in firing rate depend on the rate before application of the stimulus in the awake and anesthetized mouse. We find that prestimulus firing rate varies widely on a trial-to-trial basis and that the stimulus-induced change in firing rate decreases with increasing prestimulus firing rate. Interestingly, this prestimulus firing rate dependence was different when the behavioral task did not involve detecting the valence of the stimulus. Finally, when the animal was learning to associate the odor with reward, the prestimulus firing rate was smaller for false alarms compared with correct rejections, suggesting that intrinsic activity reflects the anticipatory status of the animal. Thus, in this sensory modality, changes in behavioral status alter the intrinsic prestimulus activity, leading to a change in the responsiveness of the second-order neurons. We speculate that this trial-to-trial variability in odorant responses reflects sampling of the massive parallel input by subsets of mitral cells.SIGNIFICANCE STATEMENT The olfactory bulb must deal with processing massive parallel input from ∼1200 distinct olfactory receptors. In contrast, the visual system receives input from a small number of photoreceptors and achieves recognition of complex stimuli by allocating processing for distinct spatial locations to different brain areas. Here we find that the change in firing rate elicited by the odorant in second-order mitral cells depends on the intrinsic activity leading to a change of magnitude in the responsiveness of these neurons relative to this prestimulus activity. Further, we find that prestimulus firing rate is influenced by behavioral status. This suggests that there is top-down modulation allowing downstream brain processing areas to perform dynamic readout of olfactory information.
Collapse
|
15
|
A probabilistic approach to demixing odors. Nat Neurosci 2016; 20:98-106. [PMID: 27918530 DOI: 10.1038/nn.4444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
The olfactory system faces a hard problem: on the basis of noisy information from olfactory receptor neurons (the neurons that transduce chemicals to neural activity), it must figure out which odors are present in the world. Odors almost never occur in isolation, and different odors excite overlapping populations of olfactory receptor neurons, so the central challenge of the olfactory system is to demix its input. Because of noise and the large number of possible odors, demixing is fundamentally a probabilistic inference task. We propose that the early olfactory system uses approximate Bayesian inference to solve it. The computations involve a dynamical loop between the olfactory bulb and the piriform cortex, with cortex explaining incoming activity from the olfactory receptor neurons in terms of a mixture of odors. The model is compatible with known anatomy and physiology, including pattern decorrelation, and it performs better than other models at demixing odors.
Collapse
|
16
|
Chu MW, Li WL, Komiyama T. Balancing the Robustness and Efficiency of Odor Representations during Learning. Neuron 2016; 92:174-186. [PMID: 27667005 DOI: 10.1016/j.neuron.2016.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 08/23/2016] [Indexed: 01/11/2023]
Abstract
For reliable stimulus identification, sensory codes have to be robust by including redundancy to combat noise, but redundancy sacrifices coding efficiency. To address how experience affects the balance between the robustness and efficiency of sensory codes, we probed odor representations in the mouse olfactory bulb during learning over a week, using longitudinal two-photon calcium imaging. When mice learned to discriminate between two dissimilar odorants, responses of mitral cell ensembles to the two odorants gradually became less discrete, increasing the efficiency. In contrast, when mice learned to discriminate between two very similar odorants, the initially overlapping representations of the two odorants became progressively decorrelated, enhancing the robustness. Qualitatively similar changes were observed when the same odorants were experienced passively, a condition that would induce implicit perceptual learning. These results suggest that experience adjusts odor representations to balance the robustness and efficiency depending on the similarity of the experienced odorants.
Collapse
Affiliation(s)
- Monica W Chu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wankun L Li
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; JST, PRESTO, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Li A, Gire DH, Restrepo D. ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome. J Neurosci 2015; 35:5808-22. [PMID: 25855190 PMCID: PMC4388934 DOI: 10.1523/jneurosci.4003-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/30/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023] Open
Abstract
Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go-no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045, Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, 221004, China
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, Washington 9819, and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045,
| |
Collapse
|
18
|
Leng G, Hashimoto H, Tsuji C, Sabatier N, Ludwig M. Discharge patterning in rat olfactory bulb mitral cells in vivo. Physiol Rep 2014; 2:e12021. [PMID: 25281614 PMCID: PMC4254087 DOI: 10.14814/phy2.12021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/24/2022] Open
Abstract
Here we present a detailed statistical analysis of the discharge characteristics of mitral cells of the main olfactory bulb of urethane-anesthetized rats. Neurons were recorded from the mitral cell layer, and antidromically identified by stimuli applied to the lateral olfactory tract. All mitral cells displayed repeated, prolonged bursts of action potentials typically lasting >100 sec and separated by similarly long intervals; about half were completely silent between bursts. No such bursting was observed in nonmitral cells recorded in close proximity to mitral cells. Bursts were asynchronous among even adjacent mitral cells. The intraburst activity of most mitral cells showed strong entrainment to the spontaneous respiratory rhythm; similar entrainment was seen in some, but not all nonmitral cells. All mitral cells displayed a peak of excitability at ~25 msec after spikes, as reflected by a peak in the interspike interval distribution and in the corresponding hazard function. About half also showed a peak at about 6 msec, reflecting the common occurrence of doublet spikes. Nonmitral cells showed no such doublet spikes. Bursts typically increased in intensity over the first 20-30 sec of a burst, during which time doublets were rare or absent. After 20-30 sec (in cells that exhibited doublets), doublets occurred frequently for as long as the burst persisted, in trains of up to 10 doublets. The last doublet was followed by an extended relative refractory period the duration of which was independent of train length. In cells that were excited by application of a particular odor, responsiveness was apparently greater during silent periods between bursts than during bursts. Conversely in cells that were inhibited by a particular odor, responsiveness was only apparent when cells were active. Extensive raw (event timing) data from the cells, together with details of those analyses, are provided as supplementary material, freely available for secondary use by others.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Hirofumi Hashimoto
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Chiharu Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Nancy Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Kollo M, Schmaltz A, Abdelhamid M, Fukunaga I, Schaefer AT. 'Silent' mitral cells dominate odor responses in the olfactory bulb of awake mice. Nat Neurosci 2014; 17:1313-5. [PMID: 25064849 PMCID: PMC4176944 DOI: 10.1038/nn.3768] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
How wakefulness shapes neural activity is a topic of intense discussion. In the awake olfactory bulb, high activity with weak sensory-evoked responses has been reported in mitral/tufted cells (M/TCs). Using blind whole-cell recordings, we found 33% of M/TCs to be 'silent', yet still show strong sensory responses, with weak or inhibitory responses in 'active' neurons. Thus, a previously missed M/TC subpopulation can exert powerful influence over the olfactory bulb.
Collapse
Affiliation(s)
- Mihaly Kollo
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Anja Schmaltz
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mostafa Abdelhamid
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Izumi Fukunaga
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Andreas T Schaefer
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. [4] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
20
|
Martin C, Ravel N. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Front Behav Neurosci 2014; 8:218. [PMID: 25002840 PMCID: PMC4066841 DOI: 10.3389/fnbeh.2014.00218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.
Collapse
Affiliation(s)
- Claire Martin
- Laboratory Imagerie et Modélisation en Neurobiologie et Cancérologie, CNRS UMR 8165, Université Paris Sud, Université Paris Diderot Orsay, France
| | - Nadine Ravel
- Team "Olfaction: Du codage à la mémoire," Centre de Recherche en Neurosciences de Lyon CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| |
Collapse
|
21
|
Cazakoff BN, Lau BYB, Crump KL, Demmer HS, Shea SD. Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice. Nat Neurosci 2014; 17:569-76. [PMID: 24584050 DOI: 10.1038/nn.3669] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
Abstract
Olfactory representations are shaped by brain state and respiration. The interaction and circuit substrates of these influences are unclear. Granule cells (GCs) in the main olfactory bulb (MOB) are presumed to sculpt activity reaching the cortex via inhibition of mitral/tufted cells (MTs). GCs potentially make ensemble activity more sparse by facilitating lateral inhibition among MTs and/or enforce temporally precise activity locked to breathing. Yet the selectivity and temporal structure of wakeful GC activity are unknown. We recorded GCs in the MOB of anesthetized and awake mice and identified state-dependent features of odor coding and temporal patterning. Under anesthesia, GCs were sparsely active and strongly and synchronously coupled to respiration. Upon waking, GCs desynchronized, broadened their tuning and largely fired independently from respiration. Thus, during wakefulness, GCs exhibited stronger odor responses with less temporal structure. We propose that during wakefulness GCs may shape MT odor responses through broadened lateral interactions rather than respiratory synchronization.
Collapse
Affiliation(s)
| | - Billy Y B Lau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kerensa L Crump
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Heike S Demmer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
22
|
Chery R, Gurden H, Martin C. Anesthetic regimes modulate the temporal dynamics of local field potential in the mouse olfactory bulb. J Neurophysiol 2013; 111:908-17. [PMID: 24285865 DOI: 10.1152/jn.00261.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anesthetized preparations have been widely used to study odor-induced temporal dynamics in the olfactory bulb. Although numerous recent data of single-cell recording or imaging in the olfactory bulb have employed ketamine cocktails, their effects on networks activities are still poorly understood, and odor-induced oscillations of the local field potential have not been characterized under these anesthetics. Our study aimed at describing the impact of two ketamine cocktails on oscillations and comparing them to awake condition. Anesthesia was induced by injection of a cocktail of ketamine, an antagonist of the N-methyl-d-aspartate receptors, combined with one agonist of α2-adrenergic receptors, xylazine (low affinity) or medetomidine (high affinity). Spontaneous and odor-induced activities were examined in anesthetized and awake conditions, in the same mice chronically implanted with an electrode in the main olfactory bulb. The overall dynamic pattern of oscillations under the two ketamine cocktails resembles that of the awake state. Ongoing activity is characterized by gamma bursts (>60 Hz) locked on respiration and beta (15-40 Hz) power increases during odor stimulation. However, anesthesia decreases local field potential power and leads to a strong frequency shift of gamma oscillations from 60-90 Hz to 100-130 Hz. We conclude that similarities between oscillations in anesthetized and awake states make cocktails of ketamine with one α2-agonist suitable for the recordings of local field potential to study processing in the early stages of the olfactory system.
Collapse
Affiliation(s)
- Romain Chery
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR8165, Université Paris-Sud, Paris 7, Centre National de la Recherche Scientifique, Orsay, France
| | | | | |
Collapse
|
23
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
24
|
Dong Q, Du L, Zhuang L, Li R, Liu Q, Wang P. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb. Biosens Bioelectron 2013; 49:263-9. [PMID: 23774163 DOI: 10.1016/j.bios.2013.05.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 01/23/2023]
Abstract
The mammalian olfactory system has merits of higher sensitivity, selectivity and faster response than current electronic nose system based on chemical sensor array. It is advanced and feasible to detect and discriminate odors by mammalian olfactory system. The purpose of this study is to develop a novel bioelectronic nose based on the brain-machine interface (BMI) technology for odor detection by in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted (M/T) cells in olfactory bulb (OB) were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns both in temporal features and rate features when stimulated by different small molecular odorants. The detection low limit is below 1 ppm for some specific odors. Odors were classified by an algorithm based on population vector similarity and support vector machine (SVM). The results suggested that the novel bioelectonic nose was sensitive to odorant stimuli. The best classifying accuracy was up to 95%. With the development of the BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.
Collapse
Affiliation(s)
- Qi Dong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Lang J, Li A, Luo W, Wu R, Li P, Xu F. Odor representation in the olfactory bulb under different brain states revealed by intrinsic optical signals imaging. Neuroscience 2013; 243:54-63. [PMID: 23567814 DOI: 10.1016/j.neuroscience.2013.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The olfactory system responds to the same stimulus with great variability according to the current state of the brain. At the levels of multi-unit activity and local field potentials, the response of the olfactory bulb (OB) to a given olfactory stimulus during a state of lower background activity is stronger than the response that occurs during higher background activity, but the distribution pattern of activity remains similar. However, these results have only been established at the individual neuron and neuron cluster scales in previous studies. It remains unclear whether these results are consistent at a larger scale (e.g., OB regions); therefore, intrinsic optical signals imaging was employed in the present study to clarify this issue. The basal brain states of rats were manipulated by using different levels of anesthesia. Under a state of low basal brain activity, the intensity of the activity pattern elicited in the dorsal OB by a given odorant was significantly higher than that under high basal brain activity, but the topography was highly similar across different brain states. These results were consistent across the levels of individual neurons, neuron clusters, glomeruli, and the OB regions, which suggest that the OB contains as yet unknown neural mechanisms that ensure the high-fidelity representation of the same olfactory stimulation under different brain states.
Collapse
Affiliation(s)
- J Lang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
26
|
Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex. J Neurosci 2012; 32:6092-104. [PMID: 22553016 DOI: 10.1523/jneurosci.6285-11.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here, we demonstrate how the timescales associated with respiratory frequency, spike timing, and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase-locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex.
Collapse
|
27
|
Koulakov AA, Rinberg D. Sparse incomplete representations: a potential role of olfactory granule cells. Neuron 2011; 72:124-36. [PMID: 21982374 DOI: 10.1016/j.neuron.2011.07.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 11/18/2022]
Abstract
Mitral/tufted cells of the olfactory bulb receive odorant information from receptor neurons and transmit this information to the cortex. Studies in awake behaving animals have found that sustained responses of mitral cells to odorants are rare, suggesting sparse combinatorial representation of the odorants. Careful alignment of mitral cell firing with the phase of the respiration cycle revealed brief transient activity in the larger population of mitral cells, which respond to odorants during a small fraction of the respiration cycle. Responses of these cells are therefore temporally sparse. Here, we propose a mathematical model for the olfactory bulb network that can reproduce both combinatorially and temporally sparse mitral cell codes. We argue that sparse codes emerge as a result of the balance between mitral cells' excitatory inputs and inhibition provided by the granule cells. Our model suggests functional significance for the dendrodendritic synapses mediating interactions between mitral and granule cells.
Collapse
|
28
|
Auffarth B, Kaplan B, Lansner A. Map formation in the olfactory bulb by axon guidance of olfactory neurons. Front Syst Neurosci 2011; 5:84. [PMID: 22013417 PMCID: PMC3190187 DOI: 10.3389/fnsys.2011.00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 11/28/2022] Open
Abstract
The organization of representations in the brain has been observed to locally reflect subspaces of inputs that are relevant to behavioral or perceptual feature combinations, such as in areas receptive to lower and higher-order features in the visual system. The early olfactory system developed highly plastic mechanisms and convergent evidence indicates that projections from primary neurons converge onto the glomerular level of the olfactory bulb (OB) to form a code composed of continuous spatial zones that are differentially active for particular physico-chemical feature combinations, some of which are known to trigger behavioral responses. In a model study of the early human olfactory system, we derive a glomerular organization based on a set of real-world, biologically relevant stimuli, a distribution of receptors that respond each to a set of odorants of similar ranges of molecular properties, and a mechanism of axon guidance based on activity. Apart from demonstrating activity-dependent glomeruli formation and reproducing the relationship of glomerular recruitment with concentration, it is shown that glomerular responses reflect similarities of human odor category perceptions and that further, a spatial code provides a better correlation than a distributed population code. These results are consistent with evidence of functional compartmentalization in the OB and could suggest a function for the bulb in encoding of perceptual dimensions.
Collapse
Affiliation(s)
- Benjamin Auffarth
- Department of Computational Biology, Royal Institute of Technology Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Rosero MA, Aylwin ML. Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats. Eur J Neurosci 2011; 34:787-99. [DOI: 10.1111/j.1460-9568.2011.07800.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Precise olfactory responses tile the sniff cycle. Nat Neurosci 2011; 14:1039-44. [PMID: 21765422 DOI: 10.1038/nn.2877] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/02/2011] [Indexed: 12/13/2022]
Abstract
In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas.
Collapse
|
31
|
Yoshida T, Katz DB. Control of prestimulus activity related to improved sensory coding within a discrimination task. J Neurosci 2011; 31:4101-12. [PMID: 21411651 PMCID: PMC3089821 DOI: 10.1523/jneurosci.4380-10.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 11/21/2022] Open
Abstract
Network state influences the processing of incoming stimuli. It is reasonable to expect, therefore, that animals might adjust cortical activity to improve sensory coding of behaviorally relevant stimuli. We tested this hypothesis, recording single-neuron activity from gustatory cortex (GC) in rats engaged in a two-alternative forced-choice taste discrimination task, and assaying the responses of these same neurons when the rats received the stimuli passively. We found that the task context affected the GC network state (reducing beta- and gamma-band field potential activity) and changed prestimulus and taste-induced single-neuron activity: before the stimulus, the activity of already low-firing neurons was further reduced, a change that was followed by comparable reductions of taste responses themselves. These changes served to sharpen taste selectivity, mainly by reducing responses to suboptimal stimuli. This sharpening of taste selectivity was specifically attributable to neurons with decreased prestimulus activities. Our results suggest the importance of prestimulus activity control for improving sensory coding within the task context.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Psychology
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
| | - Donald B. Katz
- Department of Psychology
- Program of Neuroscience, and
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
32
|
Kay LM, Beshel J. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 2010; 104:829-39. [PMID: 20538778 DOI: 10.1152/jn.00166.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (approximately 70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15-35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
33
|
Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning. J Neurosci 2010; 30:287-303. [PMID: 20053910 DOI: 10.1523/jneurosci.0855-09.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Animals learn which foods to ingest and which to avoid. Despite many studies, the electrophysiological correlates underlying this behavior at the gustatory-reward circuit level remain poorly understood. For this reason, we measured the simultaneous electrical activity of neuronal ensembles in the orbitofrontal cortex, insular cortex, amygdala, and nucleus accumbens while rats licked for taste cues and learned to perform a taste discrimination go/no-go task. This study revealed that rhythmic licking entrains the activity in all these brain regions, suggesting that the animal's licking acts as an "internal clock signal" against which single spikes can be synchronized. That is, as animals learned a go/no-go task, there were increases in the number of licking coherent neurons as well as synchronous spiking between neuron pairs from different brain regions. Moreover, a subpopulation of gustatory cue-selective neurons that fired in synchrony with licking exhibited a greater ability to discriminate among tastants than nonsynchronized neurons. This effect was seen in all four recorded areas and increased markedly after learning, particularly after the cue was delivered and before the animals made a movement to obtain an appetitive or aversive tastant. Overall, these results show that, throughout a large segment of the taste-reward circuit, appetitive and aversive associative learning improves spike-timing precision, suggesting that proficiency in solving a taste discrimination go/no-go task requires licking-induced neural ensemble synchronous activity.
Collapse
|
34
|
Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning. J Neurosci 2010. [PMID: 20053910 DOI: 10.1523/jneurosci.0855‐09.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animals learn which foods to ingest and which to avoid. Despite many studies, the electrophysiological correlates underlying this behavior at the gustatory-reward circuit level remain poorly understood. For this reason, we measured the simultaneous electrical activity of neuronal ensembles in the orbitofrontal cortex, insular cortex, amygdala, and nucleus accumbens while rats licked for taste cues and learned to perform a taste discrimination go/no-go task. This study revealed that rhythmic licking entrains the activity in all these brain regions, suggesting that the animal's licking acts as an "internal clock signal" against which single spikes can be synchronized. That is, as animals learned a go/no-go task, there were increases in the number of licking coherent neurons as well as synchronous spiking between neuron pairs from different brain regions. Moreover, a subpopulation of gustatory cue-selective neurons that fired in synchrony with licking exhibited a greater ability to discriminate among tastants than nonsynchronized neurons. This effect was seen in all four recorded areas and increased markedly after learning, particularly after the cue was delivered and before the animals made a movement to obtain an appetitive or aversive tastant. Overall, these results show that, throughout a large segment of the taste-reward circuit, appetitive and aversive associative learning improves spike-timing precision, suggesting that proficiency in solving a taste discrimination go/no-go task requires licking-induced neural ensemble synchronous activity.
Collapse
|
35
|
Abstract
The neural basis of olfactory information processing and olfactory percept formation is a topic of intense investigation as new genetic, optical, and psychophysical tools are brought to bear to identify the sites and interaction modes of cortical areas involved in the central processing of olfactory information. New methods for recording cellular interactions and network events in the awake, behaving brain during olfactory processing and odor-based decision making have shown remarkable new properties of neuromodulation and synaptic interactions distinct from those observed in anesthetized brains. Psychophysical, imaging, and computational studies point to the orbitofrontal cortex as the likely locus of odor percept formation in mammals, but further work is needed to identify a causal link between perceptual and neural events in this area.
Collapse
Affiliation(s)
- Alan Gelperin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
36
|
Restrepo D, Doucette W, Whitesell JD, McTavish TS, Salcedo E. From the top down: flexible reading of a fragmented odor map. Trends Neurosci 2009; 32:525-31. [PMID: 19758713 DOI: 10.1016/j.tins.2009.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 11/29/2022]
Abstract
Animals that depend on smell for communication and survival extract multiple pieces of information from a single complex odor. Mice can collect information on sex, genotype, health and dietary status from urine scent marks, a stimulus made up of hundreds of molecules. This ability is all the more remarkable considering that natural odors are encountered against varying olfactory backgrounds; the olfactory system must therefore provide some mechanism for extracting the most relevant information. Here we discuss recent data indicating that the readout of olfactory input by mitral cells in the olfactory bulb can be modified by behavioral context. We speculate that the olfactory cortex plays a key role in tuning the readout of olfactory information from the olfactory bulb.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology and Neuroscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
37
|
Aylwin M, Aguilar G, Flores F, Maldonado P. Odorant modulation of neuronal activity and local field potential in sensory-deprived olfactory bulb. Neuroscience 2009; 162:1265-78. [DOI: 10.1016/j.neuroscience.2009.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
|
38
|
Restrepo D, Whitesell J, Doucette W. Need for related multipronged approaches to understand olfactory bulb signal processing. Ann N Y Acad Sci 2009; 1170:298-305. [PMID: 19686151 DOI: 10.1111/j.1749-6632.2009.04375.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent work from our laboratory in awake behaving animals shows that olfactory bulb processing changes depending profoundly on behavioral context. Thus, we find that when recording from the olfactory bulb in a mouse during a go-no go association learning task, it is not unusual to find a mitral cell that initially does not respond to the rewarded or unrewarded odors but develops a differential response to the stimuli during the learning session. This places a challenge on how to approach understanding of olfactory bulb processing, because neural interactions differ depending on the status of the animal. Here we address the question of how the different approaches to study olfactory bulb neuron responses, including studies in anesthetized and unanesthetized animals in vivo and recordings in slices, complement each other. We conclude that more critical understanding of the relationship between the measurements in the different preparations is necessary for future advances in the understanding of olfactory bulb processing of odor information.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
39
|
Cenier T, David F, Litaudon P, Garcia S, Amat C, Buonviso N. Respiration-gated formation of gamma and beta neural assemblies in the mammalian olfactory bulb. Eur J Neurosci 2009; 29:921-30. [PMID: 19291223 DOI: 10.1111/j.1460-9568.2009.06651.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of data suggests that information coding can be achieved not only by varying neuronal firing rate, but also by varying spike timing relative to network oscillations. In the olfactory bulb (OB) of a freely breathing anaesthetized mammal, odorant stimulation induces prominent oscillatory local field potential (LFP) activity in the beta (10-35 Hz) and gamma (40-80 Hz) ranges, which alternate during a respiratory cycle. At the same time, mitral/tufted (M/T) cells display respiration-modulated spiking patterns. Using simultaneous recordings of M/T unitary activities and LFP activity, we conducted an analysis of the temporal relationships between M/T cell spiking activity and both OB beta and gamma oscillations. We observed that M/T cells display a respiratory pattern that pre-tunes instantaneous frequencies to a gamma or beta regime. Consequently, M/T cell spikes become phase-locked to either gamma or beta LFP oscillations according to their frequency range and respiratory pattern. Our results suggest that slow respiratory dynamics pre-tune M/T cells to a preferential fast rhythm (beta or gamma) such that a spike-LFP coupling might occur when units and oscillation frequencies are in a compatible range. This double-coupling process might define two complementary beta- and gamma-neuronal assemblies along the course of a respiratory cycle.
Collapse
Affiliation(s)
- Tristan Cenier
- Neurosciences Sensorielles, Comportement, Cognition, Université Claude Bernard Lyon1, CNRS UMR 5020, Institut Fédératif de Neurosciences de Lyon, 50 Avenue Tony Garnier, 69366 Lyon Cedex 7, France.
| | | | | | | | | | | |
Collapse
|
40
|
Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci 2009; 32:207-14. [PMID: 19243843 DOI: 10.1016/j.tins.2008.11.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/01/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Olfactory system oscillations play out with beautiful temporal and behavioral regularity on the oscilloscope and seem to scream 'meaning'. Always there is the fear that, although attractive, these symbols of dynamic regularity might be just seductive epiphenomena. There are now many studies that have isolated some of the neural mechanisms involved in these oscillations, and recent work argues that they are functional and even necessary at the physiological and cognitive levels. However, much remains to be done for a full understanding of their functions.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The chemical senses, smell and taste, are the most poorly understood sensory modalities. In recent years, however, the field of chemosensation has benefited from new methods and technical innovations that have accelerated the rate of scientific progress. For example, enormous advances have been made in identifying olfactory and gustatory receptor genes and mapping their expression patterns. Genetic tools now permit us to monitor and control neural activity in vivo with unprecedented precision. New imaging techniques allow us to watch neural activity patterns unfold in real time. Finally, improved hardware and software enable multineuron electrophysiological recordings on an expanded scale. These innovations have enabled some fresh approaches to classic problems in chemosensation.
Collapse
|
42
|
Wilson RI. Neural and behavioral mechanisms of olfactory perception. Curr Opin Neurobiol 2008; 18:408-12. [PMID: 18809492 DOI: 10.1016/j.conb.2008.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
Recent in vivo and in vitro studies have challenged existing models of olfactory processing in the vertebrate olfactory bulb and insect antennal lobe. Whereas lateral connectivity between olfactory glomeruli was previously thought to form a dense, topographically organized inhibitory surround, new evidence suggests that lateral connections may be sparse, nontopographic, and partly excitatory. Other recent studies highlight the role of active sensing (sniffing) in shaping odor-evoked neural activity and perception.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|