1
|
Busnardo C, Fassini A, Lopes-Azevedo S, Omena-Giatti L, Goulart MT, Antunes-Rodrigues J, Alves FHF, Corrêa FMA, Crestani CC. ENDOCANNABINOID SYSTEM IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS MODULATES AUTONOMIC AND CARDIOVASCULAR CHANGES BUT NOT VASOPRESSIN RESPONSE IN A RAT HEMORRHAGIC SHOCK MODEL. Shock 2024; 61:294-303. [PMID: 38150372 DOI: 10.1097/shk.0000000000002286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.
Collapse
Affiliation(s)
- Cristiane Busnardo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Aline Fassini
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Silvana Lopes-Azevedo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana Omena-Giatti
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Melissa T Goulart
- Department of Health Sciences, Faculty of Medicine-Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando H F Alves
- Department of Health Sciences, Faculty of Medicine-Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Fernando M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
2
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
O’Brien F, Feetham CH, Staunton CA, Hext K, Barrett-Jolley R. Temperature modulates PVN pre-sympathetic neurones via transient receptor potential ion channels. Front Pharmacol 2023; 14:1256924. [PMID: 37920211 PMCID: PMC10618372 DOI: 10.3389/fphar.2023.1256924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in maintaining homeostasis and modulates cardiovascular function via autonomic pre-sympathetic neurones. We have previously shown that coupling between transient receptor potential cation channel subfamily V Member 4 (Trpv4) and small-conductance calcium-activated potassium channels (SK) in the PVN facilitate osmosensing, but since TRP channels are also thermosensitive, in this report we investigated the temperature sensitivity of these neurones. Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with cell-attached patch-clamp electrophysiology. Following recovery of temperature-sensitive single-channel kinetic schema, we constructed a predictive stochastic mathematical model of these neurones and validated this with electrophysiological recordings of action current frequency. Results: 7 thermosensitive TRP channel genes were found in PVN punches. Trpv4 was the most abundant of these and was identified at the single channel level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like channels; open probability (Po) markedly decreased when temperature was decreased, mediated by a decrease in mean open dwell times. Our neuronal model predicted that PVN spontaneous action current frequency (ACf) would increase as temperature is decreased and in our electrophysiological experiments, we found that ACf from PVN neurones was significantly higher at lower temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the presence of gadolinium (100 µM), the temperature effect was largely retained. Using econazole (10 µM), a blocker of Trpm2, we found there were significant increases in overall ACf and the temperature effect was inhibited. Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene in the PVN appears to contribute to intrinsic thermosensitive properties of PVN neurones. At physiological temperatures (37°C), we observed relatively low ACf primarily due to the activity of Trpm2 channels, whereas at room temperature, where most of the previous characterisation of PVN neuronal activity has been performed, ACf is much higher, and appears to be predominately due to reduced Trpv4 activity. This work gives insight into the fundamental mechanisms by which the body decodes temperature signals and maintains homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Gambino G, Gallo D, Covelo A, Ferraro G, Sardo P, Giglia G. TRPV1 channels in nitric oxide-mediated signalling: insight on excitatory transmission in rat CA1 pyramidal neurons. Free Radic Biol Med 2022; 191:128-136. [PMID: 36029909 DOI: 10.1016/j.freeradbiomed.2022.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is a fascinating signalling molecule implicated in a plethora of biological functions, especially at the synaptic level. Exploring neurotransmission in the hippocampus could be instrumental in the individuation of putative targets for nitric-oxide mediated neuromodulation, especially in terms of the potential repercussions on fundamental processes i.e. synaptic plasticity and excitability-related phenomena. Among these targets, endovanilloid signalling constitutes an object of study since Transient Receptors Vanilloid type 1 (TRPV1) channels possess a NO-sensitive gate modulating its activation. Also, NO has been referred to as a mediator for numerous endocannabinoid effects. Notwithstanding, the linkage between TRPV1 and NO systems in neuromodulation still remains elusive. To this end, we aim at investigating the involvement of TRPV1 in nitric oxide-mediated influence on hippocampal processes. Electrophysiological whole-cell recordings in CA1 pyramidal neurons were applied to evaluate excitatory neurotransmission in rat brain slices. Indeed, miniature excitatory postsynaptic currents (mEPSCs) were analysed upon pharmacological manipulation of TRPV1 and NO signalling pathways. In detail, only the administration of the specific TRPV1 exogenous agonist - capsaicin - reduced the frequency and amplitude of mEPSC similarly to the inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitroindazole (7NI). In contrast, capsazepine, TRPV1 antagonist, does not influence excitatory transmission. The combined TRPV1 activation and nNOS blockade confirm the presence of a putative common mechanism. When we administered the endovanilloid-endocannabinoid ligand, i.e. anandamide, we unveiled a potentiation of neurotransmission that was selectively reverted by 7NI. Our data suggest that nitric oxide influences TRPV1 hippocampal signalling since these channels are not constitutively active, but can be "on-demand" activated to modulate excitation in CA1 pyramidal neurons, and that this effect is linked to nitric oxide production.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy.
| | - Daniele Gallo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, France
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Italy
| |
Collapse
|
5
|
Perampanel enhances the cardiovagal tone and heart rate variability (HRV) in patients with drug-resistant temporal lobe epilepsy. Seizure 2022; 99:16-23. [DOI: 10.1016/j.seizure.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
|
6
|
Politi M, Ferrante C, Menghini L, Angelini P, Flores GA, Muscatello B, Braca A, De Leo M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030349. [PMID: 35161330 PMCID: PMC8840401 DOI: 10.3390/plants11030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
The present work evaluates the aromatic waters of rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.), sage (Salvia officinalis L.), and cypress (Cupressus sempervirens L.) obtained as innovative commercial products of a hydrodistillation process. All extracts were exhaustively analysed by GC-MS, 1H-NMR, and LC-MS in order to evaluate potential metabolite fingerprint differences. GC-MS appears to be the most exhaustive technique for the qualitative identification of the single constituents, although in this case, the use of 1H-NMR and LC-MS techniques allowed some useful considerations in semi-quantitative terms. Antimycotic effects were studied against Tricophyton, Candida, and Arthroderma species, resulting in weak activity. The toxicological impact was partly evaluated in vitro by means of allelopathy and brine shrimp lethality. Cytotoxicity was investigated in human colon cancer cells (HCT116) and in hypothalamic cells (Hypo-E22) challenged with hydrogen peroxide. Sage and rosemary hydrosols were the most effective antimycotics, whereas all hydrosols displayed antiradical effects. Cytotoxic effects against HCT116 cells (at 500 µL/mL) were related in silico to the endovanilloid TRPM8 and TRPV1 receptors. At lower concentrations (5-50 µL/mL), the hydrosols protected hypothalamic neurons Hypo-E22 cells from hydrogen peroxide-induced toxicity. The overall experience indicates that hydrolates are an important source of relevant phytochemicals with significant pharmacological potential.
Collapse
Affiliation(s)
- Matteo Politi
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Claudio Ferrante
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Luigi Menghini
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Paola Angelini
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Giancarlo Angeles Flores
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Beatrice Muscatello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9688
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
7
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|
8
|
Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2020; 42:389-417. [PMID: 33030712 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
|
9
|
Elevation of Transient Receptor Potential Vanilloid 1 Function in the Lateral Habenula Mediates Aversive Behaviors in Alcohol-withdrawn Rats. Anesthesiology 2020; 130:592-608. [PMID: 30676422 DOI: 10.1097/aln.0000000000002615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Chronic alcohol use and withdrawal leads to increased pain perception, anxiety, and depression. These aberrant behaviors are accompanied by increased excitatory glutamatergic transmission to, and activity of, the lateral habenula neurons.Vanilloid type 1, or TRPV1, channels are expressed in the habenula and they facilitate glutamatergic transmission. Whether TRPV1 channel plays a role in habenula hyperactivity is not clear. WHAT THIS ARTICLE TELLS US THAT IS NEW Glutamatergic transmission in the lateral habenula was inhibited by TRPV1 channel antagonists. In vivo, local administration of TRPV1 antagonists into the lateral habenula attenuated hyperalgesia, anxiety, and relapse-like drinking in rats who chronically consumed alcohol.The data suggest that enhanced TRPV1 channel function during withdrawal may contribute to aberrant behavior that promotes relapse alcohol consumption. BACKGROUND Recent rat studies indicate that alcohol withdrawal can trigger a negative emotional state including anxiety- and depression-like behaviors and hyperalgesia, as well as elevated glutamatergic transmission and activity in lateral habenula neurons. TRPV1, a vanilloid receptor expressed in the habenula, is involved in pain, alcohol dependence, and glutamatergic transmission. The authors therefore hypothesized that TRPV1 contributes to the changes in both the behavioral phenotypes and the habenula activity in alcohol-withdrawn rats. METHODS Adult male Long-Evans rats (n = 110 and 280 for electrophysiology and behaviors, respectively), randomly assigned into the alcohol and water (Naïve) groups, were trained to consume either alcohol or water-only using an intermittent-access procedure. Slice electrophysiology was used to measure spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons. The primary outcome was the change in alcohol-related behaviors and lateral habenula activity induced by pharmacologic manipulation of TRPV1 activity. RESULTS The basal frequency of spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons in alcohol-withdrawn rats was significantly increased. The TRPV1 antagonist capsazepine (10 µM) induced a stronger inhibition on spontaneous excitatory postsynaptic currents (mean ± SD; by 26.1 ± 27.9% [n = 11] vs. 6.7 ± 18.6% [n = 17], P = 0.027) and firing (by 23.4 ± 17.6% [n = 9] vs. 11.9 ± 16.3% [n = 12], P = 0.025) in Withdrawn rats than Naive rats. By contrast, the TRPV1 agonist capsaicin (3 μM) produced a weaker potentiation in Withdrawn than Naïve rats (spontaneous excitatory postsynaptic currents: by 203.6 ± 124.7% [n = 20] vs. 415.2 ± 424.3% [n = 15], P < 0.001; firing: 38.1 ± 14.7% [n = 11] vs. 73.9 ± 41.9% [n = 11], P < 0.001). Conversely, capsaicin's actions in Naïve but not in Withdrawn rats were significantly attenuated by the pretreatment of TRPV1 endogenous agonist N-Oleoyldopamine. In Withdrawn rats, intra-habenula infusion of TRPV1 antagonists attenuated hyperalgesia and anxiety-like behaviors, decreased alcohol consumption upon resuming drinking, and elicited a conditioned place preference. CONCLUSIONS Enhanced TRPV1 function may contribute to increased glutamatergic transmission and activity of lateral habenula neurons, resulting in the aberrant behaviors during ethanol withdrawal.
Collapse
|
10
|
Mazeto TK, Picada JN, Correa ÁP, Rebelo IN, Ribeiro MT, Gomez MV, de Souza AH. Antinociceptive and genotoxic assessments of the antagonist TRPV1 receptor SB-366791 on morphine-induced tolerance in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:481-490. [PMID: 31655852 DOI: 10.1007/s00210-019-01748-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Chronic pain is mainly treated with opioid analgesics such as morphine. However, the use of these substances can cause adverse effects, including dependence and tolerance, necessitating the discovery of a new approach to analgesic therapies. The transient receptor potential vanilloid 1 (TRPV1) is linked to thermal sensibility and has been considered as a new therapeutic option for pain treatment. This study aims to investigate the antinociceptive effect and toxicity of SB-366791, a TRPV1 antagonist. Morphine-tolerant and morphine non-tolerant Swiss mice were submitted to the hot plate and thermal tail flick tests. Toxicological evaluations of the genotoxic and mutagenic activities of SB-366791 were assessed using a comet assay and micronucleus test, and the Salmonella/microsome mutagenicity assay. In the hot plate test, intrathecal injection of SB-366791 or morphine resulted in significantly increased antinociception in non-tolerant mice. SB-366791 also led to an analgesic effect in the tail flick test. Tolerant mice that received SB-366791 demonstrated a central antinociceptive effect in both thermal tests. No genotoxic effects were observed in the comet assay and no mutagenic effects were detected in the micronucleus test or in the Salmonella/microsome assay. Behavioral results of the thermal nociception tests show that SB-366791 has antinociceptive potential in both morphine-tolerant and non-tolerant mice and does not cause genotoxic or mutagenic effects. Nevertheless, new studies should be performed to clarify the activity and participation of vanilloid channels in the antinociception of SB-366791.
Collapse
Affiliation(s)
- Thiago Kastell Mazeto
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Jaqueline Nascimento Picada
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil.
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil.
| | - Áurea Pandolfo Correa
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Isadora Nunes Rebelo
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Magali Terra Ribeiro
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| | - Marcus Vinícius Gomez
- Department of Neurotransmitters, Institute for Education and Research, Hospital Santa Casa, Domingos Vieira Street, 590, Belo Horizonte, MG, CEP 30150-240, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Cellular and Molecular Biology Applied to Health Sciences, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
- Graduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
- Department of Pharmacology, Lutheran University of Brazil (ULBRA), Farroupilha Avenue, 8001, Canoas, RS, CEP 92425-900, Brazil
| |
Collapse
|
11
|
Zhang M, Ruwe D, Saffari R, Kravchenko M, Zhang W. Effects of TRPV1 Activation by Capsaicin and Endogenous N-Arachidonoyl Taurine on Synaptic Transmission in the Prefrontal Cortex. Front Neurosci 2020; 14:91. [PMID: 32116530 PMCID: PMC7020858 DOI: 10.3389/fnins.2020.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
While the transient receptor potential vanilloid 1 (TRPV1) ion channel, a non-selective calcium-permeable cation channel with high Ca2+ permeability, mainly integrates physical and chemical stimuli for nociception, recent studies suggest that it has a role beyond a noxious thermal sensor. In fact, TRPV1 is presently being considered as a target for treating pathophysiological processes including pain, fear, and anxiety disorders. Although this ion channel has many potential roles, its underlying mechanism of action remains elusive. Here we show in mice that activation of TRPV1-, by the exogenous agonist capsaicin-, regulates synaptic activity in both glutamatergic and GABAergic synaptic transmission. Moreover, activation by the endogenous activator N-arachidonoyl taurine (NAT), induced similar effects as capsaicin. On the other hand, taurine, the decomposition product of NAT, strongly depressed the evoked glutamatergic synaptic transmission. In addition to these findings, we also show the immunohistochemical distribution of TRPV1 in the prefrontal cortex (PFC) of mice, as such studies are currently less frequent in the PFC. Overall, these observations allow for a better understanding of how TRPV1 helps regulate excitatory and inhibitory synaptic activity in the PFC of mice.
Collapse
Affiliation(s)
- Mingyue Zhang
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - David Ruwe
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Roja Saffari
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Mykola Kravchenko
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Weiqi Zhang
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 2019; 225:1-15. [PMID: 31792694 DOI: 10.1007/s00429-019-01992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
13
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
14
|
Huang Y, Chen SR, Chen H, Pan HL. Endogenous transient receptor potential ankyrin 1 and vanilloid 1 activity potentiates glutamatergic input to spinal lamina I neurons in inflammatory pain. J Neurochem 2019; 149:381-398. [PMID: 30716174 DOI: 10.1111/jnc.14677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Inflammatory pain is associated with peripheral and central sensitization, but the underlying synaptic plasticity at the spinal cord level is poorly understood. Transient receptor potential (TRP) channels expressed at peripheral nerve endings, including TRP subtypes ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), can detect nociceptive stimuli. In this study, we determined the contribution of presynaptic TRPA1 and TRPV1 at the spinal cord level to regulating nociceptive drive in chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in rats. CFA treatment caused a large increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in lamina I, but not lamina II outer zone, dorsal horn neurons. However, blocking NMDA receptors had no effect on spontaneous EPSCs in lamina I neurons of CFA-treated rats. Application of a specific TRPA1 antagonist, AM-0902, or of a specific TRPV1 antagonist, 5'-iodoresiniferatoxin, significantly attenuated the elevated frequency of spontaneous EPSCs and miniature EPSCs, the amplitude of monosynaptic EPSCs evoked from the dorsal root in lamina I neurons of CFA-treated rats. AM-0902 and 5'-iodoresiniferatoxin had no effect on evoked or miniature EPSCs in lamina I neurons of vehicle-treated rats. In addition, intrathecal injection of AM-0902 or 5'-iodoresiniferatoxin significantly reduced pain hypersensitivity in CFA-treated rats but had no effect on acute nociception in vehicle-treated rats. Therefore, unlike neuropathic pain, chronic inflammatory pain is associated with NMDA receptor-independent potentiation in glutamatergic drive to spinal lamina I neurons. Endogenous presynaptic TRPA1 and TRPV1 activity at the spinal level contributes to increased nociceptive input from primary sensory nerves to dorsal horn neurons in inflammatory pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Molinas AJR, Desmoulins LD, Hamling BV, Butcher SM, Anwar IJ, Miyata K, Enix CL, Dugas CM, Satou R, Derbenev AV, Zsombok A. Interaction between TRPV1-expressing neurons in the hypothalamus. J Neurophysiol 2019; 121:140-151. [PMID: 30461371 PMCID: PMC6383661 DOI: 10.1152/jn.00004.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.
Collapse
Affiliation(s)
- Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Brooke V Hamling
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Sierra M Butcher
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Imran J Anwar
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney L Enix
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| |
Collapse
|
16
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P. Neuronal nitric oxide synthase is involved in CB/TRPV1 signalling: Focus on control of hippocampal hyperexcitability. Epilepsy Res 2017; 138:18-25. [DOI: 10.1016/j.eplepsyres.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
|
18
|
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9:235-43. [PMID: 26176938 DOI: 10.1080/19336950.2015.1069450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Yebo Gao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China.,b Beijing University of Chinese Medicine ; Beijing , P. R. China
| | - Liping Yang
- c Department of Nephrology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Xiangying Kong
- d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Jing Yu
- e Department of Oncology ; Beijing Friendship Hospital, Capital Medical University ; Beijing , China
| | - Wei Hou
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Baojin Hua
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| |
Collapse
|
19
|
Choudhary RC, Sharma RK, Gulati K, Ravi K. Role of the paraventricular nucleus in the reflex diuresis to pulmonary lymphatic obstruction in rabbits. Can J Physiol Pharmacol 2015; 94:18-27. [PMID: 26497164 DOI: 10.1139/cjpp-2015-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The changes in urine flow and renal sympathetic nerve activity (RSNA) due to pulmonary lymphatic obstruction (PLO) were examined in anesthetized, artificially ventilated New Zealand white rabbits. PLO was produced by pressurizing an isolated pouch created in the right external jugular vein at the points of entry of the right lymphatic ducts. During this maneuver, urine flow increased from 8.5 ± 0.3 mL/10 min to 12 ± 0.5 mL/10 min (P < 0.0001) and RSNA increased from 24.0 ± 4 to 40.0 ± 5 μV·s (P < 0.0001). Bilateral lesioning of the paraventricular nucleus (PVN) of the hypothalamus or cervical vagotomy abolished these responses. PLO increased c-fos gene expression in the PVN. The increase in urine flow due to PLO was attenuated by muscimol and abolished by kynurenic acid microinjections into the PVN. The results show that (i) neurons in the PVN are an important relay site in the reflex arc, which is activated by PLO; and (ii) this activation is regulated by glutamatergic and partly by GABAergic input to the PVN.
Collapse
Affiliation(s)
- Rishabh Charan Choudhary
- a Department of Physiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ravindra Kumar Sharma
- a Department of Physiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kavita Gulati
- b Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Krishnan Ravi
- a Department of Physiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Compartment-specific modulation of GABAergic synaptic transmission by TRPV1 channels in the dentate gyrus. J Neurosci 2015; 34:16621-9. [PMID: 25505315 DOI: 10.1523/jneurosci.3635-14.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transient receptor potential TRPV1 or vanilloid receptor is a nonselective ligand-gated channel highly expressed in primary sensory neurons where it mediates nociception. TRPV1 is also expressed in the brain where its activation depresses excitatory synaptic transmission. Whether TRPV1 also regulates inhibitory synapses in the brain is unclear. Here, using a combination of pharmacology, electrophysiology, and an in vivo knockdown strategy, we report that TRPV1 activation by capsaicin or by the endocannabinoid anandamide depresses somatic, but not dendritic inhibitory transmission in both rat and mouse dentate gyrus. The effect on somatic inhibition was absent in TRPV1 knock-out mice and was also eliminated by two different TRPV1 shRNAs expressed in dentate granule cells, strongly supporting a functional role for TRPV1 in modulating GABAergic synaptic function. Moreover, TRPV1-mediated depression occurs independently of GABA release, requires postsynaptic Ca(2+) rise and activation of calcineurin, and is likely due to clathrin-dependent internalization of GABA receptors. Altogether, these findings reveal a novel form of compartment-specific regulation whereby TRPV1 channels can modify synaptic function in the brain.
Collapse
|
21
|
Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation. J Neurosci 2015; 34:15369-81. [PMID: 25392504 DOI: 10.1523/jneurosci.3424-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress.
Collapse
|
22
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
23
|
Heng LJ, Huang B, Guo H, Ma LT, Yuan WX, Song J, Wang P, Xu GZ, Gao GD. Blocking TRPV1 in nucleus accumbens inhibits persistent morphine conditioned place preference expression in rats. PLoS One 2014; 9:e104546. [PMID: 25118895 PMCID: PMC4131889 DOI: 10.1371/journal.pone.0104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023] Open
Abstract
The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target-specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction.
Collapse
Affiliation(s)
- Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Bo Huang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Heng Guo
- Department of Neurosurgery, PLA Chengdu General Hospital, Chengdu, Sichuan, China
| | - Lian-Ting Ma
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Wei-Xin Yuan
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Guo-Zheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
- * E-mail: (GDG); (GZX)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (GDG); (GZX)
| |
Collapse
|
24
|
Quiróz U, Morales-Ledesma L, Morán C, Trujillo A, Domínguez R. Lack of sensorial innervation in the newborn female rats affects the activity of hypothalamic monoaminergic system and steroid hormone secretion during puberty. Endocrine 2014; 46:309-17. [PMID: 24122121 DOI: 10.1007/s12020-013-0055-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
There is evidence that sensory innervation plays a role regulating ovarian functions, including fertility.Since sensory denervation by means of capsaicin in newborn female rats results in a lower response togonadotropins, the present study analyzed the effects that sensory denervation by means of capsaicin in neonatal rats has on the concentration of monoamines in the anterior(AH) and medium (MH) hypothalamus, and on steroid hormone levels in serum. Groups of newborn female rats were injected subcutaneously with capsaicin and killed at 10, 20, and 30 days of age and on the first vaginal estrous.The concentrations of noradrenaline, dopamine, serotonin(5-HT), and their metabolites in the AH and MH were measured using HPLC, and the levels of estradiol (E),progesterone (P), testosterone (T), FSH, and luteinizing hormone using radioimmunoanalysis. The results show thatat 20 days of age, capsaicin-treated rats have lowernoradrenergic and serotonergic activities in the AH, and that the dopaminergic activity was lower in the MH. These results suggest that the sensorial system connections within the monoaminergic systems of the AH and MH are different.Capsaicin-treated animals had lower T, E, and P levels than in the control group, suggesting that the lower activity in the AH monoaminergic system and lower hormonesecretion could be explained by the blockade of information mediated by the sensory innervation (probably substance P), mainly between the ovary and the AH.
Collapse
|
25
|
The transient receptor potential vanilloid-1 is localized at excitatory synapses in the mouse dentate gyrus. Brain Struct Funct 2014; 220:1187-94. [PMID: 24487914 DOI: 10.1007/s00429-014-0711-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/15/2014] [Indexed: 01/30/2023]
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that plays an important role in pain perception and modulates neurotransmitter release and synaptic plasticity in the brain. TRPV1 function must lay on its anatomical distribution in the peripheral and central nervous system regions involved in the physiological roles of the channel. However, the anatomical localization of TRPV1 is well established in the periphery, but in the brain it is a matter of debate. While some studies support the presence of TRPV1 in several brain regions, recent evidences suggest a restricted distribution of the channel in the central nervous system. To investigate to what extent central TRPV1 function stands on a precise brain distribution of the channel, we examined the mouse hippocampal dentate molecular layer (ML) where TRPV1 mediates long-term synaptic plasticity. Using pre-embedding immunocytochemistry for high resolution electron microscopy, we show that TRPV1 immunoparticles are highly concentrated in postsynaptic dendritic spines to asymmetric perforant path synapses in the outer 2/3 of the ML. However, TRPV1 is poorly expressed at the excitatory hilar mossy cell synapses in the inner 1/3 of this layer. Importantly, the TRPV1 pattern distribution disappeared in the ML of TRPV1-knockout mice. Taken together, these findings support the notion of the presence of TRPV1 in a brain region where the channel has been shown to have a functional role, such as the perforant path synapses in the hippocampal dentate ML.
Collapse
|
26
|
Barrière DA, Mallet C, Blomgren A, Simonsen C, Daulhac L, Libert F, Chapuy E, Etienne M, Högestätt ED, Zygmunt PM, Eschalier A. Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PLoS One 2013; 8:e70690. [PMID: 23940628 PMCID: PMC3734263 DOI: 10.1371/journal.pone.0070690] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022] Open
Abstract
The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol’s antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol’s analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS.
Collapse
Affiliation(s)
- David A. Barrière
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Christophe Mallet
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Anders Blomgren
- Department of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
| | - Charlotte Simonsen
- Department of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
| | - Laurence Daulhac
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Frédéric Libert
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Eric Chapuy
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Monique Etienne
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Edward D. Högestätt
- Department of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
- * E-mail: (AE); (EDH)
| | - Peter M. Zygmunt
- Department of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden
| | - Alain Eschalier
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacology, Hôpital G. Montpied, Clermont-Ferrand, France
- * E-mail: (AE); (EDH)
| |
Collapse
|
27
|
Ye ZY, Li DP, Pan HL. Regulation of Hypothalamic Presympathetic Neurons and Sympathetic Outflow by Group II Metabotropic Glutamate Receptors in Spontaneously Hypertensive Rats. Hypertension 2013; 62:255-62. [PMID: 23716583 DOI: 10.1161/hypertensionaha.113.01466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased glutamatergic input in the hypothalamic paraventricular nucleus (PVN) plays an important role in the development of hypertension. Group II metabotropic glutamate receptors are expressed in the PVN, but their involvement in regulating synaptic transmission and sympathetic outflow in hypertension is unclear. Here, we show that the group II metabotropic glutamate receptors agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) produced a significantly greater reduction in the frequency of spontaneous and miniature excitatory postsynaptic currents and in the amplitude of electrically evoked excitatory postsynaptic currents in retrogradely labeled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs) than in normotensive control rats. DCG-IV similarly decreased the frequency of GABAergic inhibitory postsynaptic currents of labeled PVN neurons in the 2 groups of rats. Strikingly, DCG-IV suppressed the firing of labeled PVN neurons only in SHRs. DCG-IV failed to inhibit the firing of PVN neurons of SHRs in the presence of ionotropic glutamate receptor antagonists. Lowering blood pressure with celiac ganglionectomy in SHRs normalized the DCG-IV effect on excitatory postsynaptic currents to the same level seen in control rats. Furthermore, microinjection of DCG-IV into the PVN significantly reduced blood pressure and sympathetic nerve activity in SHRs. Our findings provide new information that presynaptic group II metabotropic glutamate receptor activity at the glutamatergic terminals increases in the PVN in SHRs. Activation of group II metabotropic glutamate receptors in the PVN inhibits sympathetic vasomotor tone through attenuation of increased glutamatergic input and neuronal hyperactivity in SHRs.
Collapse
Affiliation(s)
- Zeng-You Ye
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
28
|
Guo YX, Li DP, Chen SR, Pan HL. Distinct intrinsic and synaptic properties of pre-sympathetic and pre-parasympathetic output neurons in Barrington's nucleus. J Neurochem 2013; 126:338-48. [PMID: 23647148 DOI: 10.1111/jnc.12290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
Barrington's nucleus (BN), commonly known as the pontine micturition center, controls micturition and other visceral functions through projections to the spinal cord. In this study, we developed a rat brain slice preparation to determine the intrinsic and synaptic mechanisms regulating pre-sympathetic output (PSO) and pre-parasympathetic output (PPO) neurons in the BN using patch-clamp recordings. The PSO and PPO neurons were retrogradely labeled by injecting fluorescent tracers into the intermediolateral region of the spinal cord at T13-L1 and S1-S2 levels, respectively. There were significantly more PPO than PSO neurons within the BN. The basal activity and membrane potential were significantly lower in PPO than in PSO neurons, and A-type K(+) currents were significantly larger in PPO than in PSO neurons. Blocking A-type K(+) channels increased the excitability more in PPO than in PSO neurons. Stimulting μ-opioid receptors inhibited firing in both PPO and PSO neurons. The glutamatergic EPSC frequency was much lower, whereas the glycinergic IPSC frequency was much higher, in PPO than in PSO neurons. Although blocking GABAA receptors increased the excitability of both PSO and PPO neurons, blocking glycine receptors increased the firing activity of PPO neurons only. Furthermore, blocking ionotropic glutamate receptors decreased the excitability of PSO neurons but paradoxically increased the firing activity of PPO neurons by reducing glycinergic input. Our findings indicate that the membrane and synaptic properties of PSO and PPO neurons in the BN are distinctly different. This information improves our understanding of the neural circuitry and central mechanisms regulating the bladder and other visceral organs.
Collapse
Affiliation(s)
- Yue-Xian Guo
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, Houston, Texas 77030-4009, USA
| | | | | | | |
Collapse
|
29
|
Leonelli M, Martins DO, Britto LRG. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cell Mol Neurobiol 2013; 33:379-92. [PMID: 23324998 DOI: 10.1007/s10571-012-9904-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/29/2012] [Indexed: 01/23/2023]
Abstract
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.
Collapse
Affiliation(s)
- Mauro Leonelli
- Laboratory of Cellular Neurobiology, Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | | | | |
Collapse
|
30
|
Almeida-Santos AF, Moreira FA, Guimarães FS, Aguiar DC. Role of TRPV1 receptors on panic-like behaviors mediated by the dorsolateral periaqueductal gray in rats. Pharmacol Biochem Behav 2013; 105:166-72. [PMID: 23474373 DOI: 10.1016/j.pbb.2013.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 12/23/2022]
Abstract
The transient receptors potential vanilloid type 1 channels (TRPV1) are expressed in several brain regions related to defensive behaviors, including the dorsolateral periaqueductal gray (dlPAG). The endocannabinoid anandamide, in addition to its agonist activity at cannabinoid type 1 (CB1), is also proposed as an endogenous agonist of these receptors, through which it could facilitate anxiety-like responses. The aim of this work was to test the hypothesis that TRPV1 in the dlPAG of rats would mediate panic-like responses in two models, namely the escape responses induced by chemical stimulation of this structure or by exposure to the elevated T-Maze (ETM). Antagonism of TRPV1 with capsazepine injected into the dlPAG reduced the defense response induced by local NMDA-injection, suggesting an anti-aversive effect. In the ETM, capsazepine inhibited escape response, suggesting a panicolytic-like effect. Interestingly, this effect was prevented by a CB1 antagonist (AM251). The present study showed that antagonism of TRPV1 in the dlPAG induces panicolytic-like effects, which can be prevented by a CB1 antagonist. Therefore, these antiaversive effects of TRPV1 blockade may ultimately occur due to a predominant action of anandamide through CB1 receptors.
Collapse
Affiliation(s)
- A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
31
|
Boychuk CR, Zsombok A, Tasker JG, Smith BN. Rapid Glucocorticoid-Induced Activation of TRP and CB1 Receptors Causes Biphasic Modulation of Glutamate Release in Gastric-Related Hypothalamic Preautonomic Neurons. Front Neurosci 2013; 7:3. [PMID: 23386808 PMCID: PMC3560102 DOI: 10.3389/fnins.2013.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN) by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX) on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ∼50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide (AEA) and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1) receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1 knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and endogenous cannabinoids.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine Lexington, KY, USA
| | | | | | | |
Collapse
|
32
|
Kulisch C, Albrecht D. Effects of single swim stress on changes in TRPV1-mediated plasticity in the amygdala. Behav Brain Res 2013; 236:344-349. [DOI: 10.1016/j.bbr.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/15/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
33
|
Gao H, Miyata K, Bhaskaran MD, Derbenev AV, Zsombok A. Transient receptor potential vanilloid type 1-dependent regulation of liver-related neurons in the paraventricular nucleus of the hypothalamus diminished in the type 1 diabetic mouse. Diabetes 2012; 61:1381-90. [PMID: 22492526 PMCID: PMC3357291 DOI: 10.2337/db11-0820] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C-dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, Tulane University, School of Medicine, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
34
|
Manna SSS, Umathe SN. A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine. Eur J Pharmacol 2012; 685:81-90. [PMID: 22542657 DOI: 10.1016/j.ejphar.2012.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur 440033, Maharastra, India.
| | | |
Collapse
|
35
|
Abstract
Studies in rodents show that transient receptor potential vanilloid 1 (TRPV1) channels regulate glutamate release at central and peripheral synapses. In humans, a number of nonsynonymous single-nucleotide polymorphisms (SNPs) have been described in the TRPV1 gene, and some of them significantly alter the functionality of the channel. To address the possible role of TRPV1 channels in the regulation of synaptic transmission in humans, we studied how TRPV1 genetic polymorphisms affect cortical excitability measured with transcranial magnetic stimulation (TMS). Two SNPs of the TRPV1 gene were selected and genotyped (rs222747 and rs222749) in a sample of 77 healthy subjects. In previous cell expression studies, the "G" allele of rs222747 was found to enhance the activity of the channel, whereas rs222749 had no functional effect. Allelic variants in the rs222749 region were not associated with altered cortical response to single, paired, and repetitive TMS. In contrast, subjects homozygous for the G allele in rs222747 exhibited larger short-interval intracortical facilitation (a measure of glutamate transmission) explored through paired-pulse TMS of the primary motor cortex. Recruitment curves, short-interval intracortical inhibition, intracortical facilitation, and long-interval intracortical inhibition were unchanged. LTP- and LTD-like plasticity explored through intermittent or continuous theta-burst stimulation was also similar in the "G" and "non-G" subjects. To our knowledge, our results provide the first evidence that TRPV1 channels regulate cortical excitability to paired-pulse stimulation in humans.
Collapse
|
36
|
Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res 2012; 100:113-24. [PMID: 22386872 DOI: 10.1016/j.eplepsyres.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 01/31/2023]
Abstract
Anandamide, an endogenous agonist of CB(1) receptors, also activates TRPV1 but at a higher concentration. Studies demonstrate the anticonvulsant activity of anandamide via CB(1) receptors, while its action through TRPV1 is still ambiguous. Thus, the present study investigated the influence of anandamide on pentylenetetrazole-induced seizures in mice pretreated with TRPV1 or CB(1) receptor antagonists. Acute intracerebroventricular administration of low doses of anandamide (10, 20, or 40μg/mouse) produced anticonvulsant effect, while the pro-convulsant effect was evident at high doses (80 or 100μg/mouse). Interestingly, AM251 (2μg/mouse), a CB(1) antagonist pretreatment blocked the anticonvulsant effect, but augmented the pro-convulsant effect. Conversely, in the presence of inactive dose of capsazepine (1μg/mouse), a TRPV1 antagonist, anandamide exhibited significant anticonvulsant effect even at high doses with no change in its anticonvulsant effect. Moreover, mice treated with capsaicin, a TRPV1 agonist (10, or 100μg/mouse) exhibited pro-convulsant activity that was blocked by capsazepine pretreatment. However, capsazepine, per se at doses 10 or 100μg/mouse exhibited anticonvulsant effect. Like anandamide, the agents (AM404 and URB597), which increase its synaptic concentrations produced similar biphasic effects. Thus, these results indicate that anandamide exhibits both pro- and anticonvulsant activities by activating TRPV1 and CB(1) receptor respectively.
Collapse
|
37
|
Alterations in the emotional and memory behavioral phenotypes of transient receptor potential vanilloid type 1-deficient mice are mediated by changes in expression of 5-HT1A, GABAA, and NMDA receptors. Neuropharmacology 2012; 62:1034-43. [DOI: 10.1016/j.neuropharm.2011.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/21/2022]
|
38
|
Hanafusa N, Okamoto K, Takatori S, Kawasaki H. Involvement of Hypothalamic Periventricular GABAergic Nerves in the Central Pressor Response to Clonidine in Freely-Moving Conscious Rats. J Pharmacol Sci 2012; 118:382-90. [DOI: 10.1254/jphs.11233fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Kawahara H, Drew GM, Christie MJ, Vaughan CW. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br J Pharmacol 2011; 163:1214-22. [PMID: 21175570 DOI: 10.1111/j.1476-5381.2010.01157.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1. EXPERIMENTAL APPROACH In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices. KEY RESULTS Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice. CONCLUSIONS AND IMPLICATIONS These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.
Collapse
Affiliation(s)
- H Kawahara
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | |
Collapse
|
40
|
Liao HT, Lee HJ, Ho YC, Chiou LC. Capsaicin in the periaqueductal gray induces analgesia via metabotropic glutamate receptor-mediated endocannabinoid retrograde disinhibition. Br J Pharmacol 2011; 163:330-45. [PMID: 21232043 DOI: 10.1111/j.1476-5381.2011.01214.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Capsaicin, an agonist of transient receptor potential vanilloid 1 (TRPV1) channels, is pro-nociceptive in the periphery but is anti-nociceptive when administered into the ventrolateral periaqueductal gray (vlPAG), a midbrain region for initiating descending pain inhibition. Here, we investigated how activation of TRPV1 channels in the vlPAG leads to anti-nociception. EXPERIMENTAL APPROACH We examined synaptic transmission and neuronal activity using whole-cell recordings in vlPAG slices in vitro and hot-plate nociceptive responses in rats after drug microinjection into the vlPAG in vivo. KEY RESULTS Capsaicin (1-10 µM) depressed evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in vlPAG slices presynaptically, while increasing miniature excitatory PSC frequency. Capsaicin-induced eIPSC depression was antagonized by cannabinoid CB₁ and metabotropic glutamate (mGlu₅) receptor antagonists, and prevented by inhibiting diacylglycerol lipase (DAGL), which converts DAG into 2-arachidonoylglycerol (2-AG), an endocannabinoid. Capsaicin induced membrane depolarization in 2/3 neurons recorded but, overall, increased neuronal firings by increasing evoked postsynaptic potentials. Intra-vlPAG capsaicin reduced hot-plate responses in rats, effects blocked by CB₁ and mGlu receptor antagonists. Effects of capsaicin were antagonized by SB 366791, a TRPV1 channel antagonist. CONCLUSIONS AND IMPLICATIONS Capsaicin activated TRPV1s on glutamatergic terminals to release glutamate which activated postsynaptic mGlu₅ receptors, yielding 2-AG from DAG by DAGL hydrolysis. 2-AG induces retrograde inhibition (disinhibition) of GABA release via presynaptic CB₁ receptors. This disinhibition in the vlPAG leads to anti-nociception by activating the descending pain inhibitory pathway. This is a novel TRPV1 channel-mediated anti-nociceptive mechanism in the brain and a new interaction between vanilloid and endocannabinoid systems.
Collapse
Affiliation(s)
- H-T Liao
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
41
|
Moreira FA, Aguiar DC, Terzian ALB, Guimarães FS, Wotjak CT. Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin? Neuroscience 2011; 204:186-92. [PMID: 21906661 DOI: 10.1016/j.neuroscience.2011.08.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 02/02/2023]
Abstract
The transient receptor potential vanilloid type 1 channel (TRPV1; originally vanilloid receptor VR1) is activated in peripheral terminals of nociceptive fibers by noxious heat, low pH, and natural products such as capsaicin, the pungent ingredient of red-hot chilli peppers. Evidence has been accumulating that TRPV1 is expressed also in the brain, where it seems to be involved in antinociception, locomotor control, and regulation of affective behaviors. This ion channel might be activated by arachidonoyl ethanolamide (anandamide), the endogenous agonist of the cannabinoid type 1 (CB(1)) receptor. However, while CB(1) activation leads to a decrease in intracellular calcium and attenuation of synaptic transmission, anandamide binding to TRPV1 results in elevated calcium levels and potentiated synaptic transmission. This suggests a tripartite regulatory system with antagonistic effects of CB(1) and TRPV1, which are tied together by the same endogenous ligand. Such a system may have important implication for the modulation of behavioral responses. The present commentary elaborates on this interplay between CB(1) receptors and TRPV1 channels in the context of fear- and anxiety-related behaviors.
Collapse
Affiliation(s)
- F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Zhou X, Gomez-Smith M, Qin Z, Duquette PM, Cardenas-Blanco A, Rai PS, Harper ME, Tsai EC, Anisman H, Chen HH. Ablation of LMO4 in glutamatergic neurons impairs leptin control of fat metabolism. Cell Mol Life Sci 2011; 69:819-28. [PMID: 21874351 PMCID: PMC3276759 DOI: 10.1007/s00018-011-0794-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022]
Abstract
The LIM domain only 4 (LMO4) protein is expressed in the hypothalamus, but its function there is not known. Using mice with LMO4 ablated in postnatal glutamatergic neurons, including most neurons of the paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei where LMO4 is expressed, we asked whether LMO4 is required for metabolic homeostasis. LMO4 mutant mice exhibited early onset adiposity. These mice had reduced energy expenditure and impaired thermogenesis together with reduced sympathetic outflow to adipose tissues. The peptide hormone leptin, produced from adipocytes, activates Jak/Stat3 signaling at the hypothalamus to control food intake, energy expenditure, and fat metabolism. Intracerebroventricular infusion of leptin suppressed feeding similarly in LMO4 mutant and control mice. However, leptin-induced fat loss was impaired and activation of Stat3 in the VMH was blunted in these mice. Thus, our study identifies LMO4 as a novel modulator of leptin function in selective hypothalamic nuclei to regulate fat metabolism.
Collapse
Affiliation(s)
- Xun Zhou
- Centre for Stroke Recovery, Neuroscience, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ye ZY, Li DP, Li L, Pan HL. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension. J Neurosci 2011; 31:8271-9. [PMID: 21632948 PMCID: PMC3123887 DOI: 10.1523/jneurosci.1147-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/06/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022] Open
Abstract
Increased glutamatergic input in the paraventricular nucleus (PVN) is important for high sympathetic outflow in hypertension, but the associated molecular mechanisms remain unclear. Here, we determined the role of protein kinase CK2 (formerly casein kinase II) in increased N-methyl-d-aspartate receptor (NMDAR) activity in spinally projecting PVN neurons and sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The selective CK2 inhibitors 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) significantly decreased the frequency of miniature EPSCs (mEPSCs) of labeled PVN neurons in SHRs but not in Wistar-Kyoto (WKY) normotensive rats. Also, DRB abolished the inhibitory effect of the NMDAR antagonist AP5 on the frequency of mEPSCs in SHRs. Treatment with DRB or TBB significantly reduced the amplitude of evoked NMDA-EPSCs but not AMPA-EPSCs in SHRs. Furthermore, DRB significantly decreased the firing activity of PVN neurons in SHRs but not in WKY rats. The membrane protein level of CK2α in the PVN, but not brainstem and prefrontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased CK2α level and the effects of DRB on mEPSCs and NMDA-EPSCs. In addition, intracerebroventricular injection of DRB not only significantly reduced blood pressure and lumbar sympathetic nerve discharges but also eliminated the inhibitory effect of AP5 microinjected into the PVN on sympathetic nerve activity in SHRs. Our findings suggest that augmented CK2 activity critically contributes to increased presynaptic and postsynaptic NMDAR activity in the PVN and elevated sympathetic vasomotor tone in essential hypertension.
Collapse
Affiliation(s)
- Zeng-You Ye
- Departments of Anesthesiology and Perioperative Medicine and
| | - De-Pei Li
- Critical Care, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, and
| | - Li Li
- Departments of Anesthesiology and Perioperative Medicine and
| | - Hui-Lin Pan
- Departments of Anesthesiology and Perioperative Medicine and
- Programs in Neuroscience and Experimental Therapeutics, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77225
| |
Collapse
|
44
|
Zsombok A, Gao H, Miyata K, Issa A, Derbenev AV. Immunohistochemical localization of transient receptor potential vanilloid type 1 and insulin receptor substrate 2 and their co-localization with liver-related neurons in the hypothalamus and brainstem. Brain Res 2011; 1398:30-9. [PMID: 21620379 DOI: 10.1016/j.brainres.2011.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 02/05/2023]
Abstract
The central nervous system plays an important role in the regulation of energy balance and glucose homeostasis mainly via controlling the autonomic output to the visceral organs. The autonomic output is regulated by hormones and nutrients to maintain adequate energy and glucose homeostasis. Insulin action is mediated via insulin receptors (IR) resulting in phosphorylation of insulin receptor substrates (IRS) inducing activation of downstream pathways. Furthermore, insulin enhances transient receptor potential vanilloid type 1 (TRPV1) mediated currents. Activation of the TRPV1 receptor increases excitatory neurotransmitter release in autonomic centers of the brain, thereby impacting energy and glucose homeostasis. The aim of this study is to determine co-expression of IRS2 and TRPV1 receptors in the paraventricular nucleus of the hypothalamus (PVN) and dorsal motor nucleus of the vagus (DMV) in the mouse brain as well as expression of IRS2 and TRPV1 receptors at liver-related preautonomic neurons pre-labeled with a trans-neural, viral tracer (PRV-152). The data indicate that IRS2 and TRPV1 receptors are present and co-express in the PVN and the DMV. A large portion (over 50%) of the liver-related preautonomic DMV and PVN neurons expresses IRS2. Moreover, the majority of liver-related DMV and PVN neurons also express TRPV1 receptors, suggesting that insulin and TRPV1 actions may affect liver-related preautonomic neurons.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Tulane University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
45
|
TRP Channels and Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:987-1009. [DOI: 10.1007/978-94-007-0265-3_51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Musella A, De Chiara V, Rossi S, Cavasinni F, Castelli M, Cantarella C, Mataluni G, Bernardi G, Centonze D. Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. Neuroscience 2010; 167:864-71. [PMID: 20219639 DOI: 10.1016/j.neuroscience.2010.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
The neurotransmitter acetylcholine (Ach) controls both excitatory and inhibitory synaptic transmission in the striatum. Here, we investigated the involvement of the endocannabinoid system in Ach-mediated inhibition of striatal GABA transmission, and the potential role of transient receptor potential vanilloid 1 (TRPV1) channels in the control of Ach-endocannabinoid coupling. We found that inhibition of Ach degradation and direct pharmacological stimulation of muscarinic M1 receptors reduced striatal inhibitory postsynaptic currents (IPSCs) through the stimulation of 2-arachidonoylglicerol (2AG) synthesis and the activation of cannabinoid CB1 receptors. The effects of M1 receptor activation on IPSCs were occlusive with those of metabotropic glutamate receptor 5 stimulation, and were prevented in the presence of capsaicin, agonist of TRPV1 channels. Elevation of anandamide (AEA) tone with URB597, a blocker of fatty acid amide hydrolase, mimicked the effects of capsaicin, indicating that endogenous AEA acts as an endovanilloid substance in the control of M1-dependent 2AG-mediated synaptic effects in the striatum. Accordingly, both capsaicin and URB597 effects were absent in mice lacking TRPV1 channels. Pharmacological interventions targeting AEA metabolism and TRPV1 channels might be considered alternative therapeutic routes in disorders of striatal cholinergic or endocannabinoid neurotransmission.
Collapse
Affiliation(s)
- A Musella
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
TRPV1 gene deficiency attenuates miniature EPSC potentiation induced by mannitol and angiotensin II in supraoptic magnocellular neurons. J Neurosci 2010; 30:876-84. [PMID: 20089896 DOI: 10.1523/jneurosci.2986-09.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The release of arginine vasopressin (AVP) from the magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) is crucial for body fluid homeostasis. The MNC activity is modulated by synaptic inputs and humoral factors. A recent study demonstrated that an N-terminal splice variant of the transient receptor potential vanilloid type 1 (TRPV1) is essential for osmosensory transduction in the SON. In the present study, we examined the effects of mannitol and angiotensin II on miniature EPSCs (mEPSCs) in the supraoptic MNCs using whole-cell patch-clamp recording in in vitro slice preparation. Mannitol (60 mm) and angiotensin II (0.1 microm) increased the frequency of mEPSCs without affecting the amplitude. These effects were attenuated by pre-exposure to a nonspecific TRPV channel blocker, ruthenium red (10 microm) and enhanced by pre-exposure to cannabinoid type1 receptor antagonist, AM251 (2 microm). Mannitol-induced potentiation of mEPSCs was not attenuated by angiotensin II receptor antagonist, losartan (10 microm), indicating independent pathways of mannitol and angiotensin II to the TRPV channels. The potentiation of mEPSCs by mannitol was not mimicked by a TRPV1 agonist, capsaicin, and also not attenuated by TRPV1 blockers, capsazepine (10 microm). PKC was involved in angiotensin II-induced potentiation of mEPSCs. The effects of mannitol and angiotensin II on the supraoptic MNCs in trpv1 knock-out mice were significantly attenuated compared with those in wild-type mice counterparts. The results suggest that hyperosmotic stimulation and angiotensin II independently modulate mEPSCs through capsaicin-insensitive TRPV1 channel in the presynaptic terminals of the SON.
Collapse
|
48
|
Chen QH, Toney GM. In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla. J Neurophysiol 2009; 103:4-15. [PMID: 19889858 DOI: 10.1152/jn.00094.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) are key components of a neural network that generates and regulates sympathetic nerve activity (SNA). Although each region has been extensively studied, little is presently known about the in vivo discharge properties of individual PVN neurons that directly innervate the RVLM. Here extracellular recording was performed in anesthetized rats, and antidromic stimulation was used to identify single PVN neurons with axonal projections to the RVLM (n = 94). Neurons were divided into two groups that had either unbranched axons terminating in the RVLM (i.e., PVN-RVLM neurons, n = 65) or collateralized axons targeting both the RVLM and spinal cord [i.e., PVN-RVLM/intermediolateral cell column (IML) neurons, n = 29]. Many PVN-RVLM (32/65, 49%) and PVN-RVLM/IML (17/29, 59%) neurons were spontaneously active. The average firing frequency was not different across groups. Spike-triggered averaging revealed that spontaneous discharge of most neurons was temporally correlated with renal SNA (PVN-RVLM: 12/21, 57%; PVN-RVLM/IML: 6/9, 67%). Time histograms triggered by the electrocardiogram (ECG) R-wave indicated that discharge of most cells was also cardiac rhythmic (PVN-RVLM: 25/32, 78%; PVN-RVLM/IML: 10/17, 59%). Raising and lowering arterial blood pressure to increase and decrease arterial baroreceptor input caused a corresponding decrease and increase in firing frequency among cells of both groups (PVN-RVLM: 9/13, 69%; PVN-RVLM/IML: 4/4, 100%). These results indicate that PVN-RVLM and PVN-RVLM/IML neurons are both capable of contributing to basal sympathetic activity and its baroreflex modulation.
Collapse
Affiliation(s)
- Qing-Hui Chen
- Dept. of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
49
|
Leonelli M, Martins DO, Kihara AH, Britto LRG. Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina. Int J Dev Neurosci 2009; 27:709-18. [PMID: 19619635 DOI: 10.1016/j.ijdevneu.2009.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/06/2009] [Accepted: 07/11/2009] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retinal plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. Its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (P15). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. In conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development.
Collapse
Affiliation(s)
- Mauro Leonelli
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
50
|
Xing J, Lu J, Li J. Angiotensin II inhibits GABAergic synaptic transmission in dorsolateral periaqueductal gray neurons. Neurosci Lett 2009; 455:8-13. [PMID: 19429096 DOI: 10.1016/j.neulet.2009.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to determine the role of angiotensin II (Ang II) in modulating inhibitory and excitatory synaptic inputs to the dorsolateral periaqueductal gray (dl-PAG). The whole cell voltage-clamp recording was performed to examine inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs) of the dl-PAG neurons. Ang II, at the concentration of 2microM, decreased the frequency of miniature IPSCs from 0.83+/-0.02 to 0.45+/-0.03Hz (P<0.05) in 10 tested neurons. This did not significantly affect the amplitude and decay time constant. The effect of Ang II on miniature IPSCs was blocked by the prior application of Ang II AT1 receptor antagonist losartan, but not by AT2 receptor antagonist PD123319. Additionally, Ang II decreased the amplitude of evoked IPSCs from 148+/-15 to 89+/-7pA (P<0.05), and increased the paired-pulse ratio from 96+/-5% to 125+/-7% (P<0.05) in eight tested neurons. In contrast, Ang II had no distinct effects on the EPSCs. Our data suggest that Ang II inhibits GABAergic synaptic inputs to the dl-PAG through activation of presynaptic AT1 receptors.
Collapse
Affiliation(s)
- Jihong Xing
- The First Clinical Hospital, Jilin University Norman Bethune College of Medicine, Changchun, Jilin 130021, People's Republic of China
| | | | | |
Collapse
|