1
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Ghosh A, Massaeli F, Power KD, Omoluabi T, Torraville SE, Pritchett JB, Sepahvand T, Strong VD, Reinhardt C, Chen X, Martin GM, Harley CW, Yuan Q. Locus Coeruleus Activation Patterns Differentially Modulate Odor Discrimination Learning and Odor Valence in Rats. Cereb Cortex Commun 2021; 2:tgab026. [PMID: 34296171 PMCID: PMC8152946 DOI: 10.1093/texcom/tgab026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022] Open
Abstract
The locus coeruleus (LC) produces phasic and tonic firing patterns that are theorized to have distinct functional consequences. However, how different firing modes affect learning and valence encoding of sensory information are unknown. Here, we show bilateral optogenetic activation of rat LC neurons using 10-Hz phasic trains of either 300 ms or 10 s accelerated acquisition of a similar odor discrimination. Similar odor discrimination learning was impaired by noradrenergic blockade in the piriform cortex (PC). However, 10-Hz phasic light-mediated learning facilitation was prevented by a dopaminergic antagonist in the PC, or by ventral tegmental area (VTA) silencing with lidocaine, suggesting a LC–VTA–PC dopamine circuitry involvement. Ten-hertz tonic stimulation did not alter odor discrimination acquisition, and was ineffective in activating VTA DA neurons. For valence encoding, tonic stimulation at 25 Hz induced conditioned odor aversion, whereas 10-Hz phasic stimulations produced an odor preference. Both conditionings were prevented by noradrenergic blockade in the basolateral amygdala (BLA). Cholera Toxin B retro-labeling showed larger engagement of nucleus accumbens-projecting neurons in the BLA with 10-Hz phasic activation, and larger engagement of central amygdala projecting cells with 25-Hz tonic light. These outcomes argue that the LC activation patterns differentially influence both target networks and behavior.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Faghihe Massaeli
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Kyron D Power
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Julia B Pritchett
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.,Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Vanessa D Strong
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Camila Reinhardt
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Gerard M Martin
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Carolyn W Harley
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
3
|
Horie S, Kiyokage E, Hayashi S, Inoue K, Sohn J, Hioki H, Furuta T, Toida K. Structural basis for noradrenergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2021; 529:2189-2208. [PMID: 33616936 DOI: 10.1002/cne.25085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling. In this study, we analyzed the centrifugal noradrenergic (NA) fibers derived from the locus coeruleus (LC), because their projection pathways and synaptic connections in the OB have not been clarified in detail. We analyzed the NA centrifugal projections by single-neuron labeling and immunoelectron microscopy. Individual NA neurons labeled by viral infection were three-dimensionally traced using Neurolucida software to visualize the projection pathway from the LC to the OB. Also, centrifugal NA fibers were visualized using an antibody for noradrenaline transporter (NET). NET immunoreactive (-ir) fibers contained many varicosities and synaptic vesicles. Furthermore, electron tomography demonstrated that NET-ir fibers formed asymmetrical synapses of varied morphology. Although these synapses were present at varicosities, the density of synapses was relatively low throughout the OB. The maximal density of synapses was found in the external plexiform layer; about 17% of all observed varicosities contained synapses. These results strongly suggest that NA-containing fibers in the OB release NA from both varicosities and synapses to influence the activities of OB neurons. The present study provides a morphological basis for olfactory modulation by centrifugal NA fibers derived from the LC.
Collapse
Affiliation(s)
- Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Emi Kiyokage
- Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Wong JYH, Wan BA, Bland T, Montagnese M, McLachlan AD, O'Kane CJ, Zhang SW, Masuda-Nakagawa LM. Octopaminergic neurons have multiple targets in Drosophila larval mushroom body calyx and can modulate behavioral odor discrimination. ACTA ACUST UNITED AC 2021; 28:53-71. [PMID: 33452115 PMCID: PMC7812863 DOI: 10.1101/lm.052159.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Discrimination of sensory signals is essential for an organism to form and retrieve memories of relevance in a given behavioral context. Sensory representations are modified dynamically by changes in behavioral state, facilitating context-dependent selection of behavior, through signals carried by noradrenergic input in mammals, or octopamine (OA) in insects. To understand the circuit mechanisms of this signaling, we characterized the function of two OA neurons, sVUM1 neurons, that originate in the subesophageal zone (SEZ) and target the input region of the memory center, the mushroom body (MB) calyx, in larval Drosophila. We found that sVUM1 neurons target multiple neurons, including olfactory projection neurons (PNs), the inhibitory neuron APL, and a pair of extrinsic output neurons, but relatively few mushroom body intrinsic neurons, Kenyon cells. PN terminals carried the OA receptor Oamb, a Drosophila α1-adrenergic receptor ortholog. Using an odor discrimination learning paradigm, we showed that optogenetic activation of OA neurons compromised discrimination of similar odors but not learning ability. Our results suggest that sVUM1 neurons modify odor representations via multiple extrinsic inputs at the sensory input area to the MB olfactory learning circuit.
Collapse
Affiliation(s)
- J Y Hilary Wong
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bo Angela Wan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Tom Bland
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Marcella Montagnese
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Alex D McLachlan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shuo Wei Zhang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | |
Collapse
|
5
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
|
8
|
Stimulation of the Locus Ceruleus Modulates Signal-to-Noise Ratio in the Olfactory Bulb. J Neurosci 2017; 37:11605-11615. [PMID: 29066553 DOI: 10.1523/jneurosci.2026-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/10/2017] [Indexed: 02/01/2023] Open
Abstract
Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state.SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination.
Collapse
|
9
|
Cognitive behavioral therapy (CBT) for preventing Alzheimer's disease. Behav Brain Res 2017; 334:163-177. [PMID: 28743599 DOI: 10.1016/j.bbr.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
This review provides the rationale for implementing cognitive behavioral therapy (CBT) for the prevention of Alzheimer's disease (AD). There are known risk factors associated with the development of AD, some of which may be ameliorated with CBT. We posit that treating the risk factors of inactivity, poor diet, hyposmia and anosmia, sleep disorders and lack of regularly engaged challenging cognitive activity will modify the physiology of the brain sufficiently to avoid the accumulation of excess proteins, including amyloid beta, causal events in the development of AD. Further, the successful treatment of the listed risk factors is well within our technology to do so and, even further, it is cost effective. Also, there is considerable scientific literature to support the proposition that, if implemented by well-established practices, CBT will be effective and will be engaged by those of retirement age. That is, we present a biologically informed CBT for the prevention of the development of AD, i.e., an aspect of applied behavioral neuroscience.
Collapse
|
10
|
Doyle WI, Meeks JP. Heterogeneous effects of norepinephrine on spontaneous and stimulus-driven activity in the male accessory olfactory bulb. J Neurophysiol 2017; 117:1342-1351. [PMID: 28053247 DOI: 10.1152/jn.00871.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) release has been linked to experience-dependent plasticity in many model systems and brain regions. Among these is the rodent accessory olfactory system (AOS), which is crucial for detecting and processing socially relevant environmental cues. The accessory olfactory bulb (AOB), the first site of chemosensory information processing in the AOS, receives dense centrifugal innervation by noradrenergic fibers originating in the locus coeruleus. Although NE release has been linked to behavioral plasticity through its actions in the AOB, the impacts of noradrenergic modulation on AOB information processing have not been thoroughly studied. We made extracellular single-unit recordings of AOB principal neurons in ex vivo preparations of the early AOS taken from adult male mice. We analyzed the impacts of bath-applied NE (10 μM) on spontaneous and stimulus-driven activity. In the presence of NE, we observed overall suppression of stimulus-driven neuronal activity with limited impact on spontaneous activity. NE-associated response suppression in the AOB came in two forms: one that was strong and immediate (21%) and one other that involved gradual, stimulus-dependent monotonic response suppression (47%). NE-associated changes in spontaneous activity were more modest, with an overall increase in spontaneous spike frequency observed in 25% of neurons. Neurons with increased spontaneous activity demonstrated a net decrease in chemosensory discriminability. These results reveal that noradrenergic signaling in the AOB causes cell-specific changes in chemosensory tuning, even among similar projection neurons.NEW & NOTEWORTHY Norepinephrine (NE) is released throughout the brain in many behavioral contexts, but its impacts on information processing are not well understood. We studied the impact of NE on chemosensory tuning in the mouse accessory olfactory bulb (AOB). Electrophysiological recordings from AOB neurons in ex vivo preparations revealed that NE, on balance, inhibited mitral cell responses to chemosensory cues. However, NE's effects were heterogeneous, indicating that NE signaling reshapes AOB output in a cell- and stimulus-specific manner.
Collapse
Affiliation(s)
- Wayne I Doyle
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Julian P Meeks
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Zhou FW, Dong HW, Ennis M. Activation of β-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells. J Neurophysiol 2016; 116:2604-2614. [PMID: 27628203 DOI: 10.1152/jn.00034.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β2-, but not β1-, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (INaP) and hyperpolarization-activated inward (Ih) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hong-Wei Dong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew Ennis
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Ghosh A, Purchase NC, Chen X, Yuan Q. Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors. Front Cell Neurosci 2015; 9:450. [PMID: 26635530 PMCID: PMC4652601 DOI: 10.3389/fncel.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10–12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice – odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8–11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8–11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Nicole C Purchase
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Xihua Chen
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| | - Qi Yuan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada
| |
Collapse
|
13
|
Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 2015; 114:3177-200. [PMID: 26334007 DOI: 10.1152/jn.00324.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychology, Cornell University, Ithaca, New York;
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
14
|
de Almeida L, Reiner SJ, Ennis M, Linster C. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex. Front Comput Neurosci 2015; 9:73. [PMID: 26136678 PMCID: PMC4468384 DOI: 10.3389/fncom.2015.00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/27/2015] [Indexed: 12/02/2022] Open
Abstract
Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been shown to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose—response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.
Collapse
Affiliation(s)
- Licurgo de Almeida
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Seungdo J Reiner
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Matthew Ennis
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Christiane Linster
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| |
Collapse
|
15
|
Abstract
Sensory responses are modulated by internal factors including attention, experience, and brain state. This is partly due to fluctuations in neuromodulatory input from regions such as the noradrenergic locus ceruleus (LC) in the brainstem. LC activity changes with arousal and modulates sensory processing, cognition, and memory. The main olfactory bulb (MOB) is richly targeted by LC fibers and noradrenaline profoundly influences MOB circuitry and odor-guided behavior. Noradrenaline-dependent plasticity affects the output of the MOB; however. it is unclear whether noradrenergic plasticity also affects the input to the MOB from olfactory sensory neurons (OSNs) in the glomerular layer. Noradrenergic terminals are found in the glomerular layer, but noradrenaline receptors do not seem to acutely modulate OSN terminals in vitro. We investigated whether noradrenaline induces plasticity at the glomerulus. We used wide-field optical imaging to measure changes in odor responses following electrical stimulation of LC in anesthetized mice. Surprisingly, odor-evoked intrinsic optical signals at the glomerulus were persistently weakened after LC activation. Calcium imaging selectively from OSNs confirmed that this effect was due to suppression of presynaptic input and was prevented by noradrenergic antagonists. Finally, suppression of responses to an odor did not require precise coincidence of the odor with LC activation. However, suppression was intensified by LC activation in the absence of odors. We conclude that noradrenaline release from LC has persistent effects on odor processing already at the first synapse of the main olfactory system. This mechanism could contribute to arousal-dependent memories.
Collapse
|
16
|
Borin M, Fogli Iseppe A, Pignatelli A, Belluzzi O. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb. Front Cell Neurosci 2014; 8:223. [PMID: 25152712 PMCID: PMC4126183 DOI: 10.3389/fncel.2014.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons and the apical dendrites of projection neurons; they are autorhythmic and are the target of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of their position, suggesting a critical role in the sensory processing, their properties -and consequently their function- remain elusive. The current mediated by inward rectifier potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated current (I h ) by showing full activation in <10 ms, no inactivation, suppression by Ba(2+) in a typical voltage-dependent manner (IC50 208 μM) and reversal potential nearly coincident with EK. Ba(2+) (2 mM) induces a large depolarization of DA-PG cells, paralleled by an increase of the input resistance, leading to a block of the spontaneous activity, but the Kir current is not an essential component of the pacemaker machinery. The Kir current is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the activation of several metabotropic receptors known to be present on these cells, showing that the current can be modulated by a multiplicity of pathways, whose activation in some case increases the amplitude of the current, as can be observed with agonists of D2, muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it can be observed with agonists of α1 noradrenergic, 5-HT and histamine receptors. These characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG cell function, making them potentially capable to reconfigure the bulbar network to allow a better flexibility.
Collapse
Affiliation(s)
| | | | | | - Ottorino Belluzzi
- Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy
| |
Collapse
|
17
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
18
|
Jin XT, Cui N, Zhong W, Jin X, Wu Z, Jiang C. Pre- and postsynaptic modulations of hypoglossal motoneurons by α-adrenoceptor activation in wild-type and Mecp2(-/Y) mice. Am J Physiol Cell Physiol 2013; 305:C1080-90. [PMID: 23986203 DOI: 10.1152/ajpcell.00109.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoglossal motoneurons (HNs) control tongue movement and play a role in maintenance of upper airway patency. Defects in these neurons may contribute to the development of sleep apnea and other cranial motor disorders including Rett syndrome (RTT). HNs are modulated by norepinephrine (NE) through α-adrenoceptors. Although postsynaptic mechanisms are known to play a role in this effect, how NE modulates the synaptic transmissions of HNs remains poorly understood. More importantly, the NE system is defective in RTT, while how the defect affects HNs is unknown. Believing that information of NE modulation of HNs may help the understanding of RTT and the design of new therapeutical interventions to motor defects in the disease, we performed these studies in which glycinergic inhibitory postsynaptic currents and intrinsic membrane properties were examined in wild-type and Mecp2(-/Y) mice, a mouse of model of RTT. We found that activation of α1-adrenoceptor facilitated glycinergic synaptic transmission and excited HNs. These effects were mediated by both pre- and postsynaptic mechanisms. The latter effect involved an inhibition of barium-sensitive G protein-dependent K(+) currents. The pre- and postsynaptic modulations of the HNs by α1-adrenoceptors were not only retained in Mecp2-null mice but also markedly enhanced, which appears to be a compensatory mechanism for the deficiencies in NE and GABAergic synaptic transmission. The existence of the endogenous compensatory mechanism is an encouraging finding, as it may allow therapeutical modalities to alleviate motoneuronal defects in RTT.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
19
|
Díaz D, Gómez C, Muñoz-Castañeda R, Baltanás F, Alonso JR, Weruaga E. The Olfactory System as a Puzzle: Playing With Its Pieces. Anat Rec (Hoboken) 2013; 296:1383-400. [DOI: 10.1002/ar.22748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Díaz
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - C. Gómez
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - R. Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - F. Baltanás
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - J. R. Alonso
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
- Institute for High Research, Universidad de Tarapacá; Arica Chile
| | - E. Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| |
Collapse
|
20
|
Escanilla O, Alperin S, Youssef M, Ennis M, Linster C. Noradrenergic but not cholinergic modulation of olfactory bulb during processing of near threshold concentration stimuli. Behav Neurosci 2013; 126:720-8. [PMID: 23025834 DOI: 10.1037/a0030006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromodulatory systems such as noradrenaline (NE), acetylcholine (ACh), and serotonin (5HT) serve important functions in sensory perception. We use the olfactory bulb (OB) as a model system to study the roles of individual neuromodulators in sensory perception. Using a spontaneous, nonreward motivated detection task, as well as a reward-motivated task, we show that rats can easily respond to odorants at very low concentrations when motivated to do so in a food-rewarded task, despite not showing spontaneous responses to these low concentration odorants. Using the same tasks paired with local bulbar infusions of noradrenergic and cholinergic drugs, we then show that rats engage their noradrenergic, but not their cholinergic system, to better respond to near threshold odorants. These results suggest that while cholinergic modulation of OB function is mostly important for odor decorrelation and discrimination, noradrenergic modulation is important for signal-to-noise modulation.
Collapse
Affiliation(s)
- Olga Escanilla
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 13068, USA
| | | | | | | | | |
Collapse
|
21
|
Zimnik NC, Treadway T, Smith RS, Araneda RC. α(1A)-Adrenergic regulation of inhibition in the olfactory bulb. J Physiol 2012; 591:1631-43. [PMID: 23266935 DOI: 10.1113/jphysiol.2012.248591] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
By regulating inhibition at dendrodendritic synapses between mitral and granule cells (GCs), noradrenergic neurons extending from the brainstem provide an input essential for odour processing in the olfactory bulb (OB). In the accessory OB (AOB), we have recently shown that noradrenaline (NA) increases GABA inhibitory input on to mitral cells (MCs) by exciting GCs. Here, we show that GCs in the main OB (MOB) exhibit a similar response to NA, indicating a common mechanism for noradrenergic regulation of GCMC inhibition throughout the OB. In GCs of the MOB, NA (10 μM) produced a robust excitatory effect that included a slow afterdepolarization that followed a train of action potentials evoked by a current stimulus. The depolarization and slow afterdepolarization in GCs were blocked by the α1A-adrenergic receptor (AR) selective antagonist WB 4101 (30 nm) and mimicked by the α(1A)-AR selective agonist A 61603 (1 μM). In recordings from MCs, A 61603 (30 nm-1 μM) produced a sizeable increase in the frequency of spontaneous and miniature IPSCs, an effect completely abolished by the GABAA receptor antagonist gabazine (5 μM). Likewise, activation of β-ARs increased the frequency of spontaneous IPSCs; however, this effect was smaller and confined to the first postnatal weeks. NA enhanced inhibition in MCs across a broad concentration range (0.1-30 μM) and its effects were completely abolished by a mixture of α1- and β-AR antagonists (1 μM prazosin and 10 μM propranolol). Furthermore, the general α2-AR agonist clonidine (10 μM) failed to affect sIPSC frequency. Thus, the NA-mediated increase in GCMC inhibition in the OB results mostly from activation of the α1A-AR subtype.
Collapse
Affiliation(s)
- Nathan C Zimnik
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
22
|
Shakhawat AMD, Harley CW, Yuan Q. Olfactory bulb α2-adrenoceptor activation promotes rat pup odor-preference learning via a cAMP-independent mechanism. Learn Mem 2012; 19:499-502. [PMID: 23071064 DOI: 10.1101/lm.027359.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, three lines of evidence suggest a role for α(2)-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the α(2)-antagonist, yohimbine, prevents learning; the α(2)-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with subthreshold β-adrenoceptor activation also recruits learning. Increased mitral cell layer pCREB occurs with clonidine-infusion, but cAMP is not increased. Similar results using a GABAa-antagonist suggest that disinhibition may support clonidine-induced learning. We suggest that norepinephrine can act through multiple bulbar adrenoceptor subtypes to induce odor learning and that cAMP-dependent, as well as cAMP-independent, signals may act as unconditioned stimuli.
Collapse
Affiliation(s)
- Amin M D Shakhawat
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | |
Collapse
|
23
|
Pandipati S, Schoppa NE. Age-dependent adrenergic actions in the main olfactory bulb that could underlie an olfactory-sensitive period. J Neurophysiol 2012; 108:1999-2007. [PMID: 22815401 DOI: 10.1152/jn.00322.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many sensory systems are endowed with mechanisms of neural plasticity that are restricted to a sensitive period in the young developing animal. In this study, we performed experiments in slices of the main olfactory bulb (OB) from rats to examine possible age-dependent cellular mechanisms of plasticity in the olfactory system. We focused on the neurotransmitter norepinephrine (NE), shown to be important in different forms of olfactory learning, examining whether two specific cellular effects of NE previously observed in rats less than P14 extended to older animals. These included an acute reduction in GABAergic synaptic transmission from granule cells (GCs) onto output mitral cells (MCs) and an enhancement in gamma frequency (30-70 Hz) oscillations that persists long after removal of NE. We found that NE failed to reduce GC-to-MC transmission or enhance gamma oscillations in older rats at P18-23. The loss of NE actions on both phenomena appeared to reflect an age-dependent loss of function of α(2)-adrenergic receptors. In addition, we found that NE induced an age-dependent enhancement of transient excitation in MCs, providing a mechanism to link the acute decrease in GC-to-MC inhibition to the long-term increase in gamma oscillations through increases in intracellular calcium. The age-dependent cellular mechanisms that we describe could underlie an olfactory-sensitive period in newborn rodents.
Collapse
Affiliation(s)
- Sruthi Pandipati
- Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
24
|
Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiol Dis 2012; 46:527-52. [PMID: 22192366 PMCID: PMC3429117 DOI: 10.1016/j.nbd.2011.10.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is an early 'pre-clinical' sign of Parkinson's disease (PD). The present review is a comprehensive and up-to-date assessment of such dysfunction in PD and related disorders. The olfactory bulb is implicated in the dysfunction, since only those syndromes with olfactory bulb pathology exhibit significant smell loss. The role of dopamine in the production of olfactory system pathology is enigmatic, as overexpression of dopaminergic cells within the bulb's glomerular layer is a common feature of PD and most animal models of PD. Damage to cholinergic, serotonergic, and noradrenergic systems is likely involved, since such damage is most marked in those diseases with the most smell loss. When compromised, these systems, which regulate microglial activity, can influence the induction of localized brain inflammation, oxidative damage, and cytosolic disruption of cellular processes. In monogenetic forms of PD, olfactory dysfunction is rarely observed in asymptomatic gene carriers, but is present in many of those that exhibit the motor phenotype. This suggests that such gene-related influences on olfaction, when present, take time to develop and depend upon additional factors, such as those from aging, other genes, formation of α-synuclein- and tau-related pathology, or lowered thresholds to oxidative stress from toxic insults. The limited data available suggest that the physiological determinants of the early changes in PD-related olfactory function are likely multifactorial and may include the same determinants as those responsible for a number of other non-motor symptoms of PD, such as dysautonomia and sleep disturbances.
Collapse
Affiliation(s)
- Richard L Doty
- Smell & Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Shao Z, Puche AC, Liu S, Shipley MT. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output. J Neurophysiol 2012; 108:782-93. [PMID: 22592311 DOI: 10.1152/jn.00119.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.
Collapse
Affiliation(s)
- Zuoyi Shao
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
26
|
Lethbridge R, Hou Q, Harley CW, Yuan Q. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One 2012; 7:e35024. [PMID: 22496886 PMCID: PMC3319620 DOI: 10.1371/journal.pone.0035024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/12/2012] [Indexed: 01/23/2023] Open
Abstract
Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.
Collapse
Affiliation(s)
- Rebecca Lethbridge
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Qinlong Hou
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Carolyn W. Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
- * E-mail:
| |
Collapse
|
27
|
Linster C, Nai Q, Ennis M. Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents. J Neurophysiol 2011; 105:1432-43. [PMID: 21273323 PMCID: PMC3075300 DOI: 10.1152/jn.00960.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/25/2011] [Indexed: 01/28/2023] Open
Abstract
The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.
Collapse
Affiliation(s)
- Christiane Linster
- Department of Neurobiology and Behavior, W245 Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
28
|
Fletcher ML, Chen WR. Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learn Mem 2010; 17:561-70. [PMID: 20980444 DOI: 10.1101/lm.941510] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of plasticity. As in other sensory systems, this plasticity can be controlled by centrifugal inputs from brain regions known to be involved in attention and learning processes. Specifically, both the bulb and cortex receive heavy inputs from cholinergic, noradrenergic, and serotonergic modulatory systems. These neuromodulators are shown to have profound effects on both odor processing and odor memory by acting on both inhibitory local interneurons and output neurons in both regions.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
29
|
Butler-Munro C, Coddington EJ, Shirley CH, Heyward PM. Lithium modulates cortical excitability in vitro. Brain Res 2010; 1352:50-60. [PMID: 20637740 DOI: 10.1016/j.brainres.2010.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/26/2022]
Abstract
The sometimes devastating mood swings of bipolar disorder are prevented by treatment with selected antiepileptic drugs, or with lithium. Abnormal membrane ion channel expression and excitability in brain neurons likely underlie bipolar disorder, but explaining therapeutic effects in these terms has faced an unresolved paradox: the antiepileptic drugs effective in bipolar disorder reduce Na(+) entry through voltage-gated channels, but lithium freely enters neurons through them. Here we show that lithium increases the excitability of output neurons in brain slices of the mouse olfactory bulb, an archetypical cortical structure. Treatment in vitro with lithium (1 to 10mM) depolarizes mitral cells, blocks action potential hyperpolarization, and modulates their responses to synaptic input. We suggest that Na(+) entry through voltage-gated channels normally directly activates K(+) channels regulating neuron excitability, but that at therapeutic concentrations, lithium entry and accumulation reduces this K(+) channel activation. The antiepileptic drugs effective in bipolar disorder and lithium may thus share a membrane target consisting of functionally coupled Na(+) and K(+) channels that together control brain neuron excitability.
Collapse
|
30
|
Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C. Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 2010; 32:458-68. [DOI: 10.1111/j.1460-9568.2010.07297.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Pandipati S, Gire DH, Schoppa NE. Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb. J Neurophysiol 2010; 104:665-74. [PMID: 20538781 DOI: 10.1152/jn.00328.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Norepinephrine (NE) is widely implicated in various forms of associative olfactory learning in rodents, including early learning preference in neonates. Here we used patch-clamp recordings in rat olfactory bulb slices to assess cellular actions of NE, examining both acute, short-term effects of NE as well as the relationship between these acute effects and long-term cellular changes that could underlie learning. Our focus for long-term effects was on synchronized gamma frequency (30-70 Hz) oscillations, shown in prior studies to be enhanced for up to an hour after brief exposure of a bulb slice to NE and neuronal stimulation. In terms of acute effects, we found that a dominant action of NE was to reduce inhibitory GABAergic transmission from granule cells (GCs) to output mitral cells (MCs). This disinhibition was also induced by clonidine, an agonist specific for alpha(2) adrenergic receptors (ARs). Acute NE-induced disinhibition of MCs appeared to be linked to long-term enhancement of gamma oscillations, based, first, on the fact that clonidine, but not agonists specific for other AR subtypes, mimicked NE's long-term actions. In addition, the alpha(2) AR-specific antagonist yohimbine blocked the long-term enhancement of the oscillations due to NE. Last, brief exposure of the slice to the GABA(A) receptor antagonist gabazine, to block inhibitory synapses directly, also induced the long-term changes. Acute disinhibition is a plausible permissive effect of NE leading to olfactory learning, because, when combined with exposure to a specific odor, it should lead to neuron-specific increases in intracellular calcium of the type generally associated with long-term synaptic modifications.
Collapse
Affiliation(s)
- Sruthi Pandipati
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
32
|
Nai Q, Dong HW, Linster C, Ennis M. Activation of alpha1 and alpha2 noradrenergic receptors exert opposing effects on excitability of main olfactory bulb granule cells. Neuroscience 2010; 169:882-92. [PMID: 20466037 DOI: 10.1016/j.neuroscience.2010.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/01/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
The mammalian main olfactory bulb (MOB) receives a dense noradrenergic innervation from the pontine nucleus locus coeruleus that is important for neonatal odor preference learning and odor processing in mature animals. Modulation of GABAergic granule cells (GCs) is thought to play a key role in the net functional impact of norepinephrine (NE) release in the MOB, yet there are few direct studies of the influence of NE on these cells. In the present study we investigated noradrenergic modulation of GC excitability using electrophysiological approaches in rat MOB slices. A moderate concentration of NE (10 microM) and the alpha1 receptor agonist phenylephrine (10 microM) depolarized and increased spontaneous or current injection-evoked spiking in GCs. By contrast, low NE concentrations (0.1-1.0 microM) or the alpha2 receptor agonist clonidine (Clon, 10 microM) hyperpolarized and decreased the discharge of GCs. The effects of NE (10 microM) were blocked by antagonism of alpha1 and alpha2 receptors. Inhibitory effects of low NE concentrations were blocked or converted to excitatory responses by alpha2 receptor blockade, whereas excitatory effects of the moderate NE concentration were converted to inhibitory responses after alpha1 receptor blockade. NE (10 microM) and phenylephrine elicited inward currents that reversed near the potassium equilibrium potential. The effects of NE and phenylephrine were associated with increased membrane input resistance. Clonidine elicited an outward current associated with decreased membrane input resistance that reversed near the potassium equilibrium potential. These results indicate that alpha1 and alpha2 receptor activation exert opposing effects on GC excitability. Low concentrations of NE acting via alpha2 receptors suppress GC excitability, while higher concentrations of NE acting at alpha1 receptors increase GC excitability. These findings are consistent with recent findings that alpha1 and alpha2 receptor activation increase and decrease, respectively, GABAergic inhibition of mitral cells. The differential affinities of alpha1 and alpha2 noradrenergic receptor subtypes may allow for differential modulation of GABA release and olfactory processing as a function of the level of NE release, which in turn, is regulated by behavioral state.
Collapse
Affiliation(s)
- Q Nai
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
33
|
Yuan Q. Theta bursts in the olfactory nerve paired with beta-adrenoceptor activation induce calcium elevation in mitral cells: a mechanism for odor preference learning in the neonate rat. Learn Mem 2009; 16:676-81. [PMID: 19858361 DOI: 10.1101/lm.1569309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Odor preference learning in the neonate rat follows pairing of odor input and noradrenergic activation of beta-adrenoceptors. Odor learning is hypothesized to be supported by enhanced mitral cell activation. Here a mechanism for enhanced mitral cell signaling is described. Theta bursts in the olfactory nerve (ON) produce long-term potentiation (LTP) of glomerular excitatory postsynaptic potentials (EPSPs) and of excitatory postsynaptic currents (EPSCs) in the periglomerular (PG) and external tufted (ET) cells. Theta bursts paired with beta-adrenoceptor activation significantly elevate mitral cell (MC) calcium. Juxtaglomerular inhibitory network depression by beta-adrenoceptor activation appears to increase calcium in MCs in response to theta burst stimulation.
Collapse
Affiliation(s)
- Qi Yuan
- University of California at San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
34
|
Heister DS, Hayar A, Garcia-Rill E. Cholinergic modulation of GABAergic and glutamatergic transmission in the dorsal subcoeruleus: mechanisms for REM sleep control. Sleep 2009; 32:1135-47. [PMID: 19750918 PMCID: PMC2737571 DOI: 10.1093/sleep/32.9.1135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Dorsal subcoeruleus (SubCD) neurons are thought to promote PGO waves and to be modulated by cholinergic afferents during REM sleep. We examined the differential effect of the cholinergic agonist carbachol (CAR) on excitatory and inhibitory postsynaptic currents (PSCs), and investigated the effects of CAR on SubCD neurons during the developmental decrease in REM sleep. DESIGN Whole-cell patch clamp recordings were conducted on brainstem slices of 7- to 20-day-old rats. MEASUREMENTS AND RESULTS CAR acted directly on 50% of SubCD neurons by inducing an inward current, via both nicotinic and muscarinic M1 receptors. CAR induced a potassium mediated outward current via activation of M2 muscarinic receptors in 43% of SubCD cells. Evoked stimulation established the presence of NMDA, AMPA, GABA, and glycinergic PSCs in the SubCD. CAR was found to decrease the amplitude of evoked EPSCs in 31 of 34 SubCD cells, but decreased the amplitude of evoked IPSCs in only 1 of 13 SubCD cells tested. Spontaneous EPSCs were decreased by CAR in 55% of cells recorded, while spontaneous IPSCs were increased in 27% of SubCD cells. These findings indicate that CAR exerts a predominantly inhibitory role on fast synaptic glutamatergic activity and a predominantly excitatory role on fast synaptic GABAergic/glycinergic activity in the SubCD. CONCLUSION We hypothesize that during REM sleep, cholinergic "REM-on" neurons that project to the SubCD induce an excitation of inhibitory interneurons and inhibition of excitatory events leading to the production of coordinated activity in SubCD projection neurons. The coordination of these projection neurons may be essential for the production of REM sleep signs such as PGO waves.
Collapse
Affiliation(s)
- David S. Heister
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Abdallah Hayar
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
35
|
Erg K+ currents modulate excitability in mouse mitral/tufted neurons. Pflugers Arch 2009; 459:55-70. [DOI: 10.1007/s00424-009-0709-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/13/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
36
|
Mouret A, Murray K, Lledo PM. Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb. Ann N Y Acad Sci 2009; 1170:239-54. [DOI: 10.1111/j.1749-6632.2009.03913.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Dong C, Godwin DW, Brennan PA, Hegde AN. Protein kinase Calpha mediates a novel form of plasticity in the accessory olfactory bulb. Neuroscience 2009; 163:811-24. [PMID: 19580852 DOI: 10.1016/j.neuroscience.2009.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/27/2022]
Abstract
Modification of synapses in the accessory olfactory bulb (AOB) is believed to underlie pheromonal memory that enables mate recognition in mice. The memory, which is acquired with single-trial learning, forms only with coincident noradrenergic and glutamatergic inputs to the AOB. The mechanisms by which glutamate and norepinephrine (NE) alter the AOB synapses are not well understood. Here we present results that not only reconcile the earlier, seemingly contradictory, observations on the role of glutamate and NE in changing the AOB synapses, but also reveal novel mechanisms of plasticity. Our studies suggest that initially, glutamate acting at Group II metabotropic receptors and NE acting at alpha(2)-adrenergic receptors inhibit N-type and R-type Ca(2+) channels in mitral cells via a G-protein. The N-type and R-type Ca(2+) channel inhibition is reversed by activation of alpha(1)-adrenergic receptors and protein kinase Calpha (PKCalpha). Based on these results, we propose a hypothetical model for a new kind of synaptic plasticity in the AOB that accounts for the previous behavioral data on pheromonal memory. According to this model, initial inhibition of the Ca(2+) channels suppresses the GABAergic inhibitory feedback to mitral cells, causing disinhibition and Ca(2+) influx. NE also activates phospholipase C (PLC) through alpha(1)-adrenergic receptors generating inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Calcium and DAG together activate PKCalpha which switches the disinhibition to increased inhibition of mitral cells. Thus, PKCalpha is likely to be a coincidence detector integrating glutamate and NE input in the AOB and bridging the short-term signaling to long-term structural changes resulting in enhanced inhibition of mitral cells that is thought to underlie memory formation.
Collapse
Affiliation(s)
- C Dong
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-0001, USA
| | | | | | | |
Collapse
|
38
|
Smith RS, Weitz CJ, Araneda RC. Excitatory actions of noradrenaline and metabotropic glutamate receptor activation in granule cells of the accessory olfactory bulb. J Neurophysiol 2009; 102:1103-14. [PMID: 19474170 DOI: 10.1152/jn.91093.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of dendrodendritic synapses by the noradrenergic system in the accessory olfactory bulb (AOB) plays a key role in the formation of memory in olfactory-mediated behaviors. We have recently shown that noradrenaline (NA) inhibits mitral cells by increasing gamma-aminobutyric acid inhibitory input onto mitral cells in the AOB, suggesting an excitatory action of NA on granule cells (GCs). Here, we show that NA (10 microM) elicits a long-lasting depolarization of GCs. This effect is mediated by activation of alpha(1)-adrenergic receptors as the depolarization is mimicked by phenylephrine (PE, 30 microM) and completely blocked by the alpha(1)-adrenergic receptor antagonist prazosin (300 nM). In addition to this depolarization, application of NA induced the appearance of a slow afterdepolarization (sADP) following a stimulus-elicited train of action potentials. Similarly, the group I metabotropic glutamate receptor (mGluR1) agonist DHPG (10-30 microM) also produced a depolarization of GCs and the appearance of a stimulus-induced sADP. The ionic and voltage dependence and sensitivity to blockers of the sADP suggest that it is mediated by the nonselective cationic conductance I(CAN). Thus the excitatory action resulting from the activation of these receptors could be mediated by a common transduction target. Surprisingly, the excitatory effect of PE on GCs was completely blocked by the mGluR1 antagonist LY367385 (100 microM). Conversely, the effect of DHPG was not antagonized by the alpha(1)-adrenergic receptor antagonist prazosin (300 nM). These results suggest that most of the noradrenergic effect on GCs in the AOB is mediated by potentiation of a basal activity of mGluR1s.
Collapse
Affiliation(s)
- Richard S Smith
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
39
|
Nai Q, Dong HW, Hayar A, Linster C, Ennis M. Noradrenergic regulation of GABAergic inhibition of main olfactory bulb mitral cells varies as a function of concentration and receptor subtype. J Neurophysiol 2009; 101:2472-84. [PMID: 19279145 DOI: 10.1152/jn.91187.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the pontine nucleus locus coeruleus (LC). Previous studies indicate that norepinephrine (NE) modulates the strength of GABAergic inhibition in MOB. However, the nature of this modulation and the NE receptors involved remain controversial. The goal of this study was to investigate the role of NE receptor subtypes in modulating the GABAergic inhibition of mitral cells using patch-clamp electrophysiology in rat MOB slices. NE concentration dependently and bi-directionally modulated GABA(A) receptor-mediated spontaneous and miniature inhibitory postsynaptic currents (sIPSCs/mIPSCs) recorded in mitral cells. Low doses of NE suppressed sIPSCs and mIPSCs because of activation of alpha2 receptors. Intermediate concentrations of NE increased sIPSCs and mIPSCs primarily because of activation of alpha1 receptors. In contrast, activation of beta receptors increased sIPSCs but not mIPSCs. These results indicate that NE release regulates the strength of GABAergic inhibition of mitral cells depending on the NE receptor subtype activated. Functionally, the differing affinity of noradrenergic receptor subtypes seems to allow for dynamic modulation of GABAergic inhibition in MOB as function of the extracellular NE concentration, which in turn, is regulated by behavioral state.
Collapse
Affiliation(s)
- Qiang Nai
- Dept. of Anatomy, Univ. of Tennessee Health Science Ctr., 855 Monroe Ave., Suite 515, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.
Collapse
Affiliation(s)
- Shinji Matsutani
- Department of Functional Morphology, Kitasato University School of Nursing, Kanagawa, Japan.
| | | |
Collapse
|
41
|
Shao Z, Puche AC, Kiyokage E, Szabo G, Shipley MT. Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals. J Neurophysiol 2009; 101:1988-2001. [PMID: 19225171 DOI: 10.1152/jn.91116.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65-kDa gene (GAD65+) promoter to characterize a neurochemically identified subpopulation of PG cells by whole cell recording and subsequent morphological reconstruction. GAD65+ GABAergic PG cells form two functionally distinct populations: 33% are driven by monosynaptic olfactory nerve (ON) input (ON-driven PG cells), the remaining 67% receive their strongest drive from an ON-->ET-->PG circuit with no or weak monosynaptic ON input (ET-driven PG cells). In response to ON stimulation, ON-driven PG cells exhibit paired-pulse depression (PPD), which is partially reversed by GABA(B) receptor antagonists. The ON-->ET-->PG circuit exhibits phasic GABA(B)-R-independent PPD. ON input to both circuits is under tonic GABA(B)-R-dependent inhibition. We hypothesize that this tonic GABA(B)R-dependent presynaptic inhibition of olfactory nerve terminals is due to autonomous bursting of ET cells in the ON-->ET-->PG circuit, which drives tonic spontaneous GABA release from ET-driven PG cells. Both circuits likely produce tonic and phasic postsynaptic inhibition of other intraglomerular targets. Thus olfactory bulb glomeruli contain at least two functionally distinct GABAergic circuits that may play different roles in olfactory coding.
Collapse
Affiliation(s)
- Z Shao
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, 21201 MD, USA
| | | | | | | | | |
Collapse
|
42
|
Middleton FA, Carrierfenster K, Mooney SM, Youngentob SL. Gestational ethanol exposure alters the behavioral response to ethanol odor and the expression of neurotransmission genes in the olfactory bulb of adolescent rats. Brain Res 2009; 1252:105-16. [PMID: 19063871 PMCID: PMC3435114 DOI: 10.1016/j.brainres.2008.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 11/01/2008] [Accepted: 11/03/2008] [Indexed: 12/29/2022]
Abstract
Fetal exposure to ethanol is highly predictive of the propensity to ingest ethanol during adolescence and in utero chemosensory plasticity has been implicated as a contributing factor in this process. Recent rodent studies have shown that fetal ethanol exposure results in a tuned unconditioned sniffing and neurophysiological olfactory response to ethanol odor in infant animals. Importantly, a significant proportion of increased ethanol avidity at this age can be attributed to the tuned behavioral response to ethanol odor. These effects are absent in adults. Using behavioral methods and comprehensive gene expression profiling to screen for robust transcriptional differences induced in the olfactory bulb, we examined whether ethanol exposure via maternal diet results in an altered responsiveness to ethanol odor that persists into late adolescence and, if so, the molecular mechanisms that may be associated with such effects. Compared to controls, fetal exposure altered: the adolescent sniffing response to ethanol odor consistent with the previously observed changes in infant animals; and the expression of genes involved in synaptic transmission and plasticity as well as neuronal development (both cell fate and axon/neurite outgrowth). These data provide evidence for a persistence of olfactory-mediated responsiveness to ethanol into the period of adolescence. Further, they provide insight into an important relationship between fetal exposure to ethanol, adolescent odor responsiveness to the drug and potential underlying molecular mechanisms for the odor-guided behavioral response.
Collapse
Affiliation(s)
- Frank A. Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kellyn Carrierfenster
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sandra M. Mooney
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Steven L. Youngentob
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
43
|
Abstract
For many mammals, individual recognition of conspecifics relies on olfactory cues. Certain individual recognition memories are thought to be stored when conspecific odor cues coincide with surges of noradrenaline (NA) triggered by intensely arousing social events. Such familiar stimuli elicit reduced behavioral responses, a change likely related to NA-dependent plasticity in the olfactory bulb (OB). In addition to its role in these ethological memories, NA signaling in the OB appears to be relevant for the discrimination of more arbitrary odorants as well. Nonetheless, no NA-gated mechanism of long-term plasticity in the OB has ever been directly observed in vivo. Here, we report that NA release from locus ceruleus (LC), when coupled to odor presentation, acts locally in the main OB to cause a specific long-lasting suppression of responses to paired odors. These effects were observed for both food odors and urine, an important social recognition cue. Moreover, in subsequent behavioral tests, mice exhibited habituation to paired urine stimuli, suggesting that this LC-mediated olfactory neural plasticity, induced under anesthesia, can store an individual recognition memory that is observable after recovery.
Collapse
|
44
|
Doucette W, Restrepo D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol 2008; 6:e258. [PMID: 18959481 PMCID: PMC2573932 DOI: 10.1371/journal.pbio.0060258] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go-no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways.
Collapse
Affiliation(s)
- Wilder Doucette
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
45
|
Mandairon N, Peace S, Karnow A, Kim J, Ennis M, Linster C. Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur J Neurosci 2008; 27:1210-9. [DOI: 10.1111/j.1460-9568.2008.06101.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Gire DH, Schoppa NE. Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb. J Neurophysiol 2008; 99:2021-5. [PMID: 18256160 DOI: 10.1152/jn.01324.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The noradrenergic system is widely thought to be important for associative learning in the olfactory system through actions in the first processing structure, the main olfactory bulb (MOB). Here, we used extracellular local field potential (LFP) and patch-clamp recordings in rat MOB slices to examine norepinephrine (NE)-induced long-term changes in circuit properties that might underlie learning. During responses to patterned olfactory nerve stimulation mimicking the breathing cycle, NE induced a long-term increase in gamma frequency (30-70 Hz) synchronized oscillations. The enhancement persisted long after washout of NE (<or=70 min), depended on the combined actions of NE and neuronal stimulation, and seemed to be caused by enhanced excitatory drive on the mitral/granule cell network that underlies rapid gamma oscillations. The last effect, increased excitation, was manifested as an increase in evoked long-lasting depolarizations (LLDs) in mitral cells. From a functional perspective, the observed long-term cellular and network changes could promote associative learning by amplifying odor-specific signals.
Collapse
Affiliation(s)
- David H Gire
- Department of Physiology and Biophysics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
47
|
Doucette W, Milder J, Restrepo D. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. Learn Mem 2007; 14:539-47. [PMID: 17686948 PMCID: PMC1951793 DOI: 10.1101/lm.606407] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 06/15/2007] [Indexed: 11/24/2022]
Abstract
A rodent's survival depends upon its ability to perceive odor cues necessary to guide mate selection, sexual behavior, foraging, territorial formation, and predator avoidance. Arguably, the need to discriminate odor cues in a complex olfactory environment requires a highly adaptable olfactory system. Indeed, it has been proposed that context-dependent modulation of the initial sensory relay could alter olfactory perception. Interestingly, 40% of the adrenergic innervation from the locus coeruleus, fibers that are activated by contextual cues, innervates the first relay station in the olfactory system (the main olfactory bulb). Here we utilize restricted pharmacological inhibition of olfactory bulb noradrenergic receptors in awake-behaving animals. We show that combined blockade of alpha and beta adrenergic receptors does not impair two-odor discrimination behavior per se but does impair the ability to discriminate perceptually similar odors. Thus, contextual cues conveyed by noradrenergic fibers alter processing before the second synapse in the olfactory cortex, resulting in tuning of the ability to discriminate between similar odors.
Collapse
Affiliation(s)
- Wilder Doucette
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
48
|
Dong HW, Hayar A, Ennis M. Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells. J Neurosci 2007; 27:5654-63. [PMID: 17522310 PMCID: PMC2596473 DOI: 10.1523/jneurosci.5495-06.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Granule and periglomerular cells in the main olfactory bulb express group I metabotropic glutamate receptors (mGluRs). The group I mGluR agonist 3,4-dihydroxyphenylglycine (DHPG) increases GABAergic spontaneous IPSCs (sIPSCs) in mitral cells, yet the presynaptic mechanism(s) involved and source(s) of the IPSCs are unknown. We investigated the actions of DHPG on sIPSCs and TTX-insensitive miniature IPSCs (mIPSCs) recorded in mitral and external tufted cells in rat olfactory bulb slices. DHPG, acting at mGluR1 and mGluR5, increased the rate but not amplitude of sIPSCs and mIPSCs in both cell types. The increase in mIPSCs depended on voltage-gated Ca2+ channels but persisted when ionotropic glutamate receptors and sodium spikes were blocked. Focal DHPG puffs onto granule cells or bath application after glomerular layer (GL) excision failed to increase mIPSCs in mitral cells. Additionally, GL excision reduced sIPSCs in mitral cells by 50%, suggesting that periglomerular cells exert strong tonic GABAergic inhibition of mitral cells. In contrast, GL DHPG puffs readily increased mIPSCs. These findings indicate that DHPG-evoked GABA release from granule cells requires spikes, whereas in the GL, DHPG facilitates periglomerular cell GABA release via both spike-dependent and spike-independent presynaptic mechanisms. We speculate that mGluRs amplify spike-driven lateral inhibition through the mitral-to-granule cell circuit, whereas GL mGluRs may play a more important role in amplifying intraglomerular inhibition after subthreshold input.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
49
|
Kay LM, Sherman SM. An argument for an olfactory thalamus. Trends Neurosci 2006; 30:47-53. [PMID: 17161473 DOI: 10.1016/j.tins.2006.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 10/12/2006] [Accepted: 11/30/2006] [Indexed: 11/22/2022]
Abstract
The mammalian olfactory system is unique in that sensory receptors synapse directly into the olfactory bulb of the forebrain without the thalamic relay that is common to all other sensory pathways. We argue that the olfactory bulb has an equivalent role to the thalamus, because the two regions have very similar structures and functions. Both the thalamus and the olfactory bulb are the final stage in sensory processing before reaching target cortical regions, at which there is a massive increase in neuron and synapse numbers. Thus, both structures act as a bottleneck that is a target for various modulatory inputs, and this arrangement enables efficient control of information flow before cortical processing occurs.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, Institute for Mind & Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
50
|
Kiselycznyk CL, Zhang S, Linster C. Role of centrifugal projections to the olfactory bulb in olfactory processing. Learn Mem 2006; 13:575-9. [PMID: 16980549 DOI: 10.1101/lm.285706] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the olfactory bulb while decreasing feedback inputs to the olfactory bulb, we demonstrate here a role for feedback inputs to the olfactory bulb in the formation of odor-reward associations, but not for maintaining primary bulbar odor representations, as reflected by spontaneous odor discrimination.
Collapse
Affiliation(s)
- Carly L Kiselycznyk
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|