1
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Wang J, Ren C, Bi W, Batu W. Glycyrrhizin mitigates acute lung injury by inhibiting the NLRP3 inflammasome in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115948. [PMID: 36423713 DOI: 10.1016/j.jep.2022.115948] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza glabra L. is a widely used traditional Chinese medicine with antipyretic, detoxification, antibacterial and therapeutic effects against various diseases, including liver diseases. Glycyrrhizin (GL), the most significant active ingredient of Glycyrrhiza glabra L., exerts anti-inflammatory activity. However, the anti-inflammatory effect of GL remains to be determined. AIM OF THIS STUDY Consequently, this research was carried out to discover the effects and mechanism of action of GL on ALI. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced RAW 264.7 macrophages to verify the mechanism. The levels of NO, PEG2, and inflammatory cytokines were estimated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway and NLRP3 inflammasome were determined by Western blotting. The nuclear translocation of NF-κB p65 and ASC was tested through immunofluorescence analysis. The inhibitory effect of NLRP3 inhibitor MCC950 on macrophage was evaluated. Male BALB/C mice were selected to establish the ALI model. The experiment was randomly divided into five groups: control, ALI, GLL, GLH, and DEX. Pathological alterations were explored by H&E staining. The weight ratios of lung W/D, MPO, and inflammatory cytokines were evaluated by ELISA. The expression levels of proteins related to the NF-κB signalling pathway or NLRP3 inflammasome were analysed by Western blotting. RESULTS Here, we demonstrate that GL attenuates inflammation, nitric oxide, IL-18, IL-1β, TNF-α, IL-6, and PGE2 levels and alveolar epithelial barrier permeability in macrophages and mice challenged with LPS. In addition, GL inhibits NLRP3 inflammasome initiation and activation and NF-κB signalling pathway activation. CONCLUSION This research demonstrates that GL may alleviate ALI inflammation by interfering with the NF-κB/NLRP3 inflammasome signalling pathway.
Collapse
Affiliation(s)
- JunMei Wang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Chunxiu Ren
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - WenHui Bi
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China
| | - Wuliji Batu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
4
|
Nwabufo CK, Hoque MT, Yip L, Khara M, Mubareka S, Pollanen MS, Bendayan R. SARS-CoV-2 infection dysregulates the expression of clinically relevant drug metabolizing enzymes in Vero E6 cells and membrane transporters in human lung tissues. Front Pharmacol 2023; 14:1124693. [PMID: 37180730 PMCID: PMC10172598 DOI: 10.3389/fphar.2023.1124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
SARS-CoV-2-mediated interactions with drug metabolizing enzymes and membrane transporters (DMETs) in different tissues, especially lung, the main affected organ may limit the clinical efficacy and safety profile of promising COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and postmortem lung tissues from COVID-19 patients. Also, we assessed the role of 2 inflammatory and 4 regulatory proteins in modulating the dysregulation of DMETs in human lung tissues. We showed for the first time that SARS-CoV-2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp and MRP1 at the protein level, in Vero E6 cells and postmortem human lung tissues, respectively. We observed that at the cellular level, DMETs could potentially be dysregulated by SARS-CoV-2-associated inflammatory response and lung injury. We uncovered the pulmonary cellular localization of CYP1A2, CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues, and observed that the presence of inflammatory cells is the major driving force for the discrepancy in the localization of DMETs between COVID-19 and control human lung tissues. Because alveolar epithelial cells and lymphocytes are both sites of SARS-CoV-2 infection and localization of DMETs, we recommend further investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug dosing regimen to improve clinical outcomes.
Collapse
Affiliation(s)
- Chukwunonso K. Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- OneDrug, Toronto, ON, Canada
- *Correspondence: Chukwunonso K. Nwabufo, ,
| | - Md. Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maliha Khara
- Ontario Forensic Pathology Service, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael S. Pollanen
- Ontario Forensic Pathology Service, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Cai J, Wang YL, Sheng XD, Zhang L, Lv X. Shufeng Jiedu capsule inhibits inflammation and apoptosis by activating A2AAR and inhibiting NF-κB to alleviate LPS-induced ALI. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115661. [PMID: 36002086 PMCID: PMC9392900 DOI: 10.1016/j.jep.2022.115661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shufeng Jiedu capsule (SFJDC) is a pure form of traditional Chinese medicine (TCM) that contains eight medicinal plants. Known for its anti-inflammatory and antipyretic effects, it is mostly used to treat upper respiratory tract infections and other infectious diseases, such as colds, pharyngitis, laryngitis, and tonsillitis. Both acute lung injury (ALI) and COVID-19 are closely related to lung damage, primarily manifesting as lung inflammation and epithelial cell damage. However, whether SFJDC can improve ALI and by what mechanism remain unclear. The purpose of this study was to explore whether SFJDC could be used as a prophylactic treatment for COVID-19 by improving acute lung injury. AIM OF THE STUDY The purpose of this study was to determine whether SFJDC could protect against ALI caused by lipopolysaccharide (LPS), and we wanted to determine how SFJDC reduces inflammation and apoptosis pharmacologically and molecularly. MATERIALS AND METHODS Preadministering SFJDC at 0.1 g/kg, 0.3 g/kg, or 0.5 g/kg for one week was followed by 5 mg/kg LPS to induce ALI in mice. Observations included the study of lung histomorphology, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) secretion, as well as the ratio of lung wet/dry weights. In addition, RAW264.7 cells were treated for 24 h with 1 μg/mL LPS after being pretreated for 1 h with 0.5 mg/mL SFJDC. In the samples, we detected TNF-α, IL-1β, and IL-6. Cell apoptosis was detected by stimulating A549 cells for 24 h with RAW264.7 supernatant. Both in vitro and in vivo, the levels of A2A adenosine receptor (A2AAR), PKA, IκB, p-IκB, NF-κB P65 (P65), p-NF-κB P65 (p-P65), cleaved caspases-3 (Cc3), Bcl-2 associated X protein (Bax), and B-cell lymphoma-2 (Bcl-2) proteins were determined using Western blot analysis. RESULTS Lung tissue morphology was improved as SFJDC decreased cytokine secretion, the ratio of lung wet/dry weights, and lung tissue secretion of proinflammatory cytokines. The expression of A2AAR was increased by SFJDC, and the phosphorylation of NF-κB was inhibited. TUNEL staining and flow cytometry showed that SFJDC inhibited apoptosis by reducing the expression of Cc3 and the ratio of Bax/Bcl-2. CONCLUSIONS According to the results of this study, SFJDC can reduce inflammation and inhibit apoptosis. A2AAR activation and regulation of NF-κB expression are thought to make SFJDC anti-inflammatory and anti-apoptotic. A wide range of active ingredients may result in an anti-inflammatory and antipyretic effect with SFJDC.
Collapse
Affiliation(s)
- Junnan Cai
- Institute of Liver Disease, Anhui Medical University, Hefei, Anhui, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Anti-inflammatory and Immunological Drugs, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Yu-Lian Wang
- Institute of Liver Disease, Anhui Medical University, Hefei, Anhui, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Anti-inflammatory and Immunological Drugs, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiao-Dong Sheng
- Institute of Liver Disease, Anhui Medical University, Hefei, Anhui, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Anti-inflammatory and Immunological Drugs, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Lei Zhang
- Institute of Liver Disease, Anhui Medical University, Hefei, Anhui, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Anti-inflammatory and Immunological Drugs, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiongwen Lv
- Institute of Liver Disease, Anhui Medical University, Hefei, Anhui, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Anti-inflammatory and Immunological Drugs, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
6
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Hau RK, Wright SH, Cherrington NJ. PF-07321332 (Nirmatrelvir) Does Not Interact with Human ENT1 or ENT2: Implications for COVID-19 Patients. Clin Transl Sci 2022; 15:1599-1605. [PMID: 35505633 PMCID: PMC9283746 DOI: 10.1111/cts.13292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) and subsequently, coronavirus disease 2019 (COVID‐19), has led to the deaths of over 6.1 million people and sparked a greater interest in virology to expedite the development process for antivirals. The US Food and Drug Administration (FDA) granted emergency use authorization for three antivirals: remdesivir, molnupiravir, and nirmatrelvir. Remdesivir and molnupiravir are nucleoside analogs that undergo biotransformation to form active metabolites that incorporate into new viral RNA to stall replication. Unlike remdesivir or molnupiravir, nirmatrelvir is a protease inhibitor that covalently binds to the SARS‐CoV‐2 3C‐like protease to interrupt the viral replication cycle. A recent study identified that remdesivir and the active metabolite of molnupiravir, EIDD‐1931, are substrates of equilibrative nucleoside transporters 1 and 2 (ENT1 and 2). Despite the ubiquitous expression of the ENTs, the preclinical efficacy of remdesivir and molnupiravir is not reflected in wide‐scale SARS‐CoV‐2 clinical trials. Interestingly, downregulation of ENT1 and ENT2 expression has been shown in lung epithelial and endothelial cells in response to hypoxia and acute lung injury, although it has not been directly studied in patients with COVID‐19. It is possible that the poor efficacy of remdesivir and molnupiravir in these patients may be partially attributed to the repression of ENTs in the lungs, but further studies are warranted. This study investigated the interaction between nirmatrelvir and the ENTs and found that it was a poor inhibitor of ENT‐mediated [3H]uridine uptake at 300 μM. Unlike for remdesivir or EIDD‐1931, ENT activity is unlikely to be a factor for nirmatrelvir disposition in humans; however, whether this contributes to the similar in vitro and clinical efficacy will require further mechanistic studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, USA
| | - Stephen H Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Oyama Y, Shuff SR, Burns N, Vohwinkel CU, Eckle T. Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. Am J Physiol Lung Cell Mol Physiol 2022; 322:L647-L661. [PMID: 35272486 PMCID: PMC9037706 DOI: 10.1152/ajplung.00301.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian amplitude enhancement has the potential to be organ protective but has not been studied in acute lung injury (ALI). Consistent light and dark cycles are crucial for the amplitude regulation of the circadian rhythm protein Period2 (PER2). Housing mice under intense instead of ambient light for 1 wk (light: dark cycle:14h:10h), we demonstrated a robust increase of pulmonary PER2 trough and peak levels, which is consistent with circadian amplitude enhancement. A search for the affected lung cell type suggested alveolar type 2 (ATII) cells as strong candidates for light induction of PER2. A head-to-head comparison of mice with cell-type-specific deletion of Per2 in ATII, endothelial, or myeloid cells uncovered a dramatic phenotype in mice with an ATII-specific deletion of Per2. During Pseudomonas aeruginosa-induced ALI, mice with Per2 deletion in ATII cells showed 0% survival, whereas 85% of control mice survived. Subsequent studies demonstrated that intense light therapy dampened lung inflammation or improved the alveolar barrier function during P. aeruginosa-induced ALI, which was abolished in mice with an ATII-specific deletion of Per2. A genome-wide mRNA array uncovered bactericidal/permeability-increasing fold-containing family B member 1 (BPIFB1) as a downstream target of intense light-elicited ATII-PER2 mediated lung protection. Using the flavonoid and PER2 amplitude enhancer nobiletin, we recapitulated the lung-protective and anti-inflammatory effects of light and BPIFB1, respectively. Together, our studies demonstrate that light-elicited amplitude enhancement of ATII-specific PER2 is a critical control point of inflammatory pathways during bacterial ALI.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,2Department of Anesthesiology and Intensive Care Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Sydney R. Shuff
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Nana Burns
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Christine U. Vohwinkel
- 3Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pediatric Critical Care, Department of Medicine and Pediatrics, University of Colorado, Aurora, Colorado
| | - Tobias Eckle
- 1Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, Colorado,4Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
9
|
Adenosine Receptor Signaling in Diseases with Focus on Cancer. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Johnson EK. A Comment on "Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites". Mol Pharmacol 2022; 101:120. [PMID: 35105678 DOI: 10.1124/molpharm.121.000425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Eric K Johnson
- Washington University Department of Medicine, Division of Hospital Medicine, St. Louis, Missouri
| |
Collapse
|
11
|
Miller SR, McGrath ME, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Response to Comments on "Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites". Mol Pharmacol 2022; 101:121-122. [PMID: 35105679 PMCID: PMC11037455 DOI: 10.1124/molpharm.121.000448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Meghan E McGrath
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.) cherrington@pharmacy
| |
Collapse
|
12
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
13
|
Wang W, Chen NY, Ren D, Davies J, Philip K, Eltzschig HK, Blackburn MR, Akkanti B, Karmouty-Quintana H, Weng T. Enhancing Extracellular Adenosine Levels Restores Barrier Function in Acute Lung Injury Through Expression of Focal Adhesion Proteins. Front Mol Biosci 2021; 8:636678. [PMID: 33778007 PMCID: PMC7987656 DOI: 10.3389/fmolb.2021.636678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a clinical presentation of acute lung injury (ALI) with often fatal lung complication. Adenosine, a nucleoside generated following cellular stress provides protective effects in acute injury. The levels of extracellular adenosine can be depleted by equilibrative nucleoside transporters (ENTs). ENT inhibition by pharmaceutical agent dipyridamole promotes extracellular adenosine accumulation and is protective in ARDS. However, the therapeutic potential of dipyridamole in acute lung injury has not yet been evaluated. Methods: Adenosine acts on three adenosine receptors, the adenosine A1 (Adora1), A2a (Adora2a), the A2b (Adora2b) or the adenosine A3 (Adora 3) receptor. Accumulation of adenosine is usually required to stimulate the low-affinity Adora2b receptor. In order to investigate the effect of adenosine accumulation and the contribution of epithelial-specific ENT2 or adora2b expression in experimental ALI, dipyridamole, and epithelial specific ENT2 or Adora2b deficient mice were utilized. MLE12 cells were used to probe downstream Adora2b signaling. Adenosine receptors, transporters, and targets were determined in ARDS lungs. Results: ENT2 is mainly expressed in alveolar epithelial cells and is negatively regulated by hypoxia following tissue injury. Enhancing adenosine levels with ENT1/ENT2 inhibitor dipyridamole at a time when bleomycin-induced ALI was present, reduced further injury. Mice pretreated with the ADORA2B agonist BAY 60-6583 were protected from bleomycin-induced ALI by reducing vascular leakage (558.6 ± 50.4 vs. 379.9 ± 70.4, p < 0.05), total bronchoalveolar lavage fluid cell numbers (17.9 ± 1.8 to 13.4 ± 1.4 e4, p < 0.05), and neutrophil infiltration (6.42 ± 0.25 vs. 3.94 ± 0.29, p < 0.05). While mice lacking Adora2b in AECs were no longer protected by dipyridamole. We also identified occludin and focal adhesion kinase as downstream targets of ADORA2B, thus providing a novel mechanism for adenosine-mediated barrier protection. Similarly, we also observed similar enhanced ADORA2B (3.33 ± 0.67 to 16.12 ± 5.89, p < 0.05) and decreased occludin (81.2 ± 0.3 to 13.3 ± 0.4, p < 0.05) levels in human Acute respiratory distress syndrome lungs. Conclusion: We have highlighted a role of dipyridamole and adenosine signaling in preventing or treating ALI and identified Ent2 and Adora2b as key mediators in important for the resolution of ALI.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning-yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dewei Ren
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, United States
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Kemly Philip
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
| | - Bindu Akkanti
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
| |
Collapse
|
14
|
Tian Z, Dixon J, Guo X, Deal B, Liao Q, Zhou Y, Cheng F, Allen-Gipson DS. Co-inhibition of CD73 and ADORA2B Improves Long-Term Cigarette Smoke Induced Lung Injury. Front Physiol 2021; 12:614330. [PMID: 33584346 PMCID: PMC7876334 DOI: 10.3389/fphys.2021.614330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine (ADO) involvement in lung injury depends on the activation of its receptors. The ADO A2A receptor (ADORA2A) and A2B receptor (ADORA2B) are best described to have both tissue-protective and tissue-destructive processes. However, no approach has been effective in delineating the mechanism(s) involved with ADO shifting from its tissue-protective to tissue-destructive properties in chronic airway injury. Using cigarette smoke (CS) as our model of injury, we chronically exposed Nuli-1 cells to 5% CS extract (CSE) for 3 years establishing a long-term CSE exposure model (LTC). We found significant morphological changes, decreased proliferation, and migration resulting in impaired airway wound closure in LTC. Further investigations showed that long-term CSE exposure upregulates CD73 and ADORA2B expression, increases ADO production, inhibits PKC alpha activity and p-ERK signaling pathway. Knocking down ADORA2B and/or CD73 in LTC activates PKC alpha and increases p-ERK signaling. Knocking down both showed better improvement in wound repair than either alone. In vivo experiments also showed that double knockout CD73 and ADORA2B remarkably improved CS-induced lung injury by activating PKC alpha, reducing the inflammatory cell number in bronchoalveolar lavage fluid and the production of inflammatory mediator IL-6, inhibiting the fibrosis-like lesions and decreasing collagen deposition surrounding bronchioles. Collectively, long-term CSE exposure upregulates CD73 expression and increases ADO production, which promotes low affinity ADORA2B activation and subsequent diminution of PKC alpha activity and ERK signaling pathway, and inhibition of airway wound repair. Moreover, the data suggesting ADORA2B and CD73 as potential therapeutic targets may be more efficacious in improving chronic CS lung diseases and impaired wound repair.
Collapse
Affiliation(s)
- Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Jendayi Dixon
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Benjamin Deal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Ngamsri KC, Jans C, Putri RA, Schindler K, Gamper-Tsigaras J, Eggstein C, Köhler D, Konrad FM. Inhibition of CXCR4 and CXCR7 Is Protective in Acute Peritoneal Inflammation. Front Immunol 2020; 11:407. [PMID: 32210974 PMCID: PMC7076176 DOI: 10.3389/fimmu.2020.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Our previous studies revealed a pivotal role of the chemokine stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 on migratory behavior of polymorphonuclear granulocytes (PMNs) in pulmonary inflammation. Thereby, the SDF-1-CXCR4/CXCR7-axis was linked with adenosine signaling. However, the role of the SDF-1 receptors CXCR4 and CXCR7 in acute inflammatory peritonitis and peritonitis-related sepsis still remained unknown. The presented study provides new insight on the mechanism of a selective inhibition of CXCR4 (AMD3100) and CXCR7 (CCX771) in two models of peritonitis and peritonitis-related sepsis by injection of zymosan and fecal solution. We observed an increased expression of SDF-1, CXCR4, and CXCR7 in peritoneal tissue and various organs during acute inflammatory peritonitis. Selective inhibition of CXCR4 and CXCR7 reduced PMN accumulation in the peritoneal fluid and infiltration of neutrophils in lung and liver tissue in both models. Both inhibitors had no anti-inflammatory effects in A2B knockout animals (A2B–/–). AMD3100 and CCX771 treatment reduced capillary leakage and increased formation of tight junctions as a marker for microvascular permeability in wild type animals. In contrast, both inhibitors failed to improve capillary leakage in A2B–/– animals, highlighting the impact of the A2B-receptor in SDF-1 mediated signaling. After inflammation, the CXCR4 and CXCR7 antagonist induced an enhanced expression of the protective A2B adenosine receptor and an increased activation of cAMP (cyclic adenosine mono phosphate) response element-binding protein (CREB), as downstream signaling pathway of A2B. The CXCR4- and CXCR7-inhibitor reduced the release of cytokines in wild type animals via decreased intracellular phosphorylation of ERK and NFκB p65. In vitro, CXCR4 and CXCR7 antagonism diminished the chemokine release of human cells and increased cellular integrity by enhancing the expression of tight junctions. These protective effects were linked with functional A2B-receptor signaling, confirming our in vivo data. In conclusion, our study revealed new protective aspects of the pharmacological modulation of the SDF-1-CXCR4/CXCR7-axis during acute peritoneal inflammation in terms of the two hallmarks PMN migration and barrier integrity. Both anti-inflammatory effects were linked with functional adenosine A2B-receptor signaling.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Christoph Jans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Rizki A Putri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Katharina Schindler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Wang M, Guo X, Zhao H, Lv J, Wang H, An Y. Adenosine A 2B receptor activation stimulates alveolar fluid clearance through alveolar epithelial sodium channel via cAMP pathway in endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L787-L800. [PMID: 32129084 DOI: 10.1152/ajplung.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaoxia Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huixia Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
18
|
Chambers ED, White A, Vang A, Wang Z, Ayala A, Weng T, Blackburn M, Choudhary G, Rounds S, Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J 2020; 34:1516-1531. [PMID: 31914698 PMCID: PMC7045807 DOI: 10.1096/fj.201902286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.
Collapse
Affiliation(s)
- Eboni D. Chambers
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexis White
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02908
| | - Tingting Weng
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Michael Blackburn
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| |
Collapse
|
19
|
Pal Y, Bandyopadhyay N, Pal RS, Ahmed S, Bandopadhyay S. Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis. Curr Pharm Des 2019; 25:2859-2874. [DOI: 10.2174/1381612825666190710111658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
Adenosine is a purine nucleoside which is an effective controller of inflammation. The inflammatory effect of adenosine is expressed via its four receptor subtypes viz. A1, A2A, A2B and A3. The various inflammatory conditions including rheumatoid arthritis (RA) are initiated by adenosine receptors of which A2A and A3 play a vital role. RA primarily is an auto-immune disorder which is manifested as chronic inflammation in the synovial lining of joints. In order to develop an effective treatment, the role of cytokines, IL–1, TNF-α and IL–6 is crucial. Besides, the knowledge of PI3K-PKB/Akt and NF-kB signaling pathway is also important to understand the antiinflammatory targets. Methotrexate along with various other molecules like, NSAIDs and DMARDs are presently used as treatment lines for controlling RA. The enhanced knowledge of the preclinical stages and pathogenesis along with recent potent therapeutics raises the hopes that RA can be prevented in the near future.
Collapse
Affiliation(s)
- Yogendra Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Nabamita Bandyopadhyay
- Molecular Biology Division, National Institute of Malarial Research (NIMR), Dwarka, New Delhi, Delhi 110077, India
| | - Rashmi S. Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, Udham Singh Nagar, Uttarakhand 244713, India
| | - Shantanu Bandopadhyay
- Faculty of Pharmacy, Naraina Vidya Peeth Group of Institutions, Panki, Kanpur, Uttar Pradesh 208020, India
| |
Collapse
|
20
|
Endogenously released adenosine causes pulmonary vasodilation during the acute phase of pulmonary embolization in dogs. IJC HEART & VASCULATURE 2019; 24:100396. [PMID: 31334333 PMCID: PMC6620623 DOI: 10.1016/j.ijcha.2019.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
Background Endogenous adenosine levels increase under stress in various organs. Exogenously administered adenosine is a well-known pulmonary vasodilator. However, the physiology and therapeutic potential of endogenous adenosine during alteration in pulmonary hemodynamics such as pulmonary embolism is not elucidated. We hypothesized that the adenosine level increases following an acute elevation of pulmonary resistance, resulting in pulmonary vasodilation. Methods We induced acute pulmonary embolization by injecting plastic beads in anesthetized dogs. Plasma adenosine levels, defined as the product of plasma adenosine concentration and simultaneous cardiac output, were assessed from blood samples from the superior vena cava, main pulmonary artery (MPA), and ascending aorta 1 and 10 min following injection. Hemodynamics were assessed with (n = 3) and without (n = 8) administration of the adenosine receptor blocker, 8-(p-sulfophenyl)theophylline (8SPT). Results Mean pulmonary arterial pressure (PAP) increased from 11 ± 1 mmHg, peaking at 28 ± 4 mmHg at 52 ± 13 s after injection. During this period, total pulmonary resistance (TPR) elevated from 11 ± 1 to 33 ± 6 Wood unit. Plasma adenosine levels increased in the MPA from 14.5 ± 2 to 38.8 ± 7 nmol/min 1 min after injection. TPR showed greater elevation under 8SPT treatment, to 96 ± 12 Wood unit at PAP peak. Conclusions Endogenously released adenosine after acute pulmonary embolization is one of the initial pulmonary vasodilators. The immediate surge in plasma adenosine levels in the MPA could lead to a hypothesis that adenosine is released by the right heart in response to pressure overload. Adenosine levels increased after experimental acute pulmonary embolization. Plasma adenosine levels immediately rose in the main pulmonary artery. Adenosine is one of the initial pulmonary vasodilators after embolization. Released adenosine could originate from the right heart following pressure overload.
Collapse
|
21
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Wang BS, Huang X, Chen LZ, Liu MM, Shi JB. Design and synthesis of novel pyrazolo[4,3- d]pyrimidines as potential therapeutic agents for acute lung injury. J Enzyme Inhib Med Chem 2019; 34:1121-1130. [PMID: 31117832 PMCID: PMC6534230 DOI: 10.1080/14756366.2019.1618291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four series of total 35 new pyrazolo[4,3-d]pyrimidine compounds were designed, synthesized and evaluated for their inhibitory activity against LPS-induced NO production in RAW264.7 macrophages. Among them, compound 4e was found to be the most potent inhibitor, which decreased the production of cytokines in vitro, such as NO, IL-6 and TNF-α, with IC50 values of 2.64, 4.38 and 5.63 μM, respectively. Further studies showed that compound 4e inhibited cytokines secretion of macrophages through suppressing TLR4/p38 signaling pathway. Additionally, compound 4e showed in vivo anti-inflammatory activity in LPS-induced model of acute lung injury. These data suggested that compound 4e may be a promising lead structure for the treatment of ALI.
Collapse
Affiliation(s)
- Bao Shi Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Xin Huang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Liu Zeng Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Ming Ming Liu
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| | - Jing Bo Shi
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs , Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
23
|
Cox CA, Boudewijn IM, Vroegop SJ, Schokker S, Lexmond AJ, Frijlink HW, Hagedoorn P, Vonk JM, Farenhorst MP, Ten Hacken NHT, Kerstjens HAM, van den Berge M. Associations of AMP and adenosine induced dyspnea sensation to large and small airways dysfunction in asthma. BMC Pulm Med 2019; 19:23. [PMID: 30691429 PMCID: PMC6348600 DOI: 10.1186/s12890-019-0783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Background Bronchial provocation is often used to confirm asthma. Dyspnea sensation, however, associates poorly with the evoked drop in FEV1. Provocation tests only use the large airways parameter FEV1, although dyspnea is associated with both large- and small airways dysfunction. Aim of this study was to explore if adenosine 5′-monophosphate (AMP) and adenosine evoke an equal dyspnea sensation and if dyspnea associates better with large or small airways dysfunction. Methods We targeted large airways with AMP and small airways with dry powder adenosine in 59 asthmatic (ex)-smokers with ≥5 packyears, 14 ± 7 days apart. All subjects performed spirometry, impulse oscillometry (IOS), and Borg dyspnea score. In 36 subjects multiple breath nitrogen washout (MBNW) was additionally performed. We analyzed the association of the change (Δ) in Borg score with the change in large and small airways parameters, using univariate and multivariate linear regression analyses. MBNW was analyzed separately. Results Provocation with AMP and adenosine evoked similar levels of dyspnea. ΔFEV1 was not significantly associated with ΔBorg after either AMP or adenosine provocation, in both univariate and multivariate analyses. In multivariate linear regression, a decrease in FEF25–75 during adenosine provocation was independently associated with an increase in Borg. In the multivariate analyses for AMP provocation, no significant associations were found between ΔBorg and any large or small airways parameters. Conclusion AMP and adenosine induce equally severe dyspnea sensations. Our results suggest that dyspnea induced with dry powder adenosine is related to small airways involvement, while neither large nor small airways dysfunction was associated with AMP-induced dyspnea. Trail registration NCT01741285 at www.clinicaltrials.gov, first registered Dec 4th, 2012. Electronic supplementary material The online version of this article (10.1186/s12890-019-0783-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire A Cox
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.
| | - Ilse M Boudewijn
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands
| | - Sebastiaan J Vroegop
- Department of Pulmonary Diseases, Martini Hospital Groningen, PO box 30, 033 9700, RM, Groningen, The Netherlands
| | - Siebrig Schokker
- Department of Pulmonary Diseases, Martini Hospital Groningen, PO box 30, 033 9700, RM, Groningen, The Netherlands
| | - Anne J Lexmond
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO box 30, 001 9700, RB, Groningen, The Netherlands
| | - Martijn P Farenhorst
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, PO box 30.0001, 9700, RB, Groningen, The Netherlands
| |
Collapse
|
24
|
Mertens TCJ, Hanmandlu A, Tu L, Phan C, Collum SD, Chen NY, Weng T, Davies J, Liu C, Eltzschig HK, Jyothula SSK, Rajagopal K, Xia Y, Guha A, Bruckner BA, Blackburn MR, Guignabert C, Karmouty-Quintana H. Switching-Off Adora2b in Vascular Smooth Muscle Cells Halts the Development of Pulmonary Hypertension. Front Physiol 2018; 9:555. [PMID: 29910735 PMCID: PMC5992271 DOI: 10.3389/fphys.2018.00555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ly Tu
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Carole Phan
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jonathan Davies
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keshava Rajagopal
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ashrith Guha
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Brian A Bruckner
- Methodist Debakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, United States
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe Guignabert
- Institut National de la Santé et de la Recherche Médicale UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
25
|
Neudecker V, Brodsky KS, Clambey ET, Schmidt EP, Packard TA, Davenport B, Standiford TJ, Weng T, Fletcher AA, Barthel L, Masterson JC, Furuta GT, Cai C, Blackburn MR, Ginde AA, Graner MW, Janssen WJ, Zemans RL, Evans CM, Burnham EL, Homann D, Moss M, Kreth S, Zacharowski K, Henson PM, Eltzschig HK. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci Transl Med 2018; 9:9/408/eaah5360. [PMID: 28931657 DOI: 10.1126/scitranslmed.aah5360] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Intercellular transfer of microRNAs can mediate communication between critical effector cells. We hypothesized that transfer of neutrophil-derived microRNAs to pulmonary epithelial cells could alter mucosal gene expression during acute lung injury. Pulmonary-epithelial microRNA profiling during coculture of alveolar epithelial cells with polymorphonuclear neutrophils (PMNs) revealed a selective increase in lung epithelial cell expression of microRNA-223 (miR-223). Analysis of PMN-derived supernatants showed activation-dependent release of miR-223 and subsequent transfer to alveolar epithelial cells during coculture in vitro or after ventilator-induced acute lung injury in mice. Genetic studies indicated that miR-223 deficiency was associated with severe lung inflammation, whereas pulmonary overexpression of miR-223 in mice resulted in protection during acute lung injury induced by mechanical ventilation or by infection with Staphylococcus aureus Studies of putative miR-223 gene targets implicated repression of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) in the miR-223-dependent attenuation of lung inflammation. Together, these findings suggest that intercellular transfer of miR-223 from neutrophils to pulmonary epithelial cells may dampen acute lung injury through repression of PARP-1.
Collapse
Affiliation(s)
- Viola Neudecker
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA. .,Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kelley S Brodsky
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric T Clambey
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Program in Translational Lung Research, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Bennett Davenport
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Ashley A Fletcher
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Glenn T Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Adit A Ginde
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - William J Janssen
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Christopher M Evans
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dirk Homann
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Simone Kreth
- Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter M Henson
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
26
|
Tzounakas VL, Gevi F, Georgatzakou HT, Zolla L, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency. Front Med (Lausanne) 2018; 5:16. [PMID: 29459896 PMCID: PMC5807665 DOI: 10.3389/fmed.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.
Collapse
Affiliation(s)
- Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hara T. Georgatzakou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
28
|
Yuan X, Lee JW, Bowser JL, Neudecker V, Sridhar S, Eltzschig HK. Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth Analg 2018; 126:308-321. [PMID: 28759485 PMCID: PMC5735013 DOI: 10.1213/ane.0000000000002288] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perioperative organ injury has a significant impact on surgical outcomes and presents a leading cause of death in the United States. Recent research has pointed out an important role of hypoxia signaling in the protection from organ injury, including for example myocardial infarction, acute respiratory distress syndrome, acute kidney, or gut injury. Hypoxia induces the stabilization of hypoxia-inducible factors (HIFs), thereby leading to the induction of HIF target genes, which facilitates adaptive responses to low oxygen. In this review, we focus on current therapeutic strategies targeting hypoxia signaling in various organ injury models and emphasize potential clinical approaches to integrate these findings into the care of surgical patients. Conceptually, there are 2 options to target the HIF pathway for organ protection. First, drugs became recently available that promote the stabilization of HIFs, most prominently via inhibition of prolyl hydroxylase. These compounds are currently trialed in patients, for example, for anemia treatment or prevention of ischemia and reperfusion injury. Second, HIF target genes (such as adenosine receptors) could be activated directly. We hope that some of these approaches may lead to novel pharmacologic strategies to prevent or treat organ injury in surgical patients.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jae W. Lee
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jessica L. Bowser
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Viola Neudecker
- Department of Anesthesiology, Clinic of the University of Munich, Munich, Germany
| | - Srikanth Sridhar
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
29
|
Konrad FM, Zwergel C, Ngamsri KC, Reutershan J. Anti-inflammatory Effects of Heme Oxygenase-1 Depend on Adenosine A 2A- and A 2B-Receptor Signaling in Acute Pulmonary Inflammation. Front Immunol 2017; 8:1874. [PMID: 29326725 PMCID: PMC5742329 DOI: 10.3389/fimmu.2017.01874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Acute pulmonary inflammation is still a frightening complication in intensive care units. In our previous study, we determined that heme oxygenase (HO)-1 had anti-inflammatory effects in pulmonary inflammation. Recent literature has emphasized a link between HO-1 and the nucleotide adenosine. Since adenosine A2A- and A2B-receptors play a pivotal role in pulmonary inflammation, we investigated their link to the enzyme HO-1. In a murine model of pulmonary inflammation, the activation of HO-1 by hemin significantly decreased polymorphonuclear leukocyte (PMN) migration into the lung. This anti-inflammatory reduction of PMN migration was abolished in A2A- and A2B-knockout mice. Administration of hemin significantly reduced chemokine levels in the BAL of wild-type animals but had no effects in A2A-/- and A2B-/- mice. Microvascular permeability was significantly attenuated in HO-1-stimulated wild-type mice, but not in A2A-/- and A2B-/- mice. The activity of HO-1 rose after LPS inhalation in wild-type animals and, surprisingly, also in A2A-/- and A2B-/- mice after the additional administration of hemin. Immunofluorescence images of animals revealed alveolar macrophages to be the major source of HO-1 activity in both knockout strains—in contrast to wild-type animals, where HO-1 was also significantly augmented in the lung tissue. In vitro studies on PMN migration further confirmed our in vivo findings. In conclusion, we linked the anti-inflammatory effects of HO-1 to functional A2A/A2B-receptor signaling under conditions of pulmonary inflammation. Our findings may explain why targeting HO-1 in acute pulmonary inflammation has failed to prove effective in some patients, since septic patients have altered adenosine receptor expression.
Collapse
Affiliation(s)
- Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Constantin Zwergel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jörg Reutershan
- Department of Anesthesiology and Intensive Care Medicine, Hospital of Bayreuth, Bayreuth, Germany
| |
Collapse
|
30
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
31
|
Li H, Karmouty-Quintana H, Chen NY, Mills T, Molina J, Blackburn MR, Davies J. Loss of CD73-mediated extracellular adenosine production exacerbates inflammation and abnormal alveolar development in newborn mice exposed to prolonged hyperoxia. Pediatr Res 2017; 82:pr2017176. [PMID: 28832580 DOI: 10.1038/pr.2017.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
BackgroundHyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response and it disrupts normal alveolarization in the developing newborn lung. Adenosine is a signaling molecule that is generated extracellularly by ecto-5'-nucleotidase (CD73) in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to have a protective role in acute injury situations; however, chronic elevations have been associated with detrimental changes in chronic lung diseases. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which are detrimental to the newborn lung.MethodsC57Bl/6 and CD73-/- mice were exposed to 95% oxygen, 70% oxygen, or room air. Adenosine concentration and markers of pulmonary inflammation and lung development were measured.ResultsExposure to hyperoxia caused pulmonary inflammation and disrupted normal alveolar development in association with increased pulmonary adenosine levels. Loss of CD73-mediated extracellular adenosine production led to decreased survival with exposure to 95% oxygen, and exacerbated pulmonary inflammation and worsened lung development with 70% oxygen exposure.ConclusionExposure to hyperoxia causes lung injury associated with an increase in adenosine concentration, and loss of CD73-mediated adenosine production leads to worsening of hyperoxic lung injury.Pediatric Research advance online publication, 23 August 2017; doi:10.1038/pr.2017.176.
Collapse
Affiliation(s)
- Huiling Li
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
32
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
33
|
Sharma AK, LaPar DJ, Stone ML, Zhao Y, Mehta CK, Kron IL, Laubach VE. NOX2 Activation of Natural Killer T Cells Is Blocked by the Adenosine A2A Receptor to Inhibit Lung Ischemia-Reperfusion Injury. Am J Respir Crit Care Med 2017; 193:988-99. [PMID: 26757359 DOI: 10.1164/rccm.201506-1253oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Ischemia-reperfusion (IR) injury after lung transplantation, which affects both short- and long-term allograft survival, involves activation of NADPH oxidase 2 (NOX2) and activation of invariant natural killer T (iNKT) cells to produce IL-17. Adenosine A2A receptor (A2AR) agonists are known to potently attenuate lung IR injury and IL-17 production. However, mechanisms for iNKT cell activation after IR and A2AR agonist-mediated protection remain unclear. OBJECTIVES We tested the hypothesis that NOX2 mediates IL-17 production by iNKT cells after IR and that A2AR agonism prevents IR injury by blocking NOX2 activation in iNKT cells. METHODS An in vivo murine hilar ligation model of IR injury was used, in which left lungs underwent 1 hour of ischemia and 2 hours of reperfusion. MEASUREMENTS AND MAIN RESULTS Adoptive transfer of iNKT cells from p47(phox-/-) or NOX2(-/-) mice to Jα18(-/-) (iNKT cell-deficient) mice significantly attenuated lung IR injury and IL-17 production. Treatment with an A2AR agonist attenuated IR injury and IL-17 production in wild-type (WT) mice and in Jα18(-/-) mice reconstituted with WT, but not A2AR(-/-), iNKT cells. Furthermore, the A2AR agonist prevented IL-17 production by murine and human iNKT cells after acute hypoxia-reoxygenation by blocking p47(phox) phosphorylation, a critical step for NOX2 activation. CONCLUSIONS NOX2 plays a key role in inducing iNKT cell-mediated IL-17 production and subsequent lung injury after IR. A primary mechanism for A2AR agonist-mediated protection entails inhibition of NOX2 in iNKT cells. Therefore, agonism of A2ARs on iNKT cells may be a novel therapeutic strategy to prevent primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Damien J LaPar
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew L Stone
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
34
|
Inhibition of SDF-1 receptors CXCR4 and CXCR7 attenuates acute pulmonary inflammation via the adenosine A 2B-receptor on blood cells. Cell Death Dis 2017; 8:e2832. [PMID: 28542132 PMCID: PMC5520683 DOI: 10.1038/cddis.2016.482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Abstract
Acute pulmonary inflammation is characterized by migration of polymorphonuclear neutrophils into the different compartments of the lung. Recent studies showed evidence that the chemokine stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 influence migration of immune cells and their activity was linked to adenosine concentrations. We investigated the particular role of CXCR4- and CXCR7-inhibition and the potential link to the adenosine A2B-receptor, which plays an important anti-inflammatory role in the lung. After LPS-inhalation for 45 minutes, administration of the CXCR4-inhibitor (AMD3100) decreased transendothelial and transepithelial migration, whereas CXCR7-antagonism influenced epithelial migration exclusively. In A2B−/− mice, no anti-inflammatory effects were detectible through either one of the agents. Using chimeric mice, we identified A2B on hematopoietic cells to be crucial for these anti-inflammatory effects of CXCR4/7-inhibition. Both inhibitors decreased TNFα, IL6, CXCL1 and CXCL2/3 levels in the bronchoalveolar lavage of wild type mice, while not influencing the chemokine release in A2B−/− mice. Inflammation augmented the expression of both receptors and their inhibition increased A2B-levels upon inflammation. In vitro assays with human epithelium/endothelium confirmed our in vivo findings. During inflammation, inhibition of CXCR4- and CXCR7-receptors prevented microvascular permeability in wild type but not in A2B−/− mice, highlighting the pivotal role of an active A2B-receptor in this setting. The combination of both inhibitors had a synergistic effect in preventing capillary leakage. In conclusion, we determined the pivotal role of CXCR4- and CXCR7-inhibition in acute pulmonary inflammation, which depended on A2B-receptor signalling.
Collapse
|
35
|
Purinergic control of red blood cell metabolism: novel strategies to improve red cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:535-542. [PMID: 28488967 DOI: 10.2450/2017.0366-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023]
Abstract
Transfusion of stored blood is regarded as one of the great advances in modern medicine. However, during storage in the blood bank, red blood cells (RBCs) undergo a series of biochemical and biomechanical changes that affect cell morphology and physiology and potentially impair transfusion safety and efficacy. Despite reassuring evidence from clinical trials, it is universally accepted that the storage lesion(s) results in the altered physiology of long-stored RBCs and helps explain the rapid clearance of up to one-fourth of long-stored RBCs from the recipient's bloodstream at 24 hours after administration. These considerations explain the importance of understanding and mitigating the storage lesion. With the emergence of new technologies that have enabled large-scale and in-depth screening of the RBC metabolome and proteome, recent studies have provided novel insights into the molecule-level metabolic changes underpinning the accumulation of storage lesions to RBCs in the blood bank and alternative storage strategies to mitigate such lesion(s). These approaches borrow from recent insights on the biochemistry of RBC adaptation to high altitude hypoxia. We recently conducted investigations in genetically modified mice and revealed novel insights into the role of adenosine signalling in response to hypoxia as a previously unrecognised cascade regulating RBC glucose metabolism and increasing O2 release, while decreasing inflammation and tissue injuries in animal models. Here, we will discuss the molecular mechanisms underlying the role of purinergic molecules, including adenosine and adenosine triphosphate in manipulating RBCs and blood vessels in response to hypoxia. We will also speculate about new therapeutic possibilities to improve the quality of stored RBCs and the prognosis after transfusion.
Collapse
|
36
|
Long-term consequences of disrupting adenosine signaling during embryonic development. Mol Aspects Med 2017; 55:110-117. [PMID: 28202385 DOI: 10.1016/j.mam.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that disruption in the prenatal environment can have long-lasting effects on an individual's health in adulthood. Research on the fetal programming of adult diseases, including cardiovascular disease, focuses on epi-mutations, which alter the normal pattern of epigenetic factors such as DNA methylation, miRNA expression, or chromatin modification, rather than traditional genetic alteration. Thus, understanding how in utero chemical exposures alter epigenetics and lead to adult disease is of considerable public health concern. Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists including the methlyxanthines caffeine and theophylline are widely consumed during pregnancy. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined the long-term effects of in utero disruption of adenosine signaling on cardiac gene expression, morphology, and function in adult offspring. One substance that fetuses are frequently exposed to is caffeine, which is a non-selective adenosine receptor antagonist. Over the past several years, we examined the role of adenosine signaling during embryogenesis and cardiac development. We discovered that in utero alteration in adenosine action leads to adverse effects on embryonic and adult murine hearts. We find that cardiac A1ARs protect the embryo from in utero hypoxic stress, a condition that causes an increase in adenosine levels. After birth in mice, we observed that in utero caffeine exposure leads to abnormal cardiac function and morphology in adults, including an impaired response to β-adrenergic stimulation. Recently, we observed that in utero caffeine exposure induces transgenerational effects on cardiac morphology, function, and gene expression. Our findings indicate that the effects of altered adenosine signaling are dependent on signaling through the A1ARs and timing of disruption. In addition, the long-term effects of altered adenosine signaling appear to be mediated by alterations in DNA methylation, an epigenetic process critical for normal development.
Collapse
|
37
|
Tapbergenov SO, Sovetov BS, Bekbosynova RB, Bolysbekova SM. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 61:737-41. [PMID: 26716746 DOI: 10.18097/pbmc20156106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.
Collapse
Affiliation(s)
| | - B S Sovetov
- Semey State Medical University, Semey, Kazakhstan
| | | | | |
Collapse
|
38
|
Luo F, Le NB, Mills T, Chen NY, Karmouty-Quintana H, Molina JG, Davies J, Philip K, Volcik KA, Liu H, Xia Y, Eltzschig HK, Blackburn MR. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis. FASEB J 2015; 30:874-83. [PMID: 26527068 DOI: 10.1096/fj.15-274845] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.
Collapse
Affiliation(s)
- Fayong Luo
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Ngoc-Bao Le
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Tingting Mills
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Ning-Yuan Chen
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Harry Karmouty-Quintana
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Jose G Molina
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Jonathan Davies
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kemly Philip
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kelly A Volcik
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Hong Liu
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Yang Xia
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Holger K Eltzschig
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Michael R Blackburn
- *Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
39
|
Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 2015; 119:1173-82. [PMID: 26316513 DOI: 10.1152/japplphysiol.00350.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects.
Collapse
Affiliation(s)
- Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Passos DF, Schetinger MRC, Leal DBR. Purinergic signaling and human immunodeficiency virus/acquired immune deficiency syndrome: From viral entry to therapy. World J Virol 2015; 4:285-294. [PMID: 26279989 PMCID: PMC4534819 DOI: 10.5501/wjv.v4.i3.285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is a serious condition associated to severe immune dysfunction and immunodeficiency. Mechanisms involved in HIV-associated immune activation, inflammation and loss of CD4+ T cells have been extensively studied, including those concerning purinergic signaling pathways. Purinergic signaling components are involved in viral entry and replication and disease progression. Research involving the participation of purinergic signaling in HIV infection has been not only important to elucidate disease mechanisms but also to introduce new approaches to therapy. The involvement of purinergic signaling in the pathogenesis of HIV infection and its implications in the control of the HIV infection are reviewed in this paper.
Collapse
|
41
|
Abstract
The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.
Collapse
Affiliation(s)
- Davide Losa
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
- The ithree Institute, University of Technology Sydney, 2007 Ultimo, NSW Australia
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
42
|
Hoegl S, Brodsky KS, Blackburn MR, Karmouty-Quintana H, Zwissler B, Eltzschig HK. Alveolar Epithelial A2B Adenosine Receptors in Pulmonary Protection during Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2015; 195:1815-24. [PMID: 26188061 DOI: 10.4049/jimmunol.1401957] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022]
Abstract
Acute lung injury (ALI) is an acute inflammatory lung disease that causes morbidity and mortality in critically ill patients. However, there are many instances where ALI resolves spontaneously through endogenous pathways that help to control excessive lung inflammation. Previous studies have implicated the extracellular signaling molecule adenosine and signaling events through the A2B adenosine receptor in lung protection. In this context, we hypothesized that tissue-specific expression of the A2B adenosine receptor is responsible for the previously described attenuation of ALI. To address this hypothesis, we exposed mice with tissue-specific deletion of Adora2b to ALI, utilizing a two-hit model where intratracheal LPS treatment is followed by injurious mechanical ventilation. Interestingly, a head-to-head comparison of mice with deletion of Adora2b in the myeloid lineage (Adora2b(loxP/loxP) LysM Cre(+)), endothelial cells (Adora2b(loxP/loxP) VE-cadherin Cre(+)), or alveolar epithelial cells (Adora2b(loxP/loxP) SPC Cre(+)) revealed a selective increase in disease susceptibility in Adora2b(loxP/loxP) SPC Cre(+) mice. More detailed analysis of Adora2b(loxP/loxP) SPC Cre(+) mice confirmed elevated lung inflammation and attenuated alveolar fluid clearance. To directly deliver an A2B adenosine receptor-specific agonist to alveolar epithelial cells, we subsequently performed studies with inhaled BAY 60-6583. Indeed, aerosolized BAY 60-6583 treatment was associated with attenuated pulmonary edema, improved histologic lung injury, and dampened lung inflammation. Collectively, these findings suggest that alveolar epithelial A2B adenosine receptor signaling contributes to lung protection, and they implicate inhaled A2B adenosine receptor agonists in ALI treatment.
Collapse
Affiliation(s)
- Sandra Hoegl
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045; Department of Anesthesiology, Comprehensive Pneumology Center Munich, German Center for Lung Research, University Hospital, Ludwig Maximilian University, D-81377 Munich, Germany; and
| | - Kelley S Brodsky
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | | | | | - Bernhard Zwissler
- Department of Anesthesiology, Comprehensive Pneumology Center Munich, German Center for Lung Research, University Hospital, Ludwig Maximilian University, D-81377 Munich, Germany; and
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
43
|
Liu ZW, Wang HY, Guan L, Zhao B. Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury. World J Emerg Med 2015; 6:67-73. [PMID: 25802570 DOI: 10.5847/wjem.j.1920-8642.2015.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The present study was undertaken to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA). METHODS Seventy-two male Sprague Dawley (SD) rats were divided into control group, oleic acid-induced ALI group (OA group), oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA+NaHS group), and sodium hydrosulfide treatment group (NaHS group). Rats of each group were further subdivided into 3 subgroups. Index of quantitative assessment of histological lung injury (IQA), wet/dry weight ratio (W/D) and H2S level of lung tissues were measured. The expressions of endoplasmic reticulum stress markers including glucose-regulated protein 78 (GRP78) and α-subunit of eukaryotic translation initiation factor-2 (elF2α) in lung tissues were measured by immunohistochemical staining and Western blotting. RESULTS The IQA score and W/D ratio of lung tissues at the three time points significantly increased in rats injected with OA, but significantly decreased in other rats injected with OA and NaHS. The level of H2S in lung tissue at the three time points significantly decreased in rats injected with OA, but significantly increased in other rats injected with both OA and NaHS. GRP78 and elF2α decreased in rats injected with OA, but increased in other rats injected with both OA and NaHS, especially at 4-hour and 6-hour time points. CONCLUSION The results suggested that H2S could promote alveolar epithelial cell endoplasmic reticulum stress in rats with ALI.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Hai-Ying Wang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lan Guan
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Bin Zhao
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
44
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
45
|
Idzko M, Ferrari D, Riegel AK, Eltzschig HK. Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood 2014; 124:1029-37. [PMID: 25001468 PMCID: PMC4133480 DOI: 10.1182/blood-2013-09-402560] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/16/2014] [Indexed: 12/17/2022] Open
Abstract
Nucleotides and nucleosides-such as adenosine triphosphate (ATP) and adenosine-are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically.
Collapse
Affiliation(s)
- Marco Idzko
- Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Davide Ferrari
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy; and
| | - Ann-Kathrin Riegel
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
46
|
Friebe D, Yang T, Schmidt T, Borg N, Steckel B, Ding Z, Schrader J. Purinergic signaling on leukocytes infiltrating the LPS-injured lung. PLoS One 2014; 9:e95382. [PMID: 24748324 PMCID: PMC3991673 DOI: 10.1371/journal.pone.0095382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/26/2014] [Indexed: 01/11/2023] Open
Abstract
Extracellular nucleotides and nucleosides have been implicated as important signaling molecules in the pathogenesis of acute lung injury (ALI). While adenosine is known to inhibit T cell activation, little information is available as to ATP and NAD degrading enzymes, the expression of ATP and adenosine receptors/transporters in different T cell subsets. ALI was induced by challenging mice with intra-tracheal instillation of 60 µl (3 µg/g) LPS. After 3 d and 7 d blood, lung tissue and bronchoalveolar lavage was collected and immune cells were analyzed using flow cytometry. The transcriptional phenotype of T helper cells, cytotoxic and regulatory T cells sorted by FACS was assessed by measuring the expression profile of 28 genes related to purinergic signaling using TaqMan Array Micro Fluidic Cards. Catabolism of ATP, NAD and cAMP by activated CD4+ T cells was evaluated by HPLC. CD73 was found to be highly abundant on lymphoid cells with little abundance on myeloid cells, while the opposite was true for CD39. After ALI, the abundance of CD39 and CD73 significantly increased on all T cell subsets derived from lung tissue and bronchoalveolar space. Expression analysis in T cell subsets of the lung revealed ATP (Cd39, Cd73) and NAD (Cd38, Cd157, Cd296, Pc-1) degrading enzymes. However, only transcription of Cd38, Cd39, Cd73, Ent1 and A2a receptor was significantly upregulated after ALI in T helper cells. CD4+ T cells from injured lung rapidly metabolized extracellular ATP to AMP and adenosine but not NAD or cAMP. These findings show that lung T cells – the dominant cell fraction in the later phase of ALI – exhibit a unique expression pattern of purinergic signaling molecules. Adenosine is formed by T cells at an enhanced rate from ATP but not from NAD and together with upregulated A2a receptor is likely to modulate the healing process after acute lung injury.
Collapse
Affiliation(s)
- Daniela Friebe
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tao Yang
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Timo Schmidt
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nadine Borg
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
47
|
Bartels K, Karhausen J, Clambey ET, Grenz A, Eltzschig HK. Perioperative organ injury. Anesthesiology 2014; 119:1474-89. [PMID: 24126264 DOI: 10.1097/aln.0000000000000022] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the fact that a surgical procedure may have been performed for the appropriate indication and in a technically perfect manner, patients are threatened by perioperative organ injury. For example, stroke, myocardial infarction, acute respiratory distress syndrome, acute kidney injury, or acute gut injury are among the most common causes for morbidity and mortality in surgical patients. In the current review, the authors discuss the pathogenesis of perioperative organ injury, and provide select examples for novel treatment concepts that have emerged over the past decade. Indeed, the authors are of the opinion that research to provide mechanistic insight into acute organ injury and identification of novel therapeutic approaches for the prevention or treatment of perioperative organ injury represent the most important opportunity to improve outcomes of anesthesia and surgery.
Collapse
Affiliation(s)
- Karsten Bartels
- * Fellow in Critical Care Medicine and Cardiothoracic Anesthesiology, † Assistant Professor of Anesthesiology, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina. ‡ Assistant Professor of Anesthesiology, § Associate Professor of Anesthesiology, ‖ Professor of Anesthesiology, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | |
Collapse
|
48
|
Gonzales JN, Gorshkov B, Varn MN, Zemskova MA, Zemskov EA, Sridhar S, Lucas R, Verin AD. Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L497-507. [PMID: 24414256 DOI: 10.1152/ajplung.00086.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Joyce N Gonzales
- Assistant Prof. of Medicine, Div. of Pulmonary and Critical Care Medicine, Georgia Regents Univ., Rm. BBR-5513, 1120 15th St., Augusta, GA 30912.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, Anderson D, Glover LE, Riegel AK, Colgan SP, Eltzschig HK. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:1249-56. [PMID: 24391213 DOI: 10.4049/jimmunol.1100593] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although acute lung injury (ALI) contributes significantly to critical illness, resolution often occurs spontaneously through endogenous pathways. We recently found that mechanical ventilation increases levels of pulmonary adenosine, a signaling molecule known to attenuate lung inflammation. In this study, we hypothesized a contribution of transcriptionally controlled pathways to pulmonary adenosine receptor (ADOR) signaling during ALI. We gained initial insight from microarray analysis of pulmonary epithelia exposed to conditions of cyclic mechanical stretch, a mimic for ventilation-induced lung disease. Surprisingly, these studies revealed a selective induction of the ADORA2B. Using real-time RT-PCR and Western blotting, we confirmed an up to 9-fold induction of the ADORA2B following cyclic mechanical stretch (A549, Calu-3, or human primary alveolar epithelial cells). Studies using ADORA2B promoter constructs identified a prominent region within the ADORA2B promoter conveying stretch responsiveness. This region of the promoter contained a binding site for the transcription factor hypoxia-inducible factor (HIF)-1. Additional studies using site-directed mutagenesis or transcription factor binding assays demonstrated a functional role for HIF-1 in stretch-induced increases of ADORA2B expression. Moreover, studies of ventilator-induced lung injury revealed induction of the ADORA2B during ALI in vivo that was abolished following HIF inhibition or genetic deletion of Hif1a. Together, these studies implicate HIF in the transcriptional control of pulmonary adenosine signaling during ALI.
Collapse
Affiliation(s)
- Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Aurora, CO 80045
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee CF, Lai HL, Lee YC, Chien CL, Chern Y. The A2A adenosine receptor is a dual coding gene: a novel mechanism of gene usage and signal transduction. J Biol Chem 2013; 289:1257-70. [PMID: 24293369 DOI: 10.1074/jbc.m113.509059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The A2A adenosine receptor (A2AR) is a G protein-coupled receptor and a major target of caffeine. The A2AR gene encodes alternative transcripts that are initiated from at least two independent promoters. The different transcripts of the A2AR gene contain the same coding region and 3'-untranslated region and different 5'-untranslated regions that are highly conserved among species. We report here that in addition to the production of the A2AR protein, translation from an upstream, out-of-frame AUG of the rat A2AR gene produces a 134-amino acid protein (designated uORF5). An anti-uORF5 antibody recognized a protein of the predicted size of uORF5 in PC12 cells and rat brains. Up-regulation of A2AR transcripts by hypoxia led to increased levels of both the A2AR and uORF5 proteins. Moreover, stimulation of A2AR increased the level of the uORF5 protein via post-transcriptional regulation. Expression of the uORF5 protein suppressed the AP1-mediated transcription promoted by nerve growth factor and modulated the expression of several proteins that were implicated in the MAPK pathway. Taken together, our results show that the rat A2AR gene encodes two distinct proteins (A2AR and uORF5) in an A2AR-dependent manner. Our study reveals a new example of the complexity of the mammalian genome and provides novel insights into the function of A2AR.
Collapse
Affiliation(s)
- Chien-fei Lee
- From the Institute of Neuroscience, School of Life Sciences, National Yang Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|