1
|
Brooks FP, Gong D, Davis HC, Park P, Qi Y, Cohen AE. Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators. SCIENCE ADVANCES 2025; 11:eadp5763. [PMID: 39772682 PMCID: PMC11708879 DOI: 10.1126/sciadv.adp5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here, we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and Voltron2. We found that the previously reported negative-going voltage sensitivities of both GEVIs came from photocycle intermediates, not from the opsin ground states. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed the sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in the barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.
Collapse
Affiliation(s)
| | | | | | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Cloves M, Margrie TW. In vivo dual-plane 3-photon microscopy: spanning the depth of the mouse neocortex. BIOMEDICAL OPTICS EXPRESS 2024; 15:7022-7034. [PMID: 39679389 PMCID: PMC11640578 DOI: 10.1364/boe.544383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Cortical computations arise from patterns of neuronal activity that span across all cortical layers and cell types. Three-photon excitation has extended the depth limit of in vivo imaging within the mouse brain to encompass all cortical layers. However, simultaneous three-photon imaging throughout cortical layers has yet to be demonstrated. Here, we combine non-unity magnification remote focusing with adaptive optics to achieve single-cell resolution imaging from two temporally multiplexed planes separated by up to 600 µm. This approach enables the simultaneous acquisition of neuronal activity from genetically defined cell types in any pair of cortical layers across the mouse neocortical column.
Collapse
Affiliation(s)
- Matilda Cloves
- The Sainsbury Wellcome Centre for Circuits and Behaviour, University College London, 25 Howland Street, W1T 4JG, London, United Kingdom
| | - Troy W. Margrie
- The Sainsbury Wellcome Centre for Circuits and Behaviour, University College London, 25 Howland Street, W1T 4JG, London, United Kingdom
| |
Collapse
|
3
|
Jiang A, Zhao C, Sheffield M. A preprocessing toolbox for 2-photon subcellular calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616737. [PMID: 39605689 PMCID: PMC11601315 DOI: 10.1101/2024.10.04.616737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient pre-processing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying Fast Fourier Transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply band-pass filtering methods (e.g. 0.05 to 0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from z-plane movement, we apply Principal Component Analysis on all calcium traces and use a Bottom-Up Segmentation change-point detection model on the first principal component. After removing movement artifacts, we further identify calcium transients from noise by analyzing their prominence and duration. Finally, ROIs with high activity correlation are grouped using hierarchical or k-means clustering. Using axon ROIs in the CA1 region, we confirm that both clustering methods effectively determine the optimal number of clusters in pairwise correlation matrices, yielding similar groupings to "ground truth" data. Our approach provides a guideline for standardizing the extraction of physiological signals from subcellular compartments during behavior with 2-photon calcium imaging.
Collapse
Affiliation(s)
- Anqi Jiang
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| | - Chong Zhao
- Department of Psychology, University of Chicago, Chicago, Illinois 60637, USA
- Institute for Mind and Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Mark Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| |
Collapse
|
4
|
Hsieh YT, Jhan KC, Lee JC, Huang GJ, Chung CL, Chen WC, Chang TC, Chen BC, Pan MK, Wu SC, Chu SW. TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405293. [PMID: 39283040 DOI: 10.1002/advs.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Indexed: 11/07/2024]
Abstract
Two-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed and image quality, grappling with a low signal-to-noise ratio (SNR) due to limited signal photon flux. Here, a contrast-enhanced video-rate volumetric system, integrating a tunable acoustic gradient (TAG) lens-based high-speed microscopy with a TAG-SPARK denoising algorithm is demonstrated. The former facilitates high-speed dense z-sampling at sub-micrometer-scale intervals, allowing the latter to exploit the spatial redundancy of z-slices for self-supervised model training. This spatial redundancy-based approach, tailored for 4D (xyzt) dataset, not only achieves >700% SNR enhancement but also retains fast-spiking functional profiles of neuronal activities. High-speed plus high-quality images are exemplified by in vivo Purkinje cells calcium observation, revealing intriguing dendritic-to-somatic signal convolution, i.e., similar dendritic signals lead to reverse somatic responses. This tailored technique allows for capturing neuronal activities with high SNR, thus advancing the fundamental comprehension of neuronal transduction pathways within 3D neuronal architecture.
Collapse
Affiliation(s)
- Yin-Tzu Hsieh
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kai-Chun Jhan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Guan-Jie Huang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Ling Chung
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Wun-Ci Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ting-Chen Chang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Kai Pan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10002, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shi-Wei Chu
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
5
|
Hebert E, Xu C. Improving the scan throughput of polygon scanners. BIOMEDICAL OPTICS EXPRESS 2024; 15:6549-6560. [PMID: 39553878 PMCID: PMC11563318 DOI: 10.1364/boe.538757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024]
Abstract
Polygon scanners allow for some of the fastest available line rates for raster scanning imaging. Due to the optical invariant, however, there is a trade-off between the line rate and the number of resolvable points per line. Here, we describe a device that can increase the number of resolvable points per line of mirror-based scanners without sacrificing speed. We first theoretically model the effect of the device on the number of resolvable points per line of a polygon scanner, and then experimentally test this device with both a simplified facet system and a transmission microscope using a polygon scanner. We demonstrate an improvement in the field of view by 1.7 times without a reduction in spatial resolution.
Collapse
Affiliation(s)
- Eric Hebert
- School of Applied and Engineering Physics, Cornell University, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, USA
| |
Collapse
|
6
|
Tamimi A, Caldarola M, Hambura S, Boffi JC, Noordzij N, Los JWN, Guardiani A, Kooiman H, Wang L, Kieser C, Braun F, Castaneda MAU, Fognini A, Prevedel R. Deep Mouse Brain Two-Photon Near-Infrared Fluorescence Imaging Using a Superconducting Nanowire Single-Photon Detector Array. ACS PHOTONICS 2024; 11:3960-3971. [PMID: 39429856 PMCID: PMC11487655 DOI: 10.1021/acsphotonics.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024]
Abstract
Two-photon microscopy (2PM) has become an important tool in biology to study the structure and function of intact tissues in vivo. However, adult mammalian tissues such as the mouse brain are highly scattering, thereby putting fundamental limits on the achievable imaging depth, which typically reside at around 600-800 μm. In principle, shifting both the excitation as well as (fluorescence) emission light to the shortwave near-infrared (SWIR, 1000-1700 nm) region promises substantially deeper imaging in 2PM, yet this shift has proven challenging in the past due to the limited availability of detectors and probes in this wavelength region. To overcome these limitations and fully capitalize on the SWIR region, in this work, we introduce a novel array of superconducting nanowire single-photon detectors (SNSPDs) and associated custom detection electronics for use in near-infrared 2PM. The SNSPD array exhibits high efficiency and dynamic range as well as low dark-count rates over a wide wavelength range. Additionally, the electronics and software permit a seamless integration into typical 2PM systems. Together with an organic fluorescent dye emitting at 1105 nm, we report imaging depth of >1.1 mm in the in vivo mouse brain, limited mostly by available labeling density and laser properties. Our work establishes a promising, and ultimately scalable, new detector technology for SWIR 2PM that facilitates deep tissue biological imaging.
Collapse
Affiliation(s)
- Amr Tamimi
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | - Sebastian Hambura
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Juan C. Boffi
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | | | | | - Hugo Kooiman
- Single
Quantum B.V, Delft, HH 2629, The Netherlands
| | - Ling Wang
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Christian Kieser
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | - Florian Braun
- Chemical
Synthesis Core Facility, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
| | | | | | - Robert Prevedel
- Cell
Biology and Biophysics Unit, European Molecular
Biology Laboratory, Heidelberg 69117, Germany
- Developmental
Biology Unit, European Molecular Biology
Laboratory, Heidelberg 69117, Germany
- Epigenetics
and Neurobiology Unit, European Molecular
Biology Laboratory Rome, Monterotondo 00015, Italy
- German
Center
for Lung Research (DZL), Heidelberg 69120, Germany
- Interdisciplinary
Center of Neurosciences, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
7
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
8
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Li Y, Guo S, Mattison B, Hu J, Man KNM, Yang W. High-speed two-photon microscopy with adaptive line-excitation. OPTICA 2024; 11:1138-1145. [PMID: 39610401 PMCID: PMC11601119 DOI: 10.1364/optica.529930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 11/30/2024]
Abstract
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex in vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
Collapse
Affiliation(s)
- Yunyang Li
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Shu Guo
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Ben Mattison
- Department of Biomedical Engineering,
University of California, Davis, California
95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| | - Junjie Hu
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Kwun Nok Mimi Man
- Department of Biochemistry and Molecular
Medicine, University of California, Davis,
California 95616, USA
- Current address: Max Planck
Florida Institute for Neuroscience, Jupiter, Florida
33458, USA
| | - Weijian Yang
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| |
Collapse
|
10
|
Phil Brooks F, Davis HC, Wong-Campos JD, Cohen AE. Optical constraints on two-photon voltage imaging. NEUROPHOTONICS 2024; 11:035007. [PMID: 39139631 PMCID: PMC11321468 DOI: 10.1117/1.nph.11.3.035007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Significance Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in vivo, but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized. Aim We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation. Approach We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities. Results Compared with 1P excitation, 2P excitation requires ∼ 10 4 -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of > 300 μ m , 2P voltage imaging using an 80-MHz source can record from no more than ∼ 12 neurons simultaneously. Conclusions Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging in vivo faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of > 300 μ m will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.
Collapse
Affiliation(s)
- F. Phil Brooks
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - Hunter C. Davis
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - J. David Wong-Campos
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| | - Adam E. Cohen
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
| |
Collapse
|
11
|
Hira R. Closed-loop experiments and brain machine interfaces with multiphoton microscopy. NEUROPHOTONICS 2024; 11:033405. [PMID: 38375331 PMCID: PMC10876015 DOI: 10.1117/1.nph.11.3.033405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
Collapse
Affiliation(s)
- Riichiro Hira
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Physiology and Cell Biology, Tokyo, Japan
| |
Collapse
|
12
|
Meyer J, Yu K, Luna-Figueroa E, Deneen B, Noebels J. Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales. Nat Commun 2024; 15:4503. [PMID: 38802334 PMCID: PMC11130179 DOI: 10.1038/s41467-024-48757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.
Collapse
Affiliation(s)
- Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Kwanha Yu
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Brooks FP, Davis HC, Wong-Campos JD, Cohen AE. Optical constraints on two-photon voltage imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.567441. [PMID: 38014011 PMCID: PMC10680948 DOI: 10.1101/2023.11.18.567441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significance Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in vivo, but the relative merits and limitations of one-photon (1P) vs. two-photon (2P) voltage imaging are not well characterized. Aim We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation. Approach We measure brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities. Results Compared to 1P excitation, 2P excitation requires ~104-fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in mouse cortex with a target SNR of 10 (spike height:baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of > 300 μm, 2P voltage imaging using an 80 MHz source can record from no more 12 cells simultaneously. Conclusions Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging in vivo faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at depth > 300 μm will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.
Collapse
Affiliation(s)
- F Phil Brooks
- Department of Chemistry and Chemical Biology, Harvard University
| | - Hunter C Davis
- Department of Chemistry and Chemical Biology, Harvard University
| | | | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University
| |
Collapse
|
14
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. Nat Neurosci 2024; 27:846-861. [PMID: 38539013 PMCID: PMC11104262 DOI: 10.1038/s41593-024-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Futia
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel A Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Baris Ozbay
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Sato H, Sugimoto F, Furukawa R, Tateno T. Modulatory Effects on Laminar Neural Activity Induced by Near-Infrared Light Stimulation with a Continuous Waveform to the Mouse Inferior Colliculus In Vivo. eNeuro 2024; 11:ENEURO.0521-23.2024. [PMID: 38627064 DOI: 10.1523/eneuro.0521-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.
Collapse
Affiliation(s)
- Hiromu Sato
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Futoshi Sugimoto
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takashi Tateno
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
16
|
Brooks FP, Davis HC, Park P, Qi Y, Cohen AE. Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587540. [PMID: 38617370 PMCID: PMC11014499 DOI: 10.1101/2024.04.01.587540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the fluorescence of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate, not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIs in vivo.
Collapse
Affiliation(s)
| | | | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University
| |
Collapse
|
17
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
18
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering. ARXIV 2024:arXiv:2403.14809v1. [PMID: 38562443 PMCID: PMC10984001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
19
|
Lacin ME, Yildirim M. Applications of multiphoton microscopy in imaging cerebral and retinal organoids. Front Neurosci 2024; 18:1360482. [PMID: 38505776 PMCID: PMC10948410 DOI: 10.3389/fnins.2024.1360482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Cerebral organoids, self-organizing structures with increased cellular diversity and longevity, have addressed shortcomings in mimicking human brain complexity and architecture. However, imaging intact organoids poses challenges due to size, cellular density, and light-scattering properties. Traditional one-photon microscopy faces limitations in resolution and contrast, especially for deep regions. Here, we first discuss the fundamentals of multiphoton microscopy (MPM) as a promising alternative, leveraging non-linear fluorophore excitation and longer wavelengths for improved imaging of live cerebral organoids. Then, we review recent applications of MPM in studying morphogenesis and differentiation, emphasizing its potential for overcoming limitations associated with other imaging techniques. Furthermore, our paper underscores the crucial role of cerebral organoids in providing insights into human-specific neurodevelopmental processes and neurological disorders, addressing the scarcity of human brain tissue for translational neuroscience. Ultimately, we envision using multimodal multiphoton microscopy for longitudinal imaging of intact cerebral organoids, propelling advancements in our understanding of neurodevelopment and related disorders.
Collapse
Affiliation(s)
| | - Murat Yildirim
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
20
|
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, Zhu Y, Li X, Li T, Zhou L, Gao Q, Zheng G, Zhao B, Li X, Zhu Y, Wu J, Li W, Zhao J, Ge WP, Xu T, Jia JM. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci 2024; 27:232-248. [PMID: 38168932 PMCID: PMC10849963 DOI: 10.1038/s41593-023-01515-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shiyu Peng
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jinze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xu Hu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianrui Zhang
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yaping Ge
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhu Zhu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xian Xiao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yunxu Zhu
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Zhou
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qingzhu Gao
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Guoxiao Zheng
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiangqing Li
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yanming Zhu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wensheng Li
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwei Zhao
- Department of Anatomy, Histology, and Embryology, Research Center of Systemic Medicine, School of Basic Medicine, and Department of Pathology of the Sir Run-Run Shaw Hospital, The Cryo-EM Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Tian Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
21
|
Roy A, Ben-Yakar A. Numerical study of a convective cooling strategy for increasing safe power levels in two-photon brain imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:540-557. [PMID: 38404347 PMCID: PMC10890868 DOI: 10.1364/boe.507517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Two-photon excitation fluorescence microscopy has become an effective tool for tracking neural activity in the brain at high resolutions thanks to its intrinsic optical sectioning and deep penetration capabilities. However, advanced two-photon microscopy modalities enabling high-speed and/or deep-tissue imaging necessitate high average laser powers, thus increasing the susceptibility of tissue heating due to out-of-focus absorption. Despite cooling the cranial window by maintaining the objective at a fixed temperature, average laser powers exceeding 100-200 mW have been shown to exhibit the potential for altering physiological responses of the brain. This paper proposes an enhanced cooling technique for inducing a laminar flow to the objective immersion layer while implementing duty cycles. Through a numerical study, we analyze the efficacy of heat dissipation of the proposed method and compare it with that of the conventional, fixed-temperature objective cooling technique. The results show that improved cooling could be achieved by choosing appropriate flow rates and physiologically relevant immersion cooling temperatures, potentially increasing safe laser power levels by up to three times (3×). The proposed active cooling method can provide an opportunity for faster scan speeds and enhanced signals in nonlinear deep brain imaging.
Collapse
Affiliation(s)
- Aditya Roy
- The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton Street, Stop C2200, Austin, Texas 78712, USA
| | - Adela Ben-Yakar
- The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton Street, Stop C2200, Austin, Texas 78712, USA
- The University of Texas at Austin, Department of Biomedical Engineering, 107 West Dean Keeton Street, Stop C0800, Austin, Texas 78712, USA
- The University of Texas at Austin, Department of Electrical and Computer Engineering, 2501 Speedway, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Lees RM, Bianco IH, Campbell RAA, Orlova N, Peterka DS, Pichler B, Smith SL, Yatsenko D, Yu CH, Packer AM. Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576417. [PMID: 38328224 PMCID: PMC10849699 DOI: 10.1101/2024.01.23.576417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.
Collapse
Affiliation(s)
- Robert M Lees
- Science and Technology Facilities Council, Octopus imaging facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | | | | | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd, Lewes, East Sussex, UK
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
24
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Yao P, Liu R, Broggini T, Thunemann M, Kleinfeld D. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing. Nat Protoc 2023; 18:3732-3766. [PMID: 37914781 PMCID: PMC11033548 DOI: 10.1038/s41596-023-00893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 11/03/2023]
Abstract
Two-photon microscopy, combined with the appropriate optical labelling, enables the measurement and tracking of submicrometer structures within brain cells, as well as the spatiotemporal mapping of spikes in individual neurons and of neurotransmitter release in individual synapses. Yet, the spatial resolution of two-photon microscopy rapidly degrades as imaging is attempted at depths of more than a few scattering lengths into tissue, i.e., below the superficial layers that constitute the top 300-400 µm of the neocortex. To obviate this limitation, we shape the focal volume, generated by the excitation beam, by modulating the incident wavefront via guidestar-assisted adaptive optics. Here, we describe the construction, calibration and operation of a two-photon microscope that incorporates adaptive optics to restore diffraction-limited resolution at depths close to 900 µm in the mouse cortex. Our setup detects a guidestar formed by the excitation of a red-shifted dye in blood serum, used to directly measure the wavefront. We incorporate predominantly commercially available optical, optomechanical, mechanical and electronic components, and supply computer-aided design models of other customized components. The resulting adaptive optics two-photon microscope is modular and allows for expanded imaging and optical excitation capabilities. We demonstrate our methodology in the mouse neocortex by imaging the morphology of somatostatin-expressing neurons that lie 700 µm beneath the pia, calcium dynamics of layer 5b projection neurons and thalamocortical glutamate transmission to L4 neurons. The protocol requires ~30 d to complete and is suitable for users with graduate-level expertise in optics.
Collapse
Affiliation(s)
- Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - David Kleinfeld
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564636. [PMID: 37961298 PMCID: PMC10634963 DOI: 10.1101/2023.10.29.564636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain. Here, we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of an entire cortical column and underlying subcortical white matter without cellular damage or reactivity. Using this approach, we found that the white matter generated substantially more new oligodendrocytes per volume compared to the gray matter, yet the rate of population growth was proportionally higher in the gray matter. Following demyelination, the white matter had an enhanced population growth that resulted in higher oligodendrocyte replacement compared to the gray matter. Finally, deep cortical layers had pronounced deficits in regenerative oligodendrogenesis and restoration of the MOL5/6-positive oligodendrocyte subpopulation following demyelinating injury. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A. Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | | | - Michael E. Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Samuel A. Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Baris Ozbay
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Emily A. Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus
| | - Ethan G. Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
27
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Saidi S, Shtrahman M. Evaluation of compact pulsed lasers for two-photon microscopy using a simple method for measuring two-photon excitation efficiency. NEUROPHOTONICS 2023; 10:044303. [PMID: 38076726 PMCID: PMC10704185 DOI: 10.1117/1.nph.10.4.044303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 02/12/2024]
Abstract
Significance Two-photon (2p) microscopy has historically relied on titanium sapphire pulsed lasers that are expensive and have a large footprint. Recently, several manufacturers have developed less expensive compact pulsed lasers optimized for 2p excitation of green fluorophores. However, quantitative evaluation of their quality is lacking. Aim We describe a simple approach to systematically evaluate 2p excitation efficiency, an empiric measure of the quality of a pulsed laser and its ability to elicit 2p induced fluorescence. Approach By measuring pulse width, repetition rate, and fluorescence output, we calculated a measure of 2p excitation efficiency η , which we compared for four commercially available compact pulsed lasers in the 920 to 930 nm wavelength range. Results 2p excitation efficiency varied substantially among tested lasers. The Coherent Axon exhibited the best 2p excitation efficiency (1.09 ± 0.03 ), exceeding that of a titanium sapphire reference laser (defined to have efficiency = 1). However, its measured fluorescence was modest due to its long pulse width. Of the compact lasers, the Toptica Femtofiber Ultra exhibited the best combination of measured fluorescence (0.75 ± 0.01 ) and 2p excitation efficiency (0.86 ± 0.01 ). Conclusions We describe a simple method that both laser developers and end users can use to benchmark the 2p excitation efficiency of lasers used for 2p microscopy.
Collapse
Affiliation(s)
- Samir Saidi
- University of California, San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, California, United States
| | - Matthew Shtrahman
- University of California, San Diego, Department of Neurosciences, La Jolla, California, United States
| |
Collapse
|
29
|
Engelmann SA, Tomar A, Woods AL, Dunn AK. Pulse train gating to improve signal generation for in vivo two-photon fluorescence microscopy. NEUROPHOTONICS 2023; 10:045006. [PMID: 37937198 PMCID: PMC10627479 DOI: 10.1117/1.nph.10.4.045006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Significance Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structures and functions in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using the gating of high repetition rate ultrafast pulse trains to increase the signal level. Aim We investigate how the signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach An electro-optic modulator with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier is used to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare the signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train at the same average power. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging, we find that pulse gating results in a 2.95-fold increase in the SNR and a 1.37-fold increase in the SBR on average when imaging mouse cortical vasculature at depths ranging from 950 to 1050 μ m . Conclusions We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structures through two-photon microscopy.
Collapse
Affiliation(s)
- Shaun A Engelmann
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Alankrit Tomar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Aaron L Woods
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
30
|
Shang X, Ling W, Chen Y, Li C, Huang X. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302241. [PMID: 37260144 DOI: 10.1002/smll.202302241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Precisely delivering light to multiple locations in biological tissue is crucial for advancing multiregional optogenetics in neuroscience research. However, conventional implantable devices typically have rigid geometries and limited light sources, allowing only single or dual probe placement with fixed spacing. Here, a fully flexible optogenetic device with multiple thin-film microscale light-emitting diode (µ-LED) displays scattering from a central controller is presented. Each display is heterogeneously integrated with thin-film 5 × 10 µ-LEDs and five optical fibers 125 µm in diameter to achieve cellular-scale spatial resolution. Meanwhile, the device boasts a compact, flexible circuit capable of multichannel configuration and wireless transmission, with an overall weight of 1.31 g, enabling wireless, real-time neuromodulation of freely moving rats. Characterization results and finite element analysis have demonstrated excellent optical properties and mechanical stability, while cytotoxicity tests further ensure the biocompatibility of the device for implantable applications. Behavior studies under optogenetic modulation indicate great promise for wirelessly modulating neural functions in freely moving animals. The device with multisite and multiregional optogenetic modulation capability offers a comprehensive platform to advance both fundamental neuroscience studies and potential applications in brain-computer interfaces.
Collapse
Affiliation(s)
- Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Ying Chen
- Institute of Flexible Electronic Technology of Tsinghua, Jiaxing, 314006, China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314000, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China
| |
Collapse
|
31
|
Evans SW, Shi DQ, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang FJ, van Keulen SC, Suomivuori CM, Pang MM, Su S, Lee S, Hao YA, Zhang G, Jiang D, Pradhan L, Roth RH, Liu Y, Dorian CC, Reese AL, Negrean A, Losonczy A, Makinson CD, Wang S, Clandinin TR, Dror RO, Ding JB, Ji N, Golshani P, Giocomo LM, Bi GQ, Lin MZ. A positively tuned voltage indicator for extended electrical recordings in the brain. Nat Methods 2023; 20:1104-1113. [PMID: 37429962 PMCID: PMC10627146 DOI: 10.1038/s41592-023-01913-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.
Collapse
Affiliation(s)
- S Wenceslao Evans
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dong-Qing Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mark H Plitt
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Madruga
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jiang Lan Fan
- UC Berkeley/UCSF Joint Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Siri C van Keulen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Michelle M Pang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Conor C Dorian
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Austin L Reese
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Science, New York, NY, USA
| | - Christopher D Makinson
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Na Ji
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Guo-Qiang Bi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michael Z Lin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, USA.
| |
Collapse
|
32
|
Platisa J, Ye X, Ahrens AM, Liu C, Chen IA, Davison IG, Tian L, Pieribone VA, Chen JL. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations. Nat Methods 2023; 20:1095-1103. [PMID: 36973547 PMCID: PMC10894646 DOI: 10.1038/s41592-023-01820-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, which is voltage imaging below the shot-noise limit. This framework involved developing positive-going voltage indicators with improved spike detection (SpikeyGi and SpikeyGi2); a two-photon microscope ('SMURF') for kilohertz frame rate imaging across a 0.4 mm × 0.4 mm field of view; and a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise-limited signals. Through these combined advances, we achieved simultaneous high-speed deep-tissue imaging of more than 100 densely labeled neurons over 1 hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.
Collapse
Affiliation(s)
- Jelena Platisa
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- The John B. Pierce Laboratory, New Haven, CT, USA
| | - Xin Ye
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | | | - Chang Liu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Ian G Davison
- Neurophotonics Center, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Lei Tian
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Vincent A Pieribone
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- The John B. Pierce Laboratory, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Neurophotonics Center, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
33
|
Lecoq JA, Podgorski K, Grewe BF. AI to the rescue of voltage imaging. CELL REPORTS METHODS 2023; 3:100505. [PMID: 37426751 PMCID: PMC10326374 DOI: 10.1016/j.crmeth.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In a recent issue of Nature Methods, Platisa et al. present an approach for long-term, in vivo population voltage imaging with single spike resolution across a local population of 100 neurons.1 Key to this step forward was the combination of a customized high-speed two-photon microscope with an optimized, positive-going, genetically encoded voltage indicator and a tailored machine learning denoising algorithm.
Collapse
Affiliation(s)
| | | | - Benjamin F. Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Li J, Zhou D, Liu Y, Chen Y, Chen J, Yang Y, Gao Y, Qiu J. Engineering CsPbX 3 (X = Cl, Br, I) Quantum Dot-Embedded Borosilicate Glass through Self-Crystallization Facilitated by NaF as a Phosphor for Full-Color Illumination and Laser-Driven Projection Displays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22219-22230. [PMID: 37115516 DOI: 10.1021/acsami.3c01484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
All inorganic perovskite (CsPbX3, X = Cl, Br, I) quantum dot (QD) glass samples are considered the next generation of lighting materials for their excellent luminescence properties and stability, but crystallization conditions are difficult to control, which often leads to the inhomogeneous crystallinity of QDs. Here, we provided evidence that the presence of sodium fluoride induced self-crystallization of CsPbBr3 QDs during routine glass formation without the need for additional heat treatment. We showed that NaF simultaneously affected the network structure of glass and promoted the formation of CsPbBr3 QDs, that is, Na+ ions entered the glass network skeleton, partially interrupting the network structure, while the strong electronegativity of F- ions attracted Cs+ and Pb2+ ions into the gaps formed in the glass networks that had been loosened up by Na+ ions, which reduced the activation energy of crystallization processes. Our results showed that NaF-induced CsPbBr3 QDs glass had excellent thermal stability, high photoluminescence quantum efficiency (49%), and luminescent stability under high-power laser irradiation. Finally, this work also demonstrated the general applicability of this method in the making of a series of CsPbX3 (X = Cl, Br, I) QD glass samples by NaF-induced self-crystallization, which drastically expanded the color gamut to a range of full spectrum for luminescence and laser-driven projection displays. We believe that the work presented here represents a new direction for the research and development of full-color gamut inorganic perovskite quantum dot glass samples, which could have a significant impact on the future applications of laser-driven projection displays as well.
Collapse
Affiliation(s)
- Junhao Li
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Dacheng Zhou
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Ying Liu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jiayuan Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yong Yang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Yuan Gao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Jianbei Qiu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| |
Collapse
|
35
|
Zhao Z, Zhou Y, Liu B, He J, Zhao J, Cai Y, Fan J, Li X, Wang Z, Lu Z, Wu J, Qi H, Dai Q. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell 2023; 186:2475-2491.e22. [PMID: 37178688 DOI: 10.1016/j.cell.2023.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Yiliang Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing He
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jiayin Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingtao Fan
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Zilin Wang
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Lu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Zhang Y, Zhang G, Han X, Wu J, Li Z, Li X, Xiao G, Xie H, Fang L, Dai Q. Rapid detection of neurons in widefield calcium imaging datasets after training with synthetic data. Nat Methods 2023; 20:747-754. [PMID: 37002377 PMCID: PMC10172132 DOI: 10.1038/s41592-023-01838-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Widefield microscopy can provide optical access to multi-millimeter fields of view and thousands of neurons in mammalian brains at video rate. However, tissue scattering and background contamination results in signal deterioration, making the extraction of neuronal activity challenging, laborious and time consuming. Here we present our deep-learning-based widefield neuron finder (DeepWonder), which is trained by simulated functional recordings and effectively works on experimental data to achieve high-fidelity neuronal extraction. Equipped with systematic background contribution priors, DeepWonder conducts neuronal inference with an order-of-magnitude-faster speed and improved accuracy compared with alternative approaches. DeepWonder removes background contaminations and is computationally efficient. Specifically, DeepWonder accomplishes 50-fold signal-to-background ratio enhancement when processing terabytes-scale cortex-wide functional recordings, with over 14,000 neurons extracted in 17 h.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Guoxun Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Xiaofei Han
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Ziwei Li
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Lu Fang
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China.
| |
Collapse
|
37
|
Engelmann SA, Tomar A, Woods AL, Dunn AK. Pulse train gating to improve signal generation for in vivo two-photon fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535393. [PMID: 37066310 PMCID: PMC10103994 DOI: 10.1101/2023.04.03.535393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Significance Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structure and function in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using gates of high repetition rate ultrafast pulse trains to increase signal level. Aim We investigate how signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach An electro-optic modulator is used with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging we find pulse gating to result in a 2.95-fold increase in SNR and a 1.37-fold increase in SBR on average when imaging mouse cortical vasculature at depths ranging from 950 μm to 1050 μm. Conclusions We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structure through two-photon microscopy.
Collapse
Affiliation(s)
- Shaun A. Engelmann
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Alankrit Tomar
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Aaron L. Woods
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| |
Collapse
|
38
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
39
|
Lightning A, Bourzeix M, Beurrier C, Kuczewski N. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments. Eur J Neurosci 2023; 57:885-899. [PMID: 36726326 DOI: 10.1111/ejn.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Neuronal sensitivity to light stimulation can be a significant confounding factor for assays that use light to study neuronal processes, such as optogenetics and fluorescent imaging. While continuous one-photon (1P) blue light stimulation has been shown to be responsible for a decrease in firing activity in several neuronal subtypes, discontinuous 1P blue light stimulation commonly used in optogenetic experiments is supposed to have a negligible action. In the present report, we tested experimentally this theoretical prediction by assessing the effects produced by the most commonly used patterns of discontinuous 1P light stimulation on several electrophysiological parameters in brain slices. We found that, compared with continuous stimulation, the artefactual effect of light is reduced when discontinuous stimulation is used, especially when the duty cycle and light power are low.
Collapse
Affiliation(s)
- Anistasha Lightning
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028UMR5292, NEUROPOP, Bron, France
| | - Marie Bourzeix
- Aix Marseille Univ, CNRS UMR 7289, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Corinne Beurrier
- Aix Marseille Univ, CNRS UMR 7289, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Nicola Kuczewski
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028UMR5292, NEUROPOP, Bron, France
| |
Collapse
|
40
|
Hernández IC, Yau J, Rishøj L, Cui N, Minderler S, Jowett N. Tutorial: multiphoton microscopy to advance neuroscience research. Methods Appl Fluoresc 2023; 11. [PMID: 36753763 DOI: 10.1088/2050-6120/acba66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Multiphoton microscopy (MPM) employs ultrafast infrared lasers for high-resolution deep three-dimensional imaging of live biological samples. The goal of this tutorial is to provide a practical guide to MPM imaging for novice microscopy developers and life-science users. Principles of MPM, microscope setup, and labeling strategies are discussed. Use of MPM to achieve unprecedented imaging depth of whole mounted explants and intravital imaging via implantable glass windows of the mammalian nervous system is demonstrated.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Jenny Yau
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Lars Rishøj
- Technical University of Denmark, DTU Electro, Ørsteds Plads 343, 2800 Kgs. Lyngby, Denmark
| | - Nanke Cui
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Steven Minderler
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| | - Nate Jowett
- Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, United States of America
| |
Collapse
|
41
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Boorman LW, Harris SS, Shabir O, Lee L, Eyre B, Howarth C, Berwick J. Bidirectional alterations in brain temperature profoundly modulate spatiotemporal neurovascular responses in-vivo. Commun Biol 2023; 6:185. [PMID: 36797344 PMCID: PMC9935519 DOI: 10.1038/s42003-023-04542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Neurovascular coupling (NVC) is a mechanism that, amongst other known and latent critical functions, ensures activated brain regions are adequately supplied with oxygen and glucose. This biological phenomenon underpins non-invasive perfusion-related neuroimaging techniques and recent reports have implicated NVC impairment in several neurodegenerative disorders. Yet, much remains unknown regarding NVC in health and disease, and only recently has there been burgeoning recognition of a close interplay with brain thermodynamics. Accordingly, we developed a novel multi-modal approach to systematically modulate cortical temperature and interrogate the spatiotemporal dynamics of sensory-evoked NVC. We show that changes in cortical temperature profoundly and intricately modulate NVC, with low temperatures associated with diminished oxygen delivery, and high temperatures inducing a distinct vascular oscillation. These observations provide novel insights into the relationship between NVC and brain thermodynamics, with important implications for brain-temperature related therapies, functional biomarkers of elevated brain temperature, and in-vivo methods to study neurovascular coupling.
Collapse
Affiliation(s)
- Luke W Boorman
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Samuel S Harris
- UK Dementia Research Institute at University College London, University College London, London, UK
| | - Osman Shabir
- Department of Psychology, University of Sheffield, Sheffield, UK
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Llywelyn Lee
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Beth Eyre
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
43
|
Kučikas V, Werner MP, Schmitz-Rode T, Louradour F, van Zandvoort MAMJ. Two-Photon Endoscopy: State of the Art and Perspectives. Mol Imaging Biol 2023; 25:3-17. [PMID: 34779969 PMCID: PMC9971078 DOI: 10.1007/s11307-021-01665-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
In recent years, the demand for non-destructive deep-tissue imaging modalities has led to interest in multiphoton endoscopy. In contrast to bench top systems, multiphoton endoscopy enables subcellular resolution imaging in areas not reachable before. Several groups have recently presented their development towards the goal of producing user friendly plug and play system, which could be used in biological research and, potentially, clinical applications. We first present the technological challenges, prerequisites, and solutions in two-photon endoscopic systems. Secondly, we focus on the applications already found in literature. These applications mostly serve as a quality check of the built system, but do not answer a specific biomedical research question. Therefore, in the last part, we will describe our vision on the enormous potential applicability of adult two-photon endoscopic systems in biological and clinical research. We will thus bring forward the concept that two-photon endoscopy is a sine qua non in bringing this technique to the forefront in clinical applications.
Collapse
Affiliation(s)
- Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany. .,XLIM Research Institute, Limoges University, CNRS, Limoges, France.
| | - Maximilian P Werner
- Department of Biohybrid and Medical Textiles (BioTex), RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), RWTH Aachen University, Aachen, Germany
| | | | - Marc A M J van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Institute for Cardiovascular Diseases CARIM, Department of Molecular Cell Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
44
|
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol 2023; 41:282-292. [PMID: 36163547 PMCID: PMC9931589 DOI: 10.1038/s41587-022-01450-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learning method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional interrogation of biological dynamics with a minimal photon budget.
Collapse
|
45
|
Knapp TG, Duan S, Merchant JL, Sawyer TW. Quantitative characterization of duodenal gastrinoma autofluorescence using multiphoton microscopy. Lasers Surg Med 2023; 55:208-225. [PMID: 36515355 PMCID: PMC9957894 DOI: 10.1002/lsm.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Duodenal gastrinomas (DGASTs) are neuroendocrine tumors that develop in the submucosa of the duodenum and produce the hormone gastrin. Surgical resection of DGASTs is complicated by the small size of these tumors and the tendency for them to develop diffusely in the duodenum. Endoscopic mucosal resection of DGASTs is an increasingly popular method for treating this disease due to its low complication rate but suffers from poor rates of pathologically negative margins. Multiphoton microscopy can capture high-resolution images of biological tissue with contrast generated from endogenous fluorescence (autofluorescence [AF]) through two-photon excited fluorescence (2PEF). Second harmonic generation is another popular method of generating image contrast with multiphoton microscopy (MPM) and is a light-scattering phenomenon that occurs predominantly from structures such as collagen in biological samples. Some molecules that contribute to AF change in abundance from processes related to the cancer disease process (e.g., metabolic changes, oxidative stress, and angiogenesis). STUDY DESIGN/MATERIALS AND METHODS MPM was used to image 12 separate patient samples of formalin-fixed and paraffin-embedded duodenal gastrinoma slides with a second-harmonic generation (SHG) channel and four 2PEF channels. The excitation and emission profiles of each 2PEF channel were tuned to capture signal dominated by distinct fluorophores with well-characterized fluorescent spectra and known connections to the physiologic changes that arise in cancerous tissue. RESULTS We found that there was a significant difference in the relative abundance of signal generated in the 2PEF channels for regions of DGASTs in comparison to the neighboring tissues of the duodenum. Data generated from texture feature extraction of the MPM images were used in linear discriminant analysis models to create classifiers for tumor versus all other tissue types before and after principal component analysis (PCA). PCA improved the classifier accuracy and reduced the number of features required to achieve maximum accuracy. The linear discriminant classifier after PCA distinguished between tumor and other tissue types with an accuracy of 90.6%-93.8%. CONCLUSIONS These results suggest that multiphoton microscopy 2PEF and SHG imaging is a promising label-free method for discriminating between DGASTs and normal duodenal tissue which has implications for future applications of in vivo assessment of resection margins with endoscopic MPM.
Collapse
Affiliation(s)
- Thomas G. Knapp
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Suzann Duan
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Travis W. Sawyer
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- College of Medicine, University of Arizona, Tucson, Arizona, USA
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
46
|
Accanto N, Blot FGC, Lorca-Cámara A, Zampini V, Bui F, Tourain C, Badt N, Katz O, Emiliani V. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice. Neuron 2023; 111:176-189.e6. [PMID: 36395773 DOI: 10.1016/j.neuron.2022.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
We developed a flexible two-photon microendoscope (2P-FENDO) capable of all-optical brain investigation at near cellular resolution in freely moving mice. The system performs fast two-photon (2P) functional imaging and 2P holographic photostimulation of single and multiple cells using axially confined extended spots. Proof-of-principle experiments were performed in freely moving mice co-expressing jGCaMP7s and the opsin ChRmine in the visual or barrel cortex. On a field of view of 250 μm in diameter, we demonstrated functional imaging at a frame rate of up to 50 Hz and precise photostimulation of selected groups of cells. With the capability to simultaneously image and control defined neuronal networks in freely moving animals, 2P-FENDO will enable a precise investigation of neuronal functions in the brain during naturalistic behaviors.
Collapse
Affiliation(s)
- Nicolò Accanto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - François G C Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Florence Bui
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Noam Badt
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ori Katz
- Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| |
Collapse
|
47
|
Liang W, Chen D, Guan H, Park HC, Li K, Li A, Li MJ, Gannot I, Li X. Label-Free Metabolic Imaging In Vivo by Two-Photon Fluorescence Lifetime Endomicroscopy. ACS PHOTONICS 2022; 9:4017-4029. [PMID: 39726730 PMCID: PMC11671153 DOI: 10.1021/acsphotonics.2c01493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
NADH intensity and fluorescence lifetime characteristics have proved valuable intrinsic biomarkers for profiling the cellular metabolic status of living biological tissues. To fully leverage the potential of NADH fluorescence lifetime imaging microscopy (FLIM) in (pre)clinical studies and translational applications, a compact and flexible endomicroscopic embodiment is essential. Herein we present our newly developed two-photon fluorescence (2PF) lifetime imaging endomicroscope (2p-FLeM) that features an about 2 mm diameter, subcellular resolution, and excellent emission photon utilization efficiency and can extract NADH lifetime parameters of living tissues and organs reliably using a safe excitation power (~30 mW) and moderate pixel dwelling time (≤10 μs). In vivo experiments showed that the 2p-FLeM system was capable of tracking NADH lifetime dynamics of cultured cancer cells and subcutaneous mouse tumor models subject to induced apoptosis, and of a functioning mouse kidney undergoing acute ischemia-reperfusion perturbation. The complementary structural and metabolic information afforded by the 2p-FLeM system promises functional histological imaging of label-free internal organs in vivo and in situ for practical clinical diagnosis and therapeutics applications.
Collapse
Affiliation(s)
- Wenxuan Liang
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215000, China; School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Defu Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Honghua Guan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Kaiyan Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ang Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ming-Jun Li
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Israel Gannot
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Columnar Lesions in Barrel Cortex Persistently Degrade Object Location Discrimination Performance. eNeuro 2022; 9:ENEURO.0393-22.2022. [PMID: 36316120 PMCID: PMC9665881 DOI: 10.1523/eneuro.0393-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Primary sensory cortices display functional topography, suggesting that even small cortical volumes may underpin perception of specific stimuli. Traditional loss-of-function approaches have a relatively large radius of effect (>1 mm), and few studies track recovery following loss-of-function perturbations. Consequently, the behavioral necessity of smaller cortical volumes remains unclear. In the mouse primary vibrissal somatosensory cortex (vS1), "barrels" with a radius of ∼150 μm receive input predominantly from a single whisker, partitioning vS1 into a topographic map of well defined columns. Here, we train animals implanted with a cranial window over vS1 to perform single-whisker perceptual tasks. We then use high-power laser exposure centered on the barrel representing the spared whisker to produce lesions with a typical volume of one to two barrels. These columnar-scale lesions impair performance in an object location discrimination task for multiple days without disrupting vibrissal kinematics. Animals with degraded location discrimination performance can immediately perform a whisker touch detection task with high accuracy. Animals trained de novo on both simple and complex whisker touch detection tasks showed no permanent behavioral deficits following columnar-scale lesions. Thus, columnar-scale lesions permanently degrade performance in object location discrimination tasks.
Collapse
|
49
|
Mächler P, Fomin-Thunemann N, Thunemann M, Sætra MJ, Desjardins M, Kılıç K, Amra LN, Martin EA, Chen IA, Şencan-Eğilmez I, Li B, Saisan P, Jiang JX, Cheng Q, Weldy KL, Boas DA, Buxton RB, Einevoll GT, Dale AM, Sakadžić S, Devor A. Baseline oxygen consumption decreases with cortical depth. PLoS Biol 2022; 20:e3001440. [PMID: 36301995 PMCID: PMC9642908 DOI: 10.1371/journal.pbio.3001440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Natalie Fomin-Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Marte Julie Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique and Axe Oncologie, Centre de Recherche du CHU de Québec–Université Laval, Université Laval, Québec, Canada
| | - Kıvılcım Kılıç
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Layth N. Amra
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Emily A. Martin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ichun Anderson Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Payam Saisan
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - John X. Jiang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Qun Cheng
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Kimberly L. Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Gaute T. Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| |
Collapse
|
50
|
Yasunaga H, Takeuchi H, Mizuguchi K, Nishikawa A, Loesing A, Ishikawa M, Kamiyoshihara C, Setogawa S, Ohkawa N, Sekiguchi H. MicroLED neural probe for effective in vivo optogenetic stimulation. OPTICS EXPRESS 2022; 30:40292-40305. [PMID: 36298964 DOI: 10.1364/oe.470318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The MicroLED probe enables optogenetic control of neural activity in spatially separated brain regions. Understanding its heat generation characteristics is important. In this study, we investigated the temperature rise (ΔT) characteristics in the brain tissue using a MicroLED probe. The ΔT strongly depended on the surrounding environment of the probe, including the differences between the air and the brain, and the area touching the brain tissue. Through animal experiments, we suggest an in situ temperature monitoring method using temperature dependence on electrical characteristics of the MicroLED. Finally, optical stimulation by MicroLEDs proved effective in controlling optogenetic neural activity in animal models.
Collapse
|